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Maximum Homologous Crossover for Linear
Genetic Programming

Michael Defoin Platel’?, Manuel Clergue! and Philippe Collard!

! Laboratoire 13S, CNRS-Université de Nice Sophia Antipolis
* ACRI-ST

Abstract. We introduce a new recombination operator, the Maximum
Homologous Crossover for Linear Genetic Programming. In contrast to
standard crossover, it attempts to preserve similar structures from par-
ents, by aligning them according to their homology, thanks to an algo-
rithm used in Bio-Informatics. To highlight disruptive effects of crossover
operators, we introduce the Royal Road landscapes and the Homology
Driven Fitness problem, for Linear Genetic Programming. Two variants
of the new crossover operator are described and tested on this landscapes.
Results show a reduction in the bloat phenomenon and in the frequency
of deleterious crossovers.

1 Introduction

The role played by crossover in the Genetic Programming (GP) evolutionary
process is a much debated question. Traditionally, individuals are encoded using
a tree-based representation, and crossover consists in swapping subtrees. Accord-
ing to Koza [9], crossover is the central operator in the GP search process, where
useful subtrees tend to spread as they are swapped. However, Banzhaf et al. [17]
argue that crossover behaves more like a macro mutation operator, so GP can
be viewed as a population based hill-climber. In the same way, some authors [2]
have obtained worse results for crossover compared to mutation based system.
Moreover, standard crossover exchanges subtrees without taking context into
account ; this is a brutal operation that may prevent emergence of structured
solutions [6]. Altenberg [1] notes that crossover may cause the program growth
phenomenon, called bloat, which arises during evolution as the population at-
tempts to protect useful subtrees. Finally, Poli and Langdon [15] point out the
fact that standard GP crossover is a local and biased operator, which can not
explore search space properly.

Some new operators have been designed to overcome the drawbacks of the
standard GP crossover. The main idea behind all those recombination mecha-
nisms is homology. This notion comes directly from the properties of the crossover
in nature which does not exchange genes randomly. Indeed, during the second
stage of the prophase of meiosis (called zygoten), the homologous chromosomes
are first aligned according to their similarity before crossover takes place. This
implies that genes are swapped with others that represent similar features. We



note several previous attempts to improve the effectiveness of crossover which,
either implicitly or explicitly, try to better preserve homology, see [6][10][12][15].

The way individuals are represented in Evolutionary Computation is always
crucial, this is also the case in GP. The emergence of GP in the scientific commu-
nity arose with the use, inter alia, of a tree-based representation, in particular
with the use of Lisp in the work of Koza [9]. However, GP systems manipulating
linear structures exist, like in [3][14], which have shown experimental perfor-
mances equivalent to Tree GP (TGP). In contrast to TGP, Linear GP (LGP)
programs are sequence of instructions of an imperative language (C, machine
code, ...). In this paper, we focus on LGP mainly because it allows direct access
to instructions and so it provides easier way to perform recombination. More-
over, in LGP all possible sequences of instructions are valid programs, so there
are no syntactical constraints on sequences swapped during recombination and
classical genetic crossover operators in use could be chosen.

In Section 2, we introduce a new biologically inspired crossover for LGP,
called Maximum Homologous Crossover (MHC). In order to study the way MHC
works in Section 3 we introduce Royal Road Landscapes for LGP and report
experimental results in Section 4.

2 Maximum Homologous Crossover

In this section, we present a new recombination mechanism mimicking natural
crossover by preserving homology. In biology, homology indicates genetic rela-
tionship, i.e. the structural relatedness of genomes due to descent from common
form. Indeed, reproduction in nature is a smooth process which ensures that
offspring will not be so different from ancestors, allowing the structural stability
that defines species.

2.1 Edit distance

The Maximum Homologous Crossover (MHC) preserves structural and lexical
homology by computing an alignment that minimises a metric of dissimilarity
between parents. As a metric, we use string edit distance, like Levenshtein dis-
tance [11] which has been already used in GP to compute or control diversity
[4], or to study the influence of genetic operators [13]. By definition, the edit dis-
tance between two programs corresponds to the minimal number of elementary
operations (deletion, insertion and substitution) required to change one program
into the other.

More formally, let us consider P, € Pys; a program of size m such that P, =
Xy . Tym—1, With z; € X' Vi € [0,m — 1], where X is a finite set of available
instructions . Let P, and P, be two programs of size m and n respectively

3 In LGP, the traditional distinction between the set of terminals and the set of func-
tions is not relevant.



and ¢ be an empty instruction. An alignment (P, P,) of size p with P, and

P,ePyU{e}is:
D D EOEI---E—l
P17P — 7 _;D )
( 2 <y0 Y- Yp-1
where :
— p € [maz(n,m),n +m]
—Zi=xjorT; =cforie[0,p—1] and j € [0,m — 1]
—y,=yjory,=cforie[0,p—1]and j € [0,n — 1]
/H Z € [O7p_1] SuCh that Ei :yi =&

T;

An aligned pair of instructions (y,f) indicates either a substitution of z; by y;,
or a deletion of z; (if J; =€), or an insertion of y; (if ¥; = ¢). So, an alignment
(P, Py) may also be viewed as a sequence of operations (insertion, deletion and
substitution) that transforms P, into P,.
. = 5 -1 —
We define the cost x of an alignment such as x(Pg, Py) = Y '_, cost(Z;, ;)
with :

C (insertion or deletion cost) if T,=cory;, =¢
cost(Z;,7;) = { C2 (substitution cost) else if Z; £ 7,
0 else

and A(P,, P,) the set of all alignments of P, and P,, then the distance between
P, and P, is :

D(Py, P,) = min{x(Pg, Py)|(Py, Py) € A(P;, P,)}

As an example, in Figure 1, the distance between P, and P, is 7, i.e. 7 operations
are required to transform P, into P, (5 insertions, 1 deletion and 1 substitution).
Each column of the alignment (P, ﬁy) refers to a program and stores a sequence
of instructions with gaps inserted (corresponding to €). Note that, during the
alignment process, numerical constants of P, and P, are viewed as a same type
of instruction.

2.2 Best Alignment and Recombination

A best alignment (P, P,) between P, and P, is that for which x(P,, P,) =
D(P,, P,) holds. We denote A*(P,, P,) the set of all best alignments between P,
and P,. Computation of A*(P,, P,) can be reasonably performed, using dynamic
programming in O(nm) time complexity. Such an algorithm [8] has also been
used to align DNA strings in Bio-Informatics.

In order to perform MHC between P, and P,, only one alignment (P, P,) is
randomly chosen in A*. Recombination between P, and P, can then take place.
Since P, and P, have the same length, classical crossovers existing in Genetic
Algorithms (GA) can be performed (1-point, 2-point, uniform, ...). Finally, to
get valid children, the ¢ symbols are removed.

By choosing the costs of operations, C'y and Cs, we can define two sets Aj,
A3 of best alignments :



— A7, with Cy=C =1, where a substitution is always preferred to a pair of
insertion and deletion. This setting is used to compute Levenshtein distance.
5, with Co=2 and C;1=1, where a substitution is chosen as often as a pair

of insertion and deletion.

We denote MHC; and MHCs, the corresponding variants of MHC.
Figure 1 gives a 1-point MHC; with the recombination site at position 5

between P, and P, in stack-based representation, producing offspring P, and
P
Y

| Pu | Py | | (PVJ?Py) | |X0(P$7Py)| |P:; | Pz;
DIV| X 3 X 3 X DIV| X
SUB|COS g COS g COS -1 |COS
ADD| DIV DIV DIV DIV DIV SUB| DIV
X |ADD £ ADD £ ADD X |ADD

0.56 | -1 1 € -1 2 -1 € 3 |-0.10{SUB
MUL|SUB| = |SUB SUB|= |SUB SUB | = |DIV |[ADD

X ADD ¢ € ADD SIN| X
-0.10 X X X X 0.56
DIV 0.56 -0.10 -0.10 0.56 MUL
SIN MUL DIV DIV MUL

£ SIN SIN ¢

Fig. 1. 1-point MHC; of P, and P, in stack based representation : Step 1, alignment
and Xover site selection (here 5 ); Step 2, swapping sequences ; Step 3, deletion of gaps.

2.3 Features of Maximum Homologous Crossover

We note that offspring produced with MHC could also be obtained using stan-
dard LGP crossover. Indeed, MHC only restricts the choice of possible crossover
sites in both parents : for example in Figure 1, numerical constants 0.56 from P,
and —0.10 from P, corresponds to the same crossover site in alignment (P, P,),
then they could not appear together in children. Moreover, MHC modifies the
probability of sites selection according to the local homology of parents. In pre-
vious example, the alignment (P, P,) gives a probability 3/11 to the sequence
'DIV, SUB’ in P, to be broken. Without alignment, this probability was only
1/6. This particular behaviour increases disruption rate of the less homologous
regions (like 'DIV, SUB’), where many gaps are present, since they are more in-
volved in sites selection. On the other hand, most homologous regions are more
rarely disrupted.

An interesting property of MHC, is that the more similar the parents are to
each other, the more similar the offspring are to their parents ; in other words,
the distance between parents and offspring are always smaller than distance
between parents. We have found experimentally, by performing MHC between



randomly generated programs that D(P,, P,) +D(P,, P)) = D(Py, P,), with P,,
P, € Py and P, € {MHC(P,, P,)}. Thus, we can assert that MHC performs
more like GA crossover than standard LGP crossover, since it is a global search
operator at the beginning of the evolutionary process, and becomes more local
as the population diversity falls (decrease of distance).

3 Royal Road landscapes for LGP

In GA, Royal Road landscapes (RR) were originally designed to describe how
building blocks are combined to produce fitter and fitter solutions and to inves-
tigate how the schemata evolution actually takes place [7]. Little work is related
to RR in GP ; e.g. the Royal Tree Problem [16] which is an attempt to develop
a benchmark for GP and which has been used in Clergue et al. [5] to study
problem difficulty. Moreover there is nothing relevant for LGP.

Our aim is to examine in depth MHC’s behaviour during evolution in order to
quantify how it preserves homology and under what conditions. To achieve this
goal, we need experiments able to highlight the destructive (or constructive)
effects of crossover on building blocks. So we propose a new kind of fitness
landscapes, called Royal Road landscapes for LGP, which have to be seen as
preliminary steps in MHC understanding.

To define RR, we have choose a family of optimal programs and we break
them into a set of small building blocks. The set of optima is :

Orr ={P, € Py | Vs € &, Bg(Py,5)}
with :

true if I e [0,m—K]|Vke[0,K —1], xiyr =$

B (P, ) = {false else

and N the size of X, K the size of blocks, and ;4 the ¢ + k instructions of
P,, a program of size m. The following program P € Py is an example of RR
optimum, with N =4 and K =3 :

P =DDDBCABBBBDDAAACCCBCCC

with X = {4, B,C, D}. Thus, a block is a contiguous sequence of a single instruc-
tion, and only the presence of a block is taken into account in fitness evaluation
(neither the position or repetition). The number of blocks corresponds to the
number of instructions s € X' for which the predicate By (P, s) is true. In P, we
only boldfaced sequences that contribute to fitness 4. We have arbitrarily fixed
the worst possible fitness ® to F,, for programs having no blocks. In RR the
contribution of each block is simply F,,/N and so, the standard fitness F(FPy)
with P, having n blocks is F(P,) = F,, —n x F,,/N.

4 Altough the last sequence of ’C’ instruction in P is a valid block, it doesn’t contribute
to fitness since it is only a repetition.
5 Actual fitness value does not matter since we use tournament selection.



To efficiently reach an optimum in RR landscapes, a GP system has to create
and combine blocks without breaking existing structures. RR were designed so
that fitness degradation due to crossover occurs only when recombination sites
are chosen inside blocks but never in case of blocks translocations or concatena-
tions. In other words, there is no inter blocks epistasy in RR.

4 Experimental Results

4.1 Setup

We want to compare effectiveness of two different recombination operators, the
standard LGP 1-point crossover (SC) and the 1-point MHC, which have very
distinct behaviours, that is why the search for the best tuning of evolutionary
parameters is necessary. We have performed, on our own LGP system, 35 in-
dependent runs with various mutation and crossover rates. Let us notice that
a mutation rate of 0.9 means that each program involved in reproduction has
a 0.9 probability to undergo one insertion, one deletion and one substitution.
The population of 1000 individuals was randomly created according to a max-
imum creation size of 50 and a set of N (depending on problem definition)
available instructions. The evolution, with elitism, maximum program size of
100, 10-tournament selection, and steady-state replacement, took place during
400 generations. We used a T-test with 95% confidence to determine if results
were significantly different.

4.2 Homology Driven Fitness Problem

We introduce the Homology Driven Fitness problem (HDF), where the fitness
of a candidate program is given by its distance (homology) to a randomly cho-
sen optimum of a given size. HDF matches the unitation problem or One-Max
problem, which is known to be easier to handle using a GA than using a steepest
ascent hill-climber.

We perform experiments on HDF with N=16 and size of optimum fixed to
80. Figure 2 shows that the increase of crossover rate improves the average fitness
of best program found on HDF with MHC. In contrast, the use of SC decreases
performance even with a small application rate. We find for both crossover oper-
ators that the best mutation rate is 0.3. Figure 3 gives evolution of the average
fitness of the best program found using the best tuning of parameters found.
Using MHC, the optimal program is found at generation 50 in more than 90%
of runs, whereas with SC the percentage falls to 28%. This empirical results
confirm that, in terms of its dynamics, MHC performs more like crossover in
GA than SC.

4.3 Royal Road Landscape

Table 1 gives results on RR with N=8,10,16 for SC, MHC;, and MHCs. The
average number of blocks found shows that the problem difficulty increases with
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N, which is to be expected, because of a smaller probability of block discovery
and a stronger constraint due to size limitation (for N=16 optimum length is
80% of maximum allowed size). In this case, the best tuning of mutation rate is
0.9. For all N, MHC; is the best of the three crossovers, whereas MHC; gives
surprisingly poor results even whith N=8 (convergence speed). Then, we see
that using MHCy, LGP performs better with high recombination rates, see also
Figure 4. Figure 5 reports evolution of average size of the best. Let us notice
that the bloat phenomenon is strongly reduced with MHC. In the case of MHC,
the size of the best increases too slowly to reach size of optimum (at least 80
instructions) in 400 generations.

In what follow, we say that a crossover event is selectively Advantageous
(noted A), when at least one child outperforms both parents. We say that a
crossover event is selectively Deleterious (noted D), when both parents out-
performs children. Other crossover events are said selectively Neutral (noted N).
Table 2 reports the frequency of such crossover events. We observe, for N=8 and
N=16, that D events prevail with SC and that their frequency is dramatically
reduced using MHC. Moreover, we notice a significant increase in the number of
A events, when MHC is used. In Figure 6, we have plotted these frequencies as
a function of the average number of blocks in parents. We see that with SC, the
frequency of D events increases linearly with the number of blocks so that the
SC becomes massively disruptive at the end of the evolutionary process. On the
other hand, the frequency of the various events is approximately constant ; it is
a nearly neutral operator. The Building Blocks Hypothesis (BBH) exists in GP
and states that good building blocks in individuals can be combined into even
larger and better building blocks to form better individuals. However, SC works
against the hypothesis since it tends to break high order blocks. As for MHC, it
seems to be able to preserve and combine blocks, even when they represent the
main part of the genome, as in RR with N=16 and K=5, where 80 instructions
(over 100 potential) of an individual are useful.

5 Conclusion and Perspectives

A better understanding of the role of crossover, together with the improvement
of its contribution to the overall performances, is a necessary search for GP.
Standard crossover, that blindly swaps parts of parents, should be considered
more like a macro mutation operator.

Considering the HDF problem, which should be viewed as a One-Max prob-
lem for LGP, we show that the standard crossover prevents the formation of
fitter individuals : as increasing its rate, the performances of the algorithm de-
crease. Blocks disruption can be studied with Royal Road landscapes. Indeed,
to be efficiently treated, this problem imposes the preservation of the blocks
during evolution. An insight into the disruption rate indicates that it is not the
case, since children have less blocks than their worst parent in around 80% of
crossover applications.



Table 1. Best results found on RR.

Best Best Avg. Best |Succes Avg. Avg. Number

Xover Type|Xover Rate|Mut. Rate Fitness Rate |Generations| of Blocks
N=8and K =5

SC 0.45 0.9 0(o=0) 1.0 |146.6(5—s2.7) 8.00

MHC 1 0.75 0.9 0(o=0) 1.0 |206.0(5=94.4) 8.00

MHC 2 1.0 0.9 0(o=0) 1.0 126.2(5—42.4) 8.00
N =10and K =5

SC 0.15 0.9 7142 (5—7928) | 0.31 |297.6(,=73.4) 9.28

MHC 1 0.3 0.9 10571 (o=7537)| 0.22 |318.3(c=6s.4) 8.94

MHC 2 0.75 0.9 4000(,—5993) | 0.62 |283.0(5—71.8) 9.60
N=16and K =5

SC 0.15 0.9 54462 ,—6705)| O - 7.25

MHC 1 0.3 0.9 58214(,=6971)| O - 6.68

MHC 2 0.45 0.9 48928 (,—6423)| O - 8.11

Table 2. Frequency of Deleterious, Neutral and Advantageous crossovers on RR.

N =8and K =5|N=16and K =5
Xover Type| D | N { A D | N | A
SC 79.47|20.43| 0.09 [76.12|23.78| 0.08
MHC 1 |[9.21(90.68| 0.09 | 7.44 [93.33| 0.21
MHC 2 |3.22(96.61| 0.15 | 2.62 |96.95| 0.41
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Fig. 6. RR with N=8 and K=5 : Frequency of Deleterious, Neutral and Advantageous
crossovers according to the number of blocks.



In our point of view, efficiency requires that crossover, as with GA, behaves
like a recombination operator. That is the reason why we introduce the Maximum
Homologous Crossover. This operator tends to keep safe similar regions of the
parents, in order to favour a kind of “respect” property (the common features
of the parents are present in children). MHC, operator gives expected results on
Royal Road landscapes.

The Royal Road problem is far from real GP problems, at least for two reasons
: firstly, there is no inter blocks epistasy and secondly, the relative position of
blocks does not matter in the evaluation process. That is why we consider this
contribution as a preliminary step to study MHC behaviour. Future work should
introduce epistasy and block location, before addressing classical benchmarks
and real problems, like Symbolic Regression and the Even-Parity problems.
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