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Abstract

A central problem in comparative genomics consists in camgua (dis-)similarity measure between two
genomes, e.g. in order to construct a phylogenetic tree.rgelaumber of such measures has been pro-
posed in the recent pastumber of reversalsnumber of breakpoinisaumber of commoor conserved
intervals SADetc. In their initial definitions, all these measures sugptbst genomes contain no du-
plicates. However, we now know that genes can be duplicatddrwthe same genome. One possible
approach to overcome this difficulty is to establish a onefte correspondence (i.e. a matching) between
genes of both genomes, where the correspondence is chosedeinto optimize the studied measure.
Then, after a gene relabeling according to this matchingpasheletion of the unmatched signed genes, two
genomes without duplicates are obtained and the measuteecaomputed.

In this paper, we are interested in three measumesiper of breakpointsumber of common intervaisd
number of conserved intervaland three models of matchingemplamodel,maximum matchinmodel
andnon maximum matchingodel). We prove that, for each model and each measure, dorgpunatch-

ing between two genomes that optimizes the measuPl¥-Hard . We show that this result remains true
even for two genomeS; andG4 such thatz; contains no duplicates and no gen&fappears more than
twice. Therefore, our results extend those 6f g, 7]. Finally, we propose d-approximation algorithm
for a measure closely related to thember of breakpointshenumber of adjacenciesnder themaximum
matchingmodel, in the case where genomes contain the same numbeplafations of each gene.

Additional Key Words and Phrases: genome rearrangemept;iAddness, duplicates, breakpoints, adja-
cencies, common intervals, conserved intervals, appratiém algorithm






1 Introduction and Preliminaries

In comparative genomics, computing a measure of (dis-lasiityi between two genomes is a central prob-
lem; such a measure can be used for instance to construdgamgdtic trees. The measures defined so
far fall into two categories: the first one contains distander which we count the number of operations
needed to transform a genome into another (see for instaditdistancd 12] or number of reversalg3)).

The second one contains (dis-)similarity measures bas#tearenome structure, suchrasmber of break-
points[5], conserved intervals distan§é], number of common interva]§], SADandMAD [15] etc.

When genomes contain no duplicates, most measures can Ipaisahin polynomial time. However,
assuming that genomes contain no duplicates is too lim#edk, has been shown that a great number of
duplicates exists in some genomes. For examplé, iy futhors estimate that fifteen percent of genes are
duplicated in the human genome. A possible approach to ome this difficulty is to specify a one-to-one
correspondence (i.e. a matching) between genes of botmygEnand to remove the remaining genes, thus
obtaining two genomes with identical gene composition andiaplicates. This matching is chosen in
order to optimize the studied measure. Three models aciyekis correspondence have been proposed :
exemplamodel [L4], maximum matchingnodel [L6] andnon maximum matchingodel ).

Let F be a set ofgenes where each gene is represented by an integer. A geroiisea sequence
of signed elementssigned gengsfrom F. Let occ(g, G) be the number of occurrences of a genim
a genome and letoce(G) = max{occ(g, G)|g is presentinG}. Two genomesy; andG, are called
balancediff, for each geng, we haveocc(g, G1) = occ(g, G2). Denoteng the size of genomé'. Let
G[pl, 1 £ p < ng, be the signed gene that occurs at positi@n genomes. For any signed geng letg
be the signed gene having the opposite sign. Given a gebmighout duplicates and two signed genes
a, b such that is located beforé, let G[a, b] be the set of genes located between genasdb in G. We
also notda, b, the substring (i.e. the sequence of consecutive elements) starting bya and finishing
by b.

For example, consider the st= {1, 2, 3,4, 5,6} and the genomé&'; = +14+2+34+4+5—1—-2+6—2.
Then,occ(1,Gy) = 2, oce(Gy) = 3, G1[5] = +5 andG,[5] = —5. Now, consider the genom@; =
+3—2+4+6+4—1+5 without duplicates. We hav@,[+6, —1] = {1, 4, 6} and[+6, —1]z, = (+6,+4, —1).

Breakpoints, adjacencies, common and conserved intervals Let us now define the four measures
we will study in this paper. Let;, G, be two genomes without duplicates and with the same gene
composition.

Breakpoint and AdjacencyLet (a,b) be a pair of consecutive signed genesin We say that the
pair (a,b) induces abreakpointof (G4, G>) if neither (a,b) nor (b, @) is a pair of consecutive signed
genes inG,. Otherwise, we say thdt, b) induces aradjacencyof (G, G2). For example, whel'; =
+142+3+4+5andGy = +5—4—3+2+ 1, the pair(2, 3) in G; induces a breakpoint ¢f+1, G2)
while (3,4) in G induces an adjacency ¢f71, G2). We noteB(G1, G2) the number of breakpoints that
exist betweerty; andGs.

Common intervalA common intervabf (G, G») is a substring of7; such thatGs contains a permu-
tation of this substring (not taking signs into account)r Eeample, consider; = +1+2+3+4+5
andGy = +2 — 4+ 3+ 5+ 1. The substrindg+3, +5]¢, is a common interval ofG;, G2). We notice
that the notion of common interval does not consider the sfgrenes.

Conserved intervalConsider two signed genesandb of G; such thau precede$, where the prece-
dence relation is large in the sense that, possibly: b. The substrinda, b]¢, is called aconserved
interval of (G, G-) if it satisfies the two following properties: first, eithemprecedes or b precedes
in G2; second, the set of genes located between geresldb in G5 is equal toG [a, b]. For example, if
Gi=+14+2+4+3+4+5andGy = —5—4+ 3 — 2+ 1, the substring+2, +5], is a conserved interval
of (Gl, GQ)

Note that a conserved interval is actually a common intetuatlwith additional restrictions on its extrem-
ities. An interval of a genomé& which is either of length one (i.e. a singleton) or the whaegmeG is
called atrivial interval.



Dealing with duplicates in genomes. When genomes contain duplicates, we cannot directly coatpat
measures defined previously. A solution consists in findingeto-one correspondence (i.e. a matching)
between duplicated genes@f andG, and use this correspondence to rename gen@s ahdG» and to
delete the unmatched signed genes in order to obtain twages®, andG’, such thati, is a permutation

of G; thus, the measure computation becomes possible. In thirpae will focus on three models of
matching : theexemplay maximum matchingndnon maximum matchingodels.

» Theexemplar modg]14]: for each geng, we keep in the matching only one occurrence af G,
and inG», and we remove all the other occurrences. Hence, we obtaigemomes:¥ andGY
without duplicates. The palG¥, G¥) is called arexemplarizationf (G, G2).

* The maximum matching modglg]: in this case, we keep in the matching the maximum number
of genes in both genomes. More precisely, we look for a or@correspondence between genes
of G; andG-, that, for each geng, matches exactlynin(occ(g, G1), occ(g, G2)) occurrences. Af-
ter this operation, we delete each unmatched signed gertes.pdir (G¥, GE) obtained by this
operation is called emaximum matchingf (G, G2).

» Thenon maximum matching modé]: this model is an intermediate between theemplarand the
maximum matchinmodels. In this new model, for each gene familyve keep an arbitrary number
kg, 1 < kg < min(occ(g, G1), occ(g, G2)), of genes inG¥ and inGZ. We call the pailG¥, GF)
anon maximum matchingf (G, Ga).

Problems studied in this paper. Consider two genomes; andG» with duplicates.

LetEBD(resp.M BD, N M BD) be the problem which consists in finding an exemplarizaiiof, G%)
of (G1, G2) (resp. maximum matching, non maximum matching) that miegathe number of breakpoints
betweenG¥ andGY. EBD is proved to beNP-Completeeven ifocc(G1) = 1 andoce(G2) = 2 [5].
Some inapproximability results are given: it has been pdard7] that, in the general casé&;BD cannot
be approximated within a facterlog n, wherec > 0 is a constant, and cannot be approximated within a
factor1.36 whenocc(G1) = oce(G2) = 2. Likewise, the problem consisting in deciding if there éxis
an exemplarizatiofG¥, G¥) of (G, G2) such that there is no breakpoint betwegfi andGZ is NP-
Completeeven wheree(G1) = oce(G2) = 3. Moreover, for two balanced genom@s andG», such that
k = occ(G1) = oce(G2), several approximation algorithms faf BD are given. Those approximation
algorithms admit respectively a ratio 1037 whenk = 2 [9], 4 whenk = 3 [9] and4k in the general
case 1Q].

Let EComlI (resp.MComlI, N M Coml) be the problem which consists in finding an exemplarization
(GE,GF) of (G1,G3) (resp. maximum matching, non maximum matching) such thatnthmber of
common intervals ofG¥, G¥) is maximized . EComI andM ComlI are proved to b&lP-Completeeven
if occ(G1) =1 andoce(G2) = 2in [6].

Let EConsI (resp. MConslI, NMConsI) be the problem which consists in finding an exemplar-
ization (G¥, GY) of (G1, G2) (resp. maximum matching, non maximum matching) such tlehtmber
of conserved intervals ofG¥, GZ) is maximized. In f], Blin and Rizzi have studied the problem of
computing adistancebuilt on the number of conserved intervals. This distandferdi from thenumber
of conserved intervalge study in this paper, mainly in the sense that (i) it can h@ieg to twosetsof
genomes (as opposed to two genomes in our case), and (iiisth@ce between two identical genomes of
lengthn is equal to O (as opposed %"QL” in our case). Blin and Rizz#] proved that finding the mini-
mum distance idIP-Complete under both thexemplaandmaximum matchingodels. A closer analysis
of their proof shows that it can be easily adapted to proveEanslandMConslare NP-complete, even
in the casecc(G1) = 1.

We can conclude from these results that Mé& D, NM BD, NMComlI andN M ConslI problems
are alsd\P-Complete since when one genome contains no duplicaesmplarmaximum matchingnd
non maximum matchingodels are equivalent.

In this paper, we study the approximation complexity of #meeasure computationsumber of break-
points number of conserved intervadmdnumber of common interval$n Section2 and3, we prove the
APX-Harness ofEComlI, EConsl and EBD even when applied on genomé§ and G5 such that



occ(G1) = 1 andoce(G2) = 2, which induce theAPX-Harness under the other models. These results
extend those of papers,[6, 7]. In Section4, we consider thenaximum matchinghodel and a fourth
measure, theaumber of adjacencieg®r which we give a4-approximation algorithm when genomes are
balanced. Hence, we are able to provide an approximatiaritign with constantratio, even when the
number of occurrences of genes is unbounded.

2 FEComl and EConsl are APX-Hard

In this section, we prove the following theorem:

Theorem 1 EComlI and EConsI are APX-Hard even when applied to genomés§, G- such that
oce(G1) = 1 andoce(Ge) = 2.

We prove Theorem by using anL-reduction[13] from the Minimum Vertex Cover problem on
cubic graphs, denoted ByC5. LetG = (V, E) be a cubic graph, i.e. for all € V, degree(v) = 3. A set
of verticesV’ C V is called avertex covenf G if for each edge € E, there exists a vertex € V' such
thate is incident tov. The problem/ (5 is defined as follows:

Problem: VCs
Input: A cubic graphG = (V, E), an integefk.
Question: Does there exist a vertex coviéf of G such thafV’| < k ?

V C5 was provedAPX-Completein [1].

2.1 Reduction

Let (G, k) be an instance oF C3, whereG = (V, E) is a cubic graph with’ = {v;...v,} andE =
{e1...em}. Consider the transformatiaR which associates to the grapghtwo genomess; andG, in
the following way, where each gene has a positive sign.

Gl = bl;an v 7bm7$7a15017f1;a25027f25 v 7an;Cn7fn;y7bm+n;b’m+n*17 .. '7bm+1 (1)
G2 =y,a1, D1, f1,bmy1, 02, D2, fo,bmy2, ..., bmin—1,0n, Dy, frn,bmgn, @ (2)

with :
 foreachi,1 < i < n,a; =6i -5, f; =6iandC; = (a; + 1), (a; + 2), (a; + 3), (a; + 4)
o foreachi,1<i<n+m,b;=6n+1
cex=Tn+m+1landy="Tn+m+2

o foreachi,1 <i<n,D; =a;+3,bj,,a; +1,by,,a; +4,b;,,a; + 2 wheree;,, e;, ande,, are the
edges which are incident tg in G, with j; < k; < ;.

In the following, gene$;, 1 < i < m, are callednarkers There is no duplicated gene @, and the
markers are the only duplicated genes&:i1 these genes occur twice @#,. Hence, we havecc(G;) =1
andoce(Gz) = 2.

To illustrate the reduction, consider the cubic grépbf Figurel. FromG, we construct the following
genomesy; andGs:

by bz b3 by by bg = C1 C2 C3 Cy y bip bg bg b7
AN AN AN AN AN AN N N e N AONASN AN AN AN
25 26 27 28 29 30 35123456 78910 11 1213 14151617 1819 20212223 24 36 34 33 32 31

36 142522652736 31 710258281129912 32 13162614 17301518 33 192227202923302124 34 35
~~ ~~ ~ ——— N T ———— T S~

y Dy b7 D2 bg D3 bg Dy bio =



Figure 1: The cubic grapfi.

2.2 Preliminary results

In order to prove Theorerh we first give four intermediate lemmas. Due to space coinssrghe proofs
are not given in the paper but can be found in appendix. In dheviing, a common interval for the
EComlI problem or a conserved interval féiConsI is called arobust interval.

Lemma 1 For any exemplarizationG, G¥) of (G1, G2), the non trivial robust intervals ofG;, GI’) are
necessarily contained in some sequemnge, f; of G (1 < i < n).

Proof. We start by proving the lemma for common intervals, and wétivéin extend it to conserved
intervals. First, we prove that for any exemplarizatiéh , G¥') of (G1, G2), each common intervdlsuch
that|7| > 2 and which containg (resp.y) also containg (resp.x), which implies thatl covers the whole
genome. Suppose there exists a common intdrvalich that .| > 2 and[, containsc. Let PI,, be the
permutation of/,, in G¥. The intervall, must contain eithe,, or a;. Let us detail each of the two cases:

(a) If I, containsh,,, then PI, containsh,, too. Notice that there is somiel < i < n, such thab,,
belongs toD; in G¥. ThenPI, contains all genes betweédd; andz in G¥. ThusPI, contains
bm+n-. Consequentlyl,, contains,,+,, and it also containg.

(b) If I, containsay, thenPI, containse; too. ThenPI, contains all genes between andxz. Thus
PI, containg,, .. Hence,l, contains,, ., and then it also containg

Now, suppose thaf, is a common interval such thaf,| > 2 and I, containsy. Let PI, be the
permutation of/, on G¥. The intervall, must contain eitheb,,;,, or f,,. Let us detail each of the two
cases:

(a) If I, containsb, 4, thenPI, containsh,, ., too. ThusPI, contains all genes betweép, ., and
y. HencePI, contains all the sequenceég, 1 < i < n. In particular, P, contains all the markers
and consequentll;, must containe.

(b) If I, containsf,, thenPI, containsf, too. ThenPI, contains all genes betweefi) andy. In
particular,PI, containg,,+,—1 and then it containg, too. Hence/, also contains,,, ,, similarly
to the previous case. Thug contains.

We conclude that each non singleton common interval coing&itherx or y necessarily contains both
x andy. Therefore, and by construction 6f,, there is only one such interval, thatGs itself. Hence,
any non trivial common interval is necessarily,(f, either strictly on the left oft, betweenr andy, or
strictly on the right ofy. Let us analyze these different cases:

* Let! be a non trivial common interval situated strictly on the &ffx in G;. Thus! is a sequence of
at least two consecutive markers. Since in any exemplaizét';, GE') of (G1, Gz), every marker
has neighboring genes which are not markers, this conteatttie fact thaf is a common interval.

 Let ] be a non trivial common interval situated strictly on thehtigf y in G1. ThenI is a substring
of bytn, - - -, bma1 CONtaiNing at least two genes. In any exemplarizat@n G¥°) of (G, G»), for
each paiby, i, bmtit1), With 1 < i < n, we haven; 11 € G¥ by vi, bisit1]- This contradicts the
fact that! is strictly on the right ofy in G .
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* Let I be a non trivial common interval lying betweenandy in G;. For any exemplarization
(G1,GF) of (G1,G3), a common interval cannot contain, @, both f; anda;,, for somei,
1 < i < n—1(sinceb,, is situated betweef; anda,; in G&¥ and on the right ofr in G,).
Hence, a non trivial common interval ¢t+1, G¥) is included in some sequenegC; f; in G1,
1 < ¢ < n. This proves the lemma for common intervals.
By definition, any conserved interval is necessarily a cominterval. So, a non trivial conserved
interval of (G, G¥) is included in some sequenegl; f; in Gy, 1 < i < n. The lemma is proved.
O

Lemma 2 Let (G, G¥) be an exemplarization di;, G2) andi € [1...n]. LetA; be a substring of
[a; +3,a; + 2] e that does not contain any marker.|I&;| € {2, 3}, then there is no robust intervalof

(G1,GF) such that); is a permutation of .

Proof.  First, we prove that there is no permutatiorof A; such that/ is a common interval of
(G1,GE). Next, we show that there is no permutatibiof A; such that is a conserved interval. By
Lemmal, we know that a non trivial common interval @', , G¥') is a substring of some sequeng€’; f;,

1 < ¢ < n. This substring contains only consecutive integers. Thegeif there exists a permutatidnof

A; such that/ is a common interval ofG;, GL’), thenA; must be a permutation of consecutive integers.
If |A;] =2, we haveA; = (p, q) wherep andg are not consecutive integers andA;| = 3, then we have
A; = (a;+3,a;+1,a;+4) orA; = (a; +1,a;+4, a;+2). Inthese three cases, is not a permutation of
consecutive integers. Hence, there is no permutdtmi\; such that/ is a common interval of G, G¥).
Moreover, any conserved interval is also a common inter/als, there is no permutatidnof A; such
that/ is a conserved interval ¢+, GT'). O

For more clarity, let us now introduce some notations. GigegraphG = (V, E), let VC =
{viy,vi, ... v, } be a vertex cover ofs. Let R(G) = (G1,G2) be the pair of genomes defined by the
construction described ifi) and(2). Now, let F' be the function which associatesit@”, G; andG; an
exemplarizatiorF'(V C) of (G, G2) as follows. InG,, all the markers are removed from the sequences
D; foralli #iq,15 .. .1%. Next, for each marker which is still present twice, one foitcurrences is arbi-
trarily removed. Since iid's only markers are duplicated, we conclude thgt’C) is an exemplarization
of (G1, G2).

Given a cubic grapltz and genomes;; andG» obtained by the transformatiaR(G), let us define
the functionS which associates to an exemplarizati@i , G%') of (G1, G2) the vertex covel/ C of G
defined as followsV C = {v;|1 <i <nA3Jj e {1l...m},b; € GF¥a;, f;]}. In other words, we keep in
V C the vertices; of G for which there exists some gehgsuch thab; is in G¥[a,, f;]. We now prove
thatV'C is a vertex cover. Consider an edggof G. By construction of7; andG», there exists somég
1 < i < n, such that geng, is located betweea; and f; in GF. The presence of gerbg betweeru; and
fi implies that vertex; belongs toV’C. We conclude that each edge is incident to at least one veftex
V.

Let W be the function defined ofEConsI, EComI} by W (pb) = 1if pb = EConsI andW (pb) =
4if pb = EComI. LetOPTp(A) be the optimum result of an instandefor an optimization problen®,

P e {EcomI, EConsI,VC3}.

We define the functioff’ which associates to a problesh € { EConsI, EComlI} and a cubic graph
G, the number of robust trivial intervals of an exemplariaatof both genome&’; and G, obtained by
R(G) for the problenpb. Letn andm be respectively the number of vertices and the number ofsedfye
G. We havel' (EConsI,G) = Tn+m+2andT(EComlI,G) = Tn+m+ 3. Indeed, forEComlI, there
are7n + m + 2 singletons and we also need to consider the whole genome.

Lemma 3 Letpb € {EcomlI, EConsI}. LetG be a cubic graph and?(G) = (G1,G2). Let(G1,GY)
be an exemplarization ¢f71, G2) and leti, 1 < i < n. Then only two cases can occur:

1. Either inG¥, all the markers fronD; were removed, and in this case, there are exadtlipb) non
trivial robust intervals involvingD,.

2. OrinGY¥, at least one marker was kepti;, and in this case, there is no non trivial robust interval
involving D;.
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Proof. We first prove the lemma for thECom I problem and then we extend it foConsI. Lemmal
implies that each non trivial common intervBlof (G, G¥) is contained in some substring ofC; f;,

1 < i < n. So, the permutation af on G¥ is contained in a substring @t D; f;, 1 < i < n. Consider
i, 1 < i < n, suppose that all the markers frah are removed oY Thus,a;C; f;, C;, a;C; andC; f;
are common intervals ofG;, G¥). Let us now show that there is no other non trivial commonrirte
involving D;. Let A; be a substring ofa; + 3,a; + 2]ge such thatA;| € {2,3}. By Lemma2, we
know thatA; is not a common interval. The remaining intervals &g a; + 3), (a;,a; + 3,a; + 1),
(ai, a; + 3, a;+ 1, a; + 4), (ai + 1, a; + 4, a; + 2, fl), (ai + 4, a;+ 2, fz) and(ai + 2, fz) By construction,
none of them can be a common interval, because none of thempemautation of consecutive integers.
Hence, there are only four non trivial common intervals Isiry D; in G¥. Among these four common
intervals, onlya;C; f; is a conserved interval too. In the end, if all the markersaneoved fromD;, there
are exactly four non trivial common intervals and one nondticonserved interval involving;. So, given
aproblenypb € {EcomlI, EconsI}, there are exactli¥ (pb) non trivial robust intervals involving;.

Now, suppose that at least one markerifis kept inG¥. Lemmal shows that each non trivial
common interval of (G, G¥) is contained in some substring @fC; f;, 1 < i < n. Since no marker is
present in a sequeneeC; f;, we deduce that there does not exist any trivial commonvateontaining
a marker. So, a non trivial common interval involvidig only, must contain a substrindy; of [a; +
3,ai + 2]ge such thatA; contains no marker. Since no marker is an extremityupft 3, a; + 2]z, we
have|A;| < 3. By Lemma2, we know thatA\; is not a common interval. The remaining intervals to be
considered are the intervalsA; andA; f;. By construction ofz;C; f;, these intervals are hot common
intervals (the absence of geag+ 2 for a; A; and of geney; + 3 for A; f; implies that these intervals are
not a permutation of consecutive integers). Hence, théseviais cannot be conserved intervals eithér.

Lemma 4 Letpb € {EcomI, EConsl}. LetG = (V, E) be a cubic graph with/ = {v;...v,} and
E ={e;...en} and letGy, G2 be the two genomes obtained ByG).

1. LetVC be avertex cover @i and denoté: = |V C|. Then the exemplarizatiafi(V C) of (G, G2)
has at leastV = W(pb) - n + T'(pb, G) — W (pb) - k robust intervals.

2. Let(G1,GY) be an exemplarization ofG'1, G2) and letVC’ be the vertex cover off obtained
by S(G1,GE). Then|V('| = W(pb)‘";z;flsva)‘N, whereN is the number of robust intervals of
(Gla GQE)

Proof. 1. Letpb € {EcomI, EConsl}. LetG be a cubic graph and Iét; andG- be the two genomes
obtained byR(G). Suppose there is a vertex coué€ of G and denoté = |V C|. Let (G, G¥) be the
exemplarization of G1, G2) obtained byF(VC'). By construction, we have at least — k) substrings
D; in G¥ for which all the markers are removed. By Lem@awve know that each of these substrings
implies the existence di/ (pb) non trivial robust intervals. So, we have at lelds{pb)(n — k) non trivial
robust intervals. Moreover, it is easy to see that the numbtgivial robust intervals of G, G¥) is exactly
T (pb, G). Thus, we have at least = W (pb) - n + T (pb, G) — W (pb) - k robust intervals of G, G¥).

2. Let(G1,GY) be an exemplarization @i, G2) andn — j be the number of sequences, 1 <
i < n, for which all markers have been deletedd¥. Then, by Lemmag and3, the number of robust
intervals of(G1, G¥) is equal toN = W (pb) - n + T(pb, G) — W (pb) - j. Let VC' be the vertex cover
obtained byS(G1, G¥). Each marker has one occurrencéifi and these occurrences lie jrsequences

D;. So, by definition of9, we conclude thaty’ C'| = j = FE L TURG-N, O

2.3 Main result

Let us first define the notion df-reduction[13]: let A and B be two optimization problems and, cp
be respectively their cost functions. Arreductionfrom problemA to problemB is a pair of polynomial
functionsR and S with the following properties:

(a) If zis aninstance ofi, thenR(x) is an instance oB ;

(b) If zis an instance ofi andy is a solution ofR(x), thenS(y) is a solution ofz;
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(¢) If x is an instance ofA whose optimum iSOPT(z), then R(z) is an instance o3 such that
OPT(R(z)) € «.OPT(x), wherex is a positive constant ;

(d) If sis a solution ofR(z), then:
|OPT(x) — ca(S(s))| < BJOPT(R(z)) — cp(s)| whereg is a positive constant.

We prove Theorem by showing that the paifR, S) defined previously is ah-reductionfrom V' Cs
to EConsI and fromV C3 to EComl. First note that propertigs) and(b) are obviously satisfied bi
ands.

Considemb € {EcomI, EConsI}. LetG = (V, E) be a cubic graph with vertices andn edges.
We now prove propertieg:) and(d). Consider the genomé&$, andG» obtained byR(G). First, we need
to prove that there exists > 0 such thaOPT,,(G1, G2) < a.OPTv ¢, (G).

Sinced is cubic, we have the following properties:

n>4 3)
1 3n

m=g ;degree(vi) =5 4

OPTye,(@) > 5 = 5 (5)

To explain property (5), remark that, in a cubic gr&plwith n vertices andn edges, each vertex covers
three edges. Thus, a setlofrertices covers at mo8k edges. Hence, any vertex cover@imust contain
at leasts vertices.

By Lemma3, we know that sequences of the fouyC;f;, 1 < ¢ < n contain either zero oW (pb)
non trivial robust intervals. By Lemm® there are no other non trivial robust intervals. So, we hhee
following inequality: OPT,,(G1, G2) < T (pb, G) +W (pbd) - n.

N——

trivial robust intervals

If pb = EComl, we have:

OPTrcomi(G1,G2) < Tn+m+3+4n
2Tn
OPTrcom1(G1,Ga) < - by (3) and (4) (6)

And if pb = EConsl, we have :

OPTEConsI(Gl, G2) < m+m+2+n

21
OPTiconsi(Gr,Ga) < =5 by (3) and (4) @)

Altogether, by (5), (6) and (7), we prove propefty with o = 27.

Now, let us prove propertl). LetVC = {v;,,vs, ... v, } be a minimum vertex cover @¥. Denote
P = OPTyc,(G) = |VC| and letG; andG» be the genomes obtained B(G). Let (G1, GE) be an
exemplarization of G1, G2) and letk’ be the number of robust intervals @, G¥). Finally, letV C’
be the vertex cover off such thatV C’ = S(G1,GF). We need to find a positive constafitsuch that
|P — |VC'|| < BIOPTp(G1,Ge) — K'|.

Forpb € {EcomlI, EConsI}, let N, be the number of robust intervals between the two genomes
obtained byF' (V' C). By the first property of Lemm4, we have

OPT(Gr,G2) > Ny > W (ph) - 1+ T(ph, G) — W(pb) - P
By the second property of Lemrdawe havelV C’| = W(pb)‘";a(lgbﬁ)‘k/.

Recall thatOPT,,(G1,G2) = W (pb) - n + T(pb, G) — W(pb) - P. So, it is sufficient to provéj >
0,|P—|VC'|| < BIW(pb) - n+ T(pb, G) — W(pb) - P — k'|. SinceP < |V ’|, we have

o y ~ W(pb) -n+T(pb,G) — k' 1 ,
|P—[VC'|| = [VC'|-P = D) P = 5oy (W ) 1T (0, G) W ()P
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So 3 = 1 is sufficient in both cases, sind& (EComlI) = 4 andW(EConsI) = 1, which implies
pr) < 1. Altogether, we then havy® PTy ¢, (G) — [VC'|| < 1 |OPTp(Gr, Ga) — K/|.

We proved that the reductiqiR, S) is anL-reduction This implies that for two genomes; andG-,
both problems=ConsI and EComI areAPX-Hard even ifocc(G1) = 1 andoce(G2) = 2. Theoreml
is proved. O

We extend in Corollani our results for thenaximum matchingndnon maximum matchingodels.

Corollary1 MComlI, NMComlI, MConsI and NMConsl are APX-Hard even when applied to
genomessy, G such thabee(G1) = 1 andoce(Gs) = 2.

Proof. The maximum matchingndnon maximum matchingodels are identical to thexemplar
model when one genome contains no duplicates. HenceAReHardness result foEComI (resp.
EConsI) also holds fotM ComI and N M ComlI (resp.M ConsI and N M ConsI). O

3 EBDis APX-Hard

In this section, we prove the following theorem:

Theorem 2 EBD is APX-Hard even when applied to genomés, G, such thatocc(G1) = 1 and
oce(Ga) = 2.

To prove Theoren?, we use arL-Reductiorfrom the V' Cs problem to theEBD problem. LetG =
(V, E) be a cubic graph witl = {v,...v,} andE = {e;...en}. Foreach,1 < i < n, letey,, eg,
andey,, be the three edges which are incidenwtdn G with f; < g, < h;. Let R’ be the polynomial
transformation which associates@bthe following genomes;; andGs, where each gene has a positive
sign:
G1 = ap a1 b1 agbg...anbncl d1 ngg...cmdmcm+1
GQ = ag an dfn dgn dhn bn ...a2 df2 dgz dhz bQ aiq dfl dg1 dh1 bl C1 C2...Cm Cm+1
with :

¢ qp =0,and foreach,0 < i< n,a; =iandb; =n +1
* Cmt1 =2n+m,andforeach, 1 <i<m+1,¢;=2n+iandd; =2n+m+1+1

We remark that there is no duplication@, soocc(G1) = 1. In G, only the gened;, 1 < i < m,
are duplicated and occur twice. Thas:(G2) = 2.

Let G be a cubic graph antf C' be a vertex cover ofs. Let G; andG2 be the genomes obtained
by R'(G). We defineF’ to be the polynomial transformation which associate¥ 0, G; and G, the
exemplarizationG,, G¥) of (G1,G2) as follows. For each such that; ¢ VC, we remove from,
the genesly,, d,, anddy,. Then, for each < j < m such thatd; still has two occurrences iy, we
arbitrarily remove one of these occurrences in order tointitee genome=%. Hence,(G1,GF) is an
exemplarization ofG1, G2).

Given a cubic graplr, we constructy; andGs by the transformatio®’ (G). Given an exemplarization
(G1,GF) of (G1, G2), let S’ be the polynomial transformation which associategitp, G%') the set/ C =
{v;|1 < i < n,a; andb; are not consecutive IG5’ }. We claim thatV’C is a vertex cover ofs. Indeed,
lete,, 1 < p < m, be an edge ofi. GenomeGE contains one occurrence of gedgsinceGE is an
exemplarization of¥,. By construction, there exisis1 < ¢ < n, such thatd, is in G¥la;, b;] and such
thate,, is incident tov;. The presence at, in G¥la;, b;] implies that vertex; belongs toV/C. We can
conclude that each edge Gfis incident to at least one vertex BTC.

Lemmasb and6 below are used to prove th@k’, S’) is anL-Reductiorfrom theV C5 problem to the
EBD problem. LetG = (V, E) be a cubic graph witl' = {v1,vs...v,} andE = {ej,es... e} and
let us constructG, , Gz2) by the transformatio®’ (G).

Lemma5 Let VC be a vertex cover off and (G, GY) the exemplarization given by’(VC). Then
|VC| =k = B(G1,GF) <n+2m+k+1,whereB(G1,G¥) is the number of breakpoints betwe&n
andG¥.
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Proof. SupposdVC| = k. Let us list the breakpoints between genorégsand G obtained by
F'(R'(G),VC). The pairs(b;,a;+1), 1 < i < n— 1, and(b,, c1) induce one breakpoint each. For all
1 < i < m, each pair of the fornic;, d;) (resp.(d;, ¢;+1)) induces one breakpoint. For ali< 7 < n such
thatv; € VC, (a;,b;) induces at most one breakpoint. Finally, the gaif, 1) induces one breakpoint.
Thus there are at most+ 2m + k + 1 breakpoints of Gy, G¥). O

Lemma 6 Let (G4, GE) be an exemplarization ¢t71, G2) andV C’ be the vertex cover @ obtained by
S'(Gy,GE). We haveB(G1,GEY =k = |[VC'| =k —n —2m — 1.

Proof. Let (G1,GY) be an exemplarization qfG;, G2) andVC’ be the vertex cover obtained by
S'(G1,GE). SupposeB(G1,GY) = k. For any exemplarizatiofGy, G¥) of (G1, G2), the following
breakpoints always occur: the pdiry, a1 ); for eachi, 1 < i < m, each pair¢;, d;) and(d;, ¢;+1); for
eachi, 1 < i < n—1,the pair(b;, a;11); the pair(b,, ¢c1). Thus, we have at least+ 2m + 1 breakpoints.
The other possible breakpoints are induced by pairs of tme &6 (a;, b;). Since we havé3(G1,G¥) = K/,
there are exactly’ —n —2m — 1 such breakpoints. By constructionwf”’, the cardinality o C" is equal
to the number of breakpoints induced by pairs of the fimb;). So, we havelVC'| = k' —n—2m — 1.

O

Lemma 7 The inequalityOPTgpp(G1,G2) < 12- OPTy¢,(G) holds.

Proof. Fora cubic grapliz with n vertices andn edges, we havém = 3n (see (4)) and PTy ¢, (G) >
% (see (5)). By construction of the genomés and G, any exemplarization ofG1,G>) contains
2n+ 2m + 1 genes in each genome. Thus, we heN@T g5 p(G1,G2) < 2n+2m+1 < 6n. Hence, we
conclude thaO PTrpp(G1,G2) < 12- OPTy e, (G). O

Lemma 8 Let(G;, GF) be an exemplarization ¢t+;, G2) and letV C’ be the vertex cover @f obtained
by S'(G1,GE). Then, we hav@ PTy ¢, (G) — |VC'|| < |OPTesp(G1,G2) — B(G1,GE)|

Proof. Let (G1,GF) be an exemplarization ofG1, G2) and VC’ be the vertex cover ofs ob-
tained byS’(G1,GY). Let VC be a vertex cover ofs such thalVC| = OPTy ¢, (G). We know that
OPTyc,(G) < |[VC'| andOPTrpp(G1,G2) < B(G1,GE). So, it is sufficient to provéV C’| —
OPTyc,(G) < B(G1,G¥) — OPTrpp(G1,Gs).

By Lemmab5, we haveB(F'(VC)) < n+ 2m + 1 + OPTy¢,, which impliesOPTrpp(G1,G2) <
B(F'(VC)) < n+2m+ 14 OPTyc,, thatis

B(G1,GE) — OPTgpp(Gy1,G3) = B(G1,GY) —n —2m —1 - OPTyc,(G) (8)
By Lemmas, we have|VC’| = B(G1,GY) — n — 2m — 1 which implies
[VC'| — OPTyc,(G) = B(G1,G5) —n—2m —1— OPTyc,(G) )
Finally, by (8) and (9), we ge¥V' C’| — OPTv ¢, < B(G1,GEY) — OPTepp(G1,Gs). O
Lemmas7 and8 prove that the paifR’, S’) is anL-reductionfrom V' C5 to EBD. Hence,EBD is

APX-Hard even ifocc(G1) = 1 andoce(G2) = 2, and Theoren? is proved. We extend in Corollary
our results for thenaximum matchingndnon maximum matchingodels.

Corollary2 The M EBD and NM EBD problems areAPX-Hard even when applied to genomés,
G» such thabee(G1) = 1 andoce(G2) = 2.

Proof. The maximum matchingndnon maximum matchingodels are identical to thexemplar
model when one genome contains no duplicates. Hencé&RMeHardness result fob BD also holds for
MBDandNMBD. (]
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4 Approximating the number of adjacencies

For two balanced genomé&s; and G, several approximation algorithms for computing the nunife
breakpoints betweefy; andG, are given for thenaximum matchingrodel P, 10]. We propose in this
section at-approximation algorithm to compute a maximum matchingwaf balanced genomes that max-
imizes the number of adjacencies (as opposed to minimifiaghtimber of breakpoints). Remark that,
as opposed to the results i9, [LO], our approximation ratio is independent of the maximum banof
duplicates. We first define the probletaj D we are interested in as follows:

Problem: AdjD

Input: Two balanced genomé&s; andGs.
Question: Find a maximum matchin¢G}, G4) of (G1, G2) which maximizes the number of
adjacencies betwee®, andGs.

In [8], a 4-approximation algorithm for the weight@dinterval Pattern problem (¥21P) is given.
In the following, we first defindV 21 P, and then we present how we can relate any instanckipbd to
an instance otV 27 P.

The weighted 2-interval Pattern problem. A 2-intervalis the union of two disjoint intervals defined
over a single sequence. For a 2-interfal= (I, .J), we suppose that the intervAldoes not overlap/
and that/ precedes/. We will denote this relation by < J. We say that two 2-interval®; = (I1, J1)
and Dy = (I, J3) aredisjointif D; and D, have no common point (i.e(Z; U J;) N (Ix U J2) = 0).
Three possible relations exist between two disjoint 2rirats: (1) Dy < Do, if I < J1 < I3 < Ja; (2)
DiC Dy ifhb<I; <Ji1 < JQ;(3)D1 QDQ, if <I,<J <Js.

We say that a pair of 2-interval3; andD is R-comparable forsomeR € {<,C, (}, if either(D, D2) €
Ror (D2, D1) € R. A set of 2-interval® is R-comparable for som®B C {<,,{}, R # 0, if any pair
of distinct 2-intervals irfD is R-comparable for som& € R. The non-empty seR is called aR-model
We can definéV 21 P as follows:

Problem: Weighted2-interval Pattern¥/21 P)

Input: A setD of 2-intervals, aR-modelR C {=<,,(j} with R # (), a weighted functior
w:D— R.

Question: Find a maximum weighR-comparable subset @.

Transformation. We now describe how to transform any instanceddj D into an instance o/ 21 P.

Let G; andG2 be two balanced genomes. Two intervalsof G; and I, of G2 are said to bédentical

if they correspond to the same string (up to a complete raljenghere a reversal also changes all the
signs). We denote b/ ake2l the construction of the-intervals set obtained from the concatenation of
G1 andGs2. Make2I is defined as follows: for any paill;, Iz) of identical intervals ofG;, G2, we
construct a 2-intervaD = (I, I2) of weight|I;| — 1. We noteD = Make2I(G1,G2) the set of all
2-intervals obtained in this way. Figur® gives an example of such a construction. We now define how

+1 +2 -3 +2 +1 +2 +1 +3 -2 -1
|—|— —— —|—|

Figure 2: 2-intervals induced by genon@s =12 —321andG, =213 —2 — 1. For readability,
singleton intervals are not drawn. The dotted 2-intervafiseight 2, while all the others are of weight 1.

to tranform any solution of¥’21 P into a solution ofddj D. Let G; andG5 be two balanced genomes and
let D = Make2I(G1,G>). Let S be a solution ofi21 P over the{<, , {j}-model forD. We denote
by W2IP_to_AdjD the transformation of into a maximum matchingG’, G5) of G1, G2) defined as
follows. First, for each 2-intervaD = (I, Iz) of S, we match the genes éf and/; in the natural way;


dessin/adjacencies2.eps
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then, in order to achieve a maximum matching (since eachigem necessarily covered by a 2-interval of
S), we apply the following greedy algorithm: iteratively, weatch arbitrarily two unmatched genes present
in both G; and G+, until no such gene exist. After a relabeling of signed gemesobtain a maximum
matching(G’, G%) of (G, G2).

Lemma 9 LetG; andG, be two balanced genomes andIet= Make2I(G1,G2). LetS be a solution
of W2I P over the{<, C, | }-model. LetVs be the weight of. Then the maximum matchifg’, G,) of
(G1,G2) obtained byW2I P_to_AdjD(S) induces at leastVs adjacencies.

Proof. Let Wg be the weight ofS. We construct the maximum matchifg’, G5) of (G1,G2) as
using the transformatioW 27 P_to_Adj D. First, we have matched, for each 2-intergal= (11, I3) of
S, the genes of; and/; in the natural way. This operation implies, for each 2-iméD = (I, I5) of
S, |I1| — 1 adjacencies sincé andI, are identical. By construction @, this operation induce®’y
adjacencies altogether. The second operation is the gedgagithm for which no adjacency is suppressed
(note that other adjacencies might be created). Heii€e,G5%) induces at leadi’s adjacencies. O

Lemma 10 LetG; andG;, be two balanced genomes and(iéY;, G5 ) be a maximum matching 61, Gs).
LetD = Mak€2I(G1, GQ)

LetW be the number of adjacencies induced 6, G,) betweerG; andGs. Then there exists a solution
S of W21 P over the{=, C, { }-model forD with weight equal tdV'.

Proof. [Lemmal(] Let (G, G%) be a maximum matching df&1, G2) and letn be the size of7].
Suppose that there exiBtl adjacencies betweed; andGy,. There exists a unique partitidic: ¢;) =
{s1,s2...s,} of genomeZ] into p substrings such that for ea¢hl < i < p, s; ands;;, are separated
by one breakpoint and such that no breakpoint appears in< ¢ < p. This partition implies that there
existsp — 1 breakpoints betwee@; andG%, and consequently, — p adjacencies. To each substring
of Py ay) in G, corresponds a unique substrihgn G5, for which s; andt; are identical. Moreover,
each substring; of sizel;, 1 < ¢ < p, containd; — 1 adjacencies. We construct the 2-interval Sets
the union ofS; = (s}-,t}), 1 < i < p, wheres; (resp.t;) is the interval obtained froms; (resp.t;). The
partition P implies that the 2-intervals created are disjoint and thwsC, () }-comparable and the weight
of Sisequaltod ?_, (I, —1)=>" ;,=>" [ 1=n—p=W. O

We now describe the algorithadpprox Adj D and then prove that it is&sapproximation of the problem
AdjD by Theoren8.

Algorithm 1 ApproxAdjD
Require: Two balanced genomés; andGs.
Ensure: A maximum matchindG}, G5) of (G1, G2).
« Construct the set of weightetdintervalsD = Make2I(G1, G2)

« Invoke the4-approximation algorithm of Crochemore et &] fo obtain a solutionS of W27 P
over the{<, C, { }-model forD

* Construct the maximal matchirg;, G4) = W2IP_to_AdjD(S)

Theorem 3 Algorithm Approx Adj D is a4-approximation algorithm fordd; D.

Proof. LetG; andG; be two balanced genomes andTet= Make2I(G1, G2). We first prove that
the optimum ofAd;j D for (G1, G2) is equal to the optimum oV 2/ P. Let OPT 44;p be the optimum
of AdjD for (G1,G2). By Lemmal0, we know that there exists a solutighfor W21 P with weight
Ws = OPTaqjp. Now, suppose that there exists a solutighfor W2IP with weight Wg: > W.
Then, by Lemma, there exists a solution foddj D with weight W > Ws,. However,Ws: > Wg by
hypothesis, a contradiction to the fact thét = OFPT44;p. Therefore, the two problems have the same
optimum and, as a result, any approximation ratio¥ié2/ P implies the same approximation ratio for
AdjD. In[8], a4-approximation algorithm is proposed far217 P; this directly implies thatipproxz Adj D
is ad-approximation algorithm foAd; D. O
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5 Conclusions and future work

In this paper, we have first given new approximation compyenasults for several optimization problems
in genomic rearrangement. We focused on breakpoints, ooetband common intervals measures and we
took into account the presence of duplicates. We restrmtegroofs to cases where one genome contains
no duplicates and the other contains no more than two oaueseof each gene. With this assumption,
we proved that the problems consisting in computing an ekatizption (resp. a maximum matching,

a non-maximum matching) optimizing one of these measurédis-Hard, thus extending the results
of [5, 6, 7]. For that, we used ah-reductionfrom vertex cover on cubic graphs. In a second part of this
paper, we gave d-approximation algorithm for computing the number of adjacies of two balanced
genomes under thmaximum matchinmodel. We note that our approximation ratio we obtain is taoms
even when the number of occurrences in genomes is unbounded.

The problems studied in this paper &@X-Hard , but some approximation algorithms exist when genomes
are balancedd, 10]. However, it remains open whether approximation algongtexist when genomes are
not balanced. It has been shown ifj that deciding if two genome&’; and G, have zero breakpoint
under theexemplamodel isNP-Completeeven wheroce(G1) = oce(G2) = 3 (problemZ EBD). This
result implies that théZ BD problem cannot be approximated in that case. Another opestign is the
complexity of Z E BD when no gene appears more that twice in the genome.
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LABORATOIRE D'I| NFORMATIQUE DE NANTES-ATLANTIQUE

On the Approximability of Comparing
Genomes with Duplicates

Sébastien Angibaud, Guillaume Fertin, Irena Rusu

Abstract

A central problem in comparative genomics consists in caiga (dis-)similarity measure between two
genomes, e.g. in order to construct a phylogenetic tree.rgelaumber of such measures has been pro-
posed in the recent pastumber of reversajJsaumber of breakpoinfsaumber of commoor conserved
intervals SADetc. In their initial definitions, all these measures sugptbst genomes contain no du-
plicates. However, we now know that genes can be duplicatdtdnwthe same genome. One possible
approach to overcome this difficulty is to establish a onerie correspondence (i.e. a matching) between
genes of both genomes, where the correspondence is chosedeinto optimize the studied measure.
Then, after a gene relabeling according to this matchingpasteletion of the unmatched signed genes, two
genomes without duplicates are obtained and the measuteeaamputed.

In this paper, we are interested in three measuresiber of breakpoinfsiumber of common intervaénd
number of conserved intervaiand three models of matchinggemplamodel,maximum matchinmodel
andnon maximum matchingodel). We prove that, for each model and each measure, dorgpunatch-

ing between two genomes that optimizes the measukP¥-Hard . We show that this result remains true
even for two genomes; andGs such that7; contains no duplicates and no gen&fappears more than
twice. Therefore, our results extend those 6f g, 7]. Finally, we propose d-approximation algorithm
for a measure closely related to thember of breakpointshenumber of adjacenciesinder themaximum
matchingmodel, in the case where genomes contain the same numbeplafations of each gene.

Additional Key Words and Phrases: genome rearrangemeid; A&t dness, duplicates, breakpoints, adja-
cencies, common intervals, conserved intervals, appratkim algorithm
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