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Abstract. A new kind of mutation for genetic programming based on
the structural distance operators for trees is presented in this paper.
We firstly describe a new genetic programming process based on these
operators (we call it structural mutation genetic programming). Then
we use structural distance to calculate the fitness distance correlation
coefficient and we show that this coefficient is a reasonable measure to
express problem difficulty for structural mutation genetic programming
for the considered set of problems, i.e. unimodal trap functions, royal
trees and MAX problem.

1 Introduction

Studies of fitness distance correlation (fdc) as a tool for measuring problem dif-
ficulty in genetic algorithms (GAs) and genetic programming (GP) have lead to
controversial results: even though some counterexamples has been found for GAs
([1], [17]), fdc has been proven an useful measure on a large number of GA (see
for example [7] or [11]) and GP functions (see [5], [18]). In particular, Clergue et
al. ([5]) have shown fdc to be a reasonable way of quantifying problem difficulty
for GP for a set of functions. To calculate fdc they defined a genotypic distance
for trees based on recursion. No particular relationship between this distance
and the genetic operator they used (standard GP crossover) was evident (as
is the case in GAs with Hamming distance and standard crossover). The dis-
tance metric should instead be defined with regard to the actual neighborhood
produced by the genetic operators, so to assure the conservation of the genetic
material between neighbors. In this paper we want to overcome this limitation,
establishing a strong relationship between distance and genetic operators. Thus,
we use structural distance (see [9,12]) to calculate fdec and we use the tranforma-
tions on which structural distance is based to define two new genetic operators.
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The new resulting evolutionary process will be called structural mutation genetic
programming (SMGP), to distinguish it from GP based on the standard Koza’s
crossover (that will be referred to as standard GP).

This paper deeply differs from [5] for the following main reasons: a different
distance measure is used, for the first time here, to calculate fdc; an original
evolutionary process with new genetic operators is used; the coherence between
these operators and the distance used is not only hint at, but it is formally
proven. Finally, a larger set of test functions is used to validate our hypothesis,
including two MAX problems, in which fitness is also a function of the semantics
of the programs and not only of their syntactical structure.

This paper is structured as follows: in section 2 we describe one version of
the structural distance. In section 3 we define two new mutations based on the
structural operators and we describe SMGP. In section 4, fdc is tested as a
measure of problem difficulty for SMGP on trap functions, royal trees and two
MAX problems. Finally, in section 5 we offer our conclusions.

2 Distance Measure for Genetic Programs

In genetic algorithms (GAs) individuals are represented as strings of digits and
typical distance measures are Hamming distance or alternation (see for instance
[6]). Defining a distance between genotypes in GP is much more difficult, given
the tree structure of the individuals. In [9] a version of the structural distance
for trees has been proposed. According to this measure, given the sets F and
T of functions and terminals, a coding function ¢ must be defined such that
¢: {TUF} - IN. One can think of many guidelines for the specification of ¢, for
example the “complexity” of the functions or their arity. The distance between
two trees Ty and T5 is calculated in three steps: (1) T and T» are overlapped at
the root node and the process is applied recursively starting from the leftmost
subtrees (see [3] for a description of the overlapping algorithm and figure 1 for
a visual intuition of it). (2) For each pair of nodes at matching positions, the
difference of their codes (eventually elevated to an exponent) is computed. (3)
The differences computed in the previous step are combined in a weighted sum.
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Fig. 1. (a): Two trees 71 and T% (b): The trees T1 and T overlapped at the root node.
Overlapped nodes are included inside a rectangle.



Formally, the distance of two trees 77 and T, with roots R; and R» is defined
as follows:

dist(Ty,Tp) = d(Ry, Ry) + kY _dist(child;(R, ), child;(Ry)) (1)

i=1

where: d(R1,R2) = (|c(R1) — ¢(R2)|)?, child;(Y) is the i*" of the m possible
children of a generical node Y, if i < m, or the empty tree otherwise, and ¢
evaluated on the root of an empty tree is 0. Constant k is used to give different
weights to nodes belonging to different levels and z is a constant usually chosen
in such a way that z € IN.

In most of this paper, except the MAX function, individuals will be coded
using the same syntax as in [5] and [16], i.e. considering a set of functions A, B,
C, etc. with increasing arity (i.e. arity(A) = 1, arity(B) = 2, and so on) and a
single terminal X (i.e. arity(X) = 0) as follows: F = {A,B,C,D,...},T = {X}
and the ¢ function will be defined as follows: Yz € {FUT} ¢(z) = arity(z) + 1.
In our experiments we will always set k = % and z = 2. By keeping 0 < k£ < 1,
the differences near the root have higher weight. This is convenient for GP as it
has been noted that programs converge quickly to a fixed root portion [14].

3 Structural Mutation Operators

Given the sets F and T and the coding function ¢ defined in section 2, we define
Cmaz (respectively, ¢nin) as the maximum (respectively, the minimum) value
assumed by ¢ on the domain {F U T }. Moreover, given a symbol n such that
n € {FUT} and ¢(n) < ¢maz and a symbol m such that m € {F U T} and
c(m) > Cmin, we define: succ(n) as a node such that c(suce(n)) = ¢(n) + 1 and
pred(m) as a node such that c¢(pred(m)) = ¢(m) — 1. Then we can define the
following operators on a generic tree T

— grow mutation. A node labelled with a symbol n such that ¢(n) < ¢maz
is selected in T' and replaced by succ(n). A new random terminal node is
added to this new node in a random position (i.e. the new terminal becomes
the i*" son of succ(n), where i is comprised between 0 and arity(n)).

— shrink mutation. A node labelled with a symbol m such that ¢(m) > cmin,
and such that at least one of his sons is a leaf, is selected in T' and replaced
by pred(m). A random leaf, between the sons of this node, is deleted from
T.

The grow and shrink mutations defined above should not be confused with the
well known mutation operators with the same name that have already been
proposed in GP. Figure 2 gives an example of the application of the above new
operators. Given these definitions, we can prove the following property:



Fig. 2. The tree in (b) can be obtained from the tree in (a) in one step with the grow
mutation. The tree in (d) can be obtained from the tree in (c) in one step with the
shrink mutation.

Property 1. Distance/Operator Consistency.

Let’s consider the sets F and T and the coding function ¢ defined in section
2. Let T} and T be two trees composed by symbols belonging to {F U T}
and let’s consider the k& and z constants of definition (1) to be both equal to
1. If dist(T1,T5) = D, then T can be obtained from 77 by a sequence of %
structural operations, where a structural operation can be a grow mutation or a
shrink mutation.

The proof of this property can be found in appendix A (note that, given the
sets F and 7 and the coding function ¢ defined in section 2, and having set
k = z = 1 in definition (1), dist(T1,T>) is an even natural number for every
couple of trees T1 and T5. The proof of this property can be done by recursion
on the depths of Ty and 7% and is omitted for reasons of space). From property
1 we deduce that, at least for the language used to code trees in most of this
paper (except the MAX function), the operators of grow mutation and shrink
mutation are completely coherent with the notion of structural distance defined
in section 2: an application of these operators allow us to move on the research
space from a tree to its neighbors according to the structural distance. Thus we
are interested in defining a new GP process based on these operators. We call
this process structural mutation genetic programming (SMGP).

4 Experimental Results

4.1 Fitness Distance Correlation

An approach proposed for GAs [11] states that an indication of problem hardness
is given by the relationship between fitness and distance of the genotypes from
known optima. Given a sample F' = {f1, fa, ..., fn} of n individual fitnesses and
a corresponding sample D = {dy,ds,...,d,} of the n distances to the nearest
global optimum, fdc is defined as:

fde = Crp

Op0pD
where: .
Crp = %Z(fi — )(di—d)

i=1



is the covariance of F and D and o, op, f and d are the standard deviations
and means of F' and D. As shown in [11], GA problems can be classified in three
classes, depending on the value of the fdc coefficient: misleading (fdc > 0.15),
in which fitness increases with distance, difficult (—0.15 < fdc < 0.15) in which
there is virtually no correlation between fitness and distance and straightfor-
ward (fdc < —0.15) in which fitness increases as the global optimum approaches.
The second class corresponds to problems for which the difficulty can’t be esti-
mated, because fdc doesn’t bring any information. In this case, examination of
the fitness-distance scatterplot may give information on problem difficulty (see

[11)).

4.2 Trap Functions

Trap functions [8] allow to define the fitness of the individuals as a function
of their distance from the optimum. A function f : distance — fitness is an
unimodal trap function if it is defined in the following way:

1- % ifd<B
fd) = R-(d—B)
-5 elsewhere

These functions have a number of different optima and d is the distance of the
current individual from the unique global one, while B and R are constants
€ [0,1]. B allows to set the width of the attractive basin for each of the two
optima and R sets their relative importance. By construction, the difficulty of
trap functions decreases as the value of B increases, while it increases as the
value of R increases.

Figures 3 and 4 show values of the performance p (defined as the number of

executions for which the global optimum has been found in less than 500 genera-
tions divided by the total number of executions, i.e. 100 in our experiments) and
of fdc for various trap functions obtained by changing the values of the constants
B and R.
Two trees of different shapes are considered as optimum in the different ex-
periments (see (c) parts of the figures). In all cases fdc is confirmed to be a
reasonable measure to quantify problem difficulty. The same experiments have
been repeated using two other differently shaped trees as global optimum and
the results (not shown here to save space) are qualitatively analogous to the ones
shown in figures 3 and 4. In all experiments fdc has been calculated via a sam-
ple of 40000 randomly chosen individuals. All the experiments have been done
with generational SMGP, a total population size of 100 individuals, tournament
selection of size 10 and E as the node with maximum arity allowed.

4.3 Royal Trees

The next functions we take into account are the royal trees proposed by Punch et
al. [16]. The language used is the same as in section 2, and the fitness of a tree (or



[N

Performance (p)
o o o o
S o o

=N

Fitness Distance Correlation (fdc)

Fig. 3. (a): fdc values with structural distance for some trap functions obtained by
changing the values of the constants B and R. (b): Performance values of SMGP
with structural distance for traps. (c): Stucture of the tree used as optimum in the
experiments reported in (a) and (b).
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Fig. 4. (a): fdc values with structural distance for some trap functions obtained by
changing the values of the constants B and R. (b): Performance values of SMGP
with structural distance for traps. (c): Stucture of the tree used as optimum in the
experiments reported in (a) and (b).

any subtree) is defined as the score of its root. Each function calculates its score
by summing the weighted scores of its direct children. If the child is a perfect



tree of the appropriate level (for instance, a complete level-C' tree beneath a
D node), then the score of that subtree, times a FullBonus weight, is added to
the score of the root. If the child has a correct root but is not a perfect tree,
then the weight is PartialBonus. If the child’s root is incorrect, then the weight
is Penalty. After scoring the root, if the function is itself the root of a perfect
tree, the final sum is multiplied by CompleteBonus (see [16] for a more detailed
explanation). Values used here are as in [16] i.e. FullBonus = 2, PartialBonus
=1, Penalty = %, CompleteBonus = 2. Results on the study of fdc are shown in
table 1.

Root | fdc | fdc prediction | p (SMGP)
B -0.31 straightf. 1
C -0.25 straightf. 1
D |-0.20 straightf. 0.76
E ]0.059 difficult 0
F 0.44 misleading 0
G 0.73 misleading 0

Table 1. Results of fdc for the Royal Trees using SMGP.

Fdc correctly classifies the difficulty of level-B, level-C' and level-D functions.
Level-E function is “difficult” to be predicted by the fdc (i-e. no correlation be-
tween fitness and distance is observed). Finally, level-F' and level-G functions are
predicted to be “misleading” (in accord with [16]) and they really are, since the
global optimum is never found before generation 500. In conclusion, it appears
that royal trees problem spans all the classes of difficulty as described by the
fdc.

4.4 MAX Problem

The task of the MAX problem for GP, defined in [10] and [13], is “to find the
program which returns the largest value for a given terminal and function set
with a depth limit d, where the root node counts as depth 0”. We set d equal
to 8 and we use the set of functions F = {+} and the set of terminals 7; = {1}
or Tz = {1,2}. When using 71, we specify the coding function ¢ as: ¢(1) = 1,
c(+) = 2, when using Tz, we pose: ¢(1) = 1, ¢(2) = 2,¢(+) = 3. The grow and
shrink mutations, this time, are defined in such a way that, when using 77, a
terminal symbol 1 can be transformed in the subtree T3 = +(1,1) by one step
of grow mutation and the vice-versa can be done by the shrink mutation. When
using 73, the grow mutation can transform a 1 node into a 2 node and a 2 node
into the subtrees To = +(2,1) or T3 = +(1,2) (with a uniform probability). On
the other hand, the shrink mutation can tranform 77 or T5 into a leaf labelled
by 2, and a 2 node into a 1 node. Table 2 shows the fdc and p values for these
test cases.



MAX problem | fdc | fdc prediction | p (SMGP)
{+} {1} -0.87 straightf. 1
{+} {1,2} |-0.86 straightf. 1

Table 2. Results of fdc for the MAX problem using SMGP with structural distance.
The first column shows the sets of functions and terminals used in the experiments.

5 Conclusions and Future Work

Two new tree mutations corresponding to the structural distance operators are
defined in this paper. Fitness distance correlation (fdc) calculated using a version
of the structural distance is shown to be a reasonable measure to quantify the
difficulty of trap functions, royal trees and two MAX functions for GP using these
mutations as genetic operators (SMGP). Experiments using GP based on stan-
dard crossover (and no mutation) have also been performed on all the test cases
considered here. Results (not shown for reasons of space) confirm fdc as a rea-
sonable measure of problem difficulty also for GP with standard crossover. This
seems to point in the same direction as in [2], [4] and [15], where the standard
GP crossover is defined as a “macro-mutation”. In view of some counterexamples
that have been mentioned in the text, it remains to be checked whether the use
of fdc extends to other classes of functions, such as typical GP benchmarks. In
the future we also plan to investigate the use of fdc in cases of fitness landscapes
containing multiple optima and to look for a measure for GP difficulty that can
be calculated without prior knowledge of the global optima, thus eliminating the
strongest limitations of fdc. Moreover, we plan to build a counterexample for fdc
in GP. Another open problem consists in taking into account in the distance def-
inition the phenomenon of introns (whereby two different genotypes can lead to
the same phenotypic behavior). Finally, we intend to look for a better measure
than performance to identify the success rate of functions, possibly independent
from the maximum number of generations chosen.

A Proof of the Distance/Operator Consistency Property

Let’s prove property 1 (see section 3) by recursion on the depths of Th and T». Let
p1 and p» be the respective depths of Ti and T5. If p1,p2 < 0 (i.e. p1,p2 = 0), then
T, and T> are both composed of a single node X. In this case, their distance is equal
to zero and the number of structural mutations to transform 73 into T3 is obviously
equal to zero. So the property holds. Let’s now suppose the property true Vpi,p2 <p
(with p > 0) and, starting from this hypothesis, let’s prove it Vp1,p2 < p + 1. Let’s
consider two trees 77 and T» of depths p; and p2 with p1,p2 < p+ 1. Let R; be the
root of 71 and R be the root of T>. Let the difference between the codes of Ry and
R be equal to y (i.e. d(R1, R2) = y) and, without lost of generality, let’s consider
¢(R1) < ¢(Rz). Now, to transform R; into Ry, we have to perform y grow mutations
on R;, which lead to y increments of R:’s label cost and to the creation of y new X
nodes. Let’s call T} the tree generated from T} after these y operations. Then, we have:
dist(Ty,T2) = 2y + dist(T},T»), since Ti’s root has been incremented y times and y



new X nodes have been created. Moreover, since T{ and T» have the same root, we can
write:

m
dist(Ty,T>) =2y + »_dist(child;(R1), child;(R>)) (2)
i=1
where m is T»’s arity. On the other hand, it is clearly possible to transform T} into
T> with the same number of operations that can be used to transform 7} into T,
plus y operations (used to transform T} into T7). Let’s express this property with the
notation: op(Th,T2) = y + op(T1,T>) and, since T{ and T> have the same root:

op(Th, T>) =y + iop(childi(Rl), child; (R2)) (3)

i=1

Now, child;(R:) and child;(R») have respective depths pi and p} where pi,p} < p
and so, by recursive hypothesis, if we call D; the distance between child;(R1) and
child;(Rz), it is possible to tranform child;(R1) into child;(Rz) with 5i structural
operations. We can express it with the following notation:

dist(child;(R1), child;(R2)) = D; (4)

and

op(child;(Ry), child; (Rz)) = %

(5)
As a consequence, by replacing (4) in (2), we obtain: dist(Th,T2) =2y + > -, D; and
by replacing (5) in (3) we obtain: op(T1,T2) =y + > iv, %i = Ldist(Th, T»), i.e. it is
possible to transform T into T> with a number of structural operations equal to the
distance between T7 and T divided by 2. This proves the property. O
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