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Limitations of the modulation method to smooth a wire guide roughness

I. Bouchoule, J.-B. Trebbia, and C. L. Garrido Alzar
Laboratoire Charles Fabry de l’Institut d’Optique,

CNRS et Universit Paris 11, 91127 Palaiseau Cedex, France

It was recently demonstrated that wire guide roughness can be suppressed by modulating the
wire currents [Phys. Rev. Lett. 98, 263201 (2007)] so that the atoms experience a time-averaged
potential without roughness. In this paper, we theoretically study the limitations of this technique.
At low modulation frequency, we show that the longitudinal potential modulation produces heating
of the cloud and we compute the heating rate. We also give a quantum derivation of the rough con-
servative potential associated with the micro-motion of the atoms. At large modulation frequency,
we compute the loss rate due to non adiabatic spin-flip and show that it presents resonances at mul-
tiple modulation frequencies. These studies show that the modulation technique works for a wide
range of experimental parameters. We also give conditions to realize radio-frequency evaporative
cooling in such a modulated trap.

PACS numbers: 03.75.Be,03.75.-b,39.25.+k

I. INTRODUCTION

Atom-chips are a very promising tool for cooling and
manipulating cold atoms [2]. Diverse potentials, varying
on the micron-scale, can be realized and very high trans-
verse confinements are possible. Envisioned applications
range from integrated guided atomic interferometry [3–
5] to the study of low dimensional gases [6–8]. To take
benefit from the atom chip technology, the atoms should
be brought close to the current carrying wires. But the
atoms then experience a rough potential due to wire im-
perfections [9, 10] and this used to constitute an impor-
tant limitation of the atom-chip technology. However, a
method to overcome this roughness problem, based on
modulated currents, was recently demonstrated [1]. Due
to the important envisioned applications of this method,
a study of its limitations is crucial.

The method to suppress atomic wire guide roughness
consists in a fast modulation of the wire current around
zero so that the atoms, as in a Time Orbiting Potential
(TOP) trap [11], experience the time-average potential.
Since the longitudinal potential roughness is proportional
to the wire current [12], the time averaged potential is
exempt from roughness. The modulation frequency ω
must be large enough so that the atomic motion cannot
follow the instantaneous potential. On the other hand, ω
should be small enough in order to prevent losses due to
spin-flip transitions [13]. In this paper, we present analy-
sis that go beyond the time-averaged potential approach
and we identify the limitations of this method, both for
low and large ω. We also investigate the possibility of
using the radio-frequency evaporative cooling method in
such a modulated trap.

In Sec. II, we present the considered situation. In
Sec. III, we investigate the limitations of the method that
arise at small modulation frequency. Using a Floquet
analysis, we show that the atomic cloud is submitted
to a heating that we quantitatively study. Within this
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FIG. 1: A wire guide produced by three current carrying
wires. Geometrical deformation of the wire produce a lon-
gitudinal potential roughness (of correlation length lc) pro-
portional to the wire current as depicted in the figure.

formalism, we also recover the well-known adiabatic po-
tential experienced by atoms in fast modulated fields. In
our case, it amounts for a residual roughness. In sec. IV,
we compute the expected spin-flip losses due to the time
modulation of the magnetic field orientation, that arise
at large ω. Finally, the last section gives some insights
on the possibility to realize radio-frequency evaporative
cooling in the modulated guide.

II. WIRE GUIDE

A wire guide can be obtained combining a transverse
quadrupolar field and a homogeneous longitudinal mag-
netic field B0. The quadrupolar field can be realized us-
ing for example three current carrying wires as shown in
Fig.1. Because of wire deformations [10, 14], the current
density inside the wires acquires non zero transverse com-
ponents. This produces a longitudinal rough magnetic
field bz proportional to the wire current, much smaller
than the external field B0. The method to effectively re-
move the roughness consists in modulating the currents
at a frequency ω while the longitudinal field B0 is kept
constant.
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III. EFFECT OF THE MODULATION ON THE

LONGITUDINAL MOTION

Let us first assume the modulation frequency of the
wire currents is small enough so that the atomic spin ori-
entation can follow adiabatically the magnetic field ori-
entation. The atoms are then subjected to the instan-
taneous potential µ|B|, where µ is the atomic magnetic
dipole moment. For B0 much larger than E/µ where E
is the typical transverse atomic energy, the instantaneous
transverse potential is harmonic and proportional to the
instantaneous wire currents. Since the oscillation fre-
quency of this potential is modulated in time, the trans-
verse classical dynamics is described by a Mathieu equa-
tion, which predicts stable motion as long as ω > 0.87ω⊥,
where ω⊥ is the maximum instantaneous transverse oscil-
lation frequency. This classical criteria is also predicted
by quantum mechanics since the Wigner function evolves
as a classical phase space distribution for a harmonic po-
tential [21]. In this paper, we assume this stability condi-
tion is fulfilled. We also assume the longitudinal dynam-
ics is decoupled from the transverse one and we focus on
the longitudinal motion. The longitudinal instantaneous
potential is

V (z, t) = u(z) cos(ωt), (1)

where u(z) = µbz(z), sketched in Fig.1, is produced by
wire deformations. The idea of the method to smooth the
roughness is that the longitudinal motion of the atoms
does not have time to follow the time evolution of the
potential. The atomic motion is then well described by
the effect of the conservative potential 〈V (z, t)〉, where
the time average is done over a modulation period. Since
〈V (z, t)〉 = 0, the atoms do not experience any rough-
ness. We study below the conditions on the modulation
frequency ω for such an approach to be valid.
As the Hamiltonian experienced by the atoms is pe-

riodic in time, we use the well-known Floquet repre-
sentation [16], briefly presented below for the situation
considered here. A new quantum number nF is intro-
duced, which gives a relative number of modulation en-
ergy quanta. The Hamiltonian in this representation is
time-independent and contains two contributions. The
first one,

H0 =
∞
∑

nF=−∞
(p2/(2m) + h̄ωnF )|nF 〉〈nF |, (2)

does not couple different Floquet subspaces. The second
one,

H1 =

∞
∑

nF=−∞
u(z)/2(|nF 〉〈nF + 1|+ |nF + 1〉〈nF |), (3)

couples adjacent Floquet subspaces. If the state
of the system in the Floquet representation is
∑

nF
|ψnF 〉(t)|nF 〉, where |ψnF 〉(t) gives the state of the

system in the manifold of Floquet number nF , then
the state of the system in the bare representation is
∑

nF
|ψnF 〉(t)e−inFωt. Expectation values of observables

contain cross terms involving different Floquet numbers.
However, as long as evolution on time scales much larger
than 1/ω is considered, such cross terms (interference
terms) average to zero and the different Floquet states
can be interpreted as physically different states. A given
state has an infinite number of Floquet expansions. In
particular, it is possible to assume that the initial state
is in the Floquet manifold of Floquet number nF = 0.

Let us consider a state |p0, nF = 0〉 of momentum
p0 in the Floquet manifold nF = 0. The modulated
rough potential u is responsible for two different phe-
nomena. First, it induces a change rate of the atomic
energy. This irreversible evolution is due to the contin-
uous nature of the rough potential Fourier decomposi-
tion: the state |p0, nF = 0〉 is coupled to a continuum
of momentum states of the adjacent Floquet subspaces
nF = ±1 and this coupling to a continuum induces a
departure rate from the initial state, associated to a rate
of kinetic energy change. Second, the modulated poten-
tial is responsible for the well-known adiabatic potential
experienced by atoms in fast modulated fields [15]. We
show that this adiabatic potential is due to processes of
order two in u that couple the state |p0, nF = 0〉 to the
states |p1, nF = 0〉 via the virtually populated interme-
diate states |q, nF = ±1〉.
In the first sub-section, we investigate the first phe-

nomenon and compute the associated heating rate for a
cloud at thermal quasi-equilibrium. In the second sub-
section, we derive the adiabatic potential experienced by
the atoms. In both sections, we emphasize on the case
where the potential roughness is that obtained at large
distance from a flat wire having white noise border fluc-
tuations.

A. Heating of the atomic cloud

Let us suppose the atom is initially in the state |p0, nF 〉
of momentum p0 in the Floquet manifold nF = 0. As
shown in Fig.2, this state is coupled by u to the con-
tinuum of momentum states in the Floquet manifold
nF = ±1, which leads to a decay of the initial state popu-
lation. The momenta of the final states that fulfill energy
conservation in the Floquet subspace nF = −1 are ±h̄q+
where q+ =

√

k20 + 2mω/h̄, k0 = p0/h̄ being the initial
atomic wavevector. Decay towards these states involves
the Fourier component ±q+ − k0 of u and increases the
kinetic energy of the atom by h̄ω. If k20 > 2mω/h̄, there
exist states in the Floquet subspace nF = 1 that have the
same energy as the initial state. The momentum of those
final states are ±h̄q− where q− =

√

k20 − 2mω/h̄ and de-
cay towards these states decreases the kinetic energy of
the atom by h̄ω. A perturbative calculation, identical to
the one used to derive Fermi Golden rule, gives an energy
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FIG. 2: Transitions responsible for a heating of the atomic
cloud. The parabolas give the energy H0, given in Eq. (2),
versus the momentum p for different Floquet manifolds nF .
The state of momentum p0 in the Floquet manifold nF = 0
is coupled to different momentum states of the Floquet man-
ifolds nF = ±1 by the rough potential u(z).

exchange rate

dE
dt = πωm

2h̄2 [(S(−k0 + q+) + S(−k0 − q+))/q+
−Θ(|k0| −

√

2mω/h̄)(S(−k0 + q−) + S(−k0 − q−))/q−]
(4)

where S(q) = 1/(2π)
∫

eiqz〈u(0)u(z)〉dz is the spectral
density of u, characterized by the correlation length lc,
and Θ(x) is the Heaviside function that is zero for x < 0
and 1 for x > 0. The derivation of Eq. (4) is detailed
in the appendix A. As pointed out in the appendix, Eq.
(4) is not valid for an initial momentum very close to√
2mh̄ω. However, the range of k0 for which the formula

is not valid is in general very small and we ignore this in
the following.
Apart from the rms amplitude of the roughness, which

accounts only for a multiplicative factor in the rate of
the energy change, three energies are relevant: Eω = h̄ω
is the energy quantum corresponding to the modulation
frequency, Em = ml2cω

2 is about the kinetic energy of
an atom that would travel over lc during an oscillation
period, and Ec = p20/(2m) is the atomic kinetic energy.
In the following, we consider two different limits for which
we give simplified expressions for the energy change rate:
the classical limit and the quantum low energy limit.
Let us first assume that Eω/

√
EmEc ≪ 1 and

EωE
1/2
m /E

3/2
c ≪ 1. We show below that this two condi-

tions ensures the validity of the classical behavior. This
two conditions ensure that Eω/Ec ≪ 1 so that q+ and q−
are close to k0 and one can expand the quantity q±/k0 in
powers ofmω/(h̄k20). Since the wavevectors−k0−q± and
−k0 + q± are separated by about 2k0, the first condition
ensures that the spectral components S(−k0 − q±) are
negligible compared to the two other ones. The second
condition ensures that the latter are well approximated
using a Taylor expansion of S. Finally, the energy ex-
change rate writes

dE

dt
= −

[

2ω2/v30S(ω/v0) + S′(ω/v0)ω
3/v40

]

π/(2m),

(5)

where v0 = h̄k0/m is the atomic velocity. This energy
exchange rate does not depends on h̄ and is thus a clas-
sical result. It is obtained through a classical calculation
of kinetic energy exchange computed after expanding the
atomic trajectory to second order in u. Note that, using
the classical expression Ec = mv20/2, the two conditions

Eω/
√
EcEm ≪ 1 and EωE

1/2
m /E

3/2
c ≪ 1 are verified in

the limit where h̄ goes to zero, as expected for the validity
of classical physics.
Let us now consider the limit Eω/Ec ≫ 1 and

EcE
1/2
m /E

3/2
ω ≪ 1, that we denote the quantum low en-

ergy limit. The first inequality ensures that the Heaviside
function in Eq. (4) is zero and that q+ can be replaced

by
√
2h̄ω in the denominator. The second inequality en-

sures that this replacement is also valid for the argument
of the S function. Then the energy exchange rate given
by Eq. (4) reduces to

dE

dt
=
π
√
mω√
2h̄3

[

S(−k0 +
√

2mω/h̄) + S(k0 +
√

2mω/h̄)
]

.

(6)
This is a quantum result, sensitive to the fact that energy
exchange between the atom and the oscillating potential
involves the energy quanta h̄ω. In the limit where Ec ≪
E2

ω/Em (k0 ≪ 1/lc), it converges towards a finite value

dE

dt
=
π
√
2mω√
h̄3

S(
√

2mω/h̄), (7)

that does not depends on the initial momentum h̄k0/m.
Let us now consider a cloud initially at thermal equi-

librium with a velocity distribution n(v0). The heating
rate, obtained after averaging Eq. (4) over n(v0), is

kB
dT

dt
= 2

∫ ∞

0

n(v0)
dE

dt
dv0, (8)

where kB is the Boltzmann factor. Although the heating
rate depends on the precise shape of the spectral density
S, some general properties can be derived.
First, although the energy exchange rate may be neg-

ative for some velocities, we show below that dT/dt is al-
ways positive. For a longitudinally homogeneous gas, this
positivity ensures the increase of the entropy, as required
by the second law of thermodynamics in the absence of
heat exchange with the cloud and without gaining infor-
mation on the system. To demonstrate that dT/dt > 0,
we perform a change of variables in the four integrals
obtained by substituting Eq. (4) into Eq. (8) to find

kB
dT
dt = πω

√
m/h̄

∫ Q0

0
dq
q S(q) (n(ω/q − h̄q/(2m))− n(ω/q + h̄q/(2m)))

+
∫∞
Q0

dq
q S(q) (n(h̄q/(2m)− ω/q)− n(ω/q + h̄q/(2m)))

(9)

where Q0 =
√

2mω/h̄. For a thermal equilibrium distri-
bution, n(v) is a decreasing function of |v|. Furthermore,
the spectral density is a positive function. We thus find
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FIG. 3: Heating rate of a cloud as a function of its temper-
ature, for a modulated rough potential whose spectral den-
sity is given by Eq. (11). Figure (a): classical predictions
(dashed lines) and asymptotic behavior at low temperature
given by Eq. (12) (solid line). Figure (b): exact result for
ω/(2π) = 200h̄/(md2) (solid line) compared with the quan-
tum low energy prediction (dotted line), the asymptotic pre-
diction of Eq. (13) (dashed-dotted lines) and the classical re-
sult (dashes).

that dT/dt > 0 so that the effect of the potential rough-
ness is always a heating of the cloud. Eq. (9) also shows
that the heating rate goes to zero at very large tempera-
tures, since n is then about flat over the explored veloc-
ities.
Second, for large enough temperatures one expects to

recover the classical result and the heating rate should
not depend on h̄. Then the heating rate depends only on
the four independent quantities 〈u2〉, Em, ω and kBT .
Since 〈u2〉 enters only as a multiplicative factor in the
heating rate, using dimensional analysis we show that
kBdT/dt is the product of 〈u2〉/(mωl2c) and a function of
kBT/Em. As a consequence, if the function giving the
heating rate versus T is known for a given value of ω and
Em, then the heating rate is known for any value of T ,
Em and ω.
Finally, at low enough temperatures, the heating rate

is well estimated by substituting Eq. (6) into Eq. (8). One
expects that the heating rate converges towards Eq. (7)
when the temperature becomes much smaller than h̄ω
and h̄2/(ml2c).
In the following, we give quantitative results in the

case of a potential roughness obtained at large distances
d from a flat wire whose borders have white noise fluc-
tuations of spectral density Jf . In this condition, the
spectral density of u is given by [9, 10]

S(k) = Jf
(µ0µI)

2

4π2
k4K1(kd)

2, (10)

whereK1 is the modified Bessel function of the first kind.
The typical correlation length of u is the distance above

the wire d so that Em = mω2d2. The mean square of
the rough potential is 〈u2〉 ≃ 0.044(µµ0I)

2Jf/d
5. In the

following we use 〈u2〉 as a parameter instead of Jf . The
spectral density of u is then

S(k) = α〈u2〉d(kd)4K1(kd)
2, (11)

where α ≃ 23.
We first study the heating rate predicted by classi-

cal physics. This classical heating rate is plotted in
Fig.3(a) as a dashed line. The temperature and heat-
ing rate are scaled to Em and ω〈u2〉/Em respectively
so that the curves corresponding to the classical predic-
tions are independent of the problem parameters. We
observe the expected decrease to zero of the heating rate
at high temperatures. We also observe a rapid decrease
of the heating rate as the temperature decreases, for tem-
peratures much smaller than Em. The maximum heat-
ing rate is about 2.1〈u2〉/(mωd2) and is obtained for
the temperature kBTM ≃ 0.07Em. For d = 5 µm and
ω/(2π) = 50 kHz, which are parameters similar to that
of the experiment presented in [1], TM = 1.8 mK. Typi-
cal cold atoms temperatures are much smaller than this
value and it is thus of experimental interest to investigate
in more detail the regime T ≪ TM .
The decrease of the heating rate for T ≪ TM is ex-

pected since, in this case, the atoms move on a distance
much smaller than the correlation length of the rough po-
tential during a modulation period. The atoms are then
locally subjected to an oscillating force almost indepen-
dent of z and the atomic motion can be decomposed into
a fast micro-motion in counterphase with the modula-
tion and a slow motion. The micro-motion being almost
in counterphase with the excitation force, almost no en-
ergy exchange between the atom and the potential arises
on a time scale larger than the modulation period. More
quantitatively, we can derive an analytical expression of
the heating rate in the regime where T ≪ TM , which
shows the decrease of the heating rate as temperature
decreases. For such low temperatures, as shown a pos-

teriori below, wavevectors in S that contribute to the
heating rate are much larger than 1/d so that we can re-
place the Bessel function K1(x) in Eq. (11) by its asymp-
totic value at large x. We then find that the integrand in
Eq. (8) is peaked around v0 = 21/3(kBT

√
Em)1/3/m and

the Laplace method gives the following approximation
for the heating rate:

kBdT

dt
= β

ω〈u2〉
Em

(

Em

kBT

)7/3

e−3(Em/(2kBT ))1/3 , (12)

where β ≃ 0.36. This asymptotic function is plotted in
Fig.3 (a) (solid line). It coincides with the exact classical
result within 20% as long as kBT < 0.002EM . The above
expression of v0 and Eq. (5) validate the expansion at
large x of the Bessel function K1(x) for T ≪ TM .
The limit of validity of the classical results described

above is given by Eω/
√
EcEm ≪ 1 and EωE

1/2
m /E

3/2
c ≪

1, where Ec ≃ mv20 , v0 being the typical velocity involved
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in the heating process. Using the above value for v0, the
condition of validity of the classical regime reduces, for
Eω ≪ Em, to kBT ≫ Eω. For ω/(2π) = 50 kHz, we find
that the classical regime fails for temperatures T ≪ 2 µK.
At lower temperatures, quantum analysis is required to
estimate the heating rate.
For the above parameters (d = 5 µm and ω/(2π) =

50 kHz), Em/Eω = 104 and the heating rate is exponen-
tially small at temperatures smaller than a micro-Kelvin

where classical physics fails (the term e−3(Em/(2kBT ))1/3

in Eq. (12) is 3 × 10−31 for T = 1 µK.). Thus, in order
to investigate the heating rate beyond the classical ap-
proximation, we consider a different situation for which
Em/Eω is only equal to 200. This would correspond, for
the same distance d = 5 µm, to a modulation frequency
of only 1 kHz. The exact heating rate, which is computed
by substituting Eq. (4) into Eq. (8), is plotted in Fig.3 (b).
This calculation shows that the classical result is valid up
to a factor of 2 as long as kBT > 0.2Eω. At lower tem-
peratures, the classical result underestimates the heating

rate. At temperature much smaller than E
3/2
ω /

√
Em, the

heating rate is well approximated by the predictions in
the low energy quantum limit where Eq. (6) is valid. This
prediction is represented as a dotted line in the graph.
At temperatures much smaller than E2

ω/Em (i.e. for
kBT ≪ h̄2/(md2)), the heating rate converges towards
Eq. (7). Assuming Em/Eω ≫ 1, then the expansion of S
at large wavevector can be used and Eq. (7) gives

kBdT/dt = ζ〈u2〉/h̄(mωd2/h̄)2e−2
√

mωd2/h̄ (13)

where ζ ≃ 4.0. This asymptotic value is plotted in Fig.3
as dashed-dotted lines. The heating rate is equal to this
limit up to a factor of 2 as soon as kBT < 0.2E2

ω/Em.
The heating of the atomic cloud can easily be made

small enough experimentally to have no noticeable ef-
fects. Let us for example consider the situation, sim-
ilar to the experiment in [1], where d = 5 µm and
√

〈u2〉 = 50 nK. If the modulation frequency is as low as
1 kHz, then the maximum heating rate is 3 µK/s and is
obtained for a temperature of 700 nK. Thus, for such a
low modulation frequency, the heating may be a problem
in experiments using the modulation technique. How-
ever, as soon as the modulation frequency is increased
to 50 kHz, as in [1], the maximum heating rate is only
of 64 nK/s and is obtained at a large temperature of
1.8 mK. At lower temperature, the exponential decrease
of the heating rate shown in Eq. (12) rapidly decreases
the heating rate to completely negligible values.

B. Effective remaining potential

In this subsection, we show that Raman processes (of
second order in u), in which adjacent Floquet states are
virtually populated, are responsible for an effective po-
tential

Vad = (∂u/∂z)
2
/(4mω2). (14)

ph̄k0 h̄k1

h̄ω

h̄ω

H0

0
nF = −1

nF = 0

nF = 1

FIG. 4: Raman transitions responsible for the adiabatic po-
tential of Eq. (14). The second order coupling between
two momentum states of wavevector k0 and k1 is sketched.
The coupling produced by two Fourier components of u of
wavevector q and q′ = k1 − q − k0 are represented as dashed
and solid arrows respectively.

This potential is a well-known classical result [15] that
corresponds to the kinetic energy of the micro-motion of
a trapped particle. The micro-motion has been seen, for
example, in Paul traps [17, 18] and in TOP traps [19, 20].
In our situation, at large oscillation frequency, the micro-
motion has an amplitude ξ ≃ −(∂u/∂z)/(mω2) cos(ωt)
much smaller than the correlation length of u. It is in
counterphase with the excitation force and has a kinetic
energy Vad. In this limit, since the micro-motion is in
counterphase with the excitation force, the energy trans-
fer between the atom and the potential, averaged over a
modulation period, vanishes. Energy conservation then
shows that the slow motion of the atom is subjected to an
effective rough potential Vad. It is well-known that this
effective potential, due to the fast atomic micro-motion,
is responsible for the confinement in rapidly modulated
Paul traps. A quantum derivation of Vad has already
been done in [21] using a secular approximation. Here
we give an alternative derivation based on the Floquet
representation.

Let us compute the effective coupling between the
states |k0〉 and |k1〉 of momentum h̄k0 and h̄k1 respec-
tively, both being in the Floquet subspace nF = 0. For
this purpose, we first investigate the effect of a given pair
of Fourier components of u that couple the two previous
states. Their wavevectors are q and q′ = k1 − k0 − q.
Four processes are involved in the effective coupling be-
tween |k0〉 and |k1〉, as sketched in Fig.4, and the effec-
tive coupling is the sum of the four amplitudes. The
precise effective coupling between two “ground” states
coupled via an intermediate level has been investigated
in [22]. The authors show that the effective coupling is
V1V2/∆, where V1 and V2 are the coupling to the inter-
mediate state and ∆ is the difference between the energy
of the intermediate state and the mean energy of the two
“ground” states. Using this result, we find that the ef-
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fective coupling associated with each process is

veff = uquq′/(4(h̄
2(k0 + κ)2)/(2m)± h̄ω − E0), (15)

where κ is q or q′ depending on the process and E0 =
h̄2(k20 + k21)/(4m). Adding the four amplitudes, we find

Veff =
uquq′

4

(

h̄2(k0 + q)2/m− 2E0

(h̄2(k0 + q)2/(2m)− E0)2 − h̄2ω2

+
h̄2(k0 + q′)2/m− 2E0

(h̄2(k0 + q′)2/(2m)− E0)2 − h̄2ω2

)

.

(16)
Assuming that the kinetic energies of the final, initial
and intermediate states are all much smaller than h̄ω, the
denominator can be simplified to h̄2ω2 and we obtain

Veff =
uquq′qq

′

2mω2
. (17)

Doing the sum over the pairs (q, q′), we find that the
coupling between the momentum states is that realized
by the potential of Eq. (14).
An alternative way to derive the adiabatic potential

is to use a dressed Floquet representation. As shown in
appendix B, the calculations are more straightforward in
this representation. In addition, no detailed knowledge
of the effective coupling corresponding to a transition
through a virtually populated state is required.
The residual roughness given in Eq. (14) constitutes

a limitation of the modulation method. It scales as
〈

u2
〉

/(ml2cω
2) where lc is the typical correlation length

of u. Thus it is much smaller than the initial roughness
amplitude as soon as

√

〈u2〉 ≪ ml2cω
2. In the case where

the roughness potential spectral density is that obtained
at large distances d from a wire having white noise bor-
der fluctuations of spectral density Jf , we obtain a mean
value

〈Veff〉 = 0.048Jf
(µ0µI)

2

mω2d7
= 1.1〈u2〉/(mω2d2). (18)

If the wire edges deformations have a gaussian probability
distribution, then the roughness of the remaining poten-
tial is simply

√

〈V 2
eff〉 − 〈Veff〉2 =

√
2〈Veff〉. For d = 5 µm,

ω/(2π) = 50 kHz and
√

〈u2〉/kB = 500 nK, the rough-
ness of the effective remaining potential is as small as
0.09 nK.

IV. LOSSES DUE TO SPIN-FLIP TRANSITIONS

All the previous analysis assume the atomic spin can
adiabatically follow the direction of the instantaneous
field when the current is modulated. In this section, we
investigate the conditions on the modulation frequency
for this adiabatic following requirement to be valid. Non
adiabaticity induces losses via spin-flip transitions to the
untrapped states. Intuitively, we expect that the losses
are small for a modulation frequency much smaller than

the Larmor frequency. In the following we compute this
loss rate, following calculations done in [23] for the DC-
case.
Let us consider a spin-one atom in the modulated guide

described in section II with ω ≫ ω⊥. We choose a co-
ordinate system whose origin is at the quadrupole field
center and of axis x and y at 45o with the quadrupole
axis as depicted in Fig.1. We assume the atomic mag-
netic moment is µJ/h̄ where J is the atomic spin angular
momentum of components Jx, Jy and Jz along x, y and
z, respectively. We note | ± 1〉 and |0〉 the eigenstates of
Jz of eigenvalues ±h̄ and 0, respectively.
The magnetic field direction depends on the position

and on time. We apply a spatially and time dependent
spin rotation R(t, x, y) so that R|1〉 points along the in-
stantaneous local magnetic field direction. In such a rep-
resentation, the Hamiltonian is

H = R−1 p2

2m
R+ UJz/h̄+ ih̄

dR−1

dt
R (19)

where

U = µB0 +mω2
⊥ cos2(ωt)(x2 + y2)/2. (20)

Here we assume mω2
⊥(x

2 + y2) ≪ µB0 so that the har-
monic approximation is valid. We also neglect the ef-
fect of gravity. This later assumption is relevant as soon
as g ≪ l⊥ω2

⊥ where l⊥ =
√

h̄/(mω⊥) is the harmonic
oscillator length. This condition ensures that the time-
averaged potential is barely affected by the gravity and
that the acceleration of the atoms over the spatial exten-
sion of the trapped state has a negligible effect.
We choose the rotation R as a product of a rotation

along x and a rotation along y. To first order in x and
y, R is

R = 1 + iθxJx/h̄+ iθyJy/h̄, (21)

where the angles of the rotations along x and y are θx =
−b′x cos(ωt)/B0 and θy = b′y cos(ωt)/B0, respectively.

Here b′ = ω⊥
√

2mB0/µ is the quadrupole gradient at
maximum current. Calculation to first order in θx, θy
gives

R−1 p
2

2m
R =

p2

2m
+ Vk (22)

where

Vk =

√
2h̄b′ cos(ωt)

mB0
(px − ipy)|0〉〈1|+ h.c. (23)

and h.c. stands for hermitian conjugate. Here, we ignore
the state |−1〉, which is relevant for low enough coupling
(see below). The term Vk, due to the fact that R de-
pends on the position, is responsible for spin-flip losses
in time independent Ioffe magnetic traps [23]. Within
the approximations made here, the position dependence
of R has no effect on the Hamiltonian within the spin
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state |1〉 manifold: the Coriolis coupling analyzed in [26],
that corresponds to a rotation frequency proportional to
b′2, is not seen in this calculation.
Similar calculations give

ih̄
dR−1

dt
R =

h̄ωb′√
2B0

sin(ωt)(x− iy)|0〉〈1|+ h.c. (24)

This term, due to the time modulation of the local spin
orientation, may also produce spin-flip losses in modu-
lated traps. The condition ω ≫ ω⊥ ensures that the
term of Eq. (24) has an effect much larger than that of
Eq. (23) and we neglect the latter in the following.
As in the previous section, we use the Floquet repre-

sentation. The Hamiltonian H in the manifold of spin
state |1〉 is decomposed into the term

H0 =
∞
∑

nF=−∞
(p2/2m+mω2

⊥(x
2+y2)/4+nF h̄ω)|1, nF 〉〈1, nF |

(25)
and the term

H2 = mω2
⊥(x

2+y2)/4

( ∞
∑

nF=−∞
|1, nF + 2〉〈1, nF |+ h.c.

)

(26)
that couples the Floquet nF state to the Floquet states
nF ± 2. Here, |1, nF 〉 is the state vector of an atom in
the spin state |1〉 with the Floquet number nF . The term
H2 is due to the part of Eq. (19) that is proportional to
cos(2ωt). Since we assumed ω ≫ ω⊥, the effect of H2 is
weak and can be treated perturbatively.
We will compute the loss rate of an atom initially in

the spin state |1〉 of Floquet number nF = 0 and in the
ground state φ0 of H0. The term of Eq. (24) couples
this trapped state to the untrapped spin states |0〉 of
Floquet numbers nF = ±1. The energy spectrum of
the spin state |0〉, which is unaffected by the magnetic
field, is a continuum. Coupling to this continuum leads
to a departure rate from the initial state, provided the
Markov approximation is fulfilled [24]. This approxima-
tion also ensures that the state | − 1〉 can be neglected.
We will show below that losses to the Floquet manifold
nF = +1 are much larger than losses to the Floquet man-
ifold nF = −1. Thus, we consider in the following the

final states in the manifold nF = +1. Since ih̄dR−1

dt R
does not affect the longitudinal motion, we concentrate
on the transverse degrees of freedom and normalize φ0
as
∫∫

dxdy|φ0|2 = 1. In addition, because ih̄dR−1

dt Rφ0
is, up to a phase factor eiθ, invariant under rotation of
angle θ in the xy plane, the losses to spin 0 states are
isotropic in the xy plane. It is thus sufficient to compute
the departure rate towards a plane wave travelling in the
x direction. The final state wavevector is

kf =

√

2m(µB0 + h̄ω⊥/
√
2− h̄ω)/h̄, (27)

and the Fermi Golden rule gives the departure rate

Γ0 =
√
2π

ω2

mµB0ω⊥
h̄k2fe

−
√
2h̄k2

f/(mω⊥). (28)

The departure decreases exponentially with the bias field
B0, as for a usual time independent Ioffe trap [23]. How-
ever, in the modulated trap, an additional exponential
factor in ω/ω⊥ reflects the fact that the Floquet level is
increased by one while the spin is flipped. This transi-
tion is associated with the “emission” of a quantum of
energy h̄ω, given to the oscillating magnetic field. Equa-
tion (28) also shows that the departure rate goes to zero
for a modulation frequency very close to the frequency
µB0/h̄+ω⊥/

√
2, i.e. for vanishing kf . This cancellation

is due to the fact that the coupling term of Eq. (24) is
odd in x whereas the initial state is even and the final
state, whose wavevector is vanishing, is flat. The depar-
ture rate towards the Floquet state nF = −1 is identical
to Eq. (28), ω being replaced by −ω. Since we assumed
ω ≫ ω⊥, the loss rate towards the Floquet state nF = −1
is negligible compared to Eq. (28).

The condition ω ≫ ω⊥ and Eq. (28) show that the
loss rate is exponentially small when ω reaches ω1 =
(µB0/h̄+ω⊥/

√
2)/3, the value for which the initial state

has the same energy as the untrapped state of Floquet
number nF = 3 and of vanishing momentum. For modu-
lation frequencies smaller than ω1, second order processes
resonantly couple the initial state to the untrapped state
|0〉 of Floquet number nF = 3. In theses processes, repre-
sented in Fig.5, the term H2 of Eq. (26) first transfers the
atoms into the virtually populated intermediate trapped
state |1〉 of Floquet number nF = 2 before the term

ih̄dR−1

dt R realizes the transfer to the untrapped state |0〉
of Floquet number nF = 3. Although H2 is weak, the
loss rate associated with the second order processes is
much larger than the exponentially small Γ0.

More generally, for a given modulation frequency,
losses are dominated by transitions towards untrapped
states of Floquet number nF = 2n + 1 where n =
E((µB0/h̄+ω⊥/

√
2)/(2ω)− 1/2), the function E(x) be-

ing the integer part of x. Those transitions correspond to
processes where the atom is first brought to the interme-
diate state |1〉 of Floquet number nF = 2n by n transi-
tions produced by the term H2 and is then transferred to
the untrapped state |0〉 of Floquet number nF = 2n+ 1
by the term ih̄dR−1/dtR of Eq. (24). Perturbation the-
ory gives an effective coupling between the state |1〉 of
Floquet number nF = 0 and the states |0〉 of Floquet
number nF = 2n+ 1 which is

Un = −i h̄ωb
′(x − iy)

n!2
√
2B0

(mω2
⊥(x

2 + y2)/(16h̄ω))n. (29)

The eigenstates of H0 in the virtual intermediate states
do not appear because, since we assumed ω ≫ ω⊥, the
energy difference between the intermediate states is neg-
ligible and a resummation is possible.

The departure rate from the initial state towards the
Floquet state nF = 2n + 1 is computed from Un using
the Fermi Golden Rule. As for the calculation of Γ0, it is
sufficient to compute the departure rate in the x direction
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and we obtain

Γn = mω2b′2

8h̄B2

0

(mω2

⊥
)2n

n!2(16h̄ω)2n
∣

∣

∫∫

dxdy(x − iy)eikfxφ0(x, y)(x
2 + y2)n

∣

∣

2

(30)

where kf =
√

2m(µB0 + h̄ω⊥/
√
2− (2n+ 1)h̄ω)/h̄ is

the wavevector of the final state. Using the gaussian ex-
pression for the ground state φ0(x, y) in Eq. (30), we can
show that Γn is the product of a polynomial in kf and

of the exponential factor e−
√
2h̄k2

f/(mω⊥). The minima
of the polynomial correspond to destructive interferences
between the probability amplitudes of paths having dif-
ferent intermediate vibrational states. Since h̄k2f/m is
reduced by 4ω when increasing n by one and since we as-
sumed ω ≫ ω⊥, the exponential factor ensures, as stated
above, that the total loss rate is dominated by the de-
parture towards the highest Floquet subspace.
Figure 6 gives the departure rate of the trapped ground

state as a function of ω for µB0 = 50h̄ω⊥. We observe
several peaks that reflect the resonance behavior at in-
teger values of (µB0 + ω⊥/

√
2− ω)/(2ω). The height of

the resonances goes down with the integer n as expected
since the order of the transition increases with n. We
verify that the loss rate is dominated by the losses to-
wards the Floquet state of highest odd Floquet number,
as expected. Between two resonances, we observe the ex-
pected exponential decrease of the loss rate. We observe
a structure in the loss rate for losses to Floquet state
larger than one, as expected.
The lifetime of a thermal Maxwell-Boltzmann distri-

bution is obtained after averaging the loss rate over the
thermal distribution. In this calculation, φ0 in Eq. (30)
is replaced by the eigenstate φi(x)φj(y), where i and j
denotes the vibrational level. Neglecting changes of the
final energy h̄2k2f/(2m) across the thermal distribution,
we can compute the departure rate Γ0 for a Maxwell-
Boltzmann distribution. More precisely, writing Eq. (30)
as a fourth integral and using properties of Wigner func-
tions we find, for temperatures kBT ≫ h̄ω⊥,

Γ0 =
π3

2
ω⊥

h̄3ω⊥ω2

(kBT )3
e−(µB0−h̄ω)/(kBT ). (31)

Because of the crude approximation that the final energy
does not depend on the initial state, this result is only
valid up to a factor of the order of unity.
Experimentally, spin-flip losses can easily be avoided

by properly choosing the modulation frequency. For
example, let us assume the transverse oscillation fre-
quency of the instantaneous trap at maximum current
is ω⊥/(2π) = 50 kHz and the longitudinal magnetic field
fulfills B0 = 50h̄ω⊥/µ. If µ = µB where µB is the Bohr
magneton, this corresponds to B0 = 1.8 G and the Lar-
mor frequency µB0/h̄ is 2.5 MHz. In these conditions,
the loss rate is dominated by the term Γ0 of Eq. (28) as
long as the oscillation frequency is larger than 0.84 MHz
and, in this frequency range, it is smaller than 1 s−1 as

µB0

nF = 1

nF = 0

nF = −1

h̄ω

nF = 0

nF = 1

nF = 2

nF = 3x

spin state |0〉spin state |1〉

nF = 2

Energy

FIG. 5: Transitions responsible for spin-flip losses. For the
spin state |1〉, the potential energy term of Eq. (25) is repre-
sented as well as the energy of the ground state in the nF = 0
manifold. For the spin state |0〉, we represented, for each
Floquet manifold nF , the whole energy spectrum, which is a
semi-continuum starting at an energy nF h̄ω. The transitions
induced by the term of Eq. (24) are shown as dotted arrows
whereas transitions due to the term H2 of Eq. (26) are shown
as solid lines. The initial state is the spin state |1〉 of Floquet
number nF = 0. For the two final Floquet states nF = 1
and nF = 3, only the dominant processes are sketched, whose
amplitudes are U0 and U1 respectively, where Un is given in
Eq. (29). In this picture, the odd Floquet state of |0〉 the
closest to resonance corresponds to nF = 3 and losses are
dominated by Γ1, where Γn is given in Eq. (30).

soon as ω < 2.2 MHz. For ω < 0.84 MHz, losses be-
come dominated by transitions towards states of higher
Floquet numbers and the loss rate is peaked at modula-
tion frequencies close to integer values of µB0/(2h̄ω) +

ω⊥/(2
√
2ω) − 1/2. In particular, the loss rate goes up

to about 25 s−1 for a modulation frequency close to
0.8 MHz. Thus, the vicinity of this resonance should
be avoided experimentally. Resonances of higher order
are less problematic since the maximum loss rate they
induce is smaller than 0.1 s−1.

V. RADIO-FREQUENCY EVAPORATION IN

THE MODULATED GUIDE

In this section we present general considerations on
forced evaporation in a modulated guide. Since evapo-
rative cooling is most efficiently realized in a 3D trap,
longitudinal confinement is required. A 3D trap can be
obtained from the modulated guide of section II by ap-
plying a z-dependent constant longitudinal field B0(z).
Here, we consider evaporation in the transverse plane
(xy) at a given z position and denote as B0 the longi-
tudinal magnetic field. For this purpose, in addition to
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FIG. 6: Loss rate from the vibrational ground state versus the
modulation frequency. The longitudinal magnetic field and
the quadrupole gradient are chosen so that µB0/(h̄ω⊥) = 50.

the previous trapping potential, we apply a weak radio
frequency magnetic field polarized in the x-direction, of
frequency ωRF and of amplitude BRF . We consider here
an atom of magnetic moment µJ/h̄, where J is the atomic
spin angular momentum.
Let us first give simple predictions, that only rely on

the fact that, because of the modulation at 2ω of the
trapping potential, the atomic Larmor frequency is mod-
ulated in time. The modulation amplitude δΩ increases,
in the transverse plane, with the distance r from the trap
center according to δΩ = µb′2r2/(4h̄B0). Considering
only the internal atomic dynamics at a given position,
the modulation of the Larmor frequency is equivalent,
within the rotating wave approximation, to a frequency
modulation of the radio-frequency field. In this picture,
the radio frequency spectrum consists of a carrier at the
frequency ωRF and side-bands spaced by 2ω, the relative
amplitude of the nth sideband with respect to the carrier
being Jn(µ(b

′r)2/(8B0h̄ω)), where Jn is the Bessel func-
tion of the first kind. Thus, for a given frequency of the
applied RF field, the coupling to the untrapped state is
resonant for the positions rn such that

ωRF = µB0/h̄+ µb′2r2n/(4B0)− 2nω, (32)

where n is a integer. The coupling between the spin states
close to a resonance position rn is

Vn = V0Jn(µ(b
′r)2/(8B0h̄ω)) (33)

where V0 is the coupling produced by the radio-frequency
field in the absence of modulation. Such a shell structure
of the spin-flip transition resonances is characteristic of
AC magnetic traps. For example, the same behavior is
expected in TOP traps [25], where the Larmor frequency
is also modulated in time.
In the following, we verify the statements made above

by a more rigorous derivation. As in the previous section,
we consider the representation in which the spin up state

points along the local instantaneous magnetic field. The
RF field produces a term in the Hamiltonian experienced
by the atoms which is, to first order in the angles θx =
−b′x cos(ωt)/B0 and θy = b′y cos(ωt)/B0,

HRF = µBRF cos(ωRFt)Jx
−µBRFb

′y/B0 cos(ωmt) cos(ωRFt)Jz .
(34)

The right hand side is divided in two terms. The first
term (first line) corresponds to the usual coupling be-
tween the spin states in the presence of the RF field.
The second term (second line) appears due to the time
dependence of R. As in the previous section, in the fol-
lowing we consider the case of a spin one state and we
restrict ourself to the two spin states |1〉 and |0〉. We
then have HRF 1

= HRF 1
+HRF 2

, where

HRF 1
= µBRF cos(ωRFt)(|1〉〈0|+ |0〉〈1|)/

√
2 (35)

and

HRF 2
= −µBRFb

′y

B0
cos(ωmt) cos(ωRFt)|1〉〈1|. (36)

To analyze the effects of the RF field, we use the Flo-
quet representation where two quantum number are used:
the Floquet number nF associated to the modulation fre-
quency ω and NRF, the number of radio-frequency pho-
tons. We consider an atom in the trapped spin |1〉 state,
with NRF radio frequency (RF) photons. Because BRF is
weak, we only consider transitions involving a single RF
photon and we only consider transitions to the quasi-
resonant states where the spin is 0 and the number of
RF photons is (NRF − 1).
Let us suppose the initial trapped state is in the nF = 0

manifold. The term HRF 1
couples the initial state to the

spin 0 state in the manifold |NRF − 1, nF = 0 >. This
transition is resonant for the position r0 given by Eq. (32)

and the coupling to the spin 0 state is µBRF /
√
2. The

initial state can also be transferred to the spin 0 state
in the |NRF − 1, nF = ±2 > manifolds by higher order
processes. These transitions, resonant for the position
r±1 given by Eq. (32), can occur via two kinds of pro-
cesses, represented in Fig.7 in the case where the final
state lies in the manifold nF = 2. In the first process, H2

of Eq. (26) couples the initial state to the spin 1 state in
the manifold |NRF, nF = ±2〉, which is then transferred
by the term HRF 1

to the spin 0 final state (process a).
In the second kind of processes (process b), the trans-
fer from the spin state 1 to the spin state 0 is ensured

by the term ih̄dR−1

dt R of the Hamiltonian (see Eq. (24)),
and the term HRF 2

of the radio-frequency coupling is in-
volved. In the case where ω ≪ µB0/h̄, the process (b)
have a negligible amplitude and only the process (a) is
important.
In a more general way, the initial state can be trans-

ferred to the final state of odd Floquet number nF = 2n,
the transitions being resonant at the positions rn given
by Eq. (32). The dominant processes involve the first
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|0, nF = 2> 

Processes (a) : Processes (b) :

NRF +1 NRF 

|1, nF = 2> 

|1, nF = 1> 

|1, nF = 0> 

Energy

NRF +1 NRF 

|1, nF = 0> 

|1, nF = 2> 

|1, nF = 1> 
|1, nF = 0> 

|0, nF = 2> 

FIG. 7: Processes involved in the transition from the trapped
state |1, nF = 0, NRF〉 to the untrapped state |0, nF =
2, NRF−1〉. The processes (a) involves the Hamiltonian H2 of
Eq. (26) (solid line) and the term HRF1

of Eq. (35) (dashed
line). The process (b) involves the term HRF2

of Eq. (36)
(dashed line) and the term ih̄∂R−1/∂tR of Eq. (24) (solid
line). For ω ≪ µB0, the processes (a) are the dominant one.

term HRF given in Eq. (32) and the term H2 to order n.
The effective coupling between the trapped state and the
spin 0 state of Floquet number 2n, computed to lowest
order in H2, is

Vn,eff =
(−1)n

n!

(

µb′2r2

16B0h̄ω

)|n|
µBRF√

2
. (37)

We recover here the result of Eq. (33), in the limit con-
sidered here where h̄ω ≫ µb′2r2/(8B0). Thus the simple
description in terms of frequency modulation of the Lar-
mor frequency is sufficient to describe the physics.
In conclusion, we have shown that the radio-frequency

field is resonant for different trap locations, whose poten-
tial energy differ by 2h̄ω/kB. For a modulation frequency
of 50 kHz, the potential energy difference between two
resonances is 3 µK. For a temperature of the order of
3 µK or higher, some resonances are present inside the
atomic cloud and induce spin-flip losses. To overcome
this problem, a precooling stage in a static trap down to
temperatures smaller than 3 µK is required. For clouds
whose temperature is smaller than 3 µK, the evaporation
process in the modulated guide involves only one radio-
frequency knife, so that the evaporative cooling is similar
to that realized in a trap made by DC currents. Choos-
ing the frequency of the radio frequency field so that the
transition involved in the cooling process is the transition
that does not change the Floquet number is interesting
for two reasons. First, as shown in Eq. (37), the cou-
pling between the trapped and the untrapped state of
this transition is larger than that of higher order tran-
sitions that change the Floquet number. Second, this
coupling is homogeneous and is thus constant when ωRF

is chirped.

VI. CONCLUSION

The careful study of the limitations of the modulation
technique to smooth wire guide roughness performed in

this article show that this technique is very robust and
accepts a wide range of modulation frequencies. More
precisely, on one side, we have shown that the unwanted
effects of the modulation on the longitudinal motion are
negligible for realistic parameters as soon as modulation
frequency is larger than 10 kHz: both the heating of
the cloud and the remaining effective roughness are very
small. On the other side, the calculation of the losses due
to spin-flip transitions shows that, for realistic parame-
ters, these losses are negligible as soon as the modulation
frequency is smaller than a few hundred of kHz. The
modulation technique is thus a very promising tools that
should enable to fully take advantage of atom chips de-
vices. In particular, the study of one-dimensional gases
in the strong interacting regime [29–31] on an atom chip
can be considered.
The smoothing technique studied in this paper may be

used in any situations where a rough potential is propor-
tional to a quantity that can be modulated, so that the
calculations developped in section III may apply to other
physical systems.
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Appendix A: Derivation of the energy exchange rate

The derivation of the heating rate follows that of the
Fermi Golden rule. For the calculation, we assume a
quantification box of size L and periodic boundary con-
ditions. We assume the atom is initially in the state of
momentum p0 in the Floquet subspace nF = 0. For sim-
plicity we consider only the transitions towards the Flo-
quet state nF = −1. After a time t much smaller than
the departure rate, the change in kinetic energy ∆E can
be deduced from perturbation theory and we obtain

∆E =
∑

q

|uq|2f(q, t). (A1)

Here uq =
∫

dzu(z)eiqz/L is the Fourier component of
wavevector q of u(z) and

f(q, t) = (ǫ − h̄ω)
sin2(ǫt/2)

ǫ2
, (A2)

where ǫ = h̄ω+h̄2q2/(2m)+h̄p0q/m is the energy change
associated to the transition involving the Fourier com-
ponent of u of wavevector q. The terms uq are com-
plex random numbers without correlation between them
and of mean square value 〈|uq|2〉 = S(q)L/(2π) where
S(q) = 1/(2π)

∫

dzeiqz〈u(z)u(0)〉 is the spectral density
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of u. For a large enough quantification box, the term
f(q) barely changes between adjacent Fourier compo-
nents and one can replace

∑

q |uq|2f(q) by
∫

dqS(q)f(q)

in Eq. (A1). For a time t large enough so that the
function (ǫ − h̄ω)S(q(ǫ)) is about constant on the inter-
val ǫ ∈ [−h̄/t, h̄/t], the term sin2(ǫt/2)/ǫ2 can be re-
placed by the distribution tδ(ǫ)π/2. We then recover the
first term of Eq. (4). The previous condition on t and
the condition that t is much smaller than the departure
rate Γ can be fulfilled simultaneously only if the func-
tion (ǫ − h̄ω)S(q(ǫ)) is about constant on the interval
ǫ ∈ [−h̄Γ, h̄Γ]. This is the condition of the Markovian
approximation. This condition is fulfilled provided that
both S(q) and its correlation length are small enough.
The calculation is similar for losses towards the Flo-

quet manifold nF = 1 and one finally recover Eq. (4).
The Markovian condition for the transition towards the
Floquet manifold nF = 1 is not fulfilled for initial mo-
mentum very close to

√
2mh̄ω since the atoms are then

sensitive to the fact that the continuum is not infinite for
ǫ < 0. Similar non Markovian situations have been stud-
ied, for example, in photonic band gap materials [27] and
oscillatory behavior and decay towards a non vanishing
population of the initial state are expected.

Appendix B: Adiabatic potential in the dressed

state representation

In this appendix, we rederive the adiabatic potential
given Eq. (14) using a dressed representation, where a lo-
cal z-dependent unitary transformation O(z) is applied
to the Floquet states so that the resulting dressed states
|n〉(z) are eigenstates of the potential energy part of the
Floquet Hamiltonian (term h̄ωnF of H0 given in Eq. (2)
and term H2 of Eq. (3)). By symmetry, the energy of
the dressed states |n〉(z) is nh̄ω, as that of the bare Flo-
quet states. Using the properties of the Bessel functions
(Jk+1(x) + Jk−1(x))x/(2k) = Jk(x) and

∑

n Jn(x)
2 = 1,

we show that the decomposition of |n〉(z) in the un-
dressed Floquet basis (|k〉0) is

|n〉(z) =
∞
∑

k=−∞
Jk(u(z)/ω)|n+ k〉0 = O(z)|n〉0. (B1)

This well-known result has been used in several other
situations [28]. In the dressed state representation, the

state of the system is ψ̃ = O−1ψ0 where ψ0 is the state
of the system in the undressed representation and the
momentum operator, p̃ = O−1pO, is

p̃ = p−
∑

n,k

〈k, z|ih̄∂z|n, z〉|k〉〈n| (B2)

where p = −ih̄∂z is the momentum operator that pre-
serves the Floquet number and ∂z is a short notation
for ∂/∂z. Thus, in the dressed state representation, the
Hamiltonian is decomposed into three terms:

H̃0 = p2/2m− nF h̄ω (B3)
that does not couple different Floquet states,

H̃1 = −h̄/(2m)
(

p
∑

n1,n2
|n1〉〈n1|i∂z|n2〉〈n2|

+
∑

n1,n2
|n1〉〈n1|i∂z|n2〉〈n2|p

)

,

(B4)

and

H̃2 = −h̄2/(2m)
∑

n1,n2,n3

|n1〉〈n2|〈n1|∂z|n3〉〈n3|∂z|n2〉 .

(B5)

Since J ′
k = (Jk−1 − Jk+1)/2 and

∑

k JkJk+n = δn, H̃1

couples adjacent Floquet states. This term is responsi-
ble for the heating of the cloud. On the other hand, H̃2

contains a term H̃2,ad that does not change the Floquet
number. Using the above properties of the Bessel func-
tion, we find that H̃2,ad is just the adiabatic potential of
Eq. (14).
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