
HAL Id: hal-00159764
https://hal.science/hal-00159764v1

Preprint submitted on 4 Jul 2007 (v1), last revised 11 Feb 2008 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Determinacy in a synchronous pi-calculus
Roberto Amadio, Mehdi Dogguy

To cite this version:

Roberto Amadio, Mehdi Dogguy. Determinacy in a synchronous pi-calculus. 2007. �hal-00159764v1�

https://hal.science/hal-00159764v1
https://hal.archives-ouvertes.fr

ha
l-

00
15

97
64

, v
er

si
on

 1
 -

 4
 J

ul
 2

00
7

Determinacy in a synchronous π-calculus ∗

Roberto M. Amadio Mehdi Dogguy

Université Paris 7, PPS, UMR-7126

4th July 2007

Abstract

The Sπ-calculus is a synchronous π-calculus which is based on the SL model. The
latter is a relaxation of the Esterel model where the reaction to the absence of a signal
within an instant can only happen at the next instant. In the present work, we study
the notions of determinacy and (local) confluence for the Sπ-calculus and we introduce a
typing system that guarantees determinacy.

1 Introduction

Let P be a program that can repeatedly interact with its environment. A derivative of P
is a program to which P reduces after a finite number of interactions with the environment.
A program terminates if all its internal computations terminate and it is reactive if all its
derivatives are guaranteed to terminate. A program is determinate if after any finite num-
ber of interactions with the environment the resulting derivative is unique up to semantic
equivalence.

Most conditions found in the literature that entail determinacy are rather intuitive, how-
ever the formal statement of these conditions and the proof that they indeed guarantee de-
terminacy can be rather intricate in particular in the presence of name mobility, as available
in a paradigmatic form in the π-calculus.

Our purpose here is to provide a streamlined theory of determinacy for the synchronous π-
calculus introduced in [2]. It seems appropriate to address these issues in a volume dedicated
to the memory of Gilles Kahn. First, Kahn networks are a classic example of concurrent
and deterministic systems. Second, Kahn networks have largely inspired the research on
synchronous languages such as Lustre [9] and, to a lesser extent, Esterel [6]. An intended
side-effect of this work is to illustrate how ideas introduced in concurrency theory well after
Kahn networks can be exploited to enlighten the study of determinacy in concurrent systems.

Our technical approach will follow a process calculus tradition, namely:

1. We describe the interactions of a program with its environment through a labelled
transition system to which we can associate a compositional notion of bisimulation
equivalence.

2. We provide local confluence conditions that combined with reactivity turn out to be
equivalent to determinacy.

∗Work partially supported by ANR-06-SETI-010-02.

1

3. We introduce a typing system which is preserved by labelled transitions and such that
typable programs enjoy a strong confluence property.

We briefly trace the path that has lead to this approach. A systematic study of determi-
nacy and confluence for CCS is available in [18] where, roughly, the usual theory of rewriting
is generalised in two directions: first rewriting is labelled and second diagrams commute up
to semantic equivalence. In this context, a suitable formulation of Newman’s lemma [20], has
been given in [11]. The theory has been gradually extended from CCS, to CCS with values,
and finally to the π-calculus [22]. Typing systems appear to be a natural way to formalise
decidable conditions that preserve confluence. The sorting system in [18] is an early example
of this point of view, and more recent proposals for the π-calculus include [15, 21].

Calculi such as CCS and the π-calculus are designed to represent asynchronous systems.
On the other hand, the Sπ-calculus is designed to represent synchronous systems. In these
systems, there is a notion of instant (or phase, or pulse, or round) and at each instant each
thread performs some actions and synchronizes with all other threads. One may say that
all threads proceed at the same speed and it is in this specific sense that we will refer to
synchrony in this work.

In order to guarantee determinacy in the context of CCS rendez-vous communication, it
seems quite natural to restrict the calculus so that interaction is point-to-point, i.e., it involves
exactly one sender and one receiver.1 In a synchronous framework, the introduction of signal
based communication offers an opportunity to move from point-to-point to a more general
multi-way interaction mechanism with multiple senders and/or receivers, while preserving
determinacy. In particular, this is the approach taken in the Esterel and SL [8] models.
The SL model can be regarded as a relaxation of the Esterel model where the reaction to the
absence of a signal within an instant can only happen at the next instant. This design choice
avoids some paradoxical situations and simplifies the implementation of the model. The SL
model has gradually evolved into a general purpose programming language for concurrent
applications and has been embedded in various programming environments such as C, Java,
Scheme, and Caml (see [7, 23, 26, 17]). For instance, the Reactive ML language [17] includes
a large fragment of the Caml language plus primitives to generate signals and synchronise
on them. We should also mention that related ideas have been developed by Saraswat et al.
[24] in the area of constraint programming.

The Sπ-calculus can be regarded as an extension of the SL model where signals can carry
values. In this extended framework, it is more problematic to have both concurrency and
determinacy. Nowadays, this question is frequently considered when designing various kind
of synchronous programming languages (see, e.g., [17, 10, 25]). As we already mentioned, our
purpose here is to address the question with the tool-box of process calculi following the work
for CCS and the π-calculus quoted above. In this respect, it is worth stressing a few interesting
variations that arise when moving from the ‘asynchronous’ π-calculus to the ‘synchronous’ Sπ-
calculus. First, we have already pointed-out that there is an opportunity to move from a point-
to-point to a multi-way interaction mechanism while preserving determinacy. Second, the
notion of confluence and determinacy happen to coincide while in the asynchronous context
confluence is a strengthening of determinacy which has better compositionality properties.

1Incidentally, this is also the approach taken in Kahn networks but with an interaction mechanism based
on unbounded, ordered buffers. It is not difficult to represent unbounded, ordered buffers in a CCS with value
passing and show that, modulo this encoding, the determinacy of Kahn networks can be obtained as a corollary
of the theory of confluence developed in [18].

2

Third, reactivity appears to be a reasonable property to require of a synchronous system,
the goal being just to avoid instantaneous loops, i.e., loops that take no time.2 Fourth, one
needs to design a type system that accounts for ‘resource usage’ in the specific framework of
a synchronous model with signal-based communication.

The rest of the paper is structured as follows. In section 2, we introduce the Sπ-calculus,
in section 3, we define its semantics, in section 4, we develop the concepts of determinacy and
(local) confluence, and in section 5, we present a typing system that guarantees determinacy.
Proofs are available in the appendix along with a simple size-change criterion that ensures
reactivity. Familiarity with the π-calculus [19, 27], the notions of determinacy and confluence
presented in [18], and synchronous languages of the Esterel family [6, 8] is assumed.

2 Introduction to the Sπ-calculus

We introduce the syntax of the Sπ-calculus along with some programming examples and an
informal comparison with the π-calculus.

2.1 Programs

Programs P,Q, . . . in the Sπ-calculus are defined as follows:

P ::= 0 || A(e) || se || s(x).P,K || [s1 = s2]P1, P2 || [u � p]P1, P2 || νs P || P1 | P2

K ::= A(r)

We use the notation m for a vector m1, . . . ,mn, n ≥ 0. The informal behaviour of programs
follows. 0 is the terminated thread. A(e) is a (tail) recursive call of a thread identifier A
with a vector e of expressions as argument; as usual the thread identifier A is defined by a
unique equation A(x) = P such that the free variables of P occur in x. se evaluates the
expression e and emits its value on the signal s. s(x).P,K is the present statement which
is the fundamental operator of the SL model. If the values v1, . . . , vn have been emitted on
the signal s then s(x).P,K evolves non-deterministically into [vi/x]P for some vi ([/] is our
notation for substitution). On the other hand, if no value is emitted then the continuation
K is evaluated at the end of the instant. [s1 = s2]P1, P2 is the usual matching function of
the π-calculus that runs P1 if s1 equals s2 and P2, otherwise. Here both s1 and s2 are free.
[u � p]P1, P2, matches u against the pattern p. We assume u is either a variable x or a value
v and p has the shape c(x), where c is a constructor and x is a vector of distinct variables.
We also assume that if u is a variable x then x does not occur free in P1. At run time, u
is always a value and we run θP1 if θ = match(u, p) is the substitution matching u against
p, and P2 if the substitution does not exist (written match(u, p) ↑). Note that as usual the
variables occurring in the pattern p (including signal names) are bound in P1. νs P creates
a new signal name s and runs P . (P1 | P2) runs in parallel P1 and P2. A continuation K
is simply a recursive call whose arguments are either expressions or values associated with
signals at the end of the instant in a sense that we explain below. We will also write pause.K
for νs s(x).0,K with s not free in K. This is the program that waits till the end of the instant
and then evaluates K.

2The situation is different in asynchronous systems where reactivity is a more demanding property. For
instance, [11] notes: “As soon as a protocol internally consists in some kind of correction mechanism (e.g.,
retransmission in a data link protocol) the specification of that protocol will contain a τ -loop”.

3

2.2 Expressions

The definition of programs relies on the following syntactic categories:

Sig ::= s || t || · · · (signal names)
Var ::= Sig || x || y || z || · · · (variables)
Cnst ::= ∗ || nil || cons || c || d || · · · (constructors)
Val ::= Sig || Cnst(Val , . . . ,Val) (values v, v′, . . .)
Pat ::= Cnst(Var , . . . ,Var) (patterns p, p′, . . .)
Fun ::= f || g || · · · (first-order function symbols)
Exp ::= Var || Cnst(Exp, . . . ,Exp) || Fun(Exp, . . . ,Exp) (expressions e, e′, . . .)
Rexp ::= !Sig || Var || Cnst(Rexp, . . . ,Rexp) ||

Fun(Rexp, . . . ,Rexp) (exp. with deref. r, r′, . . .)

As in the π-calculus, signal names stand both for signal constants as generated by the ν
operator and signal variables as in the formal parameter of the present operator. Variables
Var include signal names as well as variables of other types. Constructors Cnst include ∗, nil,
and cons. Values Val are terms built out of constructors and signal names. Patterns Pat are
terms built out of constructors and variables (including signal names). If P, p are a program
and a pattern then we denote with fn(P), fn(p) the set of free signal names occurring in them,
respectively. We also use FV (P),FV (p) to denote the set of free variables (including signal
names). We assume first-order function symbols f, g, . . . and an evaluation relation ⇓ such
that for every function symbol f and values v1, . . . , vn of suitable type there is a unique value
v such that f(v1, . . . , vn) ⇓ v and fn(v) ⊆

⋃

i=1,...,n fn(vi). Expressions Exp are terms built
out of variables, constructors, and function symbols. The evaluation relation ⇓ is extended in
a standard way to expressions whose only free variables are signal names. Finally, Rexp are
expressions that may include the value associated with a signal s at the end of the instant
(which is written !s, following the ML notation for dereferenciation). Intuitively, this value is
a list of values representing the set of values emitted on the signal during the instant.

2.3 Typing

Types include the basic type 1 inhabited by the constant ∗ and, assuming σ is a type, the
type Sig(σ) of signals carrying values of type σ, and the type List(σ) of lists of values of
type σ with constructors nil and cons. In the examples, it will be convenient to abbrevi-
ate cons(v1, . . . , cons(vn, nil) . . .) with [v1; . . . ; vn]. 1 and List(σ) are examples of inductive
types. More inductive types (booleans, numbers, trees,. . .) can be added along with more
constructors. We assume that variables (including signals), constructor symbols, and thread
identifiers come with their (first-order) types. For instance, a function symbols f may have
a type (σ1, σ2) → σ meaning that it waits two arguments of type σ1 and σ2 respectively and
returns a value of type σ. It is straightforward to define when a program is well-typed. We
just point-out that if a signal name s has type Sig(σ) then its dereferenced value !s has type
List(σ). In the following, we will tacitly assume that we are handling well typed programs, ex-
pressions, substitutions,. . . A more refined type system including information on signal usage
will be presented in section 5.

4

2.4 Comparison with the π-calculus

The syntax of the Sπ-calculus is similar to the one of the π-calculus, however there are some
important semantic differences that we highlight in the following simple example. Assume
v1 6= v2 are two distinct values and consider the following program in Sπ:

P = ν s1, s2 (s1v1 | s1v2 | s1(x). (s1(y). (s2(z). A(x, y) , B(!s1)) , 0) , 0)

If we forget about the underlined parts and we regard s1, s2 as channel names then P could
also be viewed as a π-calculus process. In this case, P would reduce to

P1 = νs1, s2 (s2(z).A(θ(x), θ(y))

where θ is a substitution such that θ(x), θ(y) ∈ {v1, v2} and θ(x) 6= θ(y). In Sπ, signals
persist within the instant and P reduces to

P2 = νs1, s2 (s1v1 | s1v2 | (s2(z).A(θ(x), θ(y)), B(!s1)))

where θ(x), θ(y) ∈ {v1, v2}. What happens next? In the π-calculus, P1 is deadlocked and no
further computation is possible. In the Sπ-calculus, the fact that no further computation
is possible in P2 is detected and marks the end of the current instant. Then an additional

computation represented by the relation
N
−→ moves P2 to the following instant:

P2
N
−→ P ′

2 = νs1, s2 B(v)

where v ∈ {[v1; v2], [v2; v1]}. Thus at the end of the instant, a dereferenced signal such as !s1

becomes a list of (distinct) values emitted on s1 during the instant and then all signals are
reset.

2.5 Programming examples

We introduce a few programming examples to illustrate the kind of synchronous programming
that can be represented in the Sπ-calculus. We will come back to these examples in section
5 to discuss the scope of the typing system.

Example 1 (cell) We describe the behaviour of a generic cell that might be used in the
simulation of a dynamic system. Each cell relies on three parameters: its state q, its own
activation signal s, and the list ℓ of activation signals of its neighbours. The cell performs the
following operations in a cyclic fashion: (i) it emits its current state and a fresh identifier
along the activation signals of its neighbours, (ii) it waits till the end of the current instant,
and (iii) it collects the values emitted by its neighbours and computes its new state.

Cell(q, s, ℓ) = Send(q, s, ℓ, ℓ)

Send(q, s, ℓ, ℓ′) = [ℓ′ � cons(s′, ℓ′′)] (s′q | Send(q, s, ℓ, ℓ′′)),
pause.Cell(next(q, !s), s, ℓ)

where next is a function that computes the following state of the cell according to its current
state and the state of its neighbours. Assuming that the function next is invariant under
permutations of the list of states, we would like to show that the evolution of the simulation
is deterministic.

5

Example 2 (synchronous data flow) We provide an example of synchronous data-flow
computation. The network is described by the program

νs2, s3, s4, s5(A(s1, s2, s3, s4) | B(s2, s3, s5, s6) | C(s4, s5))

where:







A(s1, s2, s3, s4) = s1(x).(s2f(x) | s3(y).(s4g(y) | pause.A(s1, s2, s3, s4)), 0), 0
B(s2, s3, s5, s6) = s2(x).(s3i(x) | s5(y).(s6l(y)) | pause.B(s2, s3, s5, s6)), 0), 0
C(s4, s5) = s4(x).(s5h(x) | pause.C(s4, s5)), 0

Assuming that at each instant a value is emitted on the input signal s1, we would like to show
that at each instant at most one value will be emitted on every other signal.

Example 3 (client-server) We describe first a ‘server’ handling a list of requests emitted
in the previous instant on the signal s. For each request of the shape req(s′, x), it provides an
answer which is a function of x along the signal s′.

Server(s) = pause.Handle(s, !s)

Handle(s, ℓ) = [ℓ � cons(req(s′, x), ℓ′)](s′f(x) | Handle(s, ℓ′)),Server (s) .

Assuming that parallel composition is an associative and commutative operation with respect
to semantic equivalence, we would like to show that the behaviour of the server is deterministic.
The programming of a client that issues a request x on signal s and returns the reply on signal
t could be the following:

Client(x, s, t) = νs′ (sreq(s′, x) | pause.s′(x).tx, 0) .

3 Semantics of the Sπ-calculus

In this section, we define the semantics of the Sπ-calculus by means of a labelled transition
system and a notion of bisimulation. This topic has already been studied in [2]. The main
contribution here is the introduction of a modified labelled transition system that coupled with
a standard notion of bisimulation allows to characterise on reactive program the contextual
bisimulation introduced in [2]. The fact that the notion of bisimulation introduced here is
standard (as opposed to [2]) will allow for a considerable simplification of the diagram chasing
arguments that are needed in the study of determinacy and confluence in section 4.

3.1 Actions

The actions of the forthcoming labelled transition system are classified in the following cate-
gories:

act ::= α || aux (actions)
α ::= τ || νt sv || sv || N (relevant actions)
aux ::= s?v || (E,V) (auxiliary actions)
µ ::= τ || νt sv || s?v (nested actions)

The category act is partitioned into relevant actions and auxiliary actions.
The relevant actions are those that are actually considered in the bisimulation game. They

consist of: (i) an internal action τ , (ii) an emission action νt sv where it is assumed that the
signal names t are distinct, occur in v, and differ from s, (iii) an input action sv, and (iv)
and an action N (for Next) that marks the move from the current to the next instant.

6

The auxiliary actions consist of an input action s?v which is coupled with an emission
action in order to compute a τ action and an action (E,V) which is just needed to compute
an action N . The latter is an action that can only occur when the program cannot perform
τ actions and it amounts to (i) collect in lists the set of values emitted on every signal, (ii)
to reset all signals, and (iii) to initialise the continuation K for each present statement of the
shape s(x).P,K.

In order to formalise these three steps we need to introduce some notation. Let E vary
over functions from signal names to finite sets of values. Denote with ∅ the function that
associates the empty set with every signal name, with [M/s] the function that associates the
set M with the signal name s and the empty set with all the other signal names, and with ∪
the union of functions defined point-wise.

We represent a set of values as a list of the values contained in the set. More precisely,
we write v ‖−M and say that v represents M if M = {v1, . . . , vn} and v = [vπ(1); . . . ; vπ(n)]
for some permutation π over {1, . . . , n}. Suppose V is a function from signal names to lists
of values. We write V ‖−E if V (s) ‖−E(s) for every signal name s. We also write dom(V) for
{s | V (s) 6= []}. If K is a continuation, i.e., a recursive call A(r), then V (K) is obtained from
K by replacing each occurrence !s of a dereferenced signal with the associated value V (s).
We denote with V [ℓ/s] the function that behaves as V except on s where V [ℓ/s](s) = ℓ.

With these conventions, a transition P
(E,V)
−−−→ P ′ intuitively means that (1) P is suspended,

(2) P emits exactly the values specified by E, and (3) the behaviour of P in the following
instant is P ′ and depends on V . It is convenient to compute these transitions on programs
where all name generations are lifted at top level. We write P � Q if we can obtain Q from
P by repeatedly transforming, for instance, a subprogram νsP ′ | P ′′ into νs(P ′ | P ′′) where
s /∈ fn(P ′′).

Finally, the nested actions µ, µ′, . . . are certain actions (either relevant or auxiliary) that
can be produced by a sub-program and that we need to propagate to the top level.

3.2 Labelled transition system

The labelled transition system is defined in table 1 where rules apply only to programs whose
only free variables are signal names and with standard conventions on the renaming of bound
names. As usual, one can rename bound variables, and the symmetric rules for (par) and
(synch) are omitted. The first 12 rules from (out) to (νex) are quite close to those of a polyadic
π-calculus with asynchronous communication (see [12, 13, 4]) with the following exception:
rule (out) models the fact that the emission of a value on a signal persists within the instant.
The last 5 rules from (0) to (next) are quite specific of the Sπ-calculus and determine how
the computation is carried on at the end of the instant (cf. discussion in 3.1).

The relevant actions different from τ model the possible interactions of a program with
its environment. Then the notion of reactivity can be formalised as follows.

Definition 4 (derivative) A derivative of a program P is a program Q such that

P
α1−→ · · ·

αn−−→ Q, where: n ≥ 0 .

Definition 5 (reactivity) We say that a program P is reactive, if for every derivative Q
every τ -reduction sequence terminates.

7

(out)
e ⇓ v

se
sv
−→ se

(inaux)
s(x).P, K

s?v
−−→ [v/x]P

(in)
P

sv
−→ (P | sv)

(rec)
A(x) = P, e ⇓ v

A(e)
τ
−→ [v/x]P

(=sig
1)

[s = s]P1, P2
τ
−→ P1

(=sig
2)

s1 6= s2

[s1 = s2]P1, P2
τ
−→ P2

(=ind
1)

match(v, p) = θ

[v � p]P1, P2
τ
−→ θP1

(=ind
1)

match(v, p) =↑

[v � p]P1, P2
τ
−→ P2

(comp)
P1

µ
−→ P ′

1 bn(µ) ∩ fn(P2) = ∅

P1 | P2
µ
−→ P ′

1 | P2

(synch)
P1

νt sv
−−−→ P ′

1 P2
s?v
−−→ P ′

2

{t} ∩ fn(P2) = ∅

P1 | P2
τ
−→ νt (P ′

1 | P ′
2)

(ν)
P

µ
−→ P ′ t /∈ n(µ)

νt P
µ
−→ νt P ′

(νex)
P

νt sv
−−−→ P ′ t′ 6= s t′ ∈ n(v)\{t}

νt′ P
(νt′,t)sv
−−−−−→ P ′

(0)
0

∅,V
−−→ 0

(reset)
e ⇓ v v occurs in V (s)

se
[{v}/s],V
−−−−−−→ 0

(cont)
s /∈ dom(V)

s(x).P, K
∅,V
−−→ V (K)

(par)
Pi

Ei,V
−−−→ P ′

i i = 1, 2

(P1 | P2)
E1∪E2,V
−−−−−−→ (P ′

1 | P ′
2)

(next)
P � νs P ′ P ′ E,V

−−−→ P ′′ V ‖−E

P
N
−→ νs P ′′

Table 1: Labelled transition system

8

3.3 Labelled bisimulation and its characterisation

We introduce first a rather standard notion of (weak) labelled bisimulation. We define
α
⇒ as:

α
⇒=











(
τ
−→)∗ if α = τ

(
τ
⇒) ◦ (

N
−→) if α = N

(
τ
⇒) ◦ (

α
−→) ◦ (

τ
⇒) otherwise

This is the standard definition except that we insist on not having internal reductions after
an N action. Intuitively, we assume that an observer can control the execution of programs
so as to be able to test them at the very beginning of each instant.3 We write P

α
−→ · for

∃P ′ (P
α
−→ P ′).

Definition 6 (labelled bisimulation) A symmetric relation R on programs is a labelled
bisimulation if

P R Q, P
α
−→ P ′, bn(α) ∩ fn(Q) = ∅

∃Q′ (Q
α
⇒ Q′, P ′ R Q′)

We denote with ≈ the largest labelled bisimulation.

The standard variation where one considers weak reduction in the hypothesis (P
α
⇒ P ′

rather than P
α
−→ P ′) leads to the same relation. Also, relying on this variation, one can show

that the concept of bisimulation up to bisimulation makes sense, i.e., a bisimulation up to
bisimulation is indeed contained in the largest bisimulation.

Next, we recall the notion of contextual bisimulation introduced in [2].

Definition 7 We write:

P ↓ if ¬(P
τ
−→ ·) (suspension)

P ⇓ if ∃P ′ (P
τ
⇒ P ′ and P ′ ↓) (weak suspension)

P ⇓L if ∃P ′ (P | P ′) ⇓ (L-suspension)

Obviously, P ↓ implies P ⇓ which in turn implies P ⇓L and none of these implications
can be reversed (see [2]). Also note that all the derivatives of a reactive program enjoy the
weak suspension property.

Definition 8 (commitment) We write P ց s if P
νt sv
−−−→ · and say that P commits to emit

on s.

Definition 9 (barbed bisimulation) A symmetric relation R on programs is a barbed
bisimulation if whenever P R Q the following holds:

(B1) If P
τ
−→ P ′ then ∃Q′ (Q

τ
⇒ Q′ and P ′ R Q′).

(B2) If P ց s and P ⇓L then ∃Q′ (Q
τ
⇒ Q′, Q′ ց s, and P R Q′).

(B3) If P ↓ and P
N
−→ P ′′ then ∃Q′, Q′′ (Q

τ
⇒ Q′, Q′ ↓, P R Q′, Q′ N

−→ Q′′, and P ′′ R Q′′).

We denote with ≈B the largest barbed bisimulation.
3This decision entails that, e.g., we distinguish the programs P and Q defined as follows: P = pause.(s1⊕s2),

Q = νs (pause.A(!s) | s0 | s1), where A(x) = [x � [0; 1]](s1 ⊕ s2), s1, and ⊕, 0, and 1 are abbreviations for
an internal choice and for two distinct constants, respectively (these concepts can be easily coded in the

Sπ-calculus). On the other hand, P and Q would be equivalent if we defined
N
⇒ as

τ
⇒ ◦

N
−→ ◦

τ
⇒.

9

Labelled transition systems Bisimulation game

(
α
−→1)

Rule (inaux) replaced by

(in1
aux)

s(x).P, K
s?v
−−→ [v/x]P | sv

(≈1) As in definition 6

(
α
−→2)

Rule (in) removed and
action s?v replaced by sv

(≈2)

As above if α 6= sv. Require:

(Inp)
P R Q

(P | sv) R (Q | sv)

As above (≈3)

As above if α 6= sv. Replace (Inp) with :

P R Q, P
sv
−→2 P ′

∃Q′ (Q
sv
⇒2 Q′ ∧ P ′ R Q′)∨

(Q
τ

⇒2 Q′ ∧ P ′ R (Q′ | sv))

and for α = N require:

P R Q, S = s1v1 | · · · | snvn, (P | S)
N
−→ P ′

∃Q′, Q′′ ((Q | S)
τ

⇒2 Q′′, (P | S) R Q′′,

Q′′ N
−→2 Q′, P ′ R Q′)

Table 2: Equivalent formulations of labelled bisimulation

Definition 10 A static context C is defined as follows:

C ::= [] || C | P || νs C (1)

Definition 11 (contextual bisimulation) A symmetric relation R on programs is a con-
textual bisimulation if it is a barbed bisimulation (conditions (B1−3)) and moreover whenever
P R Q then

(C1) C[P] R C[Q], for any static context C.

We denote with ≈C the largest contextual barbed bisimulation.

We arrive at the announced characterisation of the labelled bisimulation.

Theorem 12 (characterisation of labelled bisimulation) If P,Q are reactive programs
then P ≈ Q iff P ≈C Q.

This result provides two arguments in favour of labelled bisimulation. First it is preserved
by static contexts and second it can be characterised by just appealing to internal transitions.
The proof of this result takes several steps summarised in Table 2 which provides 3 equivalent
formulations of the labelled bisimulation ≈. In [2], the contextual bisimulation in definition
11 is characterised as a variant of the bisimulation ≈3 where the condition for the output is
formulated as follows:

P R Q, P ⇓L, P
νt sv
−−−→2 P ′, {t} ∩ fn(Q) = ∅

Q
νt sv
⇒2 Q′, P ′ R Q′

10

Clearly, if P is a reactive program then P ⇓L. Also note that the definition 5 of reactive
program refers to the labelled transition system 1 for which it holds that P

sv
−→ (P | sv).

Therefore, if P is reactive then (P | sv) is reactive too and if we start comparing two reactive
programs then all programs that have to be considered in the bisimulation game will be
reactive too. This means that on reactive programs the condition P ⇓L is always satisfied
and therefore that the bisimulation ≈3 coincides with the labelled bisimulation considered in
[2].4

4 Determinacy and (local) confluence

In this section, we develop the notions of determinacy and confluence for the Sπ-calculus
which turn out to coincide. Moreover, we note that for reactive programs a simple property
of local confluence suffices to ensure determinacy.

We denote with ǫ the empty sequence and with s = α1 · · ·αn a finite sequence (possibly
empty) of actions different from τ . We define:

s
⇒=

{

τ
⇒ if s = ǫ
α1⇒ · · ·

αn⇒ if s = α1 · · ·αn

Thus s denotes a finite (possibly empty) sequence of interactions with the environment.
Following [18], a program is considered determinate if performing twice the same sequence of
interactions leads to the same program up to semantic equivalence.

Definition 13 (determinacy) We say that a program P is determinate if for every sequence
s, if P

s
⇒ Pi for i = 1, 2 then P1 ≈ P2.

Determinacy implies τ -inertness which is defined as follows.

Definition 14 (τ-inertness) A program is τ -inert if for all its derivatives Q, Q
τ
−→ Q′

implies Q ≈ Q′.

Next, we turn to the notion of confluence. To this end, we introduce first the notions of
action compatibility and action residual.

Definition 15 (action compatibility) The compatibility predicate ↓ is defined as the least
reflexive and symmetric binary relation on actions such that α ↓ β implies that either α, β 6= N
or α = β = N .

In other words, the action N is only compatible with itself while any action different from
N is compatible with any other action different from N .5 Intuitively, confluence is about the
possibility of commuting actions that happen in the same instant. To make this precise we
also need to introduce a notion of action residual α\β which specifies what remains of the
action α once the action β is performed.

4On non-reactive programs, labelled bisimulation makes more distinctions than contextual bisimulation.
For instance, the latter identifies all the programs that do not L-suspend.

5The reader familiar with [22] will notice that, unlike in the π-calculus with rendez-vous communication, we
do not restrict the compatibility relation on input actions. This is because of the particular form of the input
action in the labelled transition system in table 1 where the input action does not actually force a program
to perform an input. We expect that a similar situation would arise in the π-calculus with asynchronous
communication.

11

Definition 16 (action residual) The residual operation α\β on actions is only defined if
α ↓ β and in this case it satisfies:

α\β =







τ if α = β

νt\t′sv if α = νt sv and β = νt′s′v′

α otherwise

Confluence is then about closing diagrams of compatible actions up to residuals and
semantic equivalence.

Definition 17 (confluence) We say that a program P is confluent, if for all its derivatives
Q:

Q
α
⇒ Q1, Q

β
⇒ Q2, α ↓ β

∃Q3, Q4 (Q1
β\α
⇒ Q3, Q2

α\β
⇒ Q4, Q3 ≈ Q4)

It often turns out that the following weaker notion of local confluence is much easier to
establish.

Definition 18 (local confluence) We say that a program is locally confluent, if for all its
derivatives Q:

Q
α
−→ Q1 Q

β
−→ Q2 α ↓ β

∃Q3, Q4 (Q1
β\α
⇒ Q3 Q2

α\β
⇒ Q4 Q3 ≈ Q4)

It is easy to produce programs which are locally confluent but not confluent. For instance,
A = s1 ⊕ B where B = s2 ⊕ A. However, one may notice that this program is not reactive.
Indeed, for reactive programs local confluence is equivalent to confluence.

Theorem 19 (1) A program is determinate iff it is confluent.

(2) A reactive program is determinate iff for all its derivatives Q:

Q
α
−→ Q1, Q

α
−→ Q2, α ∈ {τ,N}

∃Q3, Q4 (Q1
τ
⇒ Q3, Q2

τ
⇒ Q4, Q3 ≈ Q4)

The fact that confluent programs are determinate is standard and it essentially follows
from the observation that confluent programs are τ -inert. The observation that determinate
programs are confluent is specific of the Sπ-calculus and it depends on the remark that input
and output actions automatically commute with the other compatible actions.6

The part (2) of the theorem is proved as follows. First one notices that the stated condi-
tions are equivalent to local confluence (again relying on the fact that commutation of input
and output actions is automatic) and then following [11] one observes that local confluence
plus reactivity entails confluence.

We conclude this section by noticing a strong commutation property of τ actions that
suffices to entail τ -inertness and determinacy. The typable programs introduced in section 5
will enjoy this kind of property. Let

α
; be

α
−→ ∪Id where Id is the identity relation.

6We note that the commutation of the inputs arises in the π-calculus with asynchronous communication
too, while the commutation of the outputs is due to the fact that messages on signals unlike messages on

channels persist within an instant (for instance, in CCS, if P = a | a.b then P
a
−→ a.b, P

τ
−→ b, and there is no

way to close the diagram.

12

Proposition 20 A program is determinate if for all its derivatives Q:

Q
τ
−→ Q1, Q

τ
−→ Q2

∃Q′ (Q1
τ
; Q′, Q2

τ
; Q′)

Q
N
−→ Q1, Q

N
−→ Q2

Q1 ≈ Q2

This is proven by showing that the strong commutation of the τ -actions entails τ -inertness.

5 A typing system for determinacy

We refer to [27, 14] for general introductions to type systems for the π-calculus. Our contribu-
tion here is to adapt some of the ideas on usages to the specific framework of the Sπ-calculus.
Here are some issues that do not arise in the π-calculus: (i) the notion of usage may depend
on the instant, (ii) we have to deal with inductive types and set types (a kind of quotient
type), and (iii) in general the emission of a ‘linear’ resource on a signal destroys the linearity
since the emitted value can be received an arbitrary number of times.

Our analysis builds on theorem 19(2) according to which there are basically two situations
that need to be analysed in order to guarantee the determinacy of (reactive) programs. (1)
At least two distinct values compete to be received within an instant, for instance, consider:
sv1 | sv2 | s(x).P,K. (2) At the end of the instant, at least two distinct values are available
on a signal. For instance, consider: sv1 | sv2 | pause.A(!s).

In this section, we introduce a type system that avoids completely the first situation and
allows the second provided the behaviour of the continuation A does not depend on the order
in which the values are collected.

5.1 Usages, signals, and set types

In first approximation, we may regard a usage as an element of the set L = {0, 1,∞} with
the intuition that 0 corresponds to no usage at all, 1 to at most one usage, and ∞ to any
usage. We order usages as follows 0 < 1 < ∞, going from the most restrictive to the most
liberal one. We also add usages with a symmetric operation ⊕ which respects the order and
such that 0 ⊕ x = x, 1 ⊕ 1 = ∞, and ∞⊕ x = ∞.

A signal usage can be refined to include information about whether a signal is used (i)
to emit, (ii) to receive during the instant, or (iii) to receive at the end of the instant. Then
a usage becomes an element of L3. Further, a usage may depend on time, i.e., it can be
regarded as an infinite word over L3, namely an element of (L3)ω. We say that a usage is
uniform if it is invariant under time, i.e., it is represented by a word xω = x · x · · · x · · · with
x ∈ L3.

We will focus on certain uniform usages, however, to reason compositionally about them,
we are lead to introduce certain usages which are not uniform. For instance, a proof that a
given program uses a given signal at most once each instant, is naturally decomposed into a
proof that the signal is used at most once in the current instant and at most once in all the
following instants.

Within an instant, we consider the usages e = (∞, 0,∞), o1 = (1,∞,∞) and o0 =
(0,∞,∞). Over all instants, we introduce two main uniform usages: (i) oω

1 is a usage where
at most one value is emitted at each instant, and (ii) eω is a usage where no signal can be
read before the end of the instant. To reason about the first usage, we also introduce the 3

13

usages oω
0 , o1 · o

ω
0 , and o0 · o

ω
1 . Then the set U of usages is

U = {eω , oω
1 , oω

0 , o1 · o
ω
0 , o0 · o

ω
1 }

with generic elements u, u′, . . . We consider that the addition operation ⊕ is defined only if
the result is in the set U , e.g., oω

1 ⊕ oω
1 is undefined. If u ∈ U then ↑ u, the shift of u, is

the infinite word in U obtained from u by removing the first character (the shift is always
defined).

We assume that a signal type constructor carries the information u about signal usage and
write Sigu(σ). An important question, is whether a signal with usage u may carry a value
containing a signal with another usage u′. Previous work on linear typing suggests that not
all combinations are legal. For instance, one should not put on top of a type constructor with
‘linear information’ a ‘non-linear’ type constructor because then the linearity information is
lost. In our case, the usage (1,∞,∞)ω carries some linear information and this information
is not preserved if, for instance, we emit this signal along another signal with the same usage
because then the signal can be received (and used) an arbitrary number of times.7

Another issue to be considered is the type to be assigned to a dereferenced signal. If the
usage of the signal is oω

1 then the list of values at the end of the instant contains at most one
element and we can just assign a list type to the dereferenced signal. On the other hand, if
the usage is eω then the list may contain many elements and we need to make sure that the
processing of the list does not depend on the order of the elements of the list. For this reason,
we assign to the dereferenced signal a set type.

5.2 Types and type contexts

We summarise these considerations in a type system which enjoys two basic properties: (i) the
typing is preserved by labelled transitions as long as they are compatible with the typing and
(ii) a typable program P behaves ‘deterministically’ with respect to the actions τ and N . The
combination of these two properties and proposition 20 then entails that typable programs
are determinate. Moreover, the typing rules define a discipline to compose programs while
preserving determinacy. The language of types is defined as follows:

σ ::= 1 || List(σ) || Set(σ) || Sigu(σ) where u ∈ {eω, oω
0 }

ρ ::= σ || Sigu(σ) where u ∈ U

We denote with σ, σ′, . . . types that can be arbitrarily nested. In particular, Set(σ) is the
type of sets of values of type σ. We also denote with ρ, ρ′, . . . more general types that allow
certain special usages to appear at top level. The partial operation of addition ⊕ is extended
to types so that σ ⊕ σ = σ, Sigu(σ) ⊕ Sigu′(σ) = Sigu⊕u′(σ) if u ⊕ u′ is defined, and ρ ⊕ ρ′

is undefined otherwise. We call the σ types neutral since if ρ ⊕ σ is defined then it equals ρ.
We also say that a type ρ is uniform if it only contains uniform usages.

A type context (or simply a context) Γ is a partial function with finite domain dom(Γ)
from variables to types. An addition operation Γ1 ⊕ Γ2 on contexts is only defined if for all
x such that Γ1(x) = ρ1 and Γ2(x) = ρ2, the type ρ1 ⊕ ρ2 is defined. If this is the case then:

7An interesting question that we do not pursue here is what kind of usages do preserve linear information.
For instance, one possibility is to consider a usage such as (1, 1, 0)ω which corresponds to a signal where at
most one emission and one reception is performed at each instant.

14

(Γ1 ⊕ Γ2)(x) =















Γ1(x) ⊕ Γ2(x) if x ∈ dom(Γ1) ∩ dom(Γ2)
Γ1(x) otherwise, if x ∈ dom(Γ1)
Γ2(x) otherwise, if x ∈ dom(Γ2)
undefined otherwise

The shift operation is extended to contexts so that (↑ Γ)(x) = Sig(↑u)(σ) if Γ(x) = Sigu(σ)
and (↑ Γ)(x) = Γ(x) otherwise. We also denote with Γ, x : σ the context Γ extended with
the pair x : σ (so x /∈ dom(Γ)). We say that a context is neutral (uniform) if it assigns to
variables neutral (uniform) types.

5.3 Typing expressions and value equivalence

The rules for typing expressions with dereferenciation are as follows. We denote with k either
a constructor or a function symbol and we assume that its type is explicitly given. We may
label the constructor nil both with the types List(σ) and Set(σ) and the constructor cons
both with the types (σ,List(σ)) → List(σ) and (σ,Set(σ)) → Set(σ).

(var)
Γ neutral

Γ, x : ρ ⊢ x : ρ
(k)

Γ ⊢ ri : σi, i = 1, . . . , n, Γ′ neutral
k : (σ1, . . . , σn) → σ, k = f or k = c

Γ ⊕ Γ′ ⊢ k(r1, . . . , rn) : σ

(!Set)
u = eω, Γ neutral

Γ, s : Sigu(σ) ⊢!s : Set(σ)
(!List)

u = oω
0 , Γ neutral

Γ, s : Sigu(σ) ⊢!s : List(σ)

We define an equivalence relation ∼ρ on values as the least equivalence relation such that
s ∼Sigu(σ) s, ∗ ∼1 ∗, nil ∼List(σ) nil, and

cons(v1, v2) ∼List(σ) cons(u1, u2) if v1 ∼σ u1 and v2 ∼List(σ) u2 .
[v1; . . . ; vn] ∼Set(σ) [u1; . . . ; um] if {v1, . . . , vn} ∼Set(σ) {u1, . . . , um},
where: {v1, . . . , vn} ∼Set(σ) {u1, . . . , um} if for a permutation π, vi ∼σ uπ(i) .

We assume that each function symbol f , coming with a type (σ1, . . . , σn) → σ, respects
the typing in the following sense: (1) if vi ∼σi

ui, i = 1, . . . , n, f(v1, . . . , vn) ⇓ v and
f(u1, . . . , un) ⇓ u then v ∼σ u. (2) If Γ ⊢ vi : σi, for i = 1, . . . , n, and f(v1, . . . , vn) ⇓ v
then Γ ⊢ v : σ.

5.4 Typing programs

We assume that each signal name generation comes with its type whose usage can be either eω

or oω
1 . We also assume that each thread identifier A, defined by an equation A(x1, . . . , xn) = P ,

comes with a type (ρ1, . . . , ρn) where the types ρi are uniform for i = 1, . . . , n. We require that
A has the property that: (i) if vi ∼ρi

ui for i = 1, . . . , n then A(v1, . . . , vn) ≈ A(u1, . . . , un)

15

and (ii) x1 : ρ1, . . . , xn : ρn ⊢ P is derivable in the following typing system.

(0)
Γ neutral

Γ ⊢ 0
(out)

u ∈ {eω, o1o
ω
0 }, Γ ⊢ e : σ

Γ, s : Sigu(σ) ⊢ se

(ν)
u ∈ {eω, oω

1 },
Γ, s : Sigu(σ) ⊢ P
Γ ⊢ νs : Sigu(σ) P

(in)
u ∈ {oω

0 , o0o
ω
1 }, Γ, s : Sigu(σ), x : σ ⊢ P,

↑ (Γ, s : Sigu(σ)) ⊢ K
Γ, s : Sigu(σ) ⊢ s(x).P, K

(par)
Γi ⊢ Pi, i = 1, 2
Γ1 ⊕ Γ2 ⊢ P1 | P2

(rec)
A : (ρ1, . . . , ρn),

Γi ⊢ ri : ρi, i = 1, . . . , n
Γ1 ⊕ · · · ⊕ Γn ⊢ A(r1, . . . , rn)

(ms)
Γ ⊢ Pi, i = 1, 2

Γ ⊢ [s1 = s2]P1, P2
(mc)

c : (σ1, . . . , σn) → σ, Γ′ ⊢ u : σ, Γ ⊕ Γ′ = Γ
Γ, x1 : σ1, . . . , xn : σn ⊢ P1, Γ ⊢ P2

Γ ⊢ [u � c(x1, . . . , xn)]P1, P2

With reference to example 1, assume an inductive type State to represent the state of a
cell and let S1 = Sigeω(State) and L1 = List(S1). Then we can require: Cell : (State , S1, L1)
and Send : (State , S1, L1, L1). Because, the usage of the signals under consideration is
eω, the type of their dereferenciation is Set(State) and therefore we must require next :
(State ,Set(State)) → State , which means that the result of the function next must be invari-
ant under permutations of the list of (distinct) states.

With reference to example 2, we assume an inductive type D of data and let I = Sigoω

0
(D)

and O = Sigoω

1
(D). Then we can require: A : (I,O, I,O), C : (I,O, I,O), and C : (I,O). The

restricted signals s2, . . . , s5 take the type O and the overall system is well-typed with respect
to the context s1 : I, s6 : O. Note that the typing system guarantees determinacy by making
sure that at every instant at most one value is emitted on every signal. One could consider
a more refined type system that guarantees that exactly one value is emitted on a signal at
every instant.

With reference to example 3, assume an inductive type D of data and let S1 = Sigu(D),
req : (Sigu(D),D) → Req , and S2 = Sigeω(Req). Note that in our type system we are
forced to take u = eω, otherwise the types are not well-formed. Then we could type the
server assuming: Server : S2 and Handle : (S2,Set(Req)). However, the usage u = eω is
incompatible with the definition of the client, as it can receive the result during an instant. It
appears that in order to type the client we need to introduce several new ‘linear’ types. First,
the signal on which the client waits for a reply should allow at most one emission per instant
and second each request should be received and handled at most once. The development of
such system appears to be feasible but beyond the scope of the present paper.

5.5 Formal properties of the typing system

We omit some preliminary results on weakening and substitution properties. The following
proposition states how the typing is preserved by labelled transitions (we omit the cases for
the auxiliary actions).

Proposition 21 (subject reduction) Suppose Γ ⊢ P . Then:

(1) If P
sv
−→ P ′, Γ′ ⊢ sv, and Γ ⊕ Γ′ is defined then Γ ⊕ Γ′ ⊢ P ′.

(2) If P
νt:ρsv
−−−−→ P ′ then Γ, t : ρ ⊢ P ′.

16

(3) If P
τ
−→ P ′ then Γ ⊢ P ′.

(4) If P
N
−→ P ′ then ↑ (Γ) ⊢ P ′.

One can summarize this property by saying that labelled transitions preserve the typing
provided that the input transitions are compatible with the hypotheses in the context. In
particular, an input transition on the signal s is disallowed whenever the usage of s in Γ is
either oω

1 or o1o
ω
0 . Next we observe that typable programs have strong confluence properties

with respect to τ and N transitions.

Proposition 22 Suppose Γ ⊢ P and P
α
−→ Pi, for i = 1, 2.

(1) If α = τ then ∃Q (Pi
τ
; Q).

(2) If α = N then P1 ≈ P2.

In the proof of (1), the only interesting case arises when the two τ reductions are generated
by a synchronisation. However, the typing forbids situations such as: se | se′ | s(x).P,K. The
only possible super-position is of the form: se | s(x).P,K | s(x).P ′,K ′. But this is innocuous
because the emitted signal persists.

The proof of (2), relies on the observation that the only essential difference between P1

and P2 is in the order in which values emitted on a signal, say s, are collected at the end of
the instant. If s has a linear usage, then at most one value can be emitted on it and therefore
there is only one possible ordering. On the other hand, if s has a usage eω then !s has a
set-type which forces a processing which is order-independent.

Now we would like to conclude that a typable program is determinate, but we have to give
a careful interpretation to this statement. A typable program is a program P typable in a
context Γ and then the labelled transitions that we consider in the definitions of determinacy
and (local) confluence are only those compatible with the context Γ. One can check that
proposition 20 still holds in this restricted framework. Then this result coupled with the
proposition 22 entails the following result.

Theorem 23 (typability implies determinacy) If the program P is typable in the context
Γ then Γ ⊢ P is determinate.

6 Conclusion

We have developed a framework to analyse the determinacy of programs in a synchronous
π-calculus. First, we have characterised a relevant contextual bisimulation as a standard
bisimulation over a modified labelled transition system. Second, we have studied the notion
of confluence which turns out to be equivalent to determinacy, and we have shown that
under reactivity, confluence reduces to a simple form of local confluence. Third, we have
engineered a typing system that guarantees a form of strong confluence and is preserved by
the labelled transition system. To achieve this goal we have adapted to our framework ideas
on resource usage, linearity, and quotient types. The resulting type system provides a static
and compositional analysis to check the determinacy of programs.

17

References

[1] R. Amadio. The SL synchronous language, revisited. Journal of Logic and Algebraic Programming,
70:121-150, 2007.

[2] R. Amadio. A synchronous π-calculus. Information and Computation, in press. Also available as Technical
report, Université Paris 7, June 2006.

[3] R. Amadio, G. Boudol, F. Boussinot and I. Castellani. Reactive programming, revisited. In Proc.
Workshop on Algebraic Process Calculi: the first 25 years and beyond, Electronic Notes in Theoretical
Computer Science, 162:49-60, 2006.

[4] R. Amadio, I. Castellani and D. Sangiorgi. On bisimulations for the asynchronous π-calculus. In Theo-
retical Computer Science, 195:291-324, 1998.

[5] R. Amadio, F. Dabrowski. Feasible reactivity in a synchronous π-calculus. In Proc. ACM SIGPLAN
Symp. on Principles and Practice of Declarative Programming, 2007.

[6] G. Berry and G. Gonthier. The Esterel synchronous programming language. Science of computer pro-
gramming, 19(2):87–152, 1992.

[7] F. Boussinot. Reactive C: An extension of C to program reactive systems. Software Practice and Experi-
ence, 21(4):401–428, 1991.

[8] F. Boussinot and R. De Simone. The SL synchronous language. IEEE Trans. on Software Engineering,
22(4):256–266, 1996.

[9] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. Lustre: A declarative language for programming
synchronous systems. In Proc. ACM-POPL, pp 178-188, 1987.

[10] S. Edwards and O. Tardieu. SHIM: A deterministic model for heterogeneous embedded systems. IEEE
Transactions on Very Large Scale Integration Systems, 14(8), 2006.

[11] J. Groote, M. Sellink. Confluence for process verification. Theor. Comput. Sci. 170(1-2):47-81, 1996.

[12] K. Honda and M. Tokoro. On asynchronous communication semantics. In Object-based concurrent com-
puting, SLNCS 612, 1992.

[13] K. Honda and N. Yoshida. On reduction-based process semantics. In Theoretical Computer Science,
151(2):437-486, 1995.

[14] N. Kobayashi. Type systems for concurrent programs. In Proc. 10th Anniversary Colloquium of
UNU/IIST, Springer LNCS 2757, 2003.

[15] N. Kobayashi, B. Pierce, and D. Turner. Linearity and the pi-calculus. ACM Transactions on Programming
Languages and Systems (TOPLAS), 21(5), 1999.

[16] C. Lee, N. Jones, A. Ben-Amram. The size-change principle for program termination. In Proc. ACM-
POPL, 2004.

[17] L. Mandel and M. Pouzet. ReactiveML, a reactive extension to ML. In Proc. ACM Principles and Practice
of Declarative Programming, pages 82–93, 2005.

[18] R. Milner. Communication and concurrency. Prentice-Hall, 1989.

[19] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts 1-2. Information and Compu-
tation, 100(1):1–77, 1992.

[20] M. Newman. On theories with a combinatorial definition of equivalence. Annals of Mathematics,
43(2):223–243, 1942.

[21] U. Nestmann. On determinacy and nondeterminacy in concurrent programming. PhD thesis, Universität
Erlangen, 1996.

[22] A. Philippou and D. Walker. On confluence in the π-calculus. In Proc. ICALP, pp 314-324, SLNCS 1256,
1997.

[23] Reactive programming, INRIA, Mimosa Project. http://www-sop.inria.fr/mimosa/rp.

[24] V. Saraswat, R. Jagadeesan, and V. Gupta. Timed default concurrent constraint programming. In Journal
of Symbolic computation, 22(5,6) 475-520, 1996.

[25] V. Saraswat, R. Jagadeesan, A. Solar-Lezama, and C. von Praun. Determinate imperative programming:
a clocked interpretation of imperative syntax. Draft, 2006.

18

http://www-sop.inria.fr/mimosa/rp

[26] M. Serrano, F. Boussinot, and B. Serpette. Scheme fair threads. In Proc. ACM Principles and practice
of declarative programming, pages 203-214, 2004.

[27] D. Sangiorgi and D. Walker. The π-calculus. Cambridge University Press, 2001.

[28] R. Thiemann, J. Giesl. The size-change principle and dependency pairs for termination of term rewriting.
In Applicable Alg. in Eng., Com., and Comp., in press.

A Basic properties of labelled bisimulation

We collect some basic properties of the notion of labelled bisimulation. First, we consider a
standard variation of the definition 6 of bisimulation where transitions are weak on both sides
of the bisimulation game.

Definition 24 (w-bisimulation) A symmetric relation R on programs is a w-bisimulation
if

P R Q, P
α
⇒ P ′, bn(α) ∩ fn(Q) = ∅

∃Q′ (Q
α
⇒ Q′, P ′ R Q′)

We denote with ≈w the largest w-bisimulation.

With respect to this modified definition we introduce the usual notion of bisimulation up
to bisimulation.8

Definition 25 (w-bisimulation up to w-bisimulation) A symmetric relation R on pro-
grams is a w-bisimulation up to w-bisimulation if

P R Q, P
α
⇒ P ′, bn(α) ∩ fn(Q) = ∅

∃Q′ (Q
α
⇒ Q′, P ′ ≈w ◦ R ◦ ≈w Q′)

We denote with ≈w the largest w-bisimulation.

Proposition 26 (1) The relation ≈ is an equivalence relation.

(2) The relations ≈ and ≈w coincide.

(3) If R is a w-bisimulation up to w-bisimulation then R ⊆≈w.

Proof. (1) The identity relation is a labelled bisimulation and the union of symmetric
relations is symmetric. To check transitivity, we prove that ≈ ◦ ≈ is a labelled bisimulation
by standard diagram chasing.

(2) By definition a w-bisimulation is a labelled bisimulation, therefore ≈w⊆≈. To show the
other inclusion, prove that ≈ is a w-bisimulation again by a standard diagram chasing.

(3) First note that by (1) and (2), it follows that the relation ≈w is transitive. Then one
shows that if R is a w-bisimulation up to w-bisimulation then the relation ≈w ◦ R ◦ ≈w is a
w-bisimulation. 2

8We recall that it is important that this notion is defined with respect to w-bisimulation. Indeed, proposition
26(3) below fails if w-bisimulation is replaced by bisimulation.

19

A.1 Structural equivalence

In the diagram chasing arguments, it will be convenient to consider programs up to a notion of
‘structural equivalence’. This is the least equivalence relation ≡ such that (1) ≡ is preserved
by static contexts, (2) parallel composition is associative and commutative, (3) νs (P | Q) ≡
νs P | Q if s /∈ fn(Q), (4) sv | sv ≡ sv, and (5) se ≡ sv if e ⇓ v. One can check for the
different labelled transition systems we consider that equivalent programs generate exactly
the same transitions and that the programs to which they reduce are again equivalent.

B Proof of theorem 12

We start with the labelled transition system defined in table 1 and the notion of bisimulation
in definition 6. In table 2, we incrementally modify the labelled transition system and/or the
conditions in the bisimulation game. This leads to three equivalent characterisations of the
notion of bisimulation. We prove this fact step by step.

Lemma 27 The bisimulation ≈ coincides with the bisimulation ≈1.

Proof. The only difference here is in the rule (inaux), the bisimulation conditions being
the same. Now this rule produces an action s?v and the latter is an auxiliary action that is
used to produce the relevant action τ thanks to the rule (synch). A simple instance of the
difference follows. Suppose P = se | s(x).Q,K and e ⇓ v. Then:

P
τ
−→ se | [v/x]Q = P ′ and P

τ
−→1 se | ([v/x]Q | sv) = P ′′ .

In the Sπ-calculus, we do not distinguish the situations where the same value is emitted once
or more times within the same instant. In particular, P ′ and P ′′ are structurally equivalent
(cf. section A.1). 2

Next, we focus on the relationships between the labelled transitions systems
act
−−→1 and

act
−−→2.

In
act
−−→2, the rule (in) is removed and in the rule (inaux), the label s?v is replaced by the label

sv (hence the auxiliary action s?v is not used in this labelled transition system).

Lemma 28 (1) If P
act
−−→1 P ′ and act 6= sv then P

act ′
−−→2 P ′ where act ′ = sv if act = s?v,

and act ′ = act otherwise.

(2) If P
act
−−→2 P ′ then P

act ′
−−→1 P ′ where act ′ = s?v if act = sv, and act ′ = act otherwise.

We also notice that 1-bisimulation is preserved by parallel composition with an emission.

Lemma 29 If P ≈1 Q then (P | sv) ≈1 (Q | sv).

Proof. Let R′ = {((P | sv), (Q | sv)) | P ≈1 Q} and R = R′∪ ≈1. We show that R is
a 1-bisimulation. Suppose (P | sv)

α
−→1 · and P ≈1 Q. There are two interesting cases to

consider.

(α = τ) Suppose (P | sv)
τ
−→1 (P ′ | sv) because P

s?v
−−→1 P ′. By definition of the lts, we have

that P
sv
−→1 (P | sv)

τ
−→1 (P ′ | sv). By definition of 1-bisimulation, Q

sv
⇒1 (Q′′ | sv)

τ
⇒1 (Q′ |

sv) and (P ′ | sv) ≈1 (Q′ | sv). We conclude, by noticing that then (Q | sv)
τ
⇒1 (Q′ | sv).

20

(α = N) Suppose (P | sv)
N
−→1 P ′. Then also P

sv
−→1 (P | sv)

N
−→1 P ′. By definition of

1-bisimulation, Q
sv
⇒1 (Q′′ | sv)

N
⇒1 Q′ and P ′ ≈1 Q′. We conclude by noticing that then

(Q | sv)
N
⇒1 Q′. 2

Lemma 30 The bisimulation ≈1 coincides with the bisimulation ≈2.

Proof. (≈1⊆≈2) We check that ≈1 is a 2-bisimulation. If α = sv then we apply lemma 29.
Otherwise, suppose α 6= sv, P ≈1 Q, and P

α
−→2 P ′. By lemma 28(2), P

α
−→1 P ′. By definition

of 1-bisimulation, ∃Q′ Q
α
⇒1 Q′, P ′ ≈1 Q′. By lemma 28(1), Q

α
⇒2 Q′.

(≈2⊆≈1) We check that ≈2 is a 1-bisimulation. If α = sv and P
sv
−→1 (P | sv) then by

definition of the lts, Q
sv
−→1 (Q | sv). Moreover, by definition of 2-bisimulation, (P | sv) ≈2

(Q | sv).
Otherwise, suppose α 6= sv, P ≈2 Q, and P

α
−→1 P ′. By lemma 28(1), P

α
−→2 P ′. By

definition of 2-bisimulation, ∃Q′ Q
α
⇒2 Q′, P ′ ≈2 Q′. By lemma 28(2), Q

α
⇒1 Q′. 2

Next we move to a comparison of 2 and 3 bisimulations. Note that both definitions share
the same lts denoted with

α
−→2. First we remark the following.

Lemma 31 (1) If P ≈2 Q and P
N
−→ P ′ then ∃Q′, Q′′ (Q

τ
⇒2 Q′′, Q′′ N

−→ Q′, P ≈2 Q′′, P ′ ≈2

Q′).

(2) If P ≈3 Q then (P | sv) ≈3 (Q | sv).

Proof. (1) If P
N
−→ P ′ then P cannot perform τ moves. Thus if P ≈2 Q and Q

τ
⇒2 Q′′ then

necessarily P ≈2 Q′′.

(2) We follow the pattern of lemma 29. Let R′ = {((P | sv), (Q | sv)) | P ≈1 Q} and
R = R′∪ ≈1. We show that R is a 3-bisimulation. Suppose (P | sv)

α
−→1 · and P ≈3 Q.

There are two interesting cases to consider.

(α = τ) Suppose (P | sv)
τ
−→2 (P ′ | sv) because P

sv
−→2 P ′. By definition of 3-bisimulation,

either (i) Q
sv
⇒2 Q′ and P ′ ≈3 Q′ or (ii) Q

τ
⇒2 Q′ and P ′ ≈3 (Q′ | sv). In case (i), (Q | sv)

τ
⇒

(Q′ | sv) and we notice that ((P ′ | sv), (Q′ | sv)) ∈ R. In case (ii), (Q | sv)
τ
⇒ (Q′ | sv) and

we notice that (P ′ | sv, (Q′ | sv) | sv) ∈ R and (Q′ | sv) | sv) ≡ (Q′ | sv).

(α = N) Suppose ((P | sv) | S)
N
−→ P ′. By definition of 3-bisimulation, taking S′ = (sv | S)

(Q | S′)
τ
⇒ Q′′ N

−→ Q′, (P | S′) ≈3 Q′′, and P ′ ≈3 Q′. 2

Lemma 32 The bisimulation ≈2 coincides with the bisimulation ≈3.

Proof. (≈2⊆≈3) We show that ≈2 is a 3-bisimulation. We look first at the condition for the
input. Suppose P ≈2 Q and P

sv
−→2 P ′. By definition of 2-bisimulation, (P | sv) ≈2 (Q | sv).

Also (P | sv)
τ
−→2 (P ′ | sv) ≡ P ′. By definition of 2-bisimulation, (Q | sv)

τ
⇒ (Q′ | sv) and

P ′ ≡ (P ′ | sv) ≈2 (Q′ | sv). Two cases may arise.

(1) If Q
sv
⇒ Q′ then Q′ | sv ≡ Q′ and we satisfy the first case of the input condition for

3-bisimulation.

(2) If Q
τ
⇒ Q′ then, up to structural equivalence, we satisfy the second case of the input

condition for 3-bisimulation.

21

Next we consider the condition for the end of the instant. Suppose P ≈2 Q, S = s1v1 | · · · |

snvn, and (P | S)
N
−→2 P ′. By condition (Inp), (P | S) ≈2 (Q | S). Then, by lemma 31(1),

the condition of 3-bisimulation is entailed by the corresponding condition for 2-bisimulation
applied to (P | S) and (Q | S).

(≈3⊆≈2) We show that ≈3 is a 2-bisimulation. The condition (Inp) holds because of lemma
31(2). The condition of 2-bisimulation for the end of the instant is a special case of the
condition for 3-bisimulation where we take S empty. 2

In [2], the contextual bisimulation in definition 11 is characterised as a variant of the
bisimulation ≈3 where the condition for the output is formulated as follows:

P R Q, P ⇓L, P
νt sv
−−−→2 P ′, {t} ∩ fn(Q) = ∅

Q
νt sv
⇒2 Q′, P ′ R Q′

Clearly, if P is a reactive program then P ⇓L. Also note that the definition 5 of reactive
program refers to the labelled transition system 1 for which it holds that P

sv
−→ (P | sv).

Therefore, if P is reactive then (P | sv) is reactive too and if we start comparing two reactive
programs then all programs that have to be considered in the bisimulation game will be
reactive too. This means that on reactive programs the condition P ⇓L is always satisfied
and therefore that the bisimulation ≈3 coincides with the labelled bisimulation considered in
[2].

Remark 33 (on determinacy and divergence) One may notice that the notions of la-
belled bisimulation and contextual bisimulation we have adopted are only partially sensitive
to divergence. Let Ω = τ.Ω be a looping program. Then Ω 6≈C 0 since 0 may suspend while Ω
may not. On the other hand, consider a program such as A = τ.A ⊕ τ.0. Then A ≈ 0 and
therefore A ≈C 0 and we are lead to conclude that A is a determinate program. However,
one may also argue that A is not determinate since it may either suspend or loop. In other
words, determinacy depends on the notion of semantic equivalence we adopt. If the latter is
not sensitive enough to divergence then the resulting notion of determinacy should be regarded
as a partial property of programs, i.e., it holds provided programs terminate. In practice, these
distinctions do not seem very important because, as we have already argued, reactivity is a
property one should always require of synchronous programs and once reactivity is in place
the distinctions disappear.

C Proof of theorem 19 and proposition 20

First, relying on proposition 26(3), one can repeat the proof in [18] that confluence implies
τ -inertness and determinacy.

Proposition 34 If a program is confluent then it is τ -inert and determinate.

Proof. Let S = {(P,P ′) | P confluent and P
τ
⇒ P ′} and define R = S ∪S−1. We show that

R is a w-bisimulation up to w-bisimulation (cf. lemma 26(3)). Clearly R is symmetric. Then
suppose P confluent and P

τ
⇒ Q (the case where Q reduces to P is symmetric). If Q

α
⇒ Q1

then P
α
⇒ Q1 and Q1 R Q1. On the other hand, if P

α
⇒ P1 then by confluence there are

P2, Q1 such that P1
τ
⇒ P2, Q

α
⇒ Q1, and P2 ≈ Q1. Thus P1 R ◦ ≈ Q1.

22

Therefore if P is confluent and P
τ
⇒ P ′ then P ≈ P ′. Also recall that if Q is a derivative

of P then Q is confluent. Thus we can conclude that if P is confluent then it is τ -inert.
Next, we show that:

P1 ≈ P2, P1
α
⇒ P3, P2

α
⇒ P4

P3 ≈ P4
.

By definition of bisimulation, ∃P5 (P2
α
⇒ P5, P3 ≈ P5). By confluence, ∃P6, P7 (P5

τ
⇒

P6, P4
τ
⇒ P7, P6 ≈ P7). By τ -inertness and transitivity, P3 ≈ P4.

Finally, we can iterate this observation to conclude that if P
α1⇒ · · ·

αn⇒ P1 and P
α1⇒ · · ·

αn⇒
P2 then P1 ≈ P2. 2

We pause to point-out the particular properties of the input and output actions in the

labelled transition system in table 1. It is easily verified that if P
νtsv
−−−→ P ′ then P ≡ νt(sv |

P ′′) and P ′ ≡ (sv | P ′′). This entails that in the following lemma the cases that involve an
output action are actually general up to structural equivalence.

Lemma 35 (input-output commutations)

(in − τ)
P

sv
−→ (P | sv), P

τ
−→ P ′

(P | sv)
τ
−→ (P ′ | sv), P ′ sv

−→ (P ′ | sv)

(in − in)

P
sv
−→ (P | sv), P

s′v′

−−→ (P | s′v′)

(P | sv)
s′v′

−−→ (P | sv) | s′v′, (P | s′v′)
sv
−→ (P | s′v′) | sv,

(P | sv) | s′v′ ≡ (P | s′v′) | sv

(out − τ)
νt(sv | P)

νt sv
−−−→ (sv | P), νt(sv | P)

τ
−→ νt(sv | P ′)

(sv | P)
τ
−→ (sv | P ′), νt(sv | P ′)

νt sv
−−−→ (sv | P ′)

(out − in)
νt(sv | P)

νt sv
−−−→ (sv | P), νt(sv | P)

s′v′

−−→ νt(sv | P) | s′v′

(sv | P)
s′v′

−−→ (sv | P) | s′v′, νt(sv | P) | s′v′
νt sv
−−−→ (sv | P) | s′v′

(out − out)

νt(s1v1 | s2v2 | P)
νt1 s1v1−−−−−−→ νt\t1 (s1v1 | s2v2 | P),

νt(s1v1 | s2v2 | P)
νt2 s2v2−−−−−−→ νt\t2 (s1v1 | s2v2 | P)

νt\t1 (s1v1 | s2v2 | P)
νt\t1 s2v2

−−−−−−−→ (s1v1 | s2v2 | P),

νt\t2 (s1v1 | s2v2 | P)
νt\t2 s2v2

−−−−−−−→ (s1v1 | s2v2 | P)

Note that, up to symmetry (and structural equivalence), the previous lemma covers all
possible commutations of two compatible actions α, β but the 2 remaining cases where α = β
and α ∈ {τ,N}.

Proposition 36 If a program is deterministic then it is confluent.

Proof. We recall that if P is deterministic then it is τ -inert. Suppose Q is a derivative of

P , α ↓ β, Q
α
⇒ Q1 and Q

β
⇒ Q2.

If α = β then the definition of determinacy implies that Q1 ≈ Q2. Also note that
α\β = β\α = τ and Qi

τ
⇒ Qi for i = 1, 2. So the conditions for confluence are fulfilled.

23

So we may assume α 6= β and, up to symmetry, we are left with 5 cases corresponding to
the 5 situations considered in lemma 35.

In the 2 cases where β = τ we have that Q ≈ Q2 by τ -inertness. Thus, by bisimulation
Q2

α
⇒ Q3 and Q1 ≈ Q3. Now α\τ = α, τ\α = τ , and Q1

τ
⇒ Q1. Hence the conditions for

confluence are fulfilled.
We are left with 3 cases where α and β are distinct input or output actions. By using

τ -inertness, we can focus on the case where Q
α
⇒ Q1 and Q

β
−→ Q′

2
τ
⇒ Q2. Now, by iterating

the lemma 35, we can prove that:

Q (
τ
−→)n Q′

1, n ≥ 1, Q
β
−→ Q′

2

∃Q′′
2 (Q′

1
β
−→ Q′′

2, Q′
2 (

τ
−→)n Q′′

2)
.

So we are actually reduced to consider the situation where Q
α
−→ Q′

1
τ
⇒ Q1 and Q

β
−→ Q′

2
τ
⇒ Q2.

But then by lemma 35, we have: Q′
1

β\α
−−→ Q3, Q′

2

α\β
−−→ Q4, and Q3 ≡ Q4. Then using τ -

inertness and bisimulation, it is easy to close the diagram. 2

This concludes the proof of the first part of the theorem (19(1)). To derive the second
part, we rely on the following result due to [11].

Theorem 37 ([11]) If a program is reactive and locally confluent then it is confluent.

Thus to derive the second part of the theorem (19(2)) it is enough to prove.

Proposition 38 A program is locally confluent if (and only if) for all its derivatives Q:

Q
α
−→ Q1, Q

α
−→ Q2, α ∈ {τ,N}

Q1
τ
⇒ Q3 Q2

τ
⇒ Q4 Q3 ≈ Q4

Proof. The stated condition is a special case of local confluence thus it is a necessary
condition. To show that it is sufficient to entail local confluence, it is enough to appeal again
to lemma 35 (same argument given at the end of the proof of proposition 36). 2

Proof of proposition 20 Say that P is strong confluent if it satisfies the hypotheses
of proposition 20. Let S = {(P,Q) | P strong confluent and (P ≡ Q or P

τ
−→ Q)}. Let

R = S ∪S−1. We show that R is a bisimulation. Hence strong confluence entails τ -inertness.
Note that if P

α
−→ Pi, for i = 1, 2, and α is either an input or an output action then P1 ≡ P2.

By lemma 35 and diagram chasing, we show that if P is strong confluent and P
α
⇒ Pi, for

i = 1, 2, then P1 ≈ P2. This suffices to show that P is determinate (and confluent). 2

D Proof of theorem 23

D.1 Preliminaries

We note that if Γ ⊕ Γ′ is defined and Γ′ is neutral then Γ ⊕ Γ′ is just an extension of Γ with
neutral assignments. In other terms, we can decompose Γ′ in Γ′

1,Γ
′
2 and write Γ⊕Γ′ as Γ,Γ′

2.
The typing rules are formulated so that the linear hypotheses, i.e., those of the shape s : ρ

where ρ is not neutral, must be used in the typing (note that this does not imply that these

24

resources will actually be used in the computation). Therefore, if judgments of the shape
Γ ⊢ r : σ or Γ, s : ρ ⊢ s : ρ are derivable then Γ is a neutral context. In particular, expressions
of neutral type can only be typed with a neutral context.

We remark that the typing judgments can always be weakened by extending them with a
neutral context.

Lemma 39 (weakening) Suppose Γ,Γ′ are contexts such that dom(Γ) ∩ dom(Γ′) = ∅ and
Γ′ is a neutral context. Then:

(1) If Γ ⊢ r : ρ then Γ,Γ′ ⊢ r : ρ.

(2) If Γ ⊢ P then Γ,Γ′ ⊢ P .

Proof. In both cases we proceed by induction on the proof of the typing judgment.

(1) (var) From Γ1, x : ρ ⊢ x : ρ with Γ1 neutral, we derive Γ1, x : ρ,Γ′ ⊢ x : ρ since Γ′ is
neutral too.

(k) Suppose Γ⊕Γ′′ ⊢ k(r) : σ with Γ′′ neutral. Then Γ′′ can be decomposed in Γ′′
1,Γ

′′
2 so that

Γ ⊕ Γ′′ = Γ,Γ′′
1 . But then (Γ ⊕ Γ′′),Γ′ ⊢ k(r) : σ.

(!Set) If Γ′′, s : Sigu(σ) ⊢!s : List(σ) with Γ′′ neutral then Γ′′,Γ′, s : Sigu(σ) ⊢!s : List(σ).

(!List) Same argument as in the previous case.

(2) (0) If Γ ⊢ 0 then Γ is neutral and since Γ′ is neutral too then Γ,Γ′ ⊢ 0.

(out) Suppose Γ, s : Sigu(σ) ⊢ se. Then Γ ⊢ e : σ. By (1), Γ,Γ′ ⊢ e : σ. Hence Γ,Γ′, s :
Sigu(σ) ⊢ se.

(ν) Suppose Γ ⊢ νs : Sigu(σ) P . Then Γ, s : Sigu(σ) ⊢ P and by inductive hypothesis,
Γ, s : Sigu(σ),Γ′ ⊢ P . Hence Γ,Γ′ ⊢ νs : Sigu(σ) P .

(in) Suppose Γ1, s : Sigu(σ) ⊢ s(x).P,K. Then Γ1, s : Sigu(σ), x : σ ⊢ P and ↑ (Γ1, s :
Sigu(σ)) ⊢ K. By inductive hypothesis, Γ1, s : Sigu(σ), x : σ,Γ′ ⊢ P and ↑ (Γ1, s :
Sigu(σ)),Γ′ ⊢ K. Since Γ′ is neutral, ↑ Γ′ = Γ′. Therefore ↑ (Γ1, s : Sigu(σ)),Γ′ =↑ (Γ1, s :
Sigu(σ),Γ′), and by applying the typing rule (in) we conclude that Γ1, s : Sigu(σ),Γ′ ⊢
s(x).P,K.

(par) Suppose Γ1⊕Γ2 ⊢ P1 | P2 with Γi ⊢ Pi, for i = 1, 2. By inductive hypothesis, Γi,Γ
′ ⊢ Pi,

for i = 1, 2. Then (Γ1 ⊕Γ2),Γ
′ ⊢ P1 | P2, noticing that (Γ1,Γ

′)⊕ (Γ2,Γ
′) = (Γ1 ⊕Γ2),Γ

′ since
Γ′ is neutral.

(rec) Suppose Γ1⊕· · ·⊕Γn ⊢ A(r1, . . . , rn), with A : (ρ1, . . . , ρn), Γi ⊢ ri : ρi, for i = 1, . . . , n.
By inductive hypothesis, Γi,Γ

′ ⊢ ri : ρi. Again, noticing that Γ′ is neutral we can conclude
that (Γ1 ⊕ · · · ⊕ Γn),Γ′ ⊢ A(r1, . . . , rn).

(ms) Suppose Γ ⊢ [s1 = s2]P1, P2, with Γ ⊢ Pi, for i = 1, 2. By inductive hypothesis,
Γ,Γ′ ⊢ Pi, for i = 1, 2. Therefore, Γ,Γ′ ⊢ [s1 = s2]P1, P2

(mc) Suppose Γ ⊢ [u � c(x)]P1, P2, with c : (σ1, . . . , σn) → σ, Γ′′ ⊕ Γ = Γ, Γ′′ ⊢ u : σ, Γ, x1 :
σ1, . . . , xn : σn ⊢ P1, and Γ ⊢ P2. By inductive hypothesis, Γ, x1 : σ1, . . . , xn : σn,Γ′ ⊢ P1,
and Γ,Γ′ ⊢ P2. Moreover, Γ′′ ⊕ (Γ,Γ′) = Γ,Γ′. Therefore, Γ,Γ′ ⊢ [u � c(x)]P1, P2. 2

Next we study how typing is preserved by the substitution of a value for a variable.

25

Lemma 40 (substitution) (1) If Γ, s : ρ ⊢ s : ρ and s′ /∈ dom(Γ) then Γ, s′ : ρ ⊢ s′ : ρ.

(2) If Γ, x : σ ⊢ r : ρ, Γ′ ⊢ v : σ and Γ ⊕ Γ′ is defined then Γ ⊕ Γ′ ⊢ [v/x]r : ρ.

(3) If Γ, s : ρ ⊢ P and s′ /∈ dom(Γ) then Γ, s′ : ρ ⊢ [s′/s]P .

(4) If Γ, x : σ ⊢ P , Γ′ ⊢ v : σ and Γ ⊕ Γ′ is defined then Γ ⊕ Γ′ ⊢ [v/x]P .

Proof. (1) By the definition of the (var) typing rule.

(2) By induction on the typing of r.

(var) Suppose Γ, x : σ ⊢ y : ρ. We distinguish two cases.

(x = y) Then the judgment is Γ, x : σ ⊢ x : σ with Γ neutral. Then [v/x]x = v and Γ′ ⊢ v : σ
imply Γ ⊕ Γ′ ⊢ v : σ by the weakening lemma 39(1).

(x 6= y) The judgment is Γ, y : ρ, x : σ ⊢ y : ρ with Γ neutral. Then (Γ, y : ρ) ⊕ Γ′ ⊢ y : ρ.

(k) Suppose Γ, x : σ,Γ′′ ⊢ k(r1, . . . , rn) : σ. Then, by the typing rule (k) and weakening we
can suppose Γ, x : σ,Γ′′ ⊢ ri : σi, for i = 1, . . . , n. By inductive hypothesis, (Γ,Γ′′) ⊕ Γ′ ⊢
[v/x]ri : σi. Then (Γ,Γ′′) ⊕ Γ′ ⊢ [v/x]k(r1, . . . , rn) : σ.

(!Set) Suppose Γ, x : σ′ ⊢!s : Set(σ). We distinguish two cases.

(x = s) Then the judgments have the form Γ, s : Sigu(σ) ⊢!s : Set(σ) and Γ′, s′ : Sigu(σ) ⊢
s′ : Sigu(σ) with Γ and Γ′ neutral. Then (Γ ⊕ Γ′), s′ : Sigu(σ) ⊢!s′ : Set(σ).

(!List) Same argument as in the previous case applies.

(3) By induction on the typing of P .

(0) If Γ, s : ρ ⊢ 0 and s′ /∈ dom(Γ) then Γ, s′ : ρ ⊢ 0.

(out) Suppose Γ, s : ρ ⊢ s′′e. We distinguish two cases.

(s = s′′) Then [s′/s](s′′e) = s′e and Γ, s′ : ρ ⊢ s′e.

(s 6= s′′) Then [s′/s](s′′e) = s′′[s′/x]e and Γ = Γ′, s′′ : ρ′′. Since Γ′, s : ρ ⊢ e : σ, by (1),
Γ′, s′ : ρ ⊢ [s′/s]e : σ. Therefore Γ′, s′ : ρ, s′′ : ρ′′ ⊢ s′′[s′/x]e.

(ν) Suppose Γ, s : ρ ⊢ νt : ρ′ P and s′ /∈ dom(Γ). Then Γ, s : ρ, t : ρ′ ⊢ P . By inductive
hypothesis, Γ, s′ : ρ, t : ρ′ ⊢ [s′/s]P . Hence Γ, s′ : ρ ⊢ νt : ρ′[s′/s]P .

(in) Suppose Γ, s : ρ ⊢ s′′(x).P,K and s′ /∈ dom(Γ). We distinguish two cases.

(s = s′′) Then ρ = Sigu(σ), Γ, s : ρ, x : σ ⊢ P , and ↑ (Γ, s : ρ) ⊢ K. By inductive hypothesis,
Γ, s′ : ρ, x : σ ⊢ [s′/s]P and ↑ (Γ, s′ : ρ) ⊢ [s′/s]K. Then Γ, s′ : ρ ⊢ [s′/s](s(x).P,K)

(s 6= s′′) Then Γ = Γ′, s′′ : Sigu(σ), Γ, s : ρ, x : σ ⊢ P , ↑ (Γ, s : ρ) ⊢ K. By inductive hypoth-
esis, Γ, s′ : ρ, x : σ ⊢ [s′/s]P and ↑ (Γ, s′ : ρ) ⊢ [s′/s]K. Then Γ, s′ : ρ ⊢ [s′/s](s′′(x).P,K).

(par) Suppose Γ, s : ρ ⊢ P1 | P2 and s′ /∈ dom(Γ), with (Γ1, s : ρ1) ⊕ (Γ2, s : ρ2) = Γ, s : ρ.
By inductive hypothesis, Γi, s

′ : ρi ⊢ [s′/s]Pi, for i = 1, 2. Hence, Γ, s′ : ρ ⊢ [s′/s](P1 | P2).

(rec) Suppose Γ, s : ρ ⊢ A(r1, . . . , rn), s′ /∈ dom(Γ), and A : (ρ′1, . . . , ρ
′
n). Then Γi, s : ρi ⊢ ri :

ρ′i, for i = 1, . . . , n, and Γ, s : ρ = (Γ1, s : ρ1)⊕· · ·⊕(Γn, s : ρn). By (2), Γi, s
′ : ρi ⊢ [s′/s]ri : ρ′i,

for i = 1, . . . , n. Therefore, Γ, s′ : ρ ⊢ [s′/s](A(r1, . . . , rn)).

(ms) Suppose Γ, s : ρ ⊢ [s1 = s2]P1, P2 and s′ /∈ dom(Γ). Then Γ, s : ρ ⊢ Pi, for i = 1, 2.
By inductive hypothesis, Γ, s′ : ρ ⊢ [s′/s]Pi, for i = 1, 2. Therefore Γ, s′ : ρ ⊢ [s′/s]([s1 =
s2]P1, P2.

26

(mc) Suppose Γ, s : ρ ⊢ [u � c(x)]P1, P2, c : (σ1, . . . , σn) → σ, and s′ /∈ dom(Γ). Then
there is some Γ′, s : ρ′ such that Γ′, s : ρ′ ⊕ (Γ, s : ρ) = Γ, s : ρ, Γ′, s : ρ′ ⊢ u : σ. Also,
Γ, s : ρ, x1 : σ1, . . . , xn : σn ⊢ P1 and Γ, s : ρ ⊢ P2. By inductive hypothesis, Γ′, s′ : ρ′ ⊢
[s′/s]u : σ, Γ, s′ : ρ, x1 : σ1, . . . , xn : σn ⊢ [s′/s]P1, and Γ, s′ : ρ ⊢ [s′/s]P2. Then then
Γ, s′ : ρ ⊢ [s′/s]([u � c(x)]P1, P2).

(4) By induction on the typing of P .

(0) If Γ, x : σ ⊢ 0, Γ′ ⊢ v : σ, and Γ ⊕ Γ′ is defined then Γ ⊕ Γ′ ⊢ 0.

(out) Suppose Γ, x : σ ⊢ se, Γ′ ⊢ v : σ and Γ ⊕ Γ′ is defined. We distinguish two cases.

(x = s) Suppose Γ, s : σ ⊢ se, Γ ⊢ e : σ′, and Γ′ ⊢ s′ : σ, where σ = Sigu(σ′). Note that
[s′/x](se) = s′e. By weakening, Γ ⊕ Γ′ ⊢ e : σ′. Therefore Γ ⊕ Γ′ ⊢ s′e.

(x 6= s) Suppose Γ, s : Sigu(σ′), x : σ ⊢ se and Γ, x : σ ⊢ e : σ′. By (2), Γ ⊕ Γ′ ⊢ [v/x]e : σ′.
Therefore, (Γ, s : Sigu(σ′)) ⊕ Γ′ ⊢ s[v/x]e and we note that [v/x]se = s[v/x]e.

(ν) Suppose Γ, x : σ ⊢ νt : ρ P , Γ′ ⊢ v : σ and Γ ⊕ Γ′ is defined. Then Γ, x : σ, t : ρ ⊢ P and
by inductive hypothesis, Γ ⊕ Γ′, t : ρ ⊢ [v/x]P . Thus Γ ⊕ Γ′ ⊢ [v/x](νt : ρ P).

(in) Suppose Γ, x : σ ⊢ s(y).P,K, Γ′ ⊢ v : σ and Γ ⊕ Γ′ is defined. We distinguish two cases.

(x = s) Suppose Γ, s : σ ⊢ s(y).P,K and Γ′ ⊢ s : σ where σ = Sigu(σ′). Then Γ, s :
σ, y : σ′ ⊢ P and ↑ (Γ, s : σ) ⊢ K. By inductive hypothesis, (Γ ⊕ Γ′), y : σ ⊢ [s′/s]P and
↑ (Γ ⊕ Γ′) ⊢ [s′/x]K. Therefore Γ ⊕ Γ′ ⊢ [s′/s](s(y).P,K).

(x 6= s) Suppose Γ, s : Sigu(σ′), x : σ ⊢ s(y).P,K. Then Γ, s : Sigu(σ′), x : σ, y : σ′ ⊢ P and
↑ (Γ, s : Sigu(σ′), x : σ) ⊢ K. By inductive hypothesis, (Γ, s : Sigu(σ′)) ⊕ Γ′, y : σ′ ⊢ P and
↑ ((Γ, s : Sigu(σ′)) ⊕ Γ′) ⊢ K. Therefore, (Γ, s : Sigu(σ′)) ⊕ Γ′ ⊢ s(y).P,K.

(par) Suppose Γ, x : σ ⊢ P1 | P2, Γ′ ⊢ v : σ, Γ = Γ1 ⊕ Γ2, Γi, x : σ ⊢ Pi, for i = 1, 2. By
inductive hypothesis, Γi ⊕ Γ′ ⊢ [v/x]Pi, for i = 1, 2. Thus Γ ⊕ Γ′ ⊢ [v/x](P1 | P2).

(rec) Suppose Γ, x : σ ⊢ A(r1, . . . , rn), A : (ρ1, . . . , ρn), Γ′ ⊢ v : σ, and Γ ⊕ Γ′ is defined.
Then Γ = Γ1 ⊕ · · · ⊕ Γn, Γi, x : σ ⊢ ri : ρi, for i = 1, . . . , n. By inductive hypothesis,
Γi ⊕ Γ′ ⊢ [v/x]ri : ρi. Thus Γ ⊕ Γ′ ⊢ [v/x]A(r1 . . . , rn).

(ms) Suppose Γ, x : σ ⊢ [s1 = s2]P1, P2, Γ′ ⊢ v : σ and Γ ⊕ Γ′ is defined. Then Γ, x : σ ⊢ Pi,
for i = 1, 2, and by inductive hypothesis Γ⊕Γ′ ⊢ [v/x]Pi. Thus Γ⊕Γ′ ⊢ [v/x]([s1 = s2]P1, P2).

(mc) Suppose Γ, x : σ ⊢ [u � c(x)]P1, P2, c : (σ1, . . . , σn) → σ′, Γ′ ⊢ v : σ, Γ ⊕ Γ′ is defined,
Γ, x : σ ⊢ u : σ′, Γ, x : σ, x1 : σ1, . . . , xn : σn ⊢ P1, and Γ, x : σ ⊢ P2. By inductive hypothesis
and (1), Γ ⊕ Γ′ ⊢ [v/x]u : σ′, (Γ ⊕ Γ′), x1 : σ1, . . . , xn : σn ⊢ [v/x]P1, Γ ⊕ Γ′ ⊢ [v/x]P2. Thus
(Γ ⊕ Γ′) ⊢ [v/x]([u � c(x)]P1, P2). 2

A form of substitution also arises at the end of the instant when we compute V (K). First,
given a pair (E,V) we define PV \E as the program composed of the parallel composition of
the emissions of the values in V but not in E. For instance, suppose v1 6= v2, V (s1) = [v2; v1],
E(s1) = {v1}, V (s2) = [v2], E(s2) = ∅. Then PV \E is defined as the program (s1v2 | s2v2).

Lemma 41 (1) If ↑ (Γ) ⊢ A(r), Γ′ ⊢ PV and Γ ⊕ Γ′ is defined then ↑ (Γ ⊕ Γ′) ⊢ V (A(r)).

(2) Moreover, suppose there are V ′, E such that V, V ′ ‖−E. Then V (A(r)) ≈ V (A(r′)).

27

Proof. (1) Note that ↑ (Γ′) is neutral and that ↑ (Γ ⊕ Γ′) =↑ (Γ)⊕ ↑ (Γ′). Suppose
A : (ρ1, . . . , ρn), ↑ (Γ) = Γ1 ⊕ · · · ⊕ Γn, and Γi ⊢ ri : ρi, for i = 1, . . . , n. If ρi is not neutral
then V (ri) = ri and Γi⊕ ↑ (Γ′) ⊢ ri : ρi. On the other hand, if ρi is not neutral then V (ri) is
obtained from ri by replacing each occurence of a dereferenced signal !s with V (s). We know
that if Γi ⊢!s : σ then Γ′ ⊢ V (s) : σ where σ has the shape Set(σ′) or List(σ′) depending on
the usage associated with the signal s. In particular, if the usage is not eω then the list V (s)
contains at most one element, for if it contained two or more we could not have Γ′ ⊢ PV . By
induction on ri, we show that Γi⊕Γ′ ⊢ V (ri) : ρi. Then we conclude that ↑ (Γ⊕Γ′) ⊢ V (A(r)).

(2) We show by induction on the typing of Γi ⊢ ri : ρi that V (ri) ∼ρi
V ′(ri), for i = 1, . . . , n.

Then we use the hypothesis that vi ∼ρi
v′i implies that A(v1, . . . , vn) ≈ A(v′1, . . . , v

′
n). 2

Finally, we have to check that typing is preserved by expression evaluation.

Lemma 42 If Γ ⊢ e : ρ and e ⇓ v then Γ ⊢ v : ρ.

Proof. We proceed by induction on the typing of e.

(var) Then the typing judgment must have the form Γ, s : ρ ⊢ s : ρ and we know that s ⇓ s.

(k) Suppose e = k(e1, . . . , en). Then Γ = Γ′⊕Γ′′, Γ′′ is neutral and Γ′ ⊢ ei : σi for i = 1, . . . , n.
By inductive hypothesis, ei ⇓ vi and Γ′ ⊢ vi : σi for i = 1, . . . , n. We distinguish two cases.

(k = c) Then v = c(v1, . . . , vn) evaluates to itself and by the rule (k), Γ ⊢ v : σ.

(k = f) Notice that by weakening Γ ⊢ vi : σi. By hypothesis on f , we know that
f(v1, . . . , vn) ⇓ v and Γ ⊢ v : σ. 2

D.2 Subject reduction

We can now prove proposition 21 which describes how labelled transitions preserve the typing.
We restate the proposition including some additional information and the cases that concern
the auxiliary transitions.

Proposition 43 (subject reduction) Suppose Γ ⊢ P . Then:

(1) If P
sv
−→ P ′, Γ′ ⊢ sv, and Γ ⊕ Γ′ is defined then Γ ⊕ Γ′ ⊢ P ′.

(2) If P
s?v
−−→ P ′ then Γ(s) = Sigu(σ) and u 6= eω. Moreover if Γ′ ⊢ v : σ, and Γ ⊕ Γ′ is

defined then Γ ⊕ Γ′ ⊢ P ′.

(3) If P
νt:ρsv
−−−−→ P ′ then Γ(s) = Sigu(σ), u ∈ {eω, oω

1 , o1 · oω
0 }, and Γ, t : ρ ⊢ P ′. Moreover,

there is a Γ′ such that Γ′ ⊢ v : σ and (Γ, t : ρ) ⊕ Γ′ = (Γ, t : ρ).

(4) If P
τ
−→ P ′ then Γ ⊢ P ′.

(5) If P
E,V
−−→ P ′, Γ′ ⊢ PV \E, and Γ ⊕ Γ′ is defined then ↑ (Γ ⊕ Γ′) ⊢ P ′.

(6) If P
N
−→ P ′ then ↑ (Γ) ⊢ P ′.

Proof. In each case, we proceed by induction on the proof of the labelled transition.

(1) The only one way to derive an observable input action is with the rule (in). Then P ′ is
(P | sv) which is typable applying the hypotheses and the typing rule (par).

28

(2) (inaux) If Γ ⊢ s(x).P,K then by the typing rule (in), Γ(s) = Sigu(σ) and u 6= eω.
Moreover if Γ′ ⊢ v : σ, and Γ⊕ Γ′ is defined then Γ⊕ Γ′ ⊢ [v/x]P ′ by the substitution lemma
40(4).

(comp) Suppose, for instance, Γ1 ⊕ Γ2 ⊢ (P1 | P2), Γi ⊢ Pi, for i = 1, 2, and P1
s?v
−−→ P ′

1. By
inductive hypothesis, Γ1(s) = Sigu′(σ) and u′ 6= eω. Thus (Γ1⊕Γ2)(s) = Sigu(σ) and u 6= eω.
Moreover, if Γ′ ⊢ v : σ and Γ1 ⊕Γ2 ⊕Γ′ is defined then Γ1 ⊕Γ′ ⊢ P ′

1, by inductive hypothesis,
and therefore Γ1 ⊕ Γ2 ⊕ Γ′ ⊢ (P ′

1 | P2).

(ν) Suppose, Γ ⊢ νt : ρ P . Then Γ, t : ρ ⊢ P with t /∈ fn(s?v). By inductive hypothesis,
(Γ, t : ρ)(s) = Sigu(σ) and u 6= eω. Since t 6= s, we also have Γ(s) = Sigu(σ). Suppose
Γ′ ⊢ v : σ and Γ ⊕ Γ′ is defined. We can assume t /∈ dom(Γ′) so (Γ, t : ρ)⊕ Γ′ = (Γ ⊕ Γ′), t : ρ

is defined too. If P
s?v
−−→ P ′ then, by inductive hypothesis, (Γ ⊕ Γ′), t : ρ ⊢ P ′. Then we can

conclude Γ ⊕ Γ′ ⊢ νt : ρ P ′.

(3) Let U ′ = {eω, oω
1 , o1 · o

ω
0 } be the set of expected usages for the signal on which the output

occurs.

(out) Suppose se
sv
−→ se with e ⇓ v. By the typing rule (out), we must have Γ, s : Sigu(σ) ⊢ se

with u ∈ U ′, Γ neutral, and Γ ⊢ e : σ.

(comp) Suppose Γ1 ⊕ Γ2 ⊢ P1 | P2 with Γi ⊢ Pi, for i = 1, 2, and P1
νt:ρsv
−−−−→ P ′

1. By
inductive hypothesis, Γ1(s) = Sigu′(σ), u ∈ U ′, Γ1, t : ρ ⊢ P ′

1, and there is a Γ′ such that
Γ′ ⊕ (Γ1, t : ρ) = Γ1, t : ρ and Γ′ ⊢ v : σ. Now it must be that (Γ1 ⊕ Γ2)(s) = Sigu(σ) with
u ∈ U ′. Since (Γ1, t : ρ)⊕Γ2 = (Γ1⊕Γ2), t : ρ, we can conclude that (Γ1⊕Γ2), t : ρ ⊢ (P ′

1 | P2).

(ν) Suppose νt′ : ρ′ P
νt:ρsv
−−−−→ νt′ : ρ′ P ′ because P

νt:ρsv
−−−−→ P ′ and t′ does not interfere with the

action. If Γ ⊢ νt′ : ρ′ P then Γ, t′ : ρ′ ⊢ P . By inductive hypothesis, (Γ, t′ : ρ′)(s) = Sigu(σ),
u ∈ U ′, and there is a Γ′ such that t does not occur in Γ′, Γ′⊕(Γ, t′ : ρ′, t : ρ) = (Γ, t′ : ρ′, t : ρ),
and Γ′ ⊢ v : σ. Since s 6= t′, we have Γ(s) = Sigu(σ). Also by inductive hypothesis,
Γ, t′ : ρ′, t : ρ ⊢ P ′, and therefore Γ, t : ρ ⊢ νt′ : ρ′ P ′.

(νex) Suppose νt′ : ρ′ P
νt′:ρ′,t:ρsv
−−−−−−−→ P ′ because P

νt:ρsv
−−−−→ P ′ and t′ occurs free in v. If

Γ ⊢ νt′ : ρ′ P then Γ, t′ : ρ′ ⊢ P . By inductive hypothesis, (Γ, t′ : ρ′)(s) = Sigu(σ), u ∈ U ′,
and there is a Γ′ such that Γ′ ⊕ (Γ, t′ : ρ′, t : ρ) = (Γ, t′ : ρ′, t : ρ), and Γ′ ⊢ v : σ. Also by
inductive hypothesis, Γ, t′ : ρ′, t : ρ ⊢ P ′.

(4) (synch) Suppose Γ1 ⊕ Γ2 ⊢ P1 | P2, where Γi ⊢ Pi, for i = 1, 2, and P1
νt:ρsv
−−−−→ P ′

1

P2
s?v
−−→ P ′

2, with the usual side conditions on t. By inductive hypothesis, Γ1(s) = Sigu(σ),
Γ1, t : ρ ⊢ P ′

1, and there is Γ′ such that Γ′ ⊕ (Γ1, t : ρ) = (Γ1, t : ρ) and Γ′ ⊢ v : σ. Also by
inductive hypothesis, Γ2(s) = Sigu′(σ′), u 6= eω. Since Γ1⊕Γ2 is defined, we know that σ = σ′,
u⊕u′, and Γ2⊕Γ′ are defined. Thus Γ2⊕Γ′ ⊢ P ′

2. Since (Γ1, t : ρ)⊕(Γ2⊕Γ′) = (Γ1, t : ρ)⊕Γ2,
we conclude that (Γ1, t : ρ) ⊕ Γ2 ⊢ (P ′

1 | P ′
2) and therefore Γ1 ⊕ Γ2 ⊢ νt : ρ (P ′

1 | P ′
2).

(rec) Suppose A(x1, . . . , xn) = P , A : (ρ1, . . . , ρn), x1 : ρ1, . . . , xn : ρn ⊢ P , Γi ⊢ ei : ρi,
ei ⇓ vi, for i = 1, . . . , n, and Γ1 ⊕ · · · ⊕ Γn is defined. Without loss of generality, suppose
the first m types ρi are not neutral and the remaining ones are. Remember that the types
ρi must be uniform. Then we must have ei = si, Γi = Γ′

i, si : ρi, Γ′
i neutral, for i = 1, . . . ,m

and the names si are all distinct, for otherwise, the sum of the contexts is not defined.
Iterating the substitution lemma 40(3), for i = 1, . . . ,m, we obtain that s1 : ρ1, . . . , sm :

29

ρm, xm+1 : ρm+1, . . . , xn : ρn ⊢ [s1/x1, . . . , sm/xm]P . We can further weaken, and obtain
(Γ1 ⊕ · · · ⊕ Γm), xm+1 : ρm+1, . . . , xn : ρn ⊢ [s1/x1, . . . , sm/xm]P . Concerning, the values vi,
for i = m + 1, . . . , n, we know that Γi ⊢ vi : ρi. Then iterating the substitution lemma 40(4),
for i = m+1, . . . , n, we obtain that Γ1⊕· · ·⊕Γn ⊢ [s1/x1, . . . , sm/xm, vm+1/xm+1, . . . , vn/xn]P
as required.

(matching) We just spell out the case for (=ind
1), the other 3 cases being simpler. Suppose

P = [c(v) � c(x)]P1, P2 and P
τ
−→ [v/x]P1. If Γ ⊢ P then c : (σ1, . . . , σn) → σ, and Γ′ ⊢ c(v) :

σ, with Γ′ ⊕ Γ = Γ. Moreover, Γ′ ⊢ vi : σi, for i = 1, . . . , n and Γ, x1 : σ1, . . . , xn : σn ⊢ P1.
By the substitution lemma 40(4), Γ ⊢ [v1/x1, . . . , vn/xn]P1.

(comp) Suppose Γ1 ⊕ Γ2 ⊢ P1 | P2, where Γi ⊢ Pi, for i = 1, 2, and P1
τ
−→ P ′

1. By inductive
hypothesis, Γ1 ⊢ P ′

1 and therefore Γ1 ⊕ Γ1 ⊢ P ′
1 | P2.

(ν) Suppose Γ ⊢ νt : ρ P and P
τ
−→ P ′. Then Γ, t : ρ ⊢ P and by inductive hypothesis,

Γ, t : ρ ⊢ P ′. Therefore, Γ ⊢ νt : ρP ′.

(5) (0) Suppose Γ ⊢ 0, 0
∅,V
−−→ 0, Γ′ ⊢ PV , and Γ ⊕ Γ′ is defined. Then ↑ (Γ ⊕ Γ′) is neutral

and therefore ↑ (Γ ⊕ Γ′) ⊢ 0.

(reset) Suppose e ⇓ v, se
E,V
−−→ 0, Γ ⊢ se, Γ′ ⊢ PV \E , and Γ ⊕ Γ′ is defined. Then ↑ (Γ ⊕ Γ′)

is neutral and therefore ↑ (Γ ⊕ Γ′) ⊢ 0.

(cont) Suppose s /∈ dom(V), s(x).P,K
∅,V
−−→ V (K), Γ ⊢ s(x).P,K, Γ′ ⊢ PV \E , and Γ ⊕ Γ′ is

defined. Then by lemma 41(1), ↑ (Γ ⊕ Γ′) ⊢ V (K).

(par) Suppose Γi ⊢ Pi, Pi
Ei,V−−−→ P ′

i , for i = 1, 2, Γ′ ⊢ V \(E1∪E2), and Γ1⊕Γ2⊕Γ′ is defined.
Up to commutation and associativity of parallel composition, we can consider that P1 has the
shape P1∩2 | P1\2 | P11 and P2 has the shape P1∩2 | P2\1 | P22, where P1∩2, P1\2, and P2\1 are
the emissions that are in E1 ∩ E2, E1\E2, and E2\E1, respectively. Denote with Γ1∩2,Γ1\2,
Γ2\1, Γ11, Γ22 the contexts that type P1∩2, P1\2, P2\1, P11, P22, respectively. Note that Γ1∩2,
↑ Γ1\2, and ↑ Γ2\1 are neutral. Then apply the inductive hypothesis to Pi for i = 1, 2 and
add the contexts to get the assertion.

(6) First, we notice that if Γ ⊢ P and P � P ′ then Γ ⊢ P ′. Suppose Γ ⊢ νt : ρ P and

P
E,V
−−→ P ′ with V ‖−E. Then PV \E = 0 and we have ∅ ⊢ 0. Hence, by (5), ↑ (Γ, t : ρ) ⊢ P ′.

But the types ρ are uniform and therefore ↑ (Γ, t : ρ) =↑ Γ, t : ρ and we can conclude
↑ Γ ⊢ νt : ρ P ′. 2

D.3 Commutations

Next we restate and prove proposition 22 which shows that typable programs have strong
confluence properties with respect to τ and N transitions.

Proposition 44 Suppose Γ ⊢ P and P
α
−→ Pi, for i = 1, 2.

(1) If α = τ then ∃Q (Pi
τ
; Q), for i = 1, 2.

(2) If α = N then P1 ≈ P2.

Proof. (1) Except in the case of a synchronisation, a program can perform a τ transition
if it has the shape C[∆] where C is a static context and ∆ can be reduced according to 5

30

rules, namely the rule (rec) and the 4 rules for matching. In the case of a synchronisation,
the program has the shape C[se][s(x).P,K] where C is a two holes (static) context. It is clear
that a τ transition according to the first 5 rules cannot interfere with another τ transition.
The only possibility that remains to be considered is the one where the program can perform
two distinct synchronisations. To have an interference, the synchronisation must be on the
same signal name s and according to the typing rules the usage of this signal cannot be eω.
But then again by the typing rules, we must have only one emission, so that, up to structural
equivalence, and assuming e ⇓ v, we are in the following situation:

C[se | [v/x]P1 | s(y).P2, K2], C[se | s(x).P1, K1 | [v/y]P2]
τ
−→ C[se | [v/x]P1 | [v/y]P2] .

Because an emitted value persists within the instant, one can close the diagram in one step.

(2) We rely on lemma 41(2) and the fact that bisimulation is preserved by static contexts. 2

E A size-change termination principle for reactivity

In this appendix, we discuss a variant of the size-change termination (SCT) principle for
first-order functional programs discussed in [16] whose goal is to check reactivity of programs
in the Sπ-calculus. We assume the reader is familiar with [16] (see also [28] for a discussion
of the SCT principle from a term-rewriting perspective).

We provide a short introduction to the SCT principle and we fix the notation. Consider
a first-order functional program with call-by-value evaluation specified by rules of the shape:

f(p1, . . . , pn) → e

where f is a function symbol, pi are patterns and e an expression. Whenever e ≡ C[g(e1, . . . , em)]
for some context C, we have a potential call from f to g and it is assumed that we have a
symbolic criteria to compare the arguments p1, . . . , pn of f with the arguments e1, . . . , em of
g.

Next consider a program in the Sπ-calculus specified by a system of recursive equations
A(x) = P . If P contains a thread identifier B which is not in the ‘else’ branch of a present
statement then we may say that that we have a potential call from A to B within the same
instant. Before a call to A produces a call to B, the program may perform a certain number
of inputs and branching operations which we need to over-approximate. The general idea is
that, modulo this over-approximation, we can regard the system of recursive equations as a
system of (pseudo-)term rewriting rules of the shape A(p) → B(e).

E.1 Generation of the rewriting rules

We formalise the generation of the (pseudo-)term rewriting rules following ideas already pre-
sented in [5].9 Consider a system of recursive equations A(x) = P in the Sπ-calculus. Without
loss of generality, we may assume that the shape of the program at the beginning of each
instant is:

νs(A1(e1) | · · · | An(en)) (2)

The only information we will keep of a signal name is its type Sig(σ). Thus we know the type
of the values it may carry. Formally, we select a distinct canonical constant, say s, for every

9[5] provides static conditions that guarantee feasible reactivity, i.e., reactivity in polynomial time.

31

type Sig(σ) and replace in the system every occurrence of a signal name of this type with s.
Following this operation, we remove all name generation instructions νs.

As for the operation [s1 = s2]P1, P2 that compares signal names, we will simply disregard
it and systematically explore the situations where one of the programs P1 or P2 is executed.
This is like replacing a conditional [s1 = s2]P1, P2 with an internal choice P1 ⊕ P2.

Now, consider the equation:

A(x) = [x � cons(x1, x2)]A(x2), B(x) (3)

If a call to A(x) leads to a call to A(x2) then it must be the case that x = cons(x1, x2) for
some x1. We can abstract this situation with the term rewriting rules:

A(cons(x1, x2)) → A(x2) A(x) → B(x) .

Next, consider the equation:

A(x) = s(y).[y � cons(y1, y2)]B(x, y1), (C(x) | D(x)), E(x) . (4)

Here a call to A(x) may lead to a call of either B(x, y1) or C(x) | D(x) within the same
instant. We may describe this situation with the rules:

A(x) → B(x, y1), A(x) → C(x), A(x) → D(x) .

In this case, the first rule is not a term rewriting rule because the variables on the right-hand
side are not contained in the variables in the left hand side.

Following this discussion, we define a method to associate a set of rules with a system of
recursive equations in Sπ. For each equation A(x) = P , we compute the function R(P,A(x))
which is defined on the structure of P as follows (we recall that in [x � p]P1, P2 the variable
x cannot occur free in P1):

R(P, A(p)) = case P of

0 : ∅

[x � p]P1, P2 : R(P1, A([p/x]p)) ∪R(P2, A(p))

[s1 = s2]P1, P2 : R(P1, A(p)) ∪R(P2, A(p))

(P1 | P2) : R(P1, A(p)) ∪R(P2, A(p))

νs P ′ : R(P ′, A(p))

se : ∅

B(e) : {A(p) → B(e)}

s(y).P ′, B(r) : R(P ′, A(p))

Example 45 For example 1, we derive:

Cell(q, s, ℓ) → Send(q, s, ℓ, ℓ), Send(q, s, ℓ, cons(s′, ℓ′′)) → Send(q, s, ℓ, ℓ′′)) .

For example 2, no rewriting rule is derived. For example 3, we derive:

Handle(s, cons(req(s′, x), ℓ′)) → Handle(s, ℓ′)), Handle(s, ℓ) → Server(s) .

32

E.2 Size-change termination principle

The generated rules have the shape A(p) → B(e). As already mentioned, we assume we have
an effective way to ‘compare’ the arguments p with the arguments e. Specifically, we assume
we have a well-founded order >v on values and we denote with θ, θ′, . . . ground substitutions,
i.e., substitutions mapping variables to values. We define a flow graph whose nodes are thread
identifiers and such that there is an edge from A to B if a call to A may lead to a call of B.
Suppose A has n parameters and B has m parameters. Each edge form A to B in the flow
graph is labelled with a size change graph which is a function

G : {1, . . . , n} × {1, . . . ,m} → {?,≥, >} .

Intuitively, the abstract value G(i, j) expresses the relationship between the ith parameter of A
and jth parameter of B, with > meaning ‘strictly greater’, ≥ meaning ‘greater or equal’, and ?
meaning that the relationship is “unknown’. Formally, we require that: (1) G(i, j) = > implies
that ∀ θ (θej ⇓ u ⊃ θpi >v u), and (2) G(i, j) =≥ implies that ∀ θ (θej ⇓ u ⊃ θpi ≥v u). A
simple method to compare arguments is to consider the homeomorphic embedding. Another
possibility is to introduce quasi-interpretations as in [5].

The possible computations of the program are now abstracted into a finite labelled graph.
We note that between a node with n arguments and another node with m arguments there
are at most 3n·m size-change graphs. There is a natural way to compose the abstract values
?, >,≥ which is specified as follows:

· ? ≥ >

? ? ? ?
≥ ? ≥ >
> ? > >

This induces a partial operation of composition on size-change graphs:

(G1;G2)(i, k) =







> ∃ j (G1(i, j) · G2(j, k) = >)
≥ o.w. and ∃ j (G1(i, j) · G2(j, k) = ≥)
? o.w.

Note that this operation is associative. Given a flow graph F , let G(F) be the least set
containing the size change graphs appearing as labels in F and closed under composition.
Note that this is a finite set.

A multi-graph is a sequence (possibly infinite) of composable size-change graphs. A thread
in a multi-graph is a directed path in the multi-graph without ‘?’ labels. An infinitely
descending thread in a multi-graph is a thread that crosses edges of the strict type > infinitely
often.

Definition 46 ([16]) A program satisfies the size-change termination principle (SCT prin-
ciple) if every infinite multi-graph associated with the flow graph has an infinitely descending
thread.

The following characterisation of the flow graphs that satisfy the SCT principle relies on
Ramsey theorem and it is also due to [16].

Proposition 47 ([16]) A flow graph F satisfies the SCT principle if and only if for any size
change graph G ∈ G(F) such that G;G = G we have an index l where G(l, l) = >.

33

Example 48 We continue the example 45 assuming that we compare the arguments via the
homeomorphic embedding,

In the example 1, we have two nodes {Cell ,Send} and edges {(Cell ,Send), (Send ,Send)}.
The only way to have an infinite path in this graph is to loop on the edge (Send ,Send).
The size-change graph G that labels this edge is such that G(4, 4) =>. Then, following the
characterisation in proposition 47, it is clear that the flow graph satisfies the SCT principle.

In the example 3, we have two nodes {Server ,Handle} and edges {(Handle ,Handle),
(Handle,Server)}. The only way to have an infinite path in this graph is to loop on the edge
(Handle,Handle). The size-change graph G that labels this edge is such that G(2, 2) =>.
Again, it is easily checked that the flow graph satisfies the SCT principle.

E.3 From the SCT principle to reactivity

We show that the validity of the SCT principle entails reactivity.

Proposition 49 If the flow graph associated with a system of equations satisfies the SCT
principle then every program built over the system is reactive.

Proof. The construction of the flow graph abstracts the possible computations of a program
and in particular it assures that whenever A(θp1, . . . , θpn) calls B(θe1, . . . , θem) there is an
edge from A to B in the flow graph with a label G such that if θej ⇓ u and G(i, j) =>
(G(i, j) =≥) then θpi >v u (θpi ≥v u). At this abstract level, the configuration of a program
can be regarded as finite multi-set of the shape:

{|A1(v1), . . . , An(vn)|}

and each abstract computation step amounts to replace an element Ai(vi) with a finite multi-
set {|Bi,1(u1), . . . , Bi,n(un)|}. By König lemma, an infinite computation must correspond to
an infinite sequence of calls:

A1(v1) → A2(v2) → A3(v3) → · · ·

and there is at least an infinite path in the flow graph and an associated infinite multi-graph
M = G1;G2;G3; . . . that corresponds to this sequence of calls. By the SCT principle, we
should have an infinitely descending thread in the multi-graph. By the properties of size-
change graphs, this implies that there is a strictly descending sequence of values. But this
contradicts the hypothesis that the order >v is well-founded. 2

34

