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ABSTRACT

The ability of the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) to
simulate midlatitude ice clouds is evaluated. Model outputs are compared to long-term meteorological
measurements by active (radar and lidar) and passive (infrared and visible fluxes) remote sensing collected
at an atmospheric observatory near Paris, France. The goal is to understand which of four microphysical
schemes is best suited to simulate midlatitude ice clouds. The methodology consists of simulating instrument
observables from the model outputs without any profile inversion, which allows the authors to use fewer
assumptions on microphysical and optical properties of ice particles.

Among the four schemes compared in the current study, the best observation-to-simulations scores are
obtained with Reisner et al. provided that the particles’ sedimentation velocity from Heymsfield and
Donner is used instead of that originally proposed. For this last scheme, the model gives results close to the
measurements for clouds with medium optical depth of typically 1 to 3, whatever the season. In this
configuration, MM5 simulates the presence of midlatitude ice clouds in more than 65% of the authors’
selection of observed cloud cases. In 35% of the cases, the simulated clouds are too persistent whatever the
microphysical scheme and tend to produce too much solid water (ice and snow) and not enough liquid
water.

1. Introduction

Ice clouds play a major role in the radiative energy
budget of the earth–atmosphere system (Liou 1986).
Their radiative effect is governed primarily by the equi-
librium between their albedo effect and their green-
house effect. Both macrophysical and microphysical

properties of ice clouds regulate this equilibrium. To
quantify the effect of these clouds onto climate and
weather systems, their global coverage, altitude, tem-
perature, vertical structure, spatial heterogeneities, and
life duration must be properly characterized and ac-
counted for in atmospheric models. Additionally, the
ice water content and its spatial distribution are critical
to the global radiative effect of ice clouds. One of the
main uncertainties on the radiative impact of ice clouds
is due to the poor knowledge of the natural variability
of their microphysical properties, such as ice crystal size
and shape.
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The difficulty in representing ice clouds in general
circulation models is not only due to the microphysics
itself but also to the model resolution, generally much
coarser than the cloud size. This problem is less acute in
mesoscale models where the widest clouds can be rep-
resented explicitly but another uncertainty could come
from the difficulty in representing the thermodynamical
structure that creates the conditions for the existence of
clouds and associated microphysical properties. The
main goal of the present study is to assess the ability of
several microphysics schemes to simulate ice clouds in a
mesoscale model, the fifth-generation Pennsylvania State
University–National Center for Atmospheric Research
(PSU–NCAR) Mesoscale Model (MM5; Dudhia 1993).

There are two principal classes of microphysical
schemes: the first one, called “bin,” is the most detailed
and allows the evolution of cloud particle dimensions to
be calculated, using the actual theoretical and experi-
mental knowledge. It is used for studies at the cloud
scale (Lin 1997; Khvorostyanov and Sassen 1998) in
order to understand the formation, structure, and dis-
sipation of clouds (Xu et al. 1992; Krueger et al.
1995a,b). The second class of microphysical scheme
(called “bulk”) is developed for the study of the ice
water content (IWC) and evolution of number of cloud
particles. This type of scheme is coupled with dynami-
cal and radiative schemes in the mesoscale model in
order to study the cloud development (Levkov et al.
1992, 1998; Heckman and Cotton 1993; Walko et al.
1995; Lafore et al. 1998; Guichard et al. 2003). The
current study evaluates schemes of this second cat-
egory.

Verifying model ice cloud properties versus real ice
cloud ones is not an easy task, and has been attempted
in several field campaigns using in situ airborne mea-
surements or remote sensing measurements such as the
Improvement of Microphysical Parameterization through
Observational Verification Experiment (IMPROVE).
However, the natural variability of clouds and their as-
sociated properties makes it illusory to fully evaluate a
microphysical scheme using in situ observations in a
few intensive case studies. Nevertheless, a statistical
long-term observations approach could also show
biases that are more difficult to explain.

In this paper, we use remote sensing measurements
obtained from the Site Instrumental de Recherche par
Télédétection Atmosphérique (SIRTA; http://sirta.lmd.
polytechnique.fr) ground-based atmospheric observa-
tory. Lidar and radar observations taken over 18
months are used for statistical comparison with the
model. During this period of time, 62 days containing
parts of ice clouds have been analyzed.

The evaluation of cloud properties in mesoscale and
global-scale models using remote sensing observations
has been carried out in the literature using two comple-
mentary approaches (Doutriaux-Boucher and Quaas
2004; Mathieu et al. 2004, manuscript submitted to
Geophys. Res. Lett.; Bony et al. 2004; Jakob et al. 2004):
the first approach (observations to model) is to com-
pare cloud parameters derived from satellite or ground-
based remote sensing observations with those directly
held in the model; the second one (model to observa-
tions) is to simulate the raw observations using the
model outputs. The second method generally involves
fewer assumptions than the first one. In this paper, we
use the “model-to-observations” approach by simulat-
ing the lidar and radar signals from MM5 outputs.
Other more classical variables such as shortwave and
longwave radiative fluxes are also used.

Four microphysical schemes are evaluated in this
study, including that proposed by Reisner et al. (1998)
with original or modified parameterizations of particle
terminal fall velocities (Zurovac-Jevtic and Zhang
2003; Heymsfield and Donner 1990) and the simplified
Dudhia (1989) scheme. Section 2 describes the MM5
simulations, and section 3 describes the observations.
The method of comparison is developed in section 4. A
case study (section 5) illustrates the approach before
the full statistical analysis (section 6). Discussion and
conclusions follow in section 7.

2. MM5 model simulations

a. MM5 model configuration and simulations

The MM5 model domain covers northern France and
consists of two nested grids, the coarsest resolution be-
ing 15 km and the finest 5 km. The two-way nesting
method is used. The finest grid, which is that from
which cloud fields are eventually extracted for the
present study, covers about 200 km � 200 km around
the city of Paris. Figure 1 shows the largest domain
centered on Paris and the SIRTA ground-based site,
located 25 km south of Paris.

At the boundaries of the coarse domain, MM5 is
forced by the National Centers for Environmental Pre-
diction (NCEP) 1° � 1° analyses provided every 6 h. In
order for the model to stay close to the analyses, the
nudging procedure is applied to wind and temperature
with a relaxation time of 20 000 s, for both domains.
This nudging procedure forces the model thermody-
namical conditions to be equivalent to the real (i.e.,
observed) ones. It is then possible to focus the com-
parison between observations and simulations on as-
pects directly related to the microphysical schemes, as
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they are mostly responsible for the differences between
simulations and observations. Nevertheless, parameter-
izations of subgrid-scale turbulence and convection
processes cannot be forced by this nudging procedure
as they play a fundamental role in cloud simulations.
Hence, they can also have an impact on the difference
between simulations and observations. The humidity
field does not undergo nudging in order to not perturb
the water variables.

We choose a vertical setup of 61 layers from the
ground to the 100-hPa top surface. Model layers are
about 200–400 m thick in the upper troposphere where
ice clouds reside. The maximum height of the model
is about 14 km, typically above the altitude of the
tropopause at midlatitude, so just above the limit of
clouds. Outputs are saved with an hourly time step. For
each cloud case, a 30-h simulation is carried out, start-
ing on the previous day at 1800 UTC and ending at
midnight.

b. Parameterizations

We use the classical parameterizations of the model
that are proposed as options in the MM5 configuration
file, with the following modifications. Regarding con-
vection, the Grell (1993) scheme is used without modi-
fication. Turbulence in the planetary boundary layer is
parameterized using the Medium Range Forecast
scheme (MRFPBL), mostly borrowed from the Troën
and Mahrt (1986) approach. According to Liu et al.
(2004), the original calculation of the friction velocity
uses an unrealistic convective velocity parameteriza-
tion. As suggested by Liu et al., the convective velocity
formulation is replaced by the Beljaars (1994) formu-
lation. The Noah land surface model is used (Chen and
Dudhia 2001).

Atmospheric radiation transfer uses the optional
NCAR Community Climate Model (CCM2; Hack et al.
1993) scheme, with a modification on assumed fixed
effective ice particle diameter of 35 �m instead of 14.6
�m in the original routine, which is a more realistic
value (Liou 2002). Note that in MM5 version 3.6.2 this
radiation scheme does not use prognostic ice particle
diameter, which could be deduced from ice content and
particle number.

In this study, our intention is to evaluate and com-
pare several microphysical schemes. Four schemes that
are available as MM5 options or variants are used
(Table 1). Three of them (A, B, and C) are derived
from the Reisner et al. (1998) scheme, but differ from
each other by the terminal fall Vt (m s�1) formulation.
The last one (D) is the so-called simple ice scheme
(Dudhia 1989). For the first three schemes, mass con-
tents for liquid water cloud, ice cloud, rain, snow, grau-
pel, and ice number concentration are prognostic vari-
ables. That helps diagnose a time-varying mean particle
size. For rain, snow, and graupel, size distributions are
assumed, and ice multiplication processes are param-
eterized. The last scheme has no mixed-phase processes
or supercooled water, and snow is assumed to melt im-
mediately at the melting layer. For this scheme, the

FIG. 1. Total water column (g m�2) for 0900 UTC 10 Oct 2003
around SIRTA. The domain is about 500 � 500 km2.

TABLE 1. Description of the four microphysical schemes used in MM5.

Name of the
microphysics scheme Reference of the parameterization Ice particle sedimentation velocity

A Reisner et al. (1998) option 5—Nice predicted Zurovac-Jevtic and Zhang (2003): Vfall � a (qice�air)
b;

if qice�air � 4.8 � 10�6: a � 180.65 and b � 0.52,
otherwise a � 3.13 and b � 0.19

B Reisner et al. (1998) option 5—Nice predicted Heymsfield and Donner (1990): Vfall � a (qice�air)
b;

a � 3.29 and b � 0.16
C Reisner et al. (1998) option 5—Nice predicted Reisner et al. (1998) Vfall � 700 � 2rice

D Simple ice, Dudhia (1989)—No prediction of Nice Heymsfield and Donner (1990): Vfall � a (qice�air)
b;

a � 3.29 and b � 0.16
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prognostic variables are the mass content of precipita-
tion water and the cloud water. The distinction between
liquid and solid water is made by assuming a tempera-
ture threshold Tt (°C) as a separation criterion between
liquid water (and rain) and ice (and snow). Three
threshold values of Tt (0°, �10°, �20°C) have been
tested for the conversion of ice/liquid water, and the
one giving the best results (Tt � �20°C) is used here-
after. The initial threshold value of Tt � 0°C is kept for
the conversion of snow/rain. Furthermore, there is no
prognostic ice number concentration for this scheme.

The terminal velocity is a key parameter in micro-
physics schemes. In theory it is a function of the particle
size, which is the case in the Reisner et al. (1998) origi-
nal scheme. However it is applied to a mean particle
size, which makes the terminal velocity much smaller
than that of the most massive particles accounting for
most of the ice content sedimentation mass loss. In
most simulated clouds this terminal velocity was found
to be about an order of magnitude smaller than that
obtained using the Heymsfield and Donner (1990) for-
mula, which is derived from observed precipitation
rates. This was suspected to be one of the reasons why
the Reisner et al. (1998) original scheme overproduces
ice clouds, as we shall see for scheme denoted as C.
Furthermore, the terminal velocity is known as a pa-
rameter with large uncertainty; it is then interesting to
test it. In scheme A, Vt is taken as a variable function of
the simulated ice mixing ratio qice (kg kg�1), the density
of air �air (kg m�3) following Zurovac-Jevtic and Zhang
(2003). Scheme B is similar to A, but uses the Heyms-
field and Donner (1990) parameterization.

3. Observations

a. Instruments

The SIRTA ground-based site (48.7°N, 2.2°E; http://
sirta.lmd.polytechnique.fr) provides routine observa-
tions of the atmospheric column (Haeffelin et al. 2004)
collected with the following active and passive remote
sensing instruments.

1) A GROUND-BASED 532-NM LIDAR

The SIRTA 532-nm lidar operates 4 days a week
from 8 A.M. to 8 P.M. except when it is raining. The
nominal temporal resolution is 10 s, and the vertical
resolution is 15 m. It is a zenith-viewing lidar that mea-
sures both the backscattered signal and linear depolar-
ization ratio. The lidar signal is normalized to the lidar
signal that would be measured in a free-particle area,
that is, when there are only molecules. It is deduced
from Météo-France radiosonde pressure and tempera-

ture profiles (which are launched every day in Trappes,
15 km away from SIRTA). With typical value of wind
at cirrus cloud altitude (10 m s�1), the typical MM5
mesh residence time is about 10 min; therefore lidar
profiles are averaged over 10 min and taken every hour
for comparison with MM5 outputs. In this study, the
water phase is deduced from the lidar depolarization
ratio, which is the ratio of the perpendicular to the
parallel backscattered lidar signals (Sassen 1991; Noel
et al. 2001). The depolarization ratio is normalized to
2.8% in a molecular portion of the atmosphere. In pres-
ence of clouds, ratios lower than 5% are associated with
liquid water (spherical particles), and ratios larger than
20% with ice and/or snow (nonspherical particles).
When ratio ranges between 5% and 20%, the cloud is
classified as having a mixed phase.

2) A GROUND-BASED 95-GHZ RADAR

The SIRTA 95-GHz radar has operated continuously
since October 2002. Data are acquired with a 1-s tem-
poral resolution, and vertical resolution is 60 m. The
reflectivity and Doppler velocity profiles are obtained
from 0.2 to 15 km. The sensitivity of the radar is around
�50 dBZ at 1 km for the period considered in the study,
with a 20 � log(zkm) sensitivity loss every kilometer.
For the same reason as for the lidar, radar profiles are
averaged over 10 min and sampled every hour.

3) RADIATIVE FLUX STATION

The pyrheliometer measures the direct shortwave
flux SWdct (W m�2) and the pyranometer measures the
diffuse shortwave flux SWdff (W m�2). The total down-
ward shortwave flux SW (W m�2) is simply SW �
SWdiff � cos� SWdct, where � is the solar zenith angle.
The pyrgeometer measures the net longwave flux LWn

(W m�2). The downward longwave flux is LW �
LWn � �T4

i , where � is the Stefan constant (5.67 �
10�8 SI) and Ti is the instrument temperature (K). The
fluxes are averaged over 10 min and sampled every
hour.

b. Selected cases

Sixty-two cloudy days have been subjectively se-
lected based on lidar and radar observations. Days with
observations corresponding to low-level liquid clouds
only or clear sky only were systematically removed.
The clouds are separated into three classes that have
different geophysical properties (altitude and tempera-
ture, cloud particle microphysical properties, radiative
impact):
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(i) In 21 cases, there are only lidar measurements be-
cause clouds are too thin to be detected by radar.
Those clouds are classified as “thin” with optical
depth smaller than 1.

(ii) In 23 cases, both lidar and radar display a cloudy
signal, and the two measurements were simulta-
neously available. Those clouds are classified as
“medium” with optical depth larger than 1, and
include cases for which the lidar penetrates only a
portion of the cloud.

(iii) In 18 cases, only the radar was available: in 9 cases,
because meteorological conditions did not allow
lidar measurements (rain or cloud too thick), the
clouds are classified as “thick”; in 9 cases because
lidar was off (weekend or maintenance), the
clouds could either be medium or thick
clouds.

When lidar observations are available, ice/snow cloud
cases are selected based on lidar depolarization profiles
containing values larger than 10% (i.e., presence of
nonspherical crystals; Sassen 1991; Noel et al. 2001).

When only radar observations are available, a cloud
case is selected only when a high-altitude cloud layer
(typically 8–10 km) is present during the day, even if it
does not persist all day long. These clouds may contain
ice, snow, and water.

Figure 2 summarizes the 62 different days: 32 cases
from February to December 2003 and 30 cases from
January to June 2004. The maximum of thin cloud oc-
currence is in May, and the maximum of medium cloud
occurrence is in April.

4. The ACTSIM model-to-observation comparison
method

To compare model and observations, shortwave and
longwave downward fluxes are computed directly from
model outputs. Comparisons of lidar, radar profiles,
and vertical velocity require a postprocessing of model
outputs. We developed a program [active remote sens-
ing simulator (ACTSIM)] that allows the simulation of
lidar and radar signals from modeling variables.

FIG. 2. Number of cases per month for 2003 and 2004. Cases of (a) only lidar measurements, (b) only radar
measurements because of meteorological condition, (c) only radar measurements because of lidar maintenance,
and (d) both lidar and radar measurements.
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a. Particle size and distribution

For A, B, and C schemes, ice number concentration
is available and the snow and ice particle radii rsnow/ice

(radius of a particle of mean mass, in meters) are de-
duced from the microphysical scheme (Table 2) using
the ice/snow particle numbers Nice/snow (m�3) and their
respective mixing ratio qice/snow (kg kg�1); Nice is a di-
rect prognostic model variable while Nsnow can be de-
duced from the snow mixing ratio qsnow, which is also a
prognostic variable and from the intercept slope param-
eter N0,snow (m�4) that is variable (formulas in Reisner
et al. 1998).

For scheme D, rice could also be derived from Nice

and qice as Nice could be recalculated as a function of
the temperature [using a Fletcher curve, following
Fletcher (1962)]. Tests have been done using this
approach showing that it leads to unphysical particle
sizes (typically 2.7 � 10�2 �m). As the ice particle size
in this scheme determines only the microphysical rates,
such as deposition, that become faster than the model
time step for small particles, and so insensitive to the
particle size, rice has been kept constant at 35 �m (10,
50, and 100 �m have also been tested); Nice is then
simply derived from rice and qice, and rsnow/ice is calcu-
lated in the same manner as for schemes A, B, and C,
but using a constant value of N0,snow (2 � 107 m�4)
(Table 2).

In the A, B, and C schemes, the liquid water particle
concentration Nliquid (m�3) is considered to be constant
(1 � 108 m�3), which allows one to derive the liquid
particle effective radius rliquid (m) from Nliquid and
qliquid (prognostic variable in kg kg�1). The D scheme is
in part based on the Kessler (1969) scheme, which does
not make any assumption about the liquid particle size
and concentration. Hence, for this scheme, rliquid is sup-
posed to be constant in ACTSIM and equal to 10 �m
(6, 20, and 50 �m have also been tried); Nliquid is then
derived from rliquid and qliquid.

To simulate lidar and radar profiles as realistically as
possible, we do not consider a single value of particle
size, but a size distribution in ACTSIM. For ice and

liquid water, we use a lognormal distribution with a
modal radius equal to rice/liquid:

nice	liquid
ℜ�dℜ �
Nice	liquid

�2�ℜ ln�
e�ln2
ℜ�rice	liquid��2 ln2��dℜ,


1�

where n � nice/liquid(ℜ)dℜ (m�4) is the number of par-
ticles of ice/liquid that have a radius between ℜ and ℜ
� dℜ (m). The � value is constant and equal to 1.2 for
ice clouds (Heymsfield and Platt 1984). The values of ℜ
vary between ℜmin � 0.27 � rice/liquid and ℜmax � 3.44 �
rice/liquid (ℜmin � 10.7 �m and ℜmax � 139.5�m for
rice � 40 �m).

The shape of the snow size distribution is taken from
the microphysical schemes as a Marshall–Palmer (1948)
size distribution:

nsnow
ℜ�dℜ � N0,snowe�
ℜ�2�
��snowNO,snow��airqsnow�1�4
dℜ,


2�

where nsnow(ℜ)dℜ (m�4) is the number of particles of
snow that have a radius between ℜ and ℜ � dℜ.

b. Lidar profile simulation

The 532-nm lidar equation giving the backscattered
signal power at a level z is

P
z�z2 � �mol
z� � �par
z��e�2�0
z
��par
z���mol
z�� dz, 
3�

where P(z)z2 is the simulated lidar backscattered nor-
malized signal (i.e., corrected of the calibration con-
stant) at the altitude z, expressed in m�1 sr�1.

The simulated particle attenuation by scattering �par

(m�1) is the sum of the contribution of snow �snow

(m�1), liquid water �liquid (m�1), and ice water �ice

(m�1):

�par � �snow � �liquid � �ice 
4�

and

�snow	liquid	ice � �rsnow	liquid	ice
2 QNsnow	liquid	ice, 
5�

TABLE 2. Differences between the four schemes concerning ACTSIM calculation; �liq/ice/snow is the simulated density of liquid
water/ice/snow (1000 kg m�3/500 kg m�3/100 kg m�3) for the A, B, and C schemes.

A, B, and C D

Nliq (m�3) Fixed value (in the scheme) 1 � 108 m�3 (3qliq/�air)/(4�r3
liq�liq)

Nice (m�3) Prognostic (3qice/�air)/(4�r3
ice�ice)

Nsnow (m�3) N3/4
0,snow(�airqsnow/�snow�)1⁄4 N0,snow variable in
the scheme

N3/4
0,snow(�airqsnow/�snow�)1⁄4 N0,snow fixed in the scheme to
2 � 107 m�4

rliq (m) (3qliq�air/Nliq4��liq)1⁄3 Fixed value (in ACTSIM): 10 � 10�6 m
rice (m) (3qice�air/Nice4��ice)1⁄3 Fixed value (in ACTSIM): 30 � 10�6 m
rsnow (m) (3qsnow�air/Nsnow4��snow)1⁄3 (3qsnow�air/Nsnow4��snow)1⁄3
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where Q is the particle scattering efficiency that is equal
to 2 at 532 nm because particles of snow, ice, and liquid
water are much larger than the lidar wavelength (Ulaby
et al. 1943). Furthermore, the multiple scattering cor-
rection parameter [� in Eq. (3)] is taken equal to 0.5
(Platt 1973). The exponential term in (3) represents the
optical depth between levels 0 and z, and contains only
scattering terms as there is no absorption by cloud par-
ticles at 532 nm.

The simulated lidar backscattering coefficient by par-
ticles, �par (m�1 sr�1), corresponds to the sum of the
contribution of snow �snow (m�1 sr�1), ice �ice

(m�1 sr�1), and liquid water �liquid (m�1 sr�1):

�par � �snow � �ice � �liquid, 
6�

with

�snow	ice	liquid �
P�,snow	ice	liquid

4�
�snow	ice	liquid, 
7�

where P�,snow/ice/liquid is the simulated scattering
phase function in backscattering. Particles are assumed
to be spherical in the four microphysical schemes;
P�,snow/ice/liquid is computed with Mie theory for the size
distributions given in (1) and (2) in order to be consis-
tent with the model assumptions.

The lidar backscattering coefficient by molecules is
�mol (m�1 sr�1). It depends on temperature T (K) and
pressure p (hPa) profiles (Collis and Russel 1976):

�mol �
p

KT

5.45 � 10�32�� 	

0.55��4.09


8�

and

�mol �
�mol

0.119
, 
9�

where K is the Boltzmann constant (1.38 � 10�23 J K�1),
and � is the wavelength; T and p are given by the ra-
diosonde as for the measured lidar profile normaliza-
tion.

The comparison between observed and simulated li-
dar signals is achieved by renormalizing the observed
lidar signal on the simulated one in a particle free area

(i.e., molecules only) just under the cloud, so that the
two profiles can be compared within the cloud.

c. Radar profile simulation

The radar reflectivity in dB is given by

dBz � 10 log
Zsnow � Zice � Zliquid�, 
10�

where dBZ values inferior to �50 � 20log(Z) are elimi-
nated because of the radar sensitivity; Zsnow/ice/liquid

(m3) is the contribution of snow/ice/liquid to the simu-
lated radar reflectivity:

Zsnow	ice	liquid � 1018�Ksnow	ice	liquid
2

Kliquid
2 �� 1

0.917�2

�
Deq,min

Deq,max

Deq
6 nsnow	ice	liquid
Deq� dDeq.


11�

The dielectric factor (K2
snow/ice/liquid) at 94 GHz is equal

to 0.176 for ice and snow and 0.930 for liquid water; Deq

(m) is the equivalent diameter:

Deq,snow	ice	liquid � ��snow	ice	liquid

�liquid
�
1�3�

� 2ℜsnow	ice	liquid. 
12�

The radar reflectivity is calculated using the size distri-
butions described in section 4a. The liquid water at-
tenuation is not considered, as most of the selected
clouds are ice or mixed clouds.

d. Doppler velocity simulation

The Doppler velocity V (m s�1), measured by the
vertically pointing radar, is the reflectivity weighted
mean radial velocity of the particles, that is, the sum of
the vertical velocity of air w (prognostic variable in
m s�1) and the reflectivity weighted terminal velocity �t

of the ice particles (m s�1):

V � 
t � w, 
13�

where


t �

�
Deq,min

Deq,max

nice
Deq,ice�ut,ice
Deq,ice�Deq,ice
6 dDeq,ice � �

Deq,min

Deq,max

nsnow
Deq,snow�ut,snow
Deq,snow�Deq,snow
6 dDeq,snow

�
Deq,min

Deq,max

nice
Deq,ice�Deq,ice
6 dDeq,ice � �

Deq,min

Deq,max

nsnow
Deq,snow�Deq,snow
6 dDeq,snow

.


14�
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The monocrystal terminal fall velocities ut,ice/snow(Deq)
(m s�1) are a function of Deq,ice/snow. The expressions of
ut,ice/snow(Deq) are specific to each microphysical
scheme (Heymsfield and Donner 1990; Zurovac-Jevtic
and Zhang 2003; Reisner et al. 1998). These are those
expressions (mostly based on in situ measurements)
that are used to build the expression of Vfall given in
Table 1. Liquid water (cloud water and rain) and grau-
pel are not considered in (14) as they are almost inex-
istent in the selected cases.

In the following sections, all variables related to
simulation will be indexed with “S,” and all variables
related to measurements with “M.”

5. Illustrative example: 17 October 2003

The date 17 October 2003 illustrates the complemen-
tarities of lidar/radar/fluxes. The lidar and radar ob-
served and simulated (using scheme B) signals on 17
October 2003 are shown in Fig. 3. For both simulations

FIG. 3. B scheme for 17 Oct 2003: (a) time evolution of logarithm of simulated lidar backscattered profile, (b)
same as (a) but for measured profile, (c) logarithm of simulated and measured lidar profile at 0900 UTC, (d) same
as (a) but for simulated radar reflectivity, (e) same as (a) but for measured radar reflectivity, and (f) simulated and
measured radar profiles at 0900 UTC, where simulation is solid line, measurement is dotted line, and radar
sensitivity is dashed line.
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and measurements, the ice cloud is already present
when the lidar measurements start at 0800 UTC. The
cloud lies at an altitude of about 10 km at the beginning
of the day in observations and between 6 and 10 km for
simulations throughout the day. The observed cloud
evolves during the day and its altitude is the same as for
simulations at the end of the day. The observations
show a boundary layer below 1 km, which is not repro-
duced in simulations because prognostic aerosols are
not taken into account in MM5. Nevertheless, it does
not influence the values of lidar signal within the cloud
as simulated and measured lidar profiles are both nor-
malized to the same value just below the cloud as
shown in Fig. 3c.

Figure 3d is the time evolution of simulated radar
reflectivity from 0000 to 2300 UTC. The simulated
cloud appears at 0500 UTC, 4 h before the observed
one. Between 0800 and 0900 UTC the cloud is too thin
to be detected by the radar whereas it is already present
in the simulated radar signal (Fig. 3d). Nevertheless,
Fig. 3f shows that the simulated reflectivity is smaller
than radar sensitivity. After 0900 UTC, the cloud is
present in both measurements and simulations. Never-
theless, the cloud height is larger than 1 to 2 km in
simulations than in measurements. As for the lidar,
there is a small boundary layer detected by radar that is
not represented by the simulated reflectivity. The ob-
served cloud has a much more complex structure than
the simulated cloud. It could be due to coarse vertical
and horizontal model resolutions, but even at resolu-
tion of 5 or 15 km, there is a substantial amount of
subgrid variability in the horizontal, and a lower hori-
zontal resolution does not immediately imply simula-
tions of worse quality. The observed cloud structure
displays multiple layers (Fig. 3c) that are not repro-
duced by the model. These figures therefore show that
gross features of the thin ice clouds can be represented
in mesoscale models.

Figures 4a and 4b show the time evolution of the
cloud thermodynamical phase for simulations and ob-
servations, measured from the method described in sec-
tion 3. The thermodynamical phases are compared only
within the cloud [cloud base and top are derived using
the Morille et al. (2005, manuscript submitted to J. At-
mos. Oceanic Technol., hereafter STRAT) algorithm].
Figure 4 shows that the observed cloud is mostly com-
posed of mixed phase with a few ice/snow pixels,
whereas the simulated cloud is composed exclusively of
snow and ice. This is not due to the temperature within
the cloud because the altitude of the cloud (and so its
temperature) is well represented by the model. It could
be due to the microphysical processes such as deposi-
tion or conversion of ice to snow.

Figure 5 shows the temporal evolution of Doppler
velocity for simulations (Fig. 5a) and measurements
(Fig. 5b). Negative values correspond to downward mo-
tions. The order of magnitude is similar, but the mea-
sured absolute values are about 0.4 m s�1 larger than
the simulated ones. The measured Doppler velocity is
the contribution of both Vt and w, but the difference
between simulations and observations is only due to the
contribution of Vt because the range of w is very weak
(typically a few cm s�1). The fact that the simulated
particles fall more slowly than the real ones is consis-
tent with the lidar/radar information: a cloud too per-
sistent and with a too large height.

Figure 6 shows downward longwave flux (LWF) and
shortwave flux (SWF) time evolution for both simula-
tions and measurements. The simulated SWF follows a
bell shape, which is consistent with the rather homoge-
neous cloud shown in Figs. 3a and 3d. Despite the dif-
ference in simulated/observed cloud structures, SWFs
are in fair agreement. That means that despite the fact
that the cloud has a too large height, its optical depth is
well represented. Hence this overestimation of the
cloud extent does not have a large impact on SWFs,
which is an important variable. Nevertheless, in cloud-
free conditions (before 0500 UTC) the simulated LWF
is 40 W m�2 lower than the measured one, which
strongly suggests that the clear-sky LWF is not well
computed in the model. Hence, in presence of clouds,
the differences or similarities between simulated and
measured LWF cannot be interpreted correctly.

6. Statistical analysis

The systematic character of the model/observation
comparisons are now evaluated through a statistical
analysis carried out over the 62 available days. The
comparison is actually made on hourly sampled data,
observations being in fact 10-min averages taken every
hour.

a. Cloud occurrence

The STRAT algorithm is applied for both observa-
tions and simulations, and hits and misses are counted
for each microphysical option. Figure 7a shows the
rates of cloud hits, nondetection, and false alarm. For
the four schemes, simulated and measured clouds
match in more than 65% of cases, and this agreement is
maximal for scheme D (the “simple ice” scheme), with
a hit rate of about 75%. All schemes overestimate the
cloud occurrence in about 20% of cases [25% for
scheme C, the original Reisner et al. (1998) scheme].
Scheme B [Reisner et al. (1998) with the Heymsfield
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and Donner (1990) terminal velocity] is the most bal-
anced scheme, with as many false alarms as misses.

The balance between hits and misses may, however,
be biased since our case selection is based on observa-
tions only. The number of false alarms is probably un-
derestimated since there may be unselected cases with
a model cloud and no actual cloud during other days.
Therefore, a general conclusion is that these micro-
physics schemes tend to produce too many ice clouds.
This result is almost equivalent for the four different
microphysical schemes; hence the differences between
simulations and observations must be due to something
other than the microphysical parameterizations. As was

mentioned in section 2a, it could be due to the param-
eterizations of subgrid-scale turbulence and convection
processes, which are not forced by the nudging proce-
dure though they play a fundamental role in cloud
simulations.

b. Cloud lifetime

To study the lifetime (hours) of clouds, 15 days
(among 62) corresponding to persistent homogeneous
cloud layers where beginning and end of cloud is ob-
served have been subjectively selected. Figure 7b shows
the probability density function (PDF) of the difference
between the simulated and the measured cloud life-

FIG. 4. B scheme for 17 Oct 2003: (a) time evolution of simulated phase; (b) same as (a) but
retrieved from lidar depolarization ratio measurements. Here, NO means no cloud, W means
liquid water, S means snow, and I means ice.
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time. In the four schemes, the tendency is to simulate
longer lifetime than the observed one, and the maximal
difference is more than 6 h, which is found in 20% of
cases whatever the scheme. For schemes C and D, the
difference between the simulated and the measured
cloud lifetime is less than 1 h for 50% of cases and less
than 45% for scheme A. For all schemes, in 15%–20%
of cases the measured cloud is 3 to 5 h more persistent
than the simulated one. Scheme B exhibits the most
balanced results in terms of cloud lifetime. Despite
those differences, the general tendency is the same for
all microphysical schemes, so this tendency must be due
to something that is equivalent for all microphysical
schemes, such as the parameterizations of subgrid ther-
modynamical processes that have a strong impact on
the creation of the conditions for the existence of
clouds. However the small size of the sample here does
not allow intercomparing schemes in a statistically sig-
nificant manner.

c. Cloud thermodynamical phase

For all the cases with available lidar measurements,
simulated and measured thermodynamical phases are
determined and compared at every hour and altitude,
following the same method as for the illustrative case
(section 5). Figure 8a shows the simulated cloud phase
when the observed cloud is liquid water (i.e., 20% of
the total lidar dataset): scheme D with the �20° thresh-
old gives the best phase estimation with 60% of liquid
water, whereas the three other schemes produce ice
and snow instead of liquid water in more than 80% of
cases. Figure 8b corresponds to the observed mixed-
phase cloud (i.e., 40% of the total lidar dataset). The
four schemes are not consistent with observation as
they do not lead to a mix of liquid water and ice and/or
snow. When the lidar depolarization ratio leads to ice

and/or snow crystals (Fig. 8c), the simulated phase is a
snow and/or ice for almost 100% of cases for A, B, and
C schemes and 80% for the D scheme. These results
show that the Reisner et al. (1998) scheme generally
overestimates the fraction of ice/snow in high clouds.
An underestimate of supercooled water in schemes
A/B/C indicates either that the model is not capturing
the strength of the vertical upward motion well in re-
gions where supercooled water is produced, or that
there is too much ice nucleation at these warmer tem-
peratures. Scheme D only succeeds because of the
�20°C threshold, otherwise it also would not produce
supercooled water.

d. Integrated lidar and radar profiles

Figure 9a shows the scatterplot of the simulated in-
tegrated lidar profiles versus the measured ones for

FIG. 6. Temporal evolution of fluxes for 17 Oct 2003 with the B
scheme. Longwave fluxes are in solid lines and shortwave fluxes
are in dashed lines.

FIG. 5. B scheme for 17 Oct 2003: (a) time evolution of simulated vertical velocity; (b) same as (a) but for
measured vertical velocity.
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scheme B, which is the most balanced in terms of cloud
occurrence. Each integrated value is calculated from
the bottom to the top of cloud. Table 3 summarizes the
correlations for the different schemes. There is consid-
erable scatter and correlations are poor, even when
gathering individual points into subsets of 20 consecu-
tive sorted simulated values and averaging over these
cases. The best correlation is obtained for schemes A
and B when considering 20-point averages (RS/M,mean �
0.37–0.34) but remains too low to show any skill. This
large scatter is in part due to the large differences in
variability of ice/snow content within the ice cloud it-
self, and in part to the difficulty in simulating the exact
timing of the cloud, as revealed in Fig. 3 in the case of
17 October 2003. It has to be remembered that lidar-
case clouds are semitransparent and generally consist of
thin filament structures, which can hardly be captured
with a mesoscale model.

The PDF of the difference between [PS(z)z2]integrated

(m�1 sr�1) and [PS(z)z2]integrated (m�1 sr�1) shown in
Fig. 9b displays a maximum near zero, proving that a
significant fraction of cases are well simulated. The dif-
ference between schemes A, B, and C is the terminal
velocity. As explained in section 2b the size-dependent

formulation for this fall velocity in scheme C may in-
duce a positive bias in terms of ice mass because the
velocity formula is applied to an average particle size.
Other sources of errors can occur, such as the descrip-
tion of the number of particles and/or the mixing ratio
in the model, or a bias in the derived particle size. It is
also interesting to note that the simple ice scheme per-
forms almost equally well as the more sophisticated A
and B schemes.

Figure 9c is the same as Fig. 9a but for the integrated
radar reflectivity, which is more sensitive to thicker
clouds. In this case skill becomes more significant than
for the lidar probably because the clouds are better
defined, more massive, and therefore easier to repre-
sent at mesoscale. Table 3 shows that schemes B and D
behave best. Nevertheless, Fig. 9c shows that for scheme
B, (ZdBM)integrated (dB) is larger than (ZdBS)integrated

(dB) for small values (i.e., for thin clouds) and the re-
verse is true for larger values (i.e., thicker clouds). The
mean bias between simulations and measurements (Fig.
9d) is very low compared to the other schemes and is
positive, indicating that the simulated values are too
large. For the three other schemes, the biases are nega-
tive, indicating that the simulated values are too small:

FIG. 7. Sixty-two-day statistical study of cloud occurrences and lifetimes using lidar, one
point every hour for schemes (S) A–D: (a) �1 value: simulated lidar does not detect any cloud
whereas observed lidar detects one; 0 value: simulated lidar and observed lidar agree con-
cerning the presence of cloud; 1 value: simulated lidar detects a cloud whereas observed lidar
does not detect any. (b) Probability density function of the difference between the simulated
and the measured cloud time life, as detected by lidar (hours).
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the number of particles (considering a constant ice/
snow mixing ratio) is too weak or the particles are
too small. Schemes A and D behave in a similar man-
ner, whereas scheme B exhibits an overestimation of
radar-integrated reflectivity, but with a maxima closer
to zero.

e. Altitude of maximum lidar and radar signals

We now compare the simulated and observed cloud
cores, where the measured signals should be largest.
Figure 10a shows the altitude of the maximum lidar
signal for simulations and observations for scheme B.
Although there is also a significant amount of scatter,
the model appears to have skill in predicting this alti-
tude, on average. The best nonaveraged correlation is
obtained for scheme D (Table 3). Figure 10b (PDF)
shows that the altitude of the simulated lidar signal
maximum is about 1.2 km lower than the observed one
for all schemes except C.

Figure 10c shows the altitude where the radar reflec-
tivity is maximal within the cloud, for the B scheme.
Table 3 shows that the D scheme leads to the best
correlation between simulations and measurements.
Figure 10d shows that the simulated maximum radar
signals are on average higher than the observed ones

for the C and D schemes, and lower for the A and B
schemes (biases in Table 3).

The model is more skilful in capturing the radar
maxima variability than the lidar one (except for
scheme A), as shown by the nonaveraged correlations
of Table 3. The internal structure of thicker clouds
seems easier to simulate than that of thinner clouds.
Figure 10d shows that scheme B has nearly unbiased
maxima altitudes, while scheme C overestimates this
altitude by 2.1 km. Since all the particles in each grid
box fall at the same speed, the model produces a lack of
dispersion in the vertical.

On one hand, simulated and measured altitudes of
maximal radar reflectivity are in good agreement, re-
garding Fig. 10d and the bias values. It means that the
model reproduces correctly the vertical distribution of
large particle size, because the radar reflectivity de-
pends on the sixth power of particle radius. On the
other hand, the lidar backscatter signal depends on
both particle size and particle concentration number at
the first order. Hence, because of the result concerning
radar reflectivity, the difference between simulated and
measured maximal lidar signal is mostly due to a biased
representation of the vertical distribution of smaller
particle concentration number. Finally, a visual inspec-
tion of each case (not shown) shows that the model

FIG. 8. Sixty-two-day statistical study about phase, one point every hour and every km for
schemes (S) A–D: (a) simulated phase when measured lidar depolarization ratio leads to
liquid water, (b) same as (a) but for mixed phase, and (c) same as (a) but ice. Here, W means
liquid water, S means snow, and I means ice.
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tends to overestimate the cloud height whatever the
microphysical scheme.

f. Radar and lidar mean profiles

The mean profile of the complete period of observa-
tion is shown for measurements and simulations (for
the four microphysical schemes) in Fig. 11a for lidar
and in Fig. 11b for radar. The lidar-measured averaged
profile has an important vertical variability, which is
due to several cloud or aerosol layers that are very
different (in terms of altitude and amplitude) from one
day to another. The peak at 2 km is due to an aerosol
layer that is present almost every day over the SIRTA
ground-based site. This peak does not influence the
computation of the height of the maximum lidar signal
for two reasons: (i) when profiles are not averaged, this
2-km signal is inferior to the signal that is backscattered
by a cloud; (ii) the detection of the height of the maxi-
mum lidar signal is done only within the cloud, and the

boundaries of the cloud are determined by the STRAT
algorithm, which distinguishes aerosol and cloud layers.
Finally, the measured lidar signal is not inversed and is
normalized using a simple method: by forcing the signal
to be equal to a molecular signal in a cloud-free area.
Hence, the differences observed between the simulated
and the measured lidar averaged profiles (Fig. 11a) are
only due to the model.

The shape of the curves confirms the precedent re-
sults and is in good agreement with Figs. 9 and 10: for
the four schemes, it is difficult to reproduce the lidar
profile. Nevertheless, the profile from scheme C is by
the same order of magnitude than the measured one,
but with a higher and more extended cloud. The simu-
lated mean radar profiles using schemes A and B are
close to the measured one, in terms of order of magni-
tude and in terms of altitude, meaning that the vertical
distribution of the particle size is good, and so the lidar
discrepancies are mostly due to a problem of the ver-
tical distribution of the particle concentration number.

FIG. 9. Sixty-two-day statistics, one point every hour: (a) the simulated integrated lidar profiles (m�1 sr�1) against
the measured ones, for the B scheme; each point is the mean value of the 20 closest neighbors of measured values,
and error bars represent (2 � STD)/(20)1/2, where STD is the standard deviation of those 20 closest neighbors;
dotted line is x � y. (b) Probability density function of the difference between simulated and measured integrated
lidar profiles for schemes (S) A–D. (c) Same as (a) but for radar reflectivity (dB). (d) Same as (b) but for radar
reflectivity.
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Furthermore, it is interesting to notice that the simple
scheme D performs as well as schemes A and B in the
highest parts of the clouds.

g. Doppler velocity

Figure 12a shows the Doppler velocity at the altitude
where radar reflectivity is maximum V(dBZM/S)max

(m s�1), for scheme B. We choose to look at the alti-
tude of maximal radar reflectivity because it must cor-
respond to the location of the largest particles. The
simulated Doppler velocities have absolute values
smaller than the measured ones. Actually, the formu-
lation of the monocrystal terminal fall velocity ut,ice that
comes from Heymsfield and Donner (1990) and
Heymsfield (1972) becomes unphysical for re,ice � 450
�m because it decreases, whereas it should still in-
crease. Furthermore, re,ice � 450 �m for a significant
part of the dataset (almost 20%; not shown). For those
20% of cases, the terminal fall velocity will be unphysi-
cally small. This result explains the fact that for schemes
B and D, the simulated Doppler velocity is very small
compared to the measured one. Scheme A produces
the best correlations (Table 3). As shown by Fig. 12b
and Table 3, schemes B, C, and D underestimate the
absolute value of the velocity, and it is the contrary for
scheme A.

Because of the weak order of magnitude of wS com-
pared to VS,t, general biases are mostly due to the dif-
ference between the simulated and the measured ter-
minal velocities: simulated particles fall more slowly
than observed ones for schemes B, C, and D. This is
consistent with the earlier conclusion that the cloud

lifetime was longer for simulations than for observa-
tions. However one should keep in mind that only the
large particles in the particle size distribution can be
seen by the radar and therefore the fall velocity of
smaller, but more numerous particles is not accounted
for. The discrepancies between simulations and obser-
vations are consistent with this possible effect.

Even though scheme C is the most consistent with
the assumptions in the Reisner et al. (1998) microphysi-
cal scheme (terminal fall velocity related to particle
size), it reveals the largest bias with simulated velocities
underestimated by 0.6 cm s�1. For the A scheme, the
overestimation of the Doppler velocity is not consistent
with the too long lifetime, meaning that the Doppler
velocity is not well calculated for those two schemes in
ACTSIM.

Scheme B, which relates the terminal fall velocity to
ice mixing ratio, shows less bias. This is consistent with
results found for the altitude of maximal radar reflec-
tivity that was also less biased for this scheme.

h. Radiative fluxes

Figures 13a and 13c show the simulated fluxes as a
function of the measured ones, for scheme B. The skill
in predicting cloud occurrence is reflected by the skill in
predicting radiative fluxes. All schemes give similar
correlation coefficients (Table 3). However differences
can be seen: Fig. 13b shows that the longwave flux is on
average underestimated for all schemes (of about 10 W
m�2, as shown in Table 3), but in particular for the
smallest values, which could correspond to the clear-
sky situation. This is consistent with results for the il-

TABLE 3. Correlation coefficients between simulated and measured values, for all considered variables: RS/M are coefficients for
global values and RS/M,mean (italic) for values averaged every 20 closest points. The indicated bias (bold) is the mean value of the
difference between the simulated and the measured variable.

RS/M

RS/M,mean

for A
Bias

for A

RS/M

RS/M,mean

for B
Bias
for B

RS/M

RS/M,mean

for C
Bias
for C

RS/M

RS/M,mean

for D
Bias

for D

[P(z)z2]integrated 0.12 �0.006 0.16 �0.01 0.03 �0.002 0.08 �0.01
(m�1 sr�1) 0.37 0.34 0.14 0.16

z[P(z)z2]max 0.13 �0.66 0.12 �1.2 0.13 0.51 0.22 �1.3
(m) 0.22 0.26 0.30 0.46

(dBZ)integrated 0.50 �0.5 � 104 0.51 0.04 � 104 0.40 �1.9 � 104 0.57 �0.22 � 104

(dB) 0.87 0.93 0.86 0.93
Z(dBZ)max 0.051 �0.13 0.17 �0.02 0.16 2.1 0.39 0.44

(m) 0.63 0.35 0.20 0.80
V(dBZ)max 0.08 �0.10 0.08 0.50 0.13 �0.19 0.07 0.40

(m s�1) 0.68 0.25 0.13 0.72
LW 0.77 �10 0.76 �13 0.76 �8 0.79 �12

(W m�2) — — — —
SW 0.89 12 0.89 28 0.87 �45 0.9 17

(W m�2) — — — —
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lustrative example (section 5): the clear-sky LW fluxes
are not accurate. This could either be due to errors in
simulated cloud properties or to clear-sky simulated
LWF bias, because the latter is known to be difficult to
accurately simulate in atmospheric models. On the con-
trary, the simulated SWF is overestimated for all
schemes except scheme C (bias values in Table 3). As
the radiative code is the same for all model experi-
ments, the discrepancy is due the microphysical
scheme. For schemes A, B, and D, the longwave and
shortwave fluxes behaviors are self-consistent and are
in agreement with the lidar and radar integrated signals
to show that the simulated cloud is not opaque enough.

7. Discussion and conclusions

a. Limits of the method

1) IMPACT OF MICROPHYSICAL SCHEMES

HYPOTHESIS

The four microphysical schemes assume the ice/snow
particles shape to be spherical and constant within the

cloud (no vertical variability), which is unrealistic, in
particular for thin clouds that are only detected by lidar.
These hypotheses may significantly influence the lidar
simulated profile and can explain a significant part of
the differences between the simulated and the mea-
sured lidar maxima and integrated profiles, considering
a vertical variability of the particle shape would change
the values of �ice and �ice that influence the vertical
variability of the lidar signal [Eq. (3)], and consequently
the altitude where the lidar signal is maximal. Further-
more, this could also influence the radiative effect of
the clouds; for example, a cloud composed of plates
instead of ice spheres will increase the albedo by 19.5%
(Liou 1986).

2) IMPACT OF ACTSIM HYPOTHESIS

Table 2 shows that for scheme D, rS,ice must be fixed
in ACTSIM and NS,ice is calculated as a function of
1/r3

S,ice: the radar reflectivity is then proportional to r3
S,ice

as shown by (11), whereas lidar signal is proportional to
1/r2

S,ice as shown by (3) and (7). Hence, for this scheme,

FIG. 10. Sixty-two-day statistics, one point every hour: (a) same as Fig. 9a but for the altitude where lidar signal
is maximum, (b) same as Fig. 9b but for the altitude where lidar signal is maximum, (c) same as (a) but for the
altitude where radar reflectivity is maximum, and (d) same as (b) but for the altitude where the radar reflectivity
is maximum.
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lidar and radar signals vary inversely when rS,ice varies:
if the fixed value of rS,ice is too large, the radar reflec-
tivity will also be too large, whereas the lidar signal will
be too weak.

One can notice that only terminal fall velocity of ice
crystals (and not that of snow particles) is considered in
the formulation of the Doppler velocity (12): actually
this variable is the only difference between schemes A,
B, and C. Hence, one can understand how this differ-
ence is responsible for the differences of mass content,
occurrence, lifetime, and fluxes.

3) CLOUD SPATIAL VARIABILITY

Figure 1 illustrates the possible spatial heterogene-
ities around SIRTA concerning the total column of wa-
ter content. This spatial variability explains the diffi-
culty to perfectly hit the cloud time sequence, and
therefore probably accounts for a significant part of the
difference between simulations and measurements con-
cerning the integrated lidar signal, but statistically these

differences should average out to zero. The quasi-
systematic overestimation of the cloud lifetime in simu-
lations for all microphysical schemes is not due to this
problem.

4) SENSITIVITY TO THE MODEL FORCING

The MM5 model is forced by lateral boundary con-
ditions in wind, temperature, but also water vapor mix-
ing ratio. These boundary conditions obviously influ-
ence the quality of the simulation. It is not clear how-
ever what part of the simulations skill is due to the
“internal” microphysics, or to the transport of humidity
from lateral boundaries. Since there are not liquid/solid
water lateral inputs, these phases are entirely created
by the internal microphysics. Moreover our results
show significant differences between the results ob-
tained from the four schemes tested above. All these
arguments indicate that most of the skill should be at-
tributable to the subgrid processes, in particular the
internal microphysics.

FIG. 11. (a) Mean profile of all lidar profiles (m�1 sr�1) (every selected case every hour): measurements (dashed
line), scheme A simulation (line with crosses), scheme B (line with circles), scheme C (line with stars), and scheme
D (line with squares). (b) Same as (a) but for radar reflectivity (dB).
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b. Microphysical scheme evaluation

The general tendencies are drawn in Table 4. In
terms of systematic biases, all microphysics tend to pro-
duce clouds that are too persistent (occurrence and life-
time). Scheme B, which consists of Reisner et al. (1998)
microphysics with the Heymsfield and Donner (1990)
terminal velocity expression is the least biased scheme.
The original Reisner et al. (1998) scheme (C) has the
strongest bias. The model tends to produce ice and
snow instead of liquid water (thermodynamical phase),
and when ice clouds are properly built, they tend to
contain an insufficient quantity of ice/snow (integrated
lidar and radar signals and SWF), that is, to not be
opaque enough. The cloud height is overestimated in
the model (altitude of lidar and radar maxima). All
those conclusions about the cloud macrophysical prop-
erties that are almost similar for the four microphysical
schemes could be a signature of the difficulty in repro-
ducing the subgrid-scale thermodynamical processes
such as turbulence and convection.

The strong bias of the Reisner et al. (1998) scheme
makes it difficult to use in practice. The small modifi-
cations of the velocities clearly improve the model re-
sults in terms of cloud occurrence and radiation. The
“simple ice” scheme has striking skill given its degree of
simplification, and has the advantage of being com-
puter run time inexpensive but does not provide water
phase characteristics. The modifications of Reisner et
al. (1998) proposed in schemes A and B correct most of
the biases of scheme C. Other terminal velocity param-
eterizations could be tested in the future (i.e., Heyms-
field et al. 2002) when the particle nonsphericity will be
taken into account in the model, as it is possible to
compute it in ACTSIM code. Finally, the results about
the performance of the simple ice scheme (Dudhia
1989) show that this is not only the microphysical
scheme that influences the ability to simulate ice
clouds, but also other subgrid-scale processes such as
the convection scheme.

Table 5 shows the correlation between simulations
and measurements for the different cloud classes (de-

FIG. 12. Sixty-two-day statistical study of vertical velocity, one point every hour: (a) simu-
lated velocity against measured one, at the altitude of maximum radar reflectivity, for the B
scheme; downward velocities are negative numbers. (b) Probability density function of the
difference between simulated and measured velocity at the altitude of maximum radar reflec-
tivity (m s�1) for schemes (S) A–D. A positive bias suggests that the simulated vertical
velocities are underestimated.
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fined in section 3b). Scheme B is less accurate for thin
clouds than for medium and thick clouds, according to
integrated lidar and radar profiles, and SWF. This could
be due to the following: (i) the complex vertical struc-
ture of thin clouds that are difficult to reproduce in the

model grid; (ii) the hypothesis of spherical particles that
could be more justified for thick clouds as particles are
often larger in this type of clouds, and as was noted in
section 7a(1), it could have a strong influence on the
lidar signal and the fluxes; (iii) the thermodynamical

TABLE 4. Best microphysical scheme performance for each variable concerning the correlation coefficient, the mean value of the
difference between simulations and measurements, and the tendency; “simu” stands for simulations, and “measu” for measurements.

RS/M

best scheme
Mean (simu-measu)

best scheme General tendency

Occurrence __ B Too much occurrence for A, C, and D; B more equilibrate
Lifetime __ All equivalent Clouds too persistent
Thermodynamical phase __ All equivalent Too much ice and snow and not enough water
[P(z)z2]integrated B A, C Simu � measu, but “bad scores” for all schemes
(dBZ)integrated B, D B Simu � measu except for B
z[P(z)z2]max D C Simu � measu except for C
z(dBZ)max D B Simu � measu for C, DSimu � measu for A, B
V(dBZ)max A A |simu| � |measu| for A, C|simu| � |measu| for B, D, but

“bad scores” for all schemes
LW All equivalent All equivalent Simu � measu
SW All equivalent A Simu � measu except for C

FIG. 13. Sixty-two-day statistical study of fluxes, one point every hour: (a) simulated longwave flux against
measured one for the B scheme; (b) probability density function of the difference between the simulated and the
measured longwave flux (W m�2) for schemes (S) A–D; (c) same as (a) but for shortwave flux; and (d) same as
(b) but for shortwave flux (W m�2).
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structure that creates the conditions for the existence of
clouds is different for thin clouds and medium/thick
clouds and could be better represented for medium
clouds than thin clouds in the model.

In other statistical calculations (not shown) we have
attempted to study the seasonal dependence of the
model skill. Although this requires probably more than
11⁄2 years of data to fully confirm, we did not find sea-
sonal variation.

c. General conclusions

The relatively large number of cloud cases studied
here leads to a possible statistical study of the ability of
MM5 to simulate the active remote sensing variables.
The first important result of this study is the ability of
the MM5 model to simulate ice clouds. The four
schemes simulate too persistent clouds as compared to
observations. The thermodynamical phase is either not
considered (scheme D) or poorly reproduced. The re-
sults are very sensitive to the formulation of the termi-
nal velocity. The scheme based on Reisner et al. (1998)
with Heymsfield and Donner (1990) terminal velocity is
the most skilful, on average, in simulating midlatitude
ice clouds with medium optical depth.

Additionally, information about the true microphysi-
cal properties (particle size and shape, density) would
certainly help assess in which microphysical conditions
the MM5 model associated with scheme B are most
accurate. With this conclusion in mind, a microphysical
study will be performed using the same type of mea-
surements and adding ice cloud microphysical retriev-
als: ice particle shape retrieval using Noel et al. (2002),
ice particle size from lidar and IR radiometry (Chiriaco
et al. 2004), from radar–lidar combination (Tinel et al.
2005), and from radar only (Protat et al. 2004), as well
as liquid and ice water content and fluxes at the top of
the atmosphere applied to the geostationary Meteosat
Second Generation (MSG) satellite (Minnis et al.
1998). The approach presented in this paper will also be
carried on using Aqua Train spaceborne observations

[Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observation (CALIPSO) and CloudSat] to evaluate
cloud model performance in selected areas.
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APPENDIX

List of Symbols

Notation Description Unit

Deq Equivalent diameter m
K2

snow/ice/liquid Dielectric factor of snow/ice/
liquid (� 0.176 for ice and
snow and � 0.930 for liquid
water, at 94 GHz)

—

LWn Net longwave flux W m�2

Nice/snow/liquid Ice/snow/liquid particle number
concentration

m�3

N0,snow Intercept slope parameter of the
Marshall–Palmer distribution

m�4

nice/snow/liquid(ℜ)dℜ Number of particles of ice/snow/
liquid that have a radius
between ℜ and ℜ � dℜ (m)

m�4

p Pressure of air hPa
P�,snow/ice/liquid Scattering phase function in

backscattering by snow/ice/liquid
__

P(z)z2 Lidar backscattered normalized
signal at the altitude z

m�1 sr�1

[PS/M(z)z2]integrated Simulated/measured integrated
lidar signal

m�1 sr�1

Q Particle scattering efficiency
(� 2)

__

qice/snow/liquid Ice/snow/liquid mixing ratio kg kg�1

rliquid/snow/ice Radius of a particle of mean
mass of liquid/snow/ice

m

RS/M,mean Correlation coefficient between
simulations and measurements,
using averaged values

__

RS/M Correlation coefficient between
simulations and measurements

SWdct Direct shortwave flux W m�2

SWdff Diffuse shortwave flux W m�2

SW Total downward shortwave flux W m�2

� Temperature of air K
Tt Threshold temperature of

conversion between liquid and
solid water

°C

ut Mono-crystal terminal fall
velocity

m s�1

V Doppler velocity m s�1

Vt Terminal fall velocity of cloud
particles

m s�1

TABLE 5. Correlation coefficients between simulated and
measured values as a function of the cloud class, for the B scheme.

RS/M

thin
cloud

RS/M

medium
cloud

RS/M

thick
cloud

RS/M

medium
� thick

(radar only)

[P(z)z2]integrated 0.039 0.18 — —
(dBZ)integrated — 0.42 0.59 0.22
LW 0.83 0.68 0.61 0.47
SW 0.91 0.92 0.91 0.97
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Notation Description Unit

V(dBZS/M)max Simulated/measured Doppler
velocity where the radar
reflectivity is maximal

m s�1

�t Reflectivity weighted terminal
velocity of the ice particles

m s�1

w Vertical velocity of air m s�1

z Altitude km
dBZ Radar reflectivity dB
Zsnow/ice/liquid Contribution of snow/ice/liquid

to the radar reflectivity
m3

(dBZS/M)integrated Simulated/measured integrated
radar reflectivity

dB

�par/snow/ice/liquid Particle/snow/ice/liquid
attenuation by scattering

m�1

�par/snow/ice/liquid Lidar backscattering coefficient
by particles/snow/ice/liquid

m�1 sr�1

�mol Lidar backscattering coefficient
by molecules

m�1 sr�1

� Multiple scattering correction
parameter (� 0.5)

__

�air Density of air kg m�3

�liq/ice/snow Density of liquid water/ice/snow
(� 1000 kg m�3/500 kg m�3/100
kg m�3)

kg m�3

� Solar zenith angle rad
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