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http://www.sciences.univ-nantes.fr/lina/Vie/RR/rapports.html

Research reports from the Laboratoire d’Informatique de Nantes-Atlantique are
available in PostScript® and PDF® formats at the URL:

http://www.sciences.univ-nantes.fr/lina/Vie/RR/rapports.html
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Abstract

A central problem in comparative genomics consists in computing a (dis-)similarity measure between two
genomes, e.g. in order to construct a phylogenetic tree. A large number of such measures has been pro-
posed in the recent past:number of reversals, number of breakpoints, number of commonor conserved
intervals, SADetc. In their initial definitions, all these measures suppose that genomes contain no du-
plicates. However, we now know that genes can be duplicated within the same genome. One possible
approach to overcome this difficulty is to establish a one-to-one correspondence (i.e. a matching) between
genes of both genomes, where the correspondence is chosen inorder to optimize the studied measure.
Then, after a gene relabeling according to this matching anda deletion of the unmatched signed genes, two
genomes without duplicates are obtained and the measure canbe computed.
In this paper, we are interested in three measures (number of breakpoints, number of common intervalsand
number of conserved intervals) and three models of matching (exemplarmodel,maximum matchingmodel
andnon maximum matchingmodel). We prove that, for each model and each measure, computing a match-
ing between two genomes that optimizes the measure isAPX-Hard . We show that this result remains true
even for two genomesG1 andG2 such thatG1 contains no duplicates and no gene ofG2 appears more than
twice. Therefore, our results extend those of [5, 6, 7]. Finally, we propose a4-approximation algorithm
for a measure closely related to thenumber of breakpoints, thenumber of adjacencies, under themaximum
matchingmodel, in the case where genomes contain the same number of duplications of each gene.

Additional Key Words and Phrases: genome rearrangement, APX-Hardness, duplicates, breakpoints, adja-
cencies, common intervals, conserved intervals, approximation algorithm





1 Introduction and Preliminaries

In comparative genomics, computing a measure of (dis-)similarity between two genomes is a central prob-
lem; such a measure can be used for instance to construct phylogenetic trees. The measures defined so
far fall into two categories: the first one contains distances, for which we count the number of operations
needed to transform a genome into another (see for instanceedit distance[12] or number of reversals[3]).
The second one contains (dis-)similarity measures based onthe genome structure, such asnumber of break-
points[5], conserved intervals distance[4], number of common intervals[6], SADandMAD [15] etc.

When genomes contain no duplicates, most measures can be computed in polynomial time. However,
assuming that genomes contain no duplicates is too limited,as it has been shown that a great number of
duplicates exists in some genomes. For example, in [11], authors estimate that fifteen percent of genes are
duplicated in the human genome. A possible approach to overcome this difficulty is to specify a one-to-one
correspondence (i.e. a matching) between genes of both genomes and to remove the remaining genes, thus
obtaining two genomes with identical gene composition and no duplicates. This matching is chosen in
order to optimize the studied measure. Three models achieving this correspondence have been proposed :
exemplarmodel [14], maximum matchingmodel [16] andnon maximum matchingmodel [2].

Let F be a set ofgenes, where each gene is represented by an integer. A genomeG is a sequence
of signed elements (signed genes) from F . Let occ(g, G) be the number of occurrences of a geneg in
a genomeG and letocc(G) = max{occ(g, G)|g is present inG}. Two genomesG1 andG2 are called
balancediff, for each geneg, we haveocc(g, G1) = occ(g, G2). DenoteηG the size of genomeG. Let
G[p], 1 6 p 6 ηG, be the signed gene that occurs at positionp on genomeG. For any signed geneg, let g
be the signed gene having the opposite sign. Given a genomeG without duplicates and two signed genes
a, b such thata is located beforeb, let G[a, b] be the set of genes located between genesa andb in G. We
also note[a, b]G1

the substring (i.e. the sequence of consecutive elements) of G1 starting bya and finishing
by b.
For example, consider the setF = {1, 2, 3, 4, 5, 6}and the genomeG1 = +1+2+3+4+5−1−2+6−2.
Then,occ(1, G1) = 2, occ(G1) = 3, G1[5] = +5 andG1[5] = −5. Now, consider the genomeG2 =
+3−2+6+4−1+5 without duplicates. We haveG2[+6,−1] = {1, 4, 6}and[+6,−1]G2

= (+6, +4,−1).

Breakpoints, adjacencies, common and conserved intervals. Let us now define the four measures
we will study in this paper. LetG1, G2 be two genomes without duplicates and with the same gene
composition.

Breakpoint and Adjacency.Let (a, b) be a pair of consecutive signed genes inG1. We say that the
pair (a, b) induces abreakpointof (G1, G2) if neither (a, b) nor (b, a) is a pair of consecutive signed
genes inG2. Otherwise, we say that(a, b) induces anadjacencyof (G1, G2). For example, whenG1 =
+1 + 2 + 3 + 4 + 5 andG2 = +5− 4− 3 + 2 + 1, the pair(2, 3) in G1 induces a breakpoint of(G1, G2)
while (3, 4) in G1 induces an adjacency of(G1, G2). We noteB(G1, G2) the number of breakpoints that
exist betweenG1 andG2.

Common interval.A common intervalof (G1, G2) is a substring ofG1 such thatG2 contains a permu-
tation of this substring (not taking signs into account). For example, considerG1 = +1 + 2 + 3 + 4 + 5
andG2 = +2 − 4 + 3 + 5 + 1. The substring[+3, +5]G1

is a common interval of(G1, G2). We notice
that the notion of common interval does not consider the signof genes.

Conserved interval.Consider two signed genesa andb of G1 such thata precedesb, where the prece-
dence relation is large in the sense that, possibly,a = b. The substring[a, b]G1

is called aconserved
interval of (G1, G2) if it satisfies the two following properties: first, eithera precedesb or b precedesa
in G2; second, the set of genes located between genesa andb in G2 is equal toG1[a, b]. For example, if
G1 = +1 + 2 + 3 + 4 + 5 andG2 = −5− 4 + 3− 2 + 1, the substring[+2, +5]G1

is a conserved interval
of (G1, G2).
Note that a conserved interval is actually a common interval, but with additional restrictions on its extrem-
ities. An interval of a genomeG which is either of length one (i.e. a singleton) or the whole genomeG is
called atrivial interval.
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Dealing with duplicates in genomes. When genomes contain duplicates, we cannot directly compute the
measures defined previously. A solution consists in finding aone-to-one correspondence (i.e. a matching)
between duplicated genes ofG1 andG2, and use this correspondence to rename genes ofG1 andG2 and to
delete the unmatched signed genes in order to obtain two genomesG′

1 andG′

2 such thatG′

2 is a permutation
of G′

1; thus, the measure computation becomes possible. In this paper, we will focus on three models of
matching : theexemplar, maximum matchingandnon maximum matchingmodels.

• Theexemplar model[14]: for each geneg, we keep in the matching only one occurrence ofg in G1

and inG2, and we remove all the other occurrences. Hence, we obtain two genomesGE
1 andGE

2

without duplicates. The pair(GE
1 , GE

2 ) is called anexemplarizationof (G1, G2).

• The maximum matching model[16]: in this case, we keep in the matching the maximum number
of genes in both genomes. More precisely, we look for a one-to-one correspondence between genes
of G1 andG2 that, for each geneg, matches exactlymin(occ(g, G1), occ(g, G2)) occurrences. Af-
ter this operation, we delete each unmatched signed genes. The pair(GE

1 , GE
2 ) obtained by this

operation is called amaximum matchingof (G1, G2).

• Thenon maximum matching model[2]: this model is an intermediate between theexemplarand the
maximum matchingmodels. In this new model, for each gene familyg, we keep an arbitrary number
kg, 1 6 kg 6 min(occ(g, G1), occ(g, G2)), of genes inGE

1 and inGE
2 . We call the pair(GE

1 , GE
2 )

a non maximum matchingof (G1, G2).

Problems studied in this paper. Consider two genomesG1 andG2 with duplicates.
LetEBD(resp.MBD, NMBD) be the problem which consists in finding an exemplarization(GE

1 , GE
2 )

of (G1, G2) (resp. maximum matching, non maximum matching) that minimizes the number of breakpoints
betweenGE

1 andGE
2 . EBD is proved to beNP-Completeeven if occ(G1) = 1 andocc(G2) = 2 [5].

Some inapproximability results are given: it has been proved in [7] that, in the general case,EBD cannot
be approximated within a factorc log n, wherec > 0 is a constant, and cannot be approximated within a
factor1.36 whenocc(G1) = occ(G2) = 2. Likewise, the problem consisting in deciding if there exists
an exemplarization(GE

1 , GE
2 ) of (G1, G2) such that there is no breakpoint betweenGE

1 andGE
2 is NP-

Completeeven whenocc(G1) = occ(G2) = 3. Moreover, for two balanced genomesG1 andG2 such that
k = occ(G1) = occ(G2), several approximation algorithms forMBD are given. Those approximation
algorithms admit respectively a ratio of1.1037 whenk = 2 [9], 4 whenk = 3 [9] and4k in the general
case [10].

Let EComI (resp.MComI, NMComI) be the problem which consists in finding an exemplarization
(GE

1 , GE
2 ) of (G1, G2) (resp. maximum matching, non maximum matching) such that the number of

common intervals of(GE
1 , GE

2 ) is maximized.EComI andMComI are proved to beNP-Completeeven
if occ(G1) = 1 andocc(G2) = 2 in [6].

Let EConsI (resp. MConsI, NMConsI) be the problem which consists in finding an exemplar-
ization(GE

1 , GE
2 ) of (G1, G2) (resp. maximum matching, non maximum matching) such that the number

of conserved intervals of(GE
1 , GE

2 ) is maximized. In [4], Blin and Rizzi have studied the problem of
computing adistancebuilt on the number of conserved intervals. This distance differs from thenumber
of conserved intervalswe study in this paper, mainly in the sense that (i) it can be applied to twosetsof
genomes (as opposed to two genomes in our case), and (ii) the distance between two identical genomes of
lengthn is equal to 0 (as opposed ton(n+1)

2 in our case). Blin and Rizzi [4] proved that finding the mini-
mum distance isNP-Complete, under both theexemplarandmaximum matchingmodels. A closer analysis
of their proof shows that it can be easily adapted to prove that EConsIandMConsIare NP-complete, even
in the caseocc(G1) = 1.

We can conclude from these results that theMBD, NMBD, NMComI andNMConsI problems
are alsoNP-Complete, since when one genome contains no duplicates,exemplar, maximum matchingand
non maximum matchingmodels are equivalent.

In this paper, we study the approximation complexity of three measure computations:number of break-
points, number of conserved intervalsandnumber of common intervals. In Section2 and3, we prove the
APX-Harness ofEComI, EConsI and EBD even when applied on genomesG1 and G2 such that
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occ(G1) = 1 andocc(G2) = 2 , which induce theAPX-Harness under the other models. These results
extend those of papers [5, 6, 7]. In Section4, we consider themaximum matchingmodel and a fourth
measure, thenumber of adjacenciesfor which we give a4-approximation algorithm when genomes are
balanced. Hence, we are able to provide an approximation algorithm with constantratio, even when the
number of occurrences of genes is unbounded.

2 EComI and EConsI are APX-Hard

In this section, we prove the following theorem:

Theorem 1 EComI and EConsI are APX-Hard even when applied to genomesG1, G2 such that
occ(G1) = 1 andocc(G2) = 2.

We prove Theorem1 by using anL-reduction[13] from theMinimum V ertex Cover problem on
cubic graphs, denoted byV C3. Let G = (V, E) be a cubic graph, i.e. for allv ∈ V, degree(v) = 3. A set
of verticesV ′ ⊆ V is called avertex coverof G if for each edgee ∈ E, there exists a vertexv ∈ V ′ such
thate is incident tov. The problemV C3 is defined as follows:

Problem: V C3

Input: A cubic graphG = (V, E), an integerk.
Question: Does there exist a vertex coverV ′ of G such that|V ′| 6 k ?

V C3 was provedAPX-Complete in [1].

2.1 Reduction

Let (G, k) be an instance ofV C3, whereG = (V, E) is a cubic graph withV = {v1 . . . vn} andE =
{e1 . . . em}. Consider the transformationR which associates to the graphG two genomesG1 andG2 in
the following way, where each gene has a positive sign.

G1 = b1, b2, . . . , bm, x, a1, C1, f1, a2, C2, f2, . . . , an, Cn, fn, y, bm+n, bm+n−1, . . . , bm+1 (1)

G2 = y, a1, D1, f1, bm+1, a2, D2, f2, bm+2, . . . , bm+n−1, an, Dn, fn, bm+n, x (2)

with :

• for eachi, 1 6 i 6 n, ai = 6i − 5, fi = 6i andCi = (ai + 1), (ai + 2), (ai + 3), (ai + 4)

• for eachi, 1 6 i 6 n + m, bi = 6n + i

• x = 7n + m + 1 andy = 7n + m + 2

• for eachi, 1 6 i 6 n, Di = ai + 3, bji
, ai + 1, bki

, ai + 4, bli , ai + 2 whereeji
, eki

andeli are the
edges which are incident tovi in G, with ji < ki < li.

In the following, genesbi, 1 6 i 6 m, are calledmarkers. There is no duplicated gene inG1 and the
markers are the only duplicated genes inG2; these genes occur twice inG2. Hence, we haveocc(G1) = 1
andocc(G2) = 2.

To illustrate the reduction, consider the cubic graphG of Figure1. FromG, we construct the following
genomesG1 andG2:
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Figure 1: The cubic graphG.

2.2 Preliminary results

In order to prove Theorem1, we first give four intermediate lemmas. Due to space constraints, the proofs
are not given in the paper but can be found in appendix. In the following, a common interval for the
EComI problem or a conserved interval forEConsI is called arobust interval.

Lemma 1 For any exemplarization(G1, G
E
2 ) of (G1, G2), the non trivial robust intervals of(G1, G

E
2 ) are

necessarily contained in some sequenceaiCifi of G1 (1 6 i 6 n).

Proof. We start by proving the lemma for common intervals, and we will then extend it to conserved
intervals. First, we prove that for any exemplarization(G1, G

E
2 ) of (G1, G2), each common intervalI such

that|I| > 2 and which containsx (resp.y) also containsy (resp.x), which implies thatI covers the whole
genome. Suppose there exists a common intervalIx such that|Ix| > 2 andIx containsx. Let PIx be the
permutation ofIx in GE

2 . The intervalIx must contain eitherbm or a1. Let us detail each of the two cases:

(a) If Ix containsbm, thenPIx containsbm too. Notice that there is somei, 1 6 i 6 n, such thatbm

belongs toDi in GE
2 . ThenPIx contains all genes betweenDi andx in GE

2 . ThusPIx contains
bm+n. Consequently,Ix containsbm+n and it also containsy.

(b) If Ix containsa1, thenPIx containsa1 too. ThenPIx contains all genes betweena1 andx. Thus
PIx containsbm+n. Hence,Ix containsbm+n and then it also containsy.

Now, suppose thatIy is a common interval such that|Iy| > 2 andIy containsy. Let PIy be the
permutation ofIy on GE

2 . The intervalIy must contain eitherbm+n or fn. Let us detail each of the two
cases:

(a) If Iy containsbm+n, thenPIy containsbm+n too. ThusPIy contains all genes betweenbm+n and
y. HencePIy contains all the sequencesDi, 1 6 i 6 n. In particular,PIy contains all the markers
and consequentlyIy must containx.

(b) If Iy containsfn, thenPIy containsfn too. ThenPIy contains all genes betweenfn andy. In
particular,PIy containsbm+n−1 and then it containsIy too. Hence,Iy also containsbm+n, similarly
to the previous case. ThusIy containsx.

We conclude that each non singleton common interval containing eitherx ory necessarily contains both
x andy. Therefore, and by construction ofG2, there is only one such interval, that isG1 itself. Hence,
any non trivial common interval is necessarily, inG1, either strictly on the left ofx, betweenx andy, or
strictly on the right ofy. Let us analyze these different cases:

• Let I be a non trivial common interval situated strictly on the left of x in G1. ThusI is a sequence of
at least two consecutive markers. Since in any exemplarization (G1, G

E
2 ) of (G1, G2), every marker

has neighboring genes which are not markers, this contradicts the fact thatI is a common interval.

• Let I be a non trivial common interval situated strictly on the right of y in G1. ThenI is a substring
of bm+n, . . . , bm+1 containing at least two genes. In any exemplarization(G1, G

E
2 ) of (G1, G2), for

each pair(bm+i, bm+i+1), with 1 6 i < n, we haveai+1 ∈ GE
2 [bm+i, bm+i+1]. This contradicts the

fact thatI is strictly on the right ofy in G1.

dessin/graphe2.eps
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• Let I be a non trivial common interval lying betweenx and y in G1. For any exemplarization
(G1, G

E
2 ) of (G1, G2), a common interval cannot contain, inG1, both fi and ai+1 for somei,

1 6 i 6 n − 1 (sincebm+1 is situated betweenfi andai+1 in GE
2 and on the right ofx in G1).

Hence, a non trivial common interval of(G1, G
E
2 ) is included in some sequenceaiCifi in G1,

1 6 i 6 n. This proves the lemma for common intervals.
By definition, any conserved interval is necessarily a common interval. So, a non trivial conserved
interval of(G1, G

E
2 ) is included in some sequenceaiCifi in G1, 1 6 i 6 n. The lemma is proved.

�

Lemma 2 Let (G1, G
E
2 ) be an exemplarization of(G1, G2) and i ∈ [1 . . . n]. Let ∆i be a substring of

[ai + 3, ai + 2]GE
2

that does not contain any marker. If|∆i| ∈ {2, 3}, then there is no robust intervalI of

(G1, G
E
2 ) such that∆i is a permutation ofI.

Proof. First, we prove that there is no permutationI of ∆i such thatI is a common interval of
(G1, G

E
2 ). Next, we show that there is no permutationI of ∆i such thatI is a conserved interval. By

Lemma1, we know that a non trivial common interval of(G1, G
E
2 ) is a substring of some sequenceaiCifi,

1 6 i 6 n. This substring contains only consecutive integers. Therefore, if there exists a permutationI of
∆i such thatI is a common interval of(G1, G

E
2 ), then∆i must be a permutation of consecutive integers.

If |∆i| = 2, we have∆i = (p, q) wherep andq are not consecutive integers and if|∆i| = 3, then we have
∆i = (ai +3, ai+1, ai+4) or ∆i = (ai +1, ai+4, ai+2). In these three cases,∆i is not a permutation of
consecutive integers. Hence, there is no permutationI of ∆i such thatI is a common interval of(G1, G

E
2 ).

Moreover, any conserved interval is also a common interval.Thus, there is no permutationI of ∆i such
thatI is a conserved interval of(G1, G

E
2 ). �

For more clarity, let us now introduce some notations. Givena graphG = (V, E), let V C =
{vi1 , vi2 . . . vik

} be a vertex cover ofG. Let R(G) = (G1, G2) be the pair of genomes defined by the
construction described in(1) and(2). Now, letF be the function which associates toV C, G1 andG2 an
exemplarizationF (V C) of (G1, G2) as follows. InG2, all the markers are removed from the sequences
Di for all i 6= i1, i2 . . . ik. Next, for each marker which is still present twice, one of its occurrences is arbi-
trarily removed. Since inG2 only markers are duplicated, we conclude thatF (V C) is an exemplarization
of (G1, G2).

Given a cubic graphG and genomesG1 andG2 obtained by the transformationR(G), let us define
the functionS which associates to an exemplarization(G1, G

E
2 ) of (G1, G2) the vertex coverV C of G

defined as follows:V C = {vi|1 6 i 6 n ∧ ∃j ∈ {1 . . .m}, bj ∈ GE
2 [ai, fi]}. In other words, we keep in

V C the verticesvi of G for which there exists some genebj such thatbj is in GE
2 [ai, fi]. We now prove

thatV C is a vertex cover. Consider an edgeep of G. By construction ofG1 andG2, there exists somei,
1 6 i 6 n, such that genebp is located betweenai andfi in GE

2 . The presence of genebp betweenai and
fi implies that vertexvi belongs toV C. We conclude that each edge is incident to at least one vertexof
V C.

Let W be the function defined on{EConsI, EComI} by W (pb) = 1 if pb = EConsI andW (pb) =
4 if pb = EComI. Let OPTP (A) be the optimum result of an instanceA for an optimization problemP ,
P ∈ {EcomI, EConsI, V C3}.

We define the functionT which associates to a problempb ∈ {EConsI, EComI} and a cubic graph
G, the number of robust trivial intervals of an exemplarization of both genomesG1 andG2 obtained by
R(G) for the problempb. Let n andm be respectively the number of vertices and the number of edges of
G. We haveT (EConsI, G) = 7n+m+2 andT (EComI, G) = 7n+m+3. Indeed, forEComI, there
are7n + m + 2 singletons and we also need to consider the whole genome.

Lemma 3 Let pb ∈ {EcomI, EConsI}. LetG be a cubic graph andR(G) = (G1, G2). Let (G1, G
E
2 )

be an exemplarization of(G1, G2) and leti, 1 6 i 6 n. Then only two cases can occur:

1. Either inGE
2 , all the markers fromDi were removed, and in this case, there are exactlyW (pb) non

trivial robust intervals involvingDi.

2. Or in GE
2 , at least one marker was kept inDi, and in this case, there is no non trivial robust interval

involvingDi.
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Proof. We first prove the lemma for theEComI problem and then we extend it toEConsI. Lemma1
implies that each non trivial common intervalI of (G1, G

E
2 ) is contained in some substring ofaiCifi,

1 6 i 6 n. So, the permutation ofI on GE
2 is contained in a substring ofaiDifi, 1 6 i 6 n. Consider

i, 1 6 i 6 n, suppose that all the markers fromDi are removed onGE
2 . Thus,aiCifi, Ci, aiCi andCifi

are common intervals of(G1, G
E
2 ). Let us now show that there is no other non trivial common interval

involving Di. Let ∆i be a substring of[ai + 3, ai + 2]GE
2

such that|∆i| ∈ {2, 3}. By Lemma2, we
know that∆i is not a common interval. The remaining intervals are(ai, ai + 3), (ai, ai + 3, ai + 1),
(ai, ai +3, ai +1, ai +4), (ai +1, ai +4, ai +2, fi), (ai +4, ai +2, fi) and(ai +2, fi). By construction,
none of them can be a common interval, because none of them is apermutation of consecutive integers.
Hence, there are only four non trivial common intervals involving Di in GE

2 . Among these four common
intervals, onlyaiCifi is a conserved interval too. In the end, if all the markers areremoved fromDi, there
are exactly four non trivial common intervals and one non trivial conserved interval involvingDi. So, given
a problempb ∈ {EcomI, EconsI}, there are exactlyW (pb) non trivial robust intervals involvingDi.

Now, suppose that at least one marker ofDi is kept inGE
2 . Lemma1 shows that each non trivial

common intervalI of (G1, G
E
2 ) is contained in some substring ofaiCifi, 1 6 i 6 n. Since no marker is

present in a sequenceaiCifi, we deduce that there does not exist any trivial common interval containing
a marker. So, a non trivial common interval involvingDi only, must contain a substring∆i of [ai +
3, ai + 2]GE

2

such that∆i contains no marker. Since no marker is an extremity of[ai + 3, ai + 2]GE
2

, we
have|∆i| 6 3. By Lemma2, we know that∆i is not a common interval. The remaining intervals to be
considered are the intervalsai∆i and∆ifi. By construction ofaiCifi, these intervals are not common
intervals (the absence of geneai + 2 for ai∆i and of geneai + 3 for ∆ifi implies that these intervals are
not a permutation of consecutive integers). Hence, these intervals cannot be conserved intervals either.�

Lemma 4 Let pb ∈ {EcomI, EConsI}. Let G = (V, E) be a cubic graph withV = {v1 . . . vn} and
E = {e1 . . . em} and letG1, G2 be the two genomes obtained byR(G).

1. LetV C be a vertex cover ofG and denotek = |V C|. Then the exemplarizationF (V C) of (G1, G2)
has at leastN = W (pb) · n + T (pb, G) − W (pb) · k robust intervals.

2. Let (G1, G
E
2 ) be an exemplarization of(G1, G2) and letV C′ be the vertex cover ofG obtained

by S(G1, G
E
2 ). Then|V C′| = W (pb)·n+T (pb,G)−N

W (pb) , whereN is the number of robust intervals of

(G1, G
E
2 ).

Proof. 1. Letpb ∈ {EcomI, EConsI}. LetG be a cubic graph and letG1 andG2 be the two genomes
obtained byR(G). Suppose there is a vertex coverV C of G and denotek = |V C|. Let (G1, G

E
2 ) be the

exemplarization of(G1, G2) obtained byF (V C). By construction, we have at least(n − k) substrings
Di in GE

2 for which all the markers are removed. By Lemma3, we know that each of these substrings
implies the existence ofW (pb) non trivial robust intervals. So, we have at leastW (pb)(n − k) non trivial
robust intervals. Moreover, it is easy to see that the numberof trivial robust intervals of(G1, G

E
2 ) is exactly

T (pb, G). Thus, we have at leastN = W (pb) · n + T (pb, G) − W (pb) · k robust intervals of(G1, G
E
2 ).

2. Let (G1, G
E
2 ) be an exemplarization of(G1, G2) andn − j be the number of sequencesDi, 1 6

i 6 n, for which all markers have been deleted inGE
2 . Then, by Lemmas1 and3, the number of robust

intervals of(G1, G
E
2 ) is equal toN = W (pb) · n + T (pb, G) − W (pb) · j. Let V C ′ be the vertex cover

obtained byS(G1, G
E
2 ). Each marker has one occurrence inGE

2 and these occurrences lie inj sequences
Di. So, by definition ofS, we conclude that|V C′| = j = W (pb)·n+T (pb,G)−N

W (pb) . �

2.3 Main result

Let us first define the notion ofL-reduction[13]: let A andB be two optimization problems andcA, cB

be respectively their cost functions. AnL-reductionfrom problemA to problemB is a pair of polynomial
functionsR andS with the following properties:

(a) If x is an instance ofA, thenR(x) is an instance ofB ;

(b) If x is an instance ofA andy is a solution ofR(x), thenS(y) is a solution ofx;
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(c) If x is an instance ofA whose optimum isOPT (x), thenR(x) is an instance ofB such that
OPT (R(x)) 6 α.OPT (x), whereα is a positive constant ;

(d) If s is a solution ofR(x), then:
|OPT (x) − cA(S(s))| 6 β|OPT (R(x)) − cB(s)| whereβ is a positive constant.

We prove Theorem1 by showing that the pair(R, S) defined previously is anL-reductionfrom V C3

to EConsI and fromV C3 to EComI. First note that properties(a) and(b) are obviously satisfied byR
andS.

Considerpb ∈ {EcomI, EConsI}. Let G = (V, E) be a cubic graph withn vertices andm edges.
We now prove properties(c) and(d). Consider the genomesG1 andG2 obtained byR(G). First, we need
to prove that there existsα > 0 such thatOPTpb(G1, G2) 6 α.OPTV C3

(G).
SinceG is cubic, we have the following properties:

n > 4 (3)

m =
1

2

n∑

i=1

degree(vi) =
3n

2
(4)

OPTV C3
(G) >

m

3
=

n

2
(5)

To explain property (5), remark that, in a cubic graphG with n vertices andm edges, each vertex covers
three edges. Thus, a set ofk vertices covers at most3k edges. Hence, any vertex cover ofG must contain
at leastm3 vertices.
By Lemma3, we know that sequences of the formaiCifi, 1 6 i 6 n contain either zero orW (pb)
non trivial robust intervals. By Lemma1, there are no other non trivial robust intervals. So, we havethe
following inequality:OPTpb(G1, G2) 6 T (pb, G)

︸ ︷︷ ︸

trivial robust intervals

+W (pb) · n.

If pb = EComI, we have:

OPTEComI(G1, G2) 6 7n + m + 3 + 4n

OPTEComI(G1, G2) 6
27n

2
by (3) and (4) (6)

And if pb = EConsI, we have :

OPTEConsI(G1, G2) 6 7n + m + 2 + n

OPTEConsI(G1, G2) 6
21n

2
by (3) and (4) (7)

Altogether, by (5), (6) and (7), we prove property(c) with α = 27.
Now, let us prove property(d). Let V C = {vi1 , vi2 . . . viP

} be a minimum vertex cover ofG. Denote
P = OPTV C3

(G) = |V C| and letG1 andG2 be the genomes obtained byR(G). Let (G1, G
E
2 ) be an

exemplarization of(G1, G2) and letk′ be the number of robust intervals of(G1, G
E
2 ). Finally, let V C′

be the vertex cover ofG such thatV C′ = S(G1, G
E
2 ). We need to find a positive constantβ such that

|P − |V C′|| 6 β|OPTpb(G1, G2) − k′|.
For pb ∈ {EcomI, EConsI}, let Npb be the number of robust intervals between the two genomes

obtained byF (V C). By the first property of Lemma4, we have

OPTpb(G1, G2) > Npb > W (pb) · n + T (pb, G) − W (pb) · P

By the second property of Lemma4, we have|V C′| = W (pb)·n+T (pb,G)−k′

W (pb) .
Recall thatOPTpb(G1, G2) > W (pb) · n + T (pb, G) − W (pb) · P . So, it is sufficient to prove∃β >
0, |P − |V C′|| 6 β|W (pb) · n + T (pb, G) − W (pb) · P − k′|. SinceP 6 |V C′|, we have

|P−|V C′|| = |V C′|−P =
W (pb) · n + T (pb, G) − k′

W (pb)
−P =

1

W (pb)
(W (pb)·n+T (pb, G)−W (pb)·P−k′)
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So β = 1 is sufficient in both cases, sinceW (EComI) = 4 and W (EConsI) = 1, which implies
1

W (pb) 6 1. Altogether, we then have|OPTV C3
(G) − |V C′|| 6 1 · |OPTpb(G1, G2) − k′|.

We proved that the reduction(R, S) is anL-reduction. This implies that for two genomesG1 andG2,
both problemsEConsI andEComI areAPX-Hard even ifocc(G1) = 1 andocc(G2) = 2. Theorem1
is proved. �

We extend in Corollary1 our results for themaximum matchingandnon maximum matchingmodels.

Corollary 1 MComI, NMComI, MConsI and NMConsI are APX-Hard even when applied to
genomesG1, G2 such thatocc(G1) = 1 andocc(G2) = 2.

Proof. The maximum matchingandnon maximum matchingmodels are identical to theexemplar
model when one genome contains no duplicates. Hence, theAPX-Hardness result forEComI (resp.
EConsI) also holds forMComI andNMComI (resp.MConsI andNMConsI). �

3 EBD is APX-Hard

In this section, we prove the following theorem:

Theorem 2 EBD is APX-Hard even when applied to genomesG1, G2 such thatocc(G1) = 1 and
occ(G2) = 2.

To prove Theorem2, we use anL-Reductionfrom theV C3 problem to theEBD problem. LetG =
(V, E) be a cubic graph withV = {v1 . . . vn} andE = {e1 . . . em}. For eachi, 1 6 i 6 n, let efi

, egi

andehi
be the three edges which are incident tovi in G with fi < gi < hi. Let R′ be the polynomial

transformation which associates toG the following genomesG1 andG2, where each gene has a positive
sign:
G1 = a0 a1 b1 a2 b2 . . . an bn c1 d1 c2 d2 . . . cm dm cm+1

G2 = a0 an dfn
dgn

dhn
bn . . . a2 df2

dg2
dh2

b2 a1 df1
dg1

dh1
b1 c1 c2 . . . cm cm+1

with :

• a0 = 0, and for eachi, 0 6 i 6 n, ai = i andbi = n + i

• cm+1 = 2n + m, and for eachi, 1 6 i 6 m + 1, ci = 2n + i anddi = 2n + m + 1 + i

We remark that there is no duplication inG1, soocc(G1) = 1. In G2, only the genesdi, 1 6 i 6 m,
are duplicated and occur twice. Thusocc(G2) = 2.

Let G be a cubic graph andV C be a vertex cover ofG. Let G1 andG2 be the genomes obtained
by R′(G). We defineF ′ to be the polynomial transformation which associates toV C, G1 andG2 the
exemplarization(G1, G

E
2 ) of (G1, G2) as follows. For eachi such thatvi /∈ V C, we remove fromG2

the genesdfi
, dgi

anddhi
. Then, for each1 6 j 6 m such thatdj still has two occurrences inG2, we

arbitrarily remove one of these occurrences in order to obtain the genomeGE
2 . Hence,(G1, G

E
2 ) is an

exemplarization of(G1, G2).
Given a cubic graphG, we constructG1 andG2 by the transformationR′(G). Given an exemplarization

(G1, G
E
2 ) of (G1, G2), letS′ be the polynomial transformation which associates to(G1, G

E
2 ) the setV C =

{vi|1 6 i 6 n, ai andbi are not consecutive inGE
2 }. We claim thatV C is a vertex cover ofG. Indeed,

let ep, 1 6 p 6 m, be an edge ofG. GenomeGE
2 contains one occurrence of genedp sinceGE

2 is an
exemplarization ofG2. By construction, there existsi, 1 6 i 6 n, such thatdp is in GE

2 [ai, bi] and such
thatep is incident tovi. The presence ofdp in GE

2 [ai, bi] implies that vertexvi belongs toV C. We can
conclude that each edge ofG is incident to at least one vertex ofV C.

Lemmas5 and6 below are used to prove that(R′, S′) is anL-Reductionfrom theV C3 problem to the
EBD problem. LetG = (V, E) be a cubic graph withV = {v1, v2 . . . vn} andE = {e1, e2 . . . em} and
let us construct(G1, G2) by the transformationR′(G).

Lemma 5 Let V C be a vertex cover ofG and (G1, G
E
2 ) the exemplarization given byF ′(V C). Then

|V C| = k ⇒ B(G1, G
E
2 ) 6 n +2m + k +1, whereB(G1, G

E
2 ) is the number of breakpoints betweenG1

andGE
2 .



13

Proof. Suppose|V C| = k. Let us list the breakpoints between genomesG1 andGE
2 obtained by

F ′(R′(G), V C). The pairs(bi, ai+1), 1 6 i 6 n − 1, and(bn, c1) induce one breakpoint each. For all
1 6 i 6 m, each pair of the form(ci, di) (resp.(di, ci+1)) induces one breakpoint. For all1 6 i 6 n such
thatvi ∈ V C, (ai, bi) induces at most one breakpoint. Finally, the pair(a0, a1) induces one breakpoint.
Thus there are at mostn + 2m + k + 1 breakpoints of(G1, G

E
2 ). �

Lemma 6 Let(G1, G
E
2 ) be an exemplarization of(G1, G2) andV C′ be the vertex cover ofG obtained by

S′(G1, G
E
2 ). We haveB(G1, G

E
2 ) = k′ ⇒ |V C′| = k′ − n − 2m − 1.

Proof. Let (G1, G
E
2 ) be an exemplarization of(G1, G2) andV C′ be the vertex cover obtained by

S′(G1, G
E
2 ). SupposeB(G1, G

E
2 ) = k′. For any exemplarization(G1, G

E
2 ) of (G1, G2), the following

breakpoints always occur: the pair(a0, a1); for eachi, 1 6 i 6 m, each pair(ci, di) and(di, ci+1); for
eachi, 1 6 i 6 n− 1, the pair(bi, ai+1); the pair(bn, c1). Thus, we have at leastn + 2m + 1 breakpoints.
The other possible breakpoints are induced by pairs of the form of (ai, bi). Since we haveB(G1, G

E
2 ) = k′,

there are exactlyk′−n−2m−1 such breakpoints. By construction ofV C′, the cardinality ofV C′ is equal
to the number of breakpoints induced by pairs of the form(ai, bi). So, we have:|V C′| = k′−n−2m−1.
�

Lemma 7 The inequalityOPTEBD(G1, G2) 6 12 · OPTV C3
(G) holds.

Proof. For a cubic graphG with n vertices andm edges, we have2m = 3n (see (4)) andOPTV C3
(G) >

n
2 (see (5)). By construction of the genomesG1 and G2, any exemplarization of(G1, G2) contains
2n + 2m + 1 genes in each genome. Thus, we haveOPTEBD(G1, G2) 6 2n + 2m + 1 6 6n. Hence, we
conclude thatOPTEBD(G1, G2) 6 12 · OPTV C3

(G). �

Lemma 8 Let(G1, G
E
2 ) be an exemplarization of(G1, G2) and letV C′ be the vertex cover ofG obtained

byS′(G1, G
E
2 ). Then, we have|OPTV C3

(G) − |V C′|| 6 |OPTEBD(G1, G2) − B(G1, G
E
2 )|

Proof. Let (G1, G
E
2 ) be an exemplarization of(G1, G2) and V C′ be the vertex cover ofG ob-

tained byS′(G1, G
E
2 ). Let V C be a vertex cover ofG such that|V C| = OPTV C3

(G). We know that
OPTV C3

(G) 6 |V C′| and OPTEBD(G1, G2) 6 B(G1, G
E
2 ). So, it is sufficient to prove|V C′| −

OPTV C3
(G) 6 B(G1, G

E
2 ) − OPTEBD(G1, G2).

By Lemma5, we haveB(F ′(V C)) 6 n + 2m + 1 + OPTV C3
, which impliesOPTEBD(G1, G2) 6

B(F ′(V C)) 6 n + 2m + 1 + OPTV C3
, that is

B(G1, G
E
2 ) − OPTEBD(G1, G2) > B(G1, G

E
2 ) − n − 2m − 1 − OPTV C3

(G) (8)

By Lemma6, we have:|V C′| = B(G1, G
E
2 ) − n − 2m− 1 which implies

|V C′| − OPTV C3
(G) = B(G1, G

E
2 ) − n − 2m − 1 − OPTV C3

(G) (9)

Finally, by (8) and (9), we get|V C′| − OPTV C3
6 B(G1, G

E
2 ) − OPTEBD(G1, G2). �

Lemmas7 and8 prove that the pair(R′, S′) is anL-reductionfrom V C3 to EBD. Hence,EBD is
APX-Hard even ifocc(G1) = 1 andocc(G2) = 2, and Theorem2 is proved. We extend in Corollary2
our results for themaximum matchingandnon maximum matchingmodels.

Corollary 2 TheMEBD andNMEBD problems areAPX-Hard even when applied to genomesG1,
G2 such thatocc(G1) = 1 andocc(G2) = 2.

Proof. The maximum matchingandnon maximum matchingmodels are identical to theexemplar
model when one genome contains no duplicates. Hence, theAPX-Hardness result forEBD also holds for
MBD andNMBD. �
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4 Approximating the number of adjacencies

For two balanced genomesG1 andG2, several approximation algorithms for computing the number of
breakpoints betweenG1 andG2 are given for themaximum matchingmodel [9, 10]. We propose in this
section a4-approximation algorithm to compute a maximum matching of two balanced genomes that max-
imizes the number of adjacencies (as opposed to minimizing the number of breakpoints). Remark that,
as opposed to the results in [9, 10], our approximation ratio is independent of the maximum number of
duplicates. We first define the problemAdjD we are interested in as follows:

Problem: AdjD
Input: Two balanced genomesG1 andG2.
Question: Find a maximum matching(G′

1, G
′

2) of (G1, G2) which maximizes the number of
adjacencies betweenG′

1 andG′

2.

In [8], a 4-approximation algorithm for the weighted2-interval Pattern problem (W2IP ) is given.
In the following, we first defineW2IP , and then we present how we can relate any instance ofAdjD to
an instance ofW2IP .

The weighted2-interval Pattern problem. A 2-interval is the union of two disjoint intervals defined
over a single sequence. For a 2-intervalD = (I, J), we suppose that the intervalI does not overlapJ
and thatI precedesJ . We will denote this relation byI < J . We say that two 2-intervalsD1 = (I1, J1)
andD2 = (I2, J2) aredisjoint if D1 andD2 have no common point (i.e.(I1 ∪ J1) ∩ (I2 ∪ J2) = ∅).
Three possible relations exist between two disjoint 2-intervals: (1)D1 ≺ D2, if I1 < J1 < I2 < J2; (2)
D1 ⊏ D2, if I2 < I1 < J1 < J2; (3) D1 ≬ D2, if I1 < I2 < J1 < J2.
We say that a pair of 2-intervalsD1 andD2 isR-comparable for someR ∈ {≺, ⊏, ≬}, if either(D1, D2) ∈
R or (D2, D1) ∈ R. A set of 2-intervalsD is R-comparable for someR ⊆ {≺, ⊏, ≬}, R 6= ∅, if any pair
of distinct 2-intervals inD is R-comparable for someR ∈ R. The non-empty setR is called aR-model.
We can defineW2IP as follows:

Problem: Weighted2-interval Pattern (W2IP )
Input: A setD of 2-intervals, aR-modelR ⊆ {≺, ⊏, ≬} with R 6= ∅, a weighted function
w : D 7→ R.
Question: Find a maximum weightR-comparable subset ofD.

Transformation. We now describe how to transform any instance ofAdjD into an instance ofW2IP .
Let G1 andG2 be two balanced genomes. Two intervalsI1 of G1 andI2 of G2 are said to beidentical
if they correspond to the same string (up to a complete reversal, where a reversal also changes all the
signs). We denote byMake2I the construction of the2-intervals set obtained from the concatenation of
G1 andG2. Make2I is defined as follows: for any pair(I1, I2) of identical intervals ofG1, G2, we
construct a 2-intervalD = (I1, I2) of weight |I1| − 1. We noteD = Make2I(G1, G2) the set of all
2-intervals obtained in this way. Figure2 gives an example of such a construction. We now define how

Figure 2: 2-intervals induced by genomesG1 = 1 2 − 3 2 1 andG2 = 2 1 3 − 2 − 1. For readability,
singleton intervals are not drawn. The dotted 2-interval isof weight 2, while all the others are of weight 1.

to tranform any solution ofW2IP into a solution ofAdjD. Let G1 andG2 be two balanced genomes and
let D = Make2I(G1, G2). Let S be a solution ofW2IP over the{≺, ⊏, ≬}-model forD. We denote
by W2IP to AdjD the transformation ofS into a maximum matching(G′

1, G
′

2) of G1, G2) defined as
follows. First, for each 2-intervalD = (I1, I2) of S, we match the genes ofI1 andI2 in the natural way;

dessin/adjacencies2.eps
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then, in order to achieve a maximum matching (since each geneis not necessarily covered by a 2-interval of
S), we apply the following greedy algorithm: iteratively, wematch arbitrarily two unmatched genes present
in bothG1 andG2, until no such gene exist. After a relabeling of signed genes, we obtain a maximum
matching(G′

1, G
′

2) of (G1, G2).

Lemma 9 LetG1 andG2 be two balanced genomes and letD = Make2I(G1, G2). LetS be a solution
of W2IP over the{≺, ⊏, ≬}-model. LetWS be the weight ofS. Then the maximum matching(G′

1, G
′

2) of
(G1, G2) obtained byW2IP to AdjD(S) induces at leastWS adjacencies.

Proof. Let WS be the weight ofS. We construct the maximum matching(G′

1, G
′

2) of (G1, G2) as
using the transformationW2IP to AdjD. First, we have matched, for each 2-intervalD = (I1, I2) of
S, the genes ofI1 andI2 in the natural way. This operation implies, for each 2-interval D = (I1, I2) of
S, |I1| − 1 adjacencies sinceI1 andI2 are identical. By construction ofD, this operation inducesWS

adjacencies altogether. The second operation is the greedyalgorithm for which no adjacency is suppressed
(note that other adjacencies might be created). Hence,(G′

1, G
′

2) induces at leastWS adjacencies. �

Lemma 10 LetG1 andG2 be two balanced genomes and let(G′

1, G
′

2) be a maximum matching of(G1, G2).
LetD = Make2I(G1, G2).
LetW be the number of adjacencies induced by(G′

1, G
′

2) betweenG1 andG2. Then there exists a solution
S of W2IP over the{≺, ⊏, ≬}-model forD with weight equal toW .

Proof. [Lemma10] Let (G′

1, G
′

2) be a maximum matching of(G1, G2) and letn be the size ofG′

1.
Suppose that there existW adjacencies betweenG′

1 andG′

2. There exists a unique partitionP(G′

1
,G′

2
) =

{s1, s2 . . . sp} of genomeG′

1 into p substrings such that for eachi, 1 6 i < p, si andsi+1 are separated
by one breakpoint and such that no breakpoint appears insi, 1 6 i 6 p. This partition implies that there
existsp − 1 breakpoints betweenG′

1 andG′

2, and consequently,n − p adjacencies. To each substringsi

of P(G′

1
,G′

2
) in G′

1, corresponds a unique substringti in G′

2, for which si andti are identical. Moreover,
each substringsi of sizeli, 1 6 i 6 p, containsli − 1 adjacencies. We construct the 2-interval setS as
the union ofSi = (ŝi, t̂i), 1 6 i 6 p, whereŝi (resp. t̂i) is the interval obtained fromsi (resp. ti). The
partitionP implies that the 2-intervals created are disjoint and thus{≺, ⊏, ≬}-comparable and the weight
of S is equal to

∑p

i=1 (li − 1) =
∑p

i=1 li −
∑p

i=1 1 = n − p = W . �
We now describe the algorithmApproxAdjD and then prove that it is a4-approximationof the problem

AdjD by Theorem3.

Algorithm 1 ApproxAdjD

Require: Two balanced genomesG1 andG2.
Ensure: A maximum matching(G′

1, G
′

2) of (G1, G2).
• Construct the set of weighted2-intervalsD = Make2I(G1, G2)

• Invoke the4-approximation algorithm of Crochemore et al. [8] to obtain a solutionS of W2IP
over the{≺, ⊏, ≬}-model forD

• Construct the maximal matching(G′

1, G
′

2) = W2IP to AdjD(S)

Theorem 3 AlgorithmApproxAdjD is a4-approximation algorithm forAdjD.

Proof. Let G1 andG2 be two balanced genomes and letD = Make2I(G1, G2). We first prove that
the optimum ofAdjD for (G1, G2) is equal to the optimum ofW2IP . Let OPTAdjD be the optimum
of AdjD for (G1, G2). By Lemma10, we know that there exists a solutionS for W2IP with weight
WS = OPTAdjD. Now, suppose that there exists a solutionS′ for W2IP with weight WS′ > WS .
Then, by Lemma9, there exists a solution forAdjD with weightW > WS′ . However,WS′ > WS by
hypothesis, a contradiction to the fact thatWS = OPTAdjD. Therefore, the two problems have the same
optimum and, as a result, any approximation ratio forW2IP implies the same approximation ratio for
AdjD. In [8], a4-approximation algorithm is proposed forW2IP ; this directly implies thatApproxAdjD
is a4-approximation algorithm forAdjD. �
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5 Conclusions and future work

In this paper, we have first given new approximation complexity results for several optimization problems
in genomic rearrangement. We focused on breakpoints, conserved and common intervals measures and we
took into account the presence of duplicates. We restrictedour proofs to cases where one genome contains
no duplicates and the other contains no more than two occurrences of each gene. With this assumption,
we proved that the problems consisting in computing an exemplarization (resp. a maximum matching,
a non-maximum matching) optimizing one of these measures isAPX-Hard , thus extending the results
of [5, 6, 7]. For that, we used anL-reductionfrom vertex cover on cubic graphs. In a second part of this
paper, we gave a4-approximation algorithm for computing the number of adjacencies of two balanced
genomes under themaximum matchingmodel. We note that our approximation ratio we obtain is constant,
even when the number of occurrences in genomes is unbounded.
The problems studied in this paper areAPX-Hard , but some approximation algorithms exist when genomes
are balanced [9, 10]. However, it remains open whether approximation algorithms exist when genomes are
not balanced. It has been shown in [7] that deciding if two genomesG1 andG2 have zero breakpoint
under theexemplarmodel isNP-Completeeven whenocc(G1) = occ(G2) = 3 (problemZEBD). This
result implies that theEBD problem cannot be approximated in that case. Another open question is the
complexity ofZEBD when no gene appears more that twice in the genome.
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On the Approximability of Comparing
Genomes with Duplicates

Sébastien Angibaud, Guillaume Fertin, Irena Rusu

Abstract

A central problem in comparative genomics consists in computing a (dis-)similarity measure between two
genomes, e.g. in order to construct a phylogenetic tree. A large number of such measures has been pro-
posed in the recent past:number of reversals, number of breakpoints, number of commonor conserved
intervals, SADetc. In their initial definitions, all these measures suppose that genomes contain no du-
plicates. However, we now know that genes can be duplicated within the same genome. One possible
approach to overcome this difficulty is to establish a one-to-one correspondence (i.e. a matching) between
genes of both genomes, where the correspondence is chosen inorder to optimize the studied measure.
Then, after a gene relabeling according to this matching anda deletion of the unmatched signed genes, two
genomes without duplicates are obtained and the measure canbe computed.
In this paper, we are interested in three measures (number of breakpoints, number of common intervalsand
number of conserved intervals) and three models of matching (exemplarmodel,maximum matchingmodel
andnon maximum matchingmodel). We prove that, for each model and each measure, computing a match-
ing between two genomes that optimizes the measure isAPX-Hard . We show that this result remains true
even for two genomesG1 andG2 such thatG1 contains no duplicates and no gene ofG2 appears more than
twice. Therefore, our results extend those of [5, 6, 7]. Finally, we propose a4-approximation algorithm
for a measure closely related to thenumber of breakpoints, thenumber of adjacencies, under themaximum
matchingmodel, in the case where genomes contain the same number of duplications of each gene.

Additional Key Words and Phrases: genome rearrangement, APX-Hardness, duplicates, breakpoints, adja-
cencies, common intervals, conserved intervals, approximation algorithm
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