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Abstract. In the context of multiple hypotheses testing, the proportion π0 of true null hy-
potheses in the pool of hypotheses to test often plays a crucial role, although it is generally
unknown a priori. A testing procedure using an implicit or explicit estimate of this quantity
in order to improve its efficency is called adaptive. In this paper, we focus on the issue of
False Discovery Rate (FDR) control and we present new adaptive multiple testing proce-
dures with control of the FDR. First, in the context of assuming independent p-values, we
present two new procedures and give a unified review of other existing adaptive procedures
that have provably controlled FDR. We report extensive simulation results comparing these
procedures and testing their robustness when the independence assumption is violated. The
new proposed procedures appear competitive with existing ones. The overall best, though, is
reported to be Storey’s estimator, but for a parameter setting that does not appear to have
been considered before. Second, we propose adaptive versions of step-up procedures that
have provably controlled FDR under positive dependences and unspecified dependences of
the p-values, respectively. While simulations only show an improvement over non-adaptive
procedures in limited situations, these are to our knowledge among the first theoretically
founded adaptive multiple testing procedures that control the FDR when the p-values are
not independent.

1 Introduction

1.1 Adaptive multiple testing procedures

Spurred by an increasing number of application fields, in partilar bioinformatics, the topic of
multiple testing (which enjoys a long history in the statistics literature) has generated a renewed,
growing attention in the recent years. For example, using microarray data, the goal is to detect
which genes (among several ten of thousands) exhibit a significantly different level of expression
in two different experimental conditions. Each gene represents a “hypothesis” to be tested in the
statistical sense. The genes’ expression levels fluctuate naturally (not to speak of other sources
of fluctuation introduced by the experimental protocol), and, because they are so many genes
to choose from, it is important to control precisely what can be deemed a significant observed
difference. Generally it is assumed that the natural fluctuation distribution of a single gene is
known and the problem is to take into account the number of genes involved (for more details, see
for instance Dudoit et al., 2003).

In this work, we focus on building multiple testing procedures with a control of the false dis-
covery rate (FDR). This quantity is defined as the expected proportion of type I errors, that is,
the proportion of true null hypotheses among all the null hypotheses that have been rejected (i.e.
declared as false) by the procedure. In their seminal work on this topic, Benjamini and Hochberg
(1995) proposed the celebrated linear step-up (LSU) procedure, that is proved to control the FDR
under independence between the p-values. Later, it was proved (Benjamini and Yekutieli, 2001)
that the LSU procedure still controls the FDR when the p-values have positive dependences (or
more precisely, a specific form of positive dependence called PRDS). Under unspecified depen-
dences, the same authors have shown that the FDR control still holds if the threshold collection
of the LSU procedure is divided by a factor 1 + 1/2 + · · · + 1/m, where m is the total number of
null hypotheses to test.



More recently, the latter result has been generalized (Blanchard and Fleuret, 2007; Blanchard
and Roquain, 2008; Sarkar, 2008a), by showing that there is a family of step-up procedures (de-
pending on the choice of a kind of prior distribution) that still control the FDR under unspecified
dependences between the p-values.

However, all of these procedures, which are built in order to control the FDR at a level α, can be
showed to have actually their FDR upper bounded by π0α, where π0 is the proportion of true null
hypotheses in the initial pool. Therefore, when most of the hypotheses are false (i.e., π0 is small),
these procedures are inevitably conservative, since their FDR is in actuality much lower than the
fixed target α. In this context, the challenge of adaptive control of the FDR (e.g., Benjamini and
Hochberg, 2000; Black, 2004) is to integrate an estimation of the unknown proportion π0 in the
threshold of the previous procedures and to prove that the FDR is still rigorously controlled by α.

Adaptive procedures are therefore of practical interest if it is expected that π0 is, or can
be, significantly smaller than 1. An example of such a situation occurs when using hierarchical
procedures (e.g., Benjamini and Heller, 2007) which first selects some clusters of hypotheses that
are likely to contain false nulls, and then apply a multiple testing procedure on the selected
hypotheses. Since a large part of the true null hypotheses is expected to be false in the second
step, an adaptive procedure is needed in order to keep the FDR close to the target level.

A number of adaptive procedures have been proposed in the recent literature and can loosely
be divided into the following categories:

– plug-in procedures, where some initial estimator of π0 is directly plugged in as a multiplicative
level correction to the usual procedures. In some cases (e.g. Storey’s estimator, see Storey,
2002), the resulting plug-in adaptive procedure (or a variation thereof) has been proved to
control the FDR at the desired level (Benjamini et al., 2006; Storey et al., 2004). A variety
of other estimators of π0 have been proposed (e.g. Meinshausen and Rice, 2006; Jin and Cai,
2007; Jin, 2008); while their asymptotic consistency (as the number of hypotheses tends to
infinity) is generally established, their use in plug-in adaptive procedures has not always been
studied.

– two-stage procedures: in this approach, a first round of multiple hypothesis testing is performed
using some fixed algorithm, then the results of this first round are used in order to tune the
parameters of a second round in an adaptive way. This can generally be interpreted as using the
output of the first stage to estimate π0. Different procedures following this general approach
have been proposed (Benjamini et al., 2006; Sarkar, 2008a; Farcomeni, 2007); more generally,
multiple-stage procedures can be considered.

– one-stage procedures, which perform a single round of multiple testing (generally step-up or
step-down), based on a particular threshold collection that renders it adaptive (Finner et al.,
2009; Gavrilov et al., 2009).

In addition, some other works (Genovese and Wasserman, 2004; Storey et al., 2004; Finner et al.,
2009) have studied the question of adaptivity to the parameter π0 from an asymptotic viewpoint.
In this framework, the more specific random effects model is – most generally, though not always
– considered, in which p-values are assumed independent, each hypothesis has a probability π0

of being true, and all false null hypotheses share the same alternate distribution. The behavior
of different procedures is then studied under the limit where the number of tested hypotheses
grows to infinity. One advantage of this approach and specific model is that it allows to derive
quite precise results (see Neuvial, 2008, for a precise study of limiting behaviors of central limit
type under this model, including for some of the new procedures introduced in the present paper).
However, we emphasize that in the present work our focus is decidedly on the nonasymptotic side,
using finite samples and arbitrary alternate hypotheses.

To complete this overview, let us also mention another interesting and different direction
opened up recently, that of adaptivity to the alternate distribution. If the alternate distribution
is known a priori, it is well-known that the optimal testing statistics are likelihood ratios between
the null and the alternate (which can then be transformed into p-values). When the alternate is
unknown though, one can hope to estimate, implicitly or explicitly, the alternate distribution from
the observed data, and consequently approximate the optimal test statistics (Sun and Cai, 2007
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proposed an asymptotically consistent approach to this end; see also Spjøtvoll, 1972, Storey, 2007) .
Interestingly, this point of view is also intimately linked to some traditional topics in statistical
learning such as classification and of optimal novelty detection (see, e.g., Scott and Blanchard,
2009). However, in the present paper we will focus on adaptivity to the parameter π0 only.

1.2 Overview of this paper

The contributions of the present paper are the following. A first goal of the paper is to introduce
a number of novel adaptive procedures:

1. We introduce a new one-stage step-up procedure that is more powerful than the standard
LSU procedure in a large range of situations, and provably controls the FDR under indepen-
dence. This procedure is called one-stage adaptive, because the estimation of π0 is performed
implicitly.

2. Based on this, we then build a new two-stage adaptive procedure, which is more powerful in
general than the procedure proposed by Benjamini et al. (2006), while provably controlling
the FDR under independence.

3. Under the assumption of positive or arbitrary dependence of the p-values, we introduce new
two-stage adaptive versions of known step-up procedures (namely, of the LSU under positive
dependences, and of the family of procedures introduced by Blanchard and Fleuret, 2007,
under unspecified dependences). These adaptive versions provably control the FDR and result
in an improvement of power over the non-adaptive versions in some situations (namely, when
the number of hypotheses rejected in the first stage is large, typically more than 60%).

A second goal of this work is to present a review of several existing adaptive step-up procedures
with provable FDR control under independence. For this, we present the theoretical FDR control
as a consequence of a single general theorem for plug-in procedures, which was first established
by Benjamini et al. (2006). Here, we give a short self-contained proof of this result that is of
independent interest. The latter is based on some tools introduced earlier (Blanchard and Roquain,
2008; Roquain, 2007), that aim to unify FDR control proofs. Related results and tools also appear
independently in Finner et al. (2009); Sarkar (2008b).

A third goal is to compare both the existing and our new adaptive procedures in an exten-
sive simulation study under both independence and dependence, following the simulation model
and methodology used by Benjamini et al. (2006). Concerning the new one- and two- step proce-
dures with theoretical FDR control under independence, these are generally quite competitive in
comparison to existing ones. However we also report that the best procedure overall (in terms of
power, among procedures that are robust enough to the dependent case) appears to be the plug-
in procedure based on the well-known Storey estimator (Storey, 2002) used with the somewhat
nonstandard parameter λ = α . This outcome was in part unexpected since to the best of our
knowledge, this fact had never been pointed out so far (the usual default recommended choice is
λ = 1

2 and turns out to be very unstable in dependent situations); this is therefore an important
conclusion of this paper regarding practical use of these procedures.

Concerning the new two-step procedure with theoretical FDR control under dependence, simu-
lations show an (admittedly limited) improvement over their non-adaptive counterpart in favorable
situations which correspond to what was expected from the theoretical study (large proportion
of false hypotheses). The observed improvement is unfortunately not striking enough to be able
to recommend using these procedures in practice; their interest is therefore at this point mainly
theoretical, in that these are to our knowledge among the first theoretically founded adaptive
multiple testing procedures that control the FDR when the p-values are not independent.

The paper is organized as follows: in Section 2, we introduce the mathematical framework, and
we recall the existing non-adaptive results in FDR control. In Section 3 we deal with the setup
of independent p-values. We expose our new procedures and review the existing ones, and finally
compare them in a simulation study. The case of positive dependent and arbitrarily dependent
p-values is examined in Section 4 where we introduce our new adaptive procedures in this context.
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A conclusion is given in Section 5. Section 6 and 7 contains proofs of the results and lemmas,
respectively. Some technical remarks and discussions of links to other work are gathered at the
end of each relevant subsection, and can be skipped by the non-specialist reader.

2 Preliminaries

2.1 Multiple testing framework

In this paper, we will stick to the traditional statistical framework for multiple testing. Let (X , X, P)
be a probability space; we want to infer a decision on P from an observation x in X drawn from
P . Let H be a finite set of null hypotheses for P, that is, each null hypothesis h ∈ H corresponds
to some subset of distributions on (X , X) and ”P satisfies h” means that P belongs to this subset
of distributions. The number of null hypotheses |H| is denoted by m, where |.| is the cardinality
function. The underlying probability P being fixed, we denote H0 = {h ∈ H|P satisfies h} the
set of the true null hypotheses and m0 = |H0| the number of true null hypotheses. We let also
π0 := m0/m the proportion of true null hypotheses. We stress that H0, m0, and π0 are unknown
and implicitly depend on the unknown P . All the results to come are always implicitly meant to
hold for any generating distribution P .

We suppose further that there exists a set of p-value functions p = (ph, h ∈ H), meaning
that each ph : (X , X) 7→ [0, 1] is a measurable function and that for each h ∈ H0, ph is bounded
stochastically by a uniform distribution, that is,

∀h ∈ H0 ∀t ∈ [0, 1], P(ph ≤ t) ≤ t. (1)

Typically, p-values are obtained from statistics that have a known distribution P0 under the
corresponding null hypothesis. In this case, if F0 denotes the corresponding cumulative distribution
function, applying 1 − F0 to the observed statistic results in a random variable satisfying (1) in
general. Here, we are however not concerned how these p-values are constructed and only assume
that they exist and are known (this is the standard setting in multiple testing).

2.2 Multiple testing procedure and errors

A multiple testing procedure is a measurable function

R : x ∈ X 7→ R(x) ∈ P(H),

which takes as input an observation x and returns a subset of H, corresponding to the rejected
hypotheses. As it is commonly the case, we will focus here on multiple testing procedure based on
p-values, that is, we will implicitly assume that R is of the form R(p).

A multiple testing procedure R can make two kinds of errors: a type I error occurs for h when h
is true and is rejected by R , that is, h ∈ H0∩R. Following the Neyman-Pearson general philosophy
for hypothesis testing, the primary concern is to control the number of type I errors of a testing
procedure. Conversely, a type II error occurs for h when h is false and is not rejected by R, that
is h ∈ Hc

0 ∩ Rc.
The most traditional way to control type I error is to upper bound the “Family-wise error rate”

(FWER), which is the probability that one or more true null hypotheses are wrongly rejected.
However, procedures with a controlled FWER are very “cautious” not to make a single error, and
thus reject only few hypotheses. This conservative way of measuring the type I error for multiple
hypothesis testing can be a serious hindrance in practice, since it requires to collect large enough
datasets so that significant evidence can be found under this strict error control criterion. More
recently, a more liberal measure of type I errors has been introduced in multiple testing (Benjamini
and Hochberg, 1995): the false discovery rate (FDR), which is the averaged proportion of true null
hypotheses in the set of all the rejected hypotheses:
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Definition 2.1 (False discovery rate). The false discovery rate of a multiple testing procedure
R for a generating distribution P is given by

FDR(R) := E

[ |R ∩H0|
|R| 1 {|R| > 0}

]
. (2)

Remark 2.2. Throughout this paper we will use the following convention: whenever there is an
indicator function inside an expectation, this has logical priority over any other factor appearing
in the expectation. What we mean is that if other factors include expressions that may not be
defined (such as the ratio 0

0 ) outside of the set defined by the indicator, this is safely ignored.
This results in more compact notations, such as in the above definition. Note also again that the
dependence of the FDR on the unknown P is implicit.

A classical aim, then, is to build procedures R with FDR upper bounded at a given, fixed level
α. Of course, if we choose R = ∅, meaning that R rejects no hypotheses, trivially FDR(R) = 0 ≤ α .
Therefore, it is desirable to build procedures R satisfying FDR(R) ≤ α while at the same time
having as few type II errors as possible. As a general rule, provided that FDR(R) ≤ α, we want to
build procedures that reject as many false hypotheses as possible. The absolute power of a mul-
tiple testing procedure is defined as the average proportion of false hypotheses correctly rejected,
E [|R ∩Hc

0|] / |Hc
0| . Given two procedures R and R′ , a particularly simple sufficient condition for

R to be more powerful than R′ is when R′ if R′ ⊂ R holds pointwise. We will say in this case that
R is (uniformly) less conservative than R′ .

2.3 Self-consistency, step-up procedures, FDR control and adaptivity

We first define a general class of multiple testing procedures called self-consistent procedures (Blan-
chard and Roquain, 2008).

Definition 2.3 (Self-consistency, non-increasing procedure). Let ∆ : {0, 1, . . . , m} → R ,
∆(0) = 0 , be a function called threshold collection; a multiple testing procedure R is said to satisfy
the self-consistency condition with respect to ∆ if

R ⊂ {h ∈ H | ph ≤ ∆(|R|)} (3)

holds almost surely. Furthermore, we say that R is non-increasing if for all h ∈ H the function
ph 7→ |R(p)| is non-increasing, that is if |R| is non-increasing in each p-value.

The class of self-consistent procedures includes well-known types of procedures, notably step-up
and step-down. The assumption that a procedure is non-increasing, which is required in addition
to self-consistency in some of the results to come, is relatively natural as a lower p-value means
we have more evidence to reject the corresponding hypothesis. We will mainly focus on the step-
up procedure, which we define now. For this, we sort the p-values in increasing order using the
notation p(1) ≤ · · · ≤ p(m) and put p(0) = 0 . This order is of course itself random since it depends
on the observation.

Definition 2.4 (Step-up procedure). The step-up procedure with threshold collection ∆ is de-
fined as

R = {h ∈ H | ph ≤ p(k)}, where k = max{0 ≤ i ≤ m | p(i) ≤ ∆(i)}.
A trivial but important property of a step-up procedure is the following.

Lemma 2.5. The step-up procedure with threshold collection ∆ is non-increasing and self-consistent
with respect to ∆ .

Therefore, a result valid for any non-increasing self-consistent procedure also holds for the corre-
sponding step-up procedure. This will be used extensively through the paper and thus should be
kept in mind by the reader.
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Among all procedures that are self-consistent with respect to ∆ , the step-up is uniformly less
conservative than any other (Blanchard and Roquain, 2008) and is therefore of primary interest.
However, to recover procedures of a more general form (including step-down for instance), the
statements of this paper will be preferably expressed in terms of self-consistent procedures when
it is possible.

Threshold collections are generally scaled by the target FDR level α . Once correspondingly
rewritten under the normalized form ∆(i) = αβ(i)/m , we will call β the shape function for
threshold collection ∆ . In the particular case where the shape function β is the identity function,
the procedure is called the linear step-up (LSU) procedure (at level α).

The LSU plays a prominent role in multiple testing under FDR control; it was the first proce-
dure for which FDR control was proved and it is probably the most widely used procedure in this
context. More precisely, when the p-values are assumed to be independent, the following theorem
holds.

Theorem 2.6. Suppose that the p-values of p = (ph, h ∈ H) are independent. Then any non-
increasing self-consistent procedure with respect to threshold collection ∆(i) = αi/m has FDR
upper bounded by π0α , where π0 = m0/m is the proportion of true null hypotheses. (In particular,
this is the case for the linear step-up procedure). Moreover, if the p-values associated to true null
hypotheses are exactly distributed like a uniform distribution, the linear step-up procedure has FDR
equal to π0α .

The first part of this result, in the case of the LSU, was proved in the landmark paper of
Benjamini and Hochberg (1995); the second part (also for the LSU) was proved by Benjamini and
Yekutieli (2001) and Finner and Roters (2001).

Benjamini and Yekutieli (2001) extended the previous result about FDR control of the linear
step-up procedure to the case of p-values with a certain form of positive dependence called positive
regressive dependence from a subset (PRDS). We skip a formal definition for now (we will get
back to this topic in Section 4). The extension of this result to self-consistent procedures (in the
independent as well as PRDS cases) was established by Blanchard and Roquain (2008) and Finner
et al. (2009).

However, when no particular assumptions are made on the dependences between the p-values, it
can be shown that the above FDR control is not generally true. This situation is called unspecified
or arbitrary dependence. A modification of the LSU was first proposed in Benjamini and Yekutieli
(2001) which was proved to have a controlled FDR under arbitrary dependence. This result was
extended by Blanchard and Fleuret (2007) and Blanchard and Roquain (2008) (see also a related
result of Sarkar, 2008a): it can be shown that self-consistent procedures (not necessarily non-
increasing) based on a particular class of shape functions have controlled FDR:

Theorem 2.7. Under unspecified dependences between the p-values of p = (ph, h ∈ H), consider
β a shape function of the form:

β(r) =

∫ r

0

udν(u), (4)

where ν is some fixed a priori probability distribution on (0,∞). Then any self-consistent procedure
with respect to threshold collection ∆(i) = αβ(i)/m has FDR upper bounded by απ0 .

To recap, in all of the above cases, the FDR is actually controlled at the level π0α instead of the
target α. Hence, a direct corollary of both of the above theorems is that the step-up procedure with
shape function β∗(x) = π−1

0 β(x) has FDR upper bounded α in either of the following situations:

- β(x) = x when the p-values are independent or PRDS,
- the shape function β is of the form (4) when the p-values have unspecified dependences.

Note that, since π0 ≤ 1, using β∗ always gives rise to a less conservative procedure than using β
(especially when π0 is small). However, since π0 is unknown, the shape function β∗ is not directly
accessible. We therefore will call the step-up procedure using β∗ the Oracle step-up procedure
based on shape function β (corresponding to one of the above cases).
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Simply put, the role of adaptive step-up procedures is to mimic the latter oracle in order to
obtain more powerful procedures. Adaptive procedures are often step-up procedures using the
modified shape function Gβ , where G is some estimator of π−1

0 :

Definition 2.8 (Plug-in adaptive step-up procedure). Given a level α ∈ (0, 1), a shape
function β and an estimator G : [0, 1]H → (0,∞) of the quantity π−1

0 , the plug-in adaptive step-up
procedure of shape function β and using estimator G (at level α) is defined as

R = {h ∈ H | ph ≤ p(k)}, where k = max{i | p(i) ≤ αβ(i)G(p)/m}.

The (data-dependent) function ∆(p, i) = αβ(i)G(p)/m is called the adaptive threshold collection
corresponding to the procedure. In the particular case where the shape function β is the identity
function on R+, the procedure is called an adaptive linear step-up procedure using estimator G
(and at level α).

Following the previous definition, an adaptive plug-in procedure is composed of two different
steps:

1. Estimate π−1
0 with an estimator G .

2. Take the step-up procedure of shape function Gβ .

A subclass of plug-in adaptive procedures is formed by so-called two-stage procedures, when the
estimator G is actually based on a first, non-adaptive, multiple testing procedure. This can ob-
viously be possibly iterated and lead to multi-stage procedures. The distinction between generic
plug-in procedures and two-stage procedures is somewhat informal and generally meant only to
provide some kind of nomenclature between different possible approaches.

The main theoretical task is to ensure that an adaptive procedure of this type still correctly
controls the FDR. The mathematical difficulty obviously comes from the additional random vari-
ations of the estimator G in the procedure.

3 Adaptive procedures with provable FDR control under independence

In this section, we introduce two new adaptive procedures that provably control the FDR under
independence. The first one is one-stage and does not include an explicit estimator of π−1

0 , hence
it is not a plug-in procedure. We then propose to use this as the first stage in a new two-stage
procedure, which constitutes the second proposed method.

For clarity, we first introduce the new one-stage procedure; we then discuss several possible
plug-in procedures, including our new proposition and several procedures proposed by other au-
thors. FDR control for these various plug-in procedures can be studied using a general theoretical
device introduced by Benjamini et al. (2006) which we reproduce here with a self-contained and
somewhat simplified proof. Finally, to compare these different approaches, we close this section
with extensive simulations which both examined the performance under independence and the
robustness under (possibly strong) positive correlations.

3.1 New adaptive one-stage step-up procedure

We present here our first main contribution, a one-stage adaptive step-up procedure. This means
that the estimation step is implicitly included in the shape function β .

Theorem 3.1. Suppose that the p-values of p = (ph, h ∈ H) are independent and let λ ∈ (0, 1) be
fixed. Define the adaptive threshold collection

∆(i) = min

(
(1 − λ)

αi

m − i + 1
, λ

)
. (5)

Then any non-increasing self-consistent procedure with respect to ∆ has FDR upper bounded by
α . In particular, this is the case of the corresponding step-up procedure, denoted by BR-1S-λ .
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The above result will be proved in Section 6. Our proof is in part based on Lemma 1 of
Benjamini et al. (2006). Note that an alternate proof of Theorem 3.1 has been established in
Sarkar (2008b) without using this lemma while nicely connecting the FDR upper-bound to the
false non-discovery rate.

Below, we will focus on the choice λ = α , leading to the threshold collection

∆(i) = α min

(
(1 − α)

i

m − i + 1
, 1

)
. (6)

For i ≤ (m + 1)/2, the threshold (6) is

α
(1 − α)i

m − i + 1
,

and thus our approach differs from the threshold collection of the standard LSU procedure thresh-

old by the factor (1−α)m
m−i+1 .

It is interesting to note that the correction factor m
m−i+1 appears in Holm’s step-down procedure

(Holm, 1979) for FWER control. The latter is a well-known improvement of Bonferroni’s procedure
(which corresponds to the fixed threshold α/m), taking into account the proportion of true nulls,
and defined as the step-down procedure3 with threshold collection α/(m−i+1) . Here we therefore
prove that this correction is suitable as well for the linear step-up procedure, in the framework of
FDR control.

If r denotes the final number of rejections of the new one-stage procedure, we can interpret

the ratio (1−λ)m
m−r+1 between the adaptive threshold and the LSU threshold at the same point as an

a posteriori estimate for π−1
0 . In the next section we propose to use this quantity in a plug-in,

2-stage adaptive procedure.

As Figure 1 illustrates, our procedure is generally less conservative than the (non-adaptive)
linear step-up procedure (LSU). Precisely, the new procedure can only be more conservative than

the LSU procedure in the marginal case where the factor (1−α)m
m−i+1 is smaller than one. This happens

only when the proportion of null hypotheses rejected by the LSU procedure is positive but less
than α + 1/m (and even in this region the ratio of the two threshold collections is never less than
(1 − α) ). Roughly speaking, this situation with only few rejections can only happen if there are
few false hypotheses to begin with (π0 close to 1) or if the false hypotheses are very difficult to
detect (the distribution of false p-values is close to being uniform).

In the interest of being more specific, we briefly investigate this issue in the next lemma,
considering the particular Gaussian random effects model (which is relatively standard in the
multiple testing literature, see e.g. Genovese and Wasserman, 2004) in order to give a quantitative
answer from an asymptotical point of view (when the number of tested hypotheses grows to
infinity). In the random effect model, hypotheses are assumed to be randomly true or false with
probability π0 , and the false null hypotheses share a common distribution P1 . Globally, the p-
values then are i.i.d. drawn according to the mixture distribution π0U [0, 1] + (1 − π0)P1 .

Lemma 3.2. Consider the random effects model where the p-values are i.i.d. with common cumu-
lative distribution function t 7→ π0t + (1 − π0)F (t). Assume the true null hypotheses are standard
Gaussian with zero mean and the alternative hypotheses are standard Gaussian with mean µ > 0 .

In this case F (t) = Φ(Φ
−1

(t)−µ) , where Φ is the standard Gaussian upper tail function. Assuming
π0 < (1 + α)−1 , define

µ⋆ = Φ
−1

(α2) − Φ
−1

(
α−1 − π0

1 − π0
α2

)
.

3 The step-down procedure with threshold collection ∆ rejects the hypotheses corresponding to the k

smallest p-values, where k = max{0 ≤ i ≤ m | ∀j ≤ i p(j) ≤ ∆(j)}. It is self-consistent with respect
to ∆ but uniformly more conservative than the step-up procedure with the same threshold collection,
compare with Definition 2.4.
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Fig. 1. For m = 1000 null hypotheses and α = 5%: comparison of the new threshold collection
BR-1S-λ given by (5) to that of the LSU, the AORC and FDR09-η .

Then if µ > µ∗ , the probability that the LSU rejects a proportion of null hypotheses less than
1/m + α tends to 0 as m tends to infinity. On the other hand, if π0 > (1 + α)−1 , or µ < µ∗ , then
this probability tends to one.

For instance, taking in the above lemma the values π0 = 0.5 and α = 0.05, results in the critical
value µ⋆ ≃ 1.51 . This lemma delineates clearly in a particular case in which situation we can
expect an improvement from the adaptive procedure over the standard LSU.

Comparison to other adaptive one-stage procedures. Very recently, other adaptive one-
stage procedures with important similarities to BR-1S-λ have been proposed by other authors.
(The present work was developed independently.)

Starting with some heuristic motivations, Finner et al. (2009) proposed the threshold collection
t(i) = αi

m−(1−α)i , which they dubbed the asymptotically optimal rejection curve (AORC). However,

the step-up procedure using this threshold collection as is does not have controlled FDR (since
t(m) = 1 , the corresponding step-up procedure would always reject all the hypotheses), and several
suitable modifications were proposed by Finner et al. (2009), the simplest one being

t′η(i) = min
(
t(i), η−1αi/m

)
,

which is denoted by FDR09-η in the following.
The theoretical FDR control proved in Finner et al. (2009) is studied asymptotically as the

number of hypotheses grows to infinity. In that framework, asymptotical control at level α is
shown to hold for any η < 1. On Figure 1, we represented the thresholds BR-1S-λ and FDR09-
η for comparison, for several choices of the parameters. The two families appear quite similar,
initially following the AORC curve then branching out or capping at a point depending on the
parameter. One noticeable difference in the initial part of the curve is that while FDR09-η exactly
coincides with the AORC, BR-1S-λ is arguably sligthly more conservative. This reflects the nature
of the corresponding theoretical result – non-asymptotic control of the FDR requires a somewhat
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more conservative threshold as compared to the only asymptotic control of FDR-η . Moreover, we
can use BR-1S-λ as a first step in a 2-step procedure, as will be argued in the next section.

The ratio between BR-1S-λ and the AORC (before the capping point) is a factor which,
assuming α ≥ (m + 1)−1 , is lower bounded by (1− λ)(1 − 1

m+1 ) . This suggests that the value for
λ should be kept small, this is why we propose λ = α as a default choice.

Finally, the step-down procedure based on the same threshold collection t(i) (without modifi-
cation) is proposed and studied by Gavrilov et al. (2009). Using specific properties of step-down
procedures, these authors proved the nonasymptotic FDR control of this procedure.

3.2 Adaptive plug-in methods

In this section, we consider different adaptive step-up procedures of the plug-in type, i.e. based
on an explicit estimator of π−1

0 . We first review a general method proposed by Benjamini et al.
(2006) in order to derive FDR control for such plug-in procedures (see also Theorem 4.3 of Finner
et al., 2009). We propose here a self-contained proof of this result, which is somewhat more
compact than the original one (and also extends the original result from step-up procedures to
more generally self-consistent procedures). Based on this result, we review the different plug-in
estimators considered by Benjamini et al. (2006) and add a new one to the lot, based on the
one-stage adaptive procedure introduced in the previous section.

Let us first introduce the following notations: for each h ∈ H, we denote by p−h the collection
of p-values p restricted to H \ {h} , that is, p−h = (ph′ , h′ 6= h) . We also denote p0,h = (p−h, 0)
the collection p where ph has been replaced by 0.

Theorem 3.3 (Benjamini, Krieger, Yekutieli 2006). Suppose that the family p-values p =
(ph, h ∈ H) is independent. Let G : [0, 1]H → (0,∞) be a measurable, coordinate-wise non-
increasing function. Consider a non-increasing multiple testing procedure R which is self-consistent
with respect to the adaptive linear threshold collection ∆(p, i) = αG(p)i/m . Then the following
holds:

FDR(R) ≤ α

m

∑

h∈H0

E [G(p0,h)] . (7)

In particular, if for any h ∈ H0 , it holds that E [G(p0,h)] ≤ π−1
0 , then FDR(R) ≤ α .

We will apply the above result to the following estimators, depending on a fixed parameter
λ ∈ (0, 1) or k0 ∈ {1, . . . , m}:

[Storey-λ] G1(p) =
(1 − λ)m∑

h∈H 1 {ph > λ} + 1
;

[Quant-
k0

m
] G2(p) =

(1 − p(k0))m

m − k0 + 1
;

[BKY06-λ] G3(p) =
(1 − λ)m

m − |R0(p)| + 1
, where R0 is the standard LSU at level λ ;

[BR-2S-λ] G4(p) =
(1 − λ)m

m − |R′
0(p)| + 1

, where R′
0 is BR-1S-λ (see Theorem 3.1).

Above, the notations “Storey-λ”, “Quant-k0

m
”, “BKY06-λ” and “BR-2S-λ” refer to the plug-in

adaptive linear step-up procedures associated to G1, G2, G3 and G4, respectively.
Estimator G1 is usally called modified Storey’s estimator and was initially introduced by Storey

(2002) from an heuristics on the p-values histogram (originally without the “+1” in the numerator,
hence the name “modified”). Its intuitive justification is as follows: the set Sλ of p-values larger
than the threshold λ contains on average at least a proportion (1−λ) of the true null hypotheses.
Hence, a natural estimator of π−1

0 is (1−λ)m/|Sλ ∩H0| ≤ (1−λ)m/|Sλ| ≃ G1(p) . Therefore, we
expect that Storey’s estimator is generally an overestimate of π−1

0 . A standard choice is λ = 1/2
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(as in the SAM software of Storey and Tibshirani, 2003). FDR control for the corresponding plug-

in step-up procedure was proved by Storey et al. (2004) (actually, for the modification ∆̃(p, i) =
min(αG1(p)i/m, λ) ) and by Benjamini et al. (2006).

Estimator G2 was introduced by Benjamini and Hochberg (2000) and Efron et al. (2001), from
a slope heuristics on the p-values c.d.f. Roughly speaking, G2 appears as a Storey’s estimator with
the data-dependent choice λ = p(k0) , and can therefore be interpreted as the quantile version of
the Storey estimator. A standard value for k0 is ⌊m/2⌋, resulting in the so-called median adaptive
LSU (see Benjamini et al. (2006) and the references therein).

Estimator G3 was introduced by Benjamini et al. (2006) for the particular choice λ = α/(1+α).
More precisely, a slightly less conservative version, without the “+1” in the denominator, was used
in Benjamini et al. (2006). We forget about this refinement here, noting that it results only in a
very slight improvement.

Finally, the estimator G4 is new and follows exactly the same philosophy as G3, that is, uses
a step-up procedure as a first stage in order to estimate π−1

0 , but this time based on our adaptive
one-stage step-up procedure introduced in the previous section, rather than the standard LSU.
Note that since R′

0 is less conservative than R0 (except in marginal cases), we generally have
G2 ≤ G3 pointwise and our estimator improves over the one of Benjamini et al. (2006).

These different estimators all satisfy the sufficient condition mentioned in Theorem 3.3, and
we thus obtain the following corollary:

Corollary 3.4. Assume that the p-values of p = (ph, h ∈ H) are independent. For i = 1, 2, 3, 4 ,
and any h ∈ H0 , it holds that E [Gi(p0,h] ≤ π−1

0 . Therefore, the plug-in adaptive linear step-up
procedure at level α using estimator Gi has FDR smaller than α .

The above result for G1, G2 and G3 (for λ = α/(1+α)) was proved by Benjamini et al. (2006).
For completeness, we reproduce shortly the corresponding arguments in the appendix.

In other words, Corollary 3.4 states that under independence, for any λ and k0, the plug-in
adaptive procedures Storey-λ, Quant-k0

m
, BKY06-λ and BR-2S-λ all control the FDR at level α.

Remark 3.5. The result proved by Benjamini et al. (2006) is actually slightly sharper than Theo-
rem 3.3. Namely, if G(·) is moreover supposed to be coordinate-wise left-continuous, it is possible
to prove that Theorem 3.3 still holds when p0,h in the RHS of (7) is replaced by the slightly
better p̃h = (p−h, p̃h(p−h)) , defined as the collection of p-values p where ph has been replaced
by p̃h(p−h) = max

{
p ∈ [0, 1]

∣∣ p ≤ απ(h)|R(p−h, p)|G(p−h, p)
}
. This improvement then per-

mits to get rid of the “+1” in the denominator of G3 . Here, we opted for simplicity and a more
straightforward statement, noting that this improvement is not crucial.

Remark 3.6. The one-stage step-up procedure of Finner et al. (2009) (see previously the discussion
at the end of Section 3.1) — for which there is no result proving non-asymptotic FDR control up
to our knowledge — can also be interpreted intuitively as an adaptive version of the LSU using
estimator G2 , where the choice of parameter k0 is data-dependent. Namely, assume we reject at
least i null hypotheses whenever p(i) is lower than the standard LSU threshold times the estimator

G2 wherein parameter k0 = i is used. This corresponds to the inequality p(i) ≤ (1−p(i))k

m−i+1 , which,
solved in p(i) , gives the threshold collection of Finner et al. (2009). Remember from Section 3.1
that this threshold collection must actually be modified in order to be useful, since it otherwise
always leads to reject all hypotheses. The modification leading to FDR09-η consists in capping the
estimated π−1

0 at a level η , i.e. using min(η, G2) instead of G2 in the above reasoning. In fact, the
proof of Finner et al. (2009) relies on a result which is essentially a reformulation of Theorem 3.3
for a specific form of estimator.

Remark 3.7. The estimators Gi, i = 1, 2, 3, 4 are not necessarily larger than 1, and to this extent
can in some unfavorable cases result in the final procedure being actually more conservative than
the standard LSU. This can only happen in the situation where either π0 is close to 1 (“sparse
signal”) or the alternative hypotheses are difficult to detect (“weak signal”); if such a situation is
anticipated, it is more appropriate to use the regular non-adaptive LSU.
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For the Storey-λ estimator, we can control precisely the probability that such an unfavorable
case arises by using Hoeffding’s inequality (Hoeffding, 1963): assuming the true nulls are i.i.d.
uniform on (0, 1) and the false nulls i.i.d. of c.d.f. F (·), we write by definition of G1

P [G1(p) < 1] = P

[
1

m

m∑

h∈H

(1 {ph > λ} − P [ph > λ]) > (1 − π0)(F (λ) − λ) − m−1

]

≤ exp(−2(mc2 + 1)), (8)

where we denoted c = (1 − π0)(F (λ) − λ) , and assumed additionally c > m−1 . The behavior of
the bound mainly depends on c , which can get small only if π0 is close to 1 (sparse signal) or
F (λ) is close to λ (weak signal), illustrating the above point. In general, provided c > 0 does not
depend on m , the probability that the Storey procedure fails to outperform the LSU vanishes
exponentially as m → ∞ .

3.3 Theoretical robustness of the adaptive procedures under maximal dependence

For the different procedures proposed above, the theory only provides the correct FDR control
under independence between the p-values. An important issue is to know how robust this control
is when dependences are present (as it is often the case in practice). However, the analytic com-
putation of the FDR under dependence is generally a difficult task, and this issue is often tackled
empirically through simulations in a pre-specified model (we will do so in Section 3.4).

In this short section, we present theoretical computations of the FDR for the previously intro-
duced adaptive step-up procedures, under the maximally dependent model where all the p-values
are in fact equal, that is ph ≡ p1 for all h ∈ H (and m0 = m). It corresponds to the case where
we perform m times the same test, with the same p-value. Albeit relatively trivial and limited,
this case leads to very simple FDR computations and provides at least some hints concerning the
robustness under dependence of the different procedures studied above.

Proposition 3.8. Suppose that we observe m identical p-values p = (p1, ..., pm) = (p1, ..., p1)
with p1 ∼ U([0, 1]) and assume m = m0. Then, the following holds:

FDR(BR-1S-λ) = min(λ, (1 − λ)αm),

FDR(FDR09-η) = αη−1,

FDR(Storey-λ) = min

(
λ, α(1 − λ)m

)
+

(
α(1 − λ)(1 + m−1) − λ

)
+

,

FDR(Quant-k0/m) =
α

(1 + α) − (k0 − 1)m−1
,

FDR(BKY06-λ) = FDR(BR-2S-λ) = FDR(Storey-λ).

Interestingly, the above proposition suggests specific choices of the parameters λ, η and k0 to
ensure control of the FDR at level α under maximal dependence:

• For BR-1S-λ, putting λ2 = α/(α + m−1), Proposition 3.8 gives that FDR(BR-1S-λ) = λ
whenever λ ≤ λ2. This suggests to take λ = α , and is thus in accordance with the default
choice proposed in Section 3.1.

• For FDR09-η, no choice of η < 1 will lead to the correct FDR control under maximal depen-
dence. However, the larger η , the smaller the FDR in this situation. Note that FDR(FDR09- 1

2 ) =
2α.

• For Storey-λ, BKY06-λ and BR-2S-λ, putting λ1 = α/(1 + α + m−1), we have FDR = λ for
λ1 ≤ λ ≤ λ2. This suggests to choose λ = α within these three procedures. Furthermore, note
that the standard choice λ = 1/2 for Storey-λ leads to a very poor control under maximal
dependence: FDR(Storey-1/2) = min(αm, 1)/2.
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• For Quant-k0/m, we see that the value of k0 maximizing the FDR while maintaining it
below α is k0 = ⌊αm⌋ + 1. Remark also that the standard choice k0 = ⌊m/2⌋ leads to
FDR(Quant-k0/m) = 2α/(1 + 2α + 2m−1) ≃ 2α.

Nevertheless, we would like to underline that the above computations should be interpreted
with caution, as the maximal dependence case is very specific and cannot possibly give an accurate
idea of the behavior of the different procedures when the correlation between the p-values are
strong but not equal to 1 . For instance, it is well-known that the LSU procedure has FDR far
below α for strong positive correlations, but its FDR is equal to α in the above extreme model (see
Finner et al., 2007, for a comprehensive study of the LSU under positive dependence). Conversely,
the FDR of some adaptive procedures can be higher under moderate dependence than under
maximal dependence. This behavior appears in the simulations of the next section, illustrating the
complexity of the issue.

3.4 Simulation study

How can we compare the different adaptive procedures defined above? For a fixed λ, we have
pointwise G1 ≥ G4 ≥ G3 , which shows that the adaptive procedure [Storey-λ] is always less
conservative than [BR-2S-λ], itself less conservative than [BKY06-λ] (except in the marginal cases
where the one-stage adaptive procedure is more conservative than the standard step-up procedure,
as delineated earlier for example in Lemma 3.2). It would therefore appear that one should always
choose [Storey-λ] and disregard the other ones. However, a important point made by Benjamini
et al. (2006) for introducing G3 as a better alternative to the (already known earlier) G1 is that, on
simulations with positively dependent test statistics, the plug-in procedure using G1 with λ = 1/2
had very poor control of the FDR, while the FDR was still controlled for the plug-in procedure
based on G3. While the positively dependent case is not covered by the theory, it is of course very
important to ensure that a multiple testing procedure is sufficiently robust in practice so that the
FDR does not vary too much in this situation.

In order to assess the quality of our new procedures, we compare here the different methods
on a simulation study following the setting used by Benjamini et al. (2006). Let Xi = µi + εi, for
i, 1 ≤ i ≤ m, where ε is a Rm-valued centred Gaussian random vector such that E(ε2

i ) = 1 and
for i 6= j, E(εiεj) = ρ, where ρ ∈ [0, 1] is a correlation parameter. Thus, when ρ = 0 the Xi’s
are independent, whereas when ρ > 0 the Xi’s are positively correlated (with a constant pairwise
correlation). For instance, the εi’s can be constructed by taking εi :=

√
ρ U +

√
1 − ρ Zi, where

Zi, 1 ≤ i ≤ m and U are all i.i.d ∼ N (0, 1).
Considering the one-sided null hypotheses hi : “µi ≤ 0” against the alternatives “µi > 0” for

1 ≤ i ≤ m, we define the p-values pi = Φ(Xi), for 1 ≤ i ≤ m, where Φ is the standard Gaussian
distribution tail. We choose a common mean µ̄ for all false hypotheses, that is, for i, 1 ≤ i ≤ m0,
µi = 0 and for i, m0 + 1 ≤ i ≤ m, µi = µ̄ ; the p-values corresponding to the null means follow
exactly a uniform distribution.

Note that the case ρ = 1 and m = m0 (i.e. π0 = 1) corresponds to the maximally dependent
case studied in Section 3.3.

We compare the following step-up multiple testing procedures: first, the one-stage step-up
procedures defined in Section 3.1:

- [BR08-1S -α] The new procedure of Theorem 3.1, with parameter λ = α ,
- [FDR09- 1

2 ] The procedure proposed in Finner et al. (2009) and described in Section 3.1, with
η = 1

2 .

Second, the adaptive plug-in step-up procedure defined in Section 3.2:

- [Median LSU ] The procedure [Quant-k0

m
] with the choice k0

m
= 1

2 ,
- [BKY06-α] The procedure [BKY06-λ] with the parameter choice λ = α ,
- [BR08-2S -α] The procedure [BR08-2S -λ] with the parameter choice λ = α ,
- [Storey-λ] With the choices λ = 1/2 and λ = α .
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Finally, we used as oracle reference [LSU Oracle], the step-up procedure with the threshold col-
lection ∆(i) = αi/m0, using a perfect estimation of π0.

The parameter choice λ = α for [Storey-λ] comes from the relationship of G3, G4 to G1 in
Section 3.1, and form the discussion of the maximally dependent case in Section 3.3. Note that the
procedure studied by Benjamini et al. (2006) is actually [BKY06-α/(1+α)] in our notation (up to
the very slight modification explained in Remark 3.5). This means that the procedure [BKY06-α]
used in our simulations is not exactly the same as in Benjamini et al. (2006), but it is very close.

The three most important parameters in the simulation are the correlation coefficient ρ, the
proportion of true null hypotheses π0, and the alternative mean µ̄ which represents the signal-to-
noise ration, or how easy it is to distinguish alternative hypotheses. We present in Figures 2, 3,
and 4 results of the simulations for one varying parameter (π0, µ̄ and ρ, respectively), the others
being kept fixed. Reported are, for the different methods: the average FDR, and the average power
relative to the reference [LSU-Oracle]. The absolute power is defined as the average proportion of
false null hypotheses rejected, and the relative power as the mean of the number of true rejections
of the procedure divided by the number of true rejections of [LSU-Oracle]. Each point is an average
of 105 simulations, with fixed parameters m = 100 and α = 5% .

Under independence (ρ = 0) Remember that under independence of the p-values, the LSU
procedure has FDR equal to απ0 and that the LSU Oracle procedure has FDR equal to α (provided
that α ≤ π0). The other procedures have their FDR upper bounded by α (in an asymptotical
sense only for [FDR09- 1

2 ]).
The situation where the p-values are independent corresponds to the first row of Figures 2 and

3 and the leftmost point of each graph in Figure 4. It appears that in the independent case, the
following procedures can be consistently ordered in terms of (relative) power over the range of
parameters studied here:

[Storey-1/2] ≻ [Storey-α] ≻ [BR08-2S-α] ≻ [BKY06-α],

the symbol “≻” meaning “is (uniformly over our experiments) more powerful than”.
Next, the procedures [median-LSU] and [FDR09- 1

2 ] appear both consistently less powerful
than [Storey- 1

2 ], and [FDR09- 1
2 ] is additionally also consistently less powerful than [Storey-α].

Their relation to the remaining procedures depends on the parameters; both [median-LSU] and
[FDR09- 1

2 ] appear to be more powerful than the remaining procedures when π0 > 1
2 , and less

efficient otherwise. We note that [median-LSU] also appears to perform better when µ̄ is low (i.e.
the alternative hypotheses are harder to distinguish).

Concerning our one-stage procedure [BR08-1S-α], we note that it appears to be indistinguish-
able from its two-stage counterpart [BR08-2S-α] when π0 > 1

2 , and significantly less powerful
otherwise. This also corresponds to our expectations, since in the situation π0 < 1

2 , there is a
much higher likelihood that more than 50% hypotheses are rejected, in which case our one-stage
threshold family hits its “cap” at level α (see e.g. Fig. 1; a similar qualitative explanation applies
to understand the behavior of FDR09−1/2). This is precisely to improve on this situation that we
introduced the 2-stage procedure, and we see that does in fact improve substantially the 1-stage
version in that specific region.

The fact that [Storey- 1
2 ] is uniformly more powerful than the other procedures in the indepen-

dent case corroborates the simulations reported in Benjamini et al. (2006). Generally speaking,
under independence we obtain a less biased estimate for π−1

0 when considering Storey’s estimator
based on a “high” threshold like λ = 1

2 . Namely, higher p-values are less likely to be “contam-
inated” by false null hypotheses; conversely, if we take a lower threshold λ, there will be more
false null hypotheses included in the set of p-values larger than λ , leading to a pessimistic bias
in the estimation of π−1

0 . This qualitative reasoning is also consistent with the observed behav-
ior of [median-LSU], since the set of p-values larger than the median is much more likely to be
“contaminated” when π0 < 1

2 .

However, the problem with [Storey- 1
2 ] is that the corresponding estimation of π−1

0 exhibits
much more variability than its competitors when there is a substantial correlation between the
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p-values. As a consequence it is a very fragile procedure. This phenomenon was already pinpointed
in Benjamini et al. (2006) and we study it next.

Under positive dependences (ρ > 0) Under positive dependences, remember that it is known
theoretically from Benjamini and Yekutieli (2001) that the FDR of the procedure LSU (resp.
LSU Oracle) is still bounded by απ0 (resp. α), but without equality. However, we do not know
from a theoretical point of view if the adaptive procedures have their FDR upper bounded by
α. In fact, it was pointed out by Farcomeni (2007), in another work reporting simulations on
adaptive procedures, that one crucial point for these seems to be the variability of estimate of
π−1

0 . Estimates of this quantity that are not robust with respect to positive dependence will result
in failures for the corresponding multiple testing procedure.

The situation where the p-values are positively dependent corresponds to the second and third
rows (ρ = 0.2, 0.5 , respectively) of Figures 2 and 3 and to all the graphs of Figure 4.

The most striking fact is that [Storey- 1
2 ] does not control the FDR at the desired level any

longer under positive dependences, an can even be off by quite a large factor. This is in accordance
with the experimental findings of Benjamini et al. (2006). Therefore, although this procedure was
the favorite in the independent case, it turns out to be not robust, which is very undesirable for
practical use where it is generally impossible to guarantee that the p-values are independent. The
procedure [median-LSU] appears to have higher power than the remaining ones in the situations
studied in Figure 3, especially with a low signal-to-noise ratio. Unfortunately, other situations
appearing in Figures 2 and 4 show that [median-LSU] can exhibit a poor FDR control in some
parameter regions, most notably when π0 is close to 1 and positive dependences are present (see,
e.g., Fig. 4, bottom row). In a majority of practical situations, it is difficult to rule out a priori that
π0 could be close to 1 (i.e., there is only a small proporion of false hypotheses), or that there are
no dependences. For these reasons, our conclusion is that [median-LSU] is also not robust enough
in general to be reliable.

The other remaining procedures seem to still have a controlled FDR, or at least to be very
close to the FDR target level (except for [FDR09- 1

2 ] when ρ and π0 are close to 1). For these
it seems that the qualitative conclusions concerning power comparison found in the independent
case remain true. To sum up:

– the best overall procedure seems to be [Storey-α]: its FDR seems to be under or only slightly
over the target level in all situations, and it exhibits globally a power superior to other proce-
dures.

– then come in order of power, our 2-stage procedure [BR08-2S-α], then [BKY06-α].
– like in the dependent case, [FDR09- 1

2 ] ranks second when π0 > 1
2 but tends to perform no-

ticeably poorer if π0 gets smaller. Its FDR is also not controlled if very strong correlations are
present.

To conclude, the recommendation that we draw from these experiments is that for practical use,
we recommend in priority [Storey-α], then as close seconds [BR08-2S-α] or [FDR09- 1

2 ] (the latter
when it is expected that π0 > 1/2 , and that there are no very strong correlations present). The
procedudre [BKY06-α] is also competitive but appears to be in most cases noticeably outperformed
by the above ones. These procedures all exhibit good robustness to dependence for FDR control
as well as comparatively good power. The fact that [Storey-α] performs so well and seems to hold
the favorite position has up to our knowledge not been reported before (it was not included in the
simulations of Benjamini et al., 2006) and came somewhat as a surprise to us.

Remark 3.9. As pointed out earlier, the fact that [FDR09- 1
2 ] performs sub-optimally for π0 < 1

2
appears to be strongly linked to the choice of parameter η = 1

2 . Namely, the implicit estimator

of π−1
0 in the procedure is capped at η (see Remark 3.6). Choosing a higher value for η will

reduce the sub-optimality region but increase the variability of the estimate and thus decrease the
overall robustness of the procedure (if dependences are present; and also under independence if
only a small number of hypotheses m are tested, as for this procedure the convergence of the FDR
towards its asymptotically controlled value becomes slower as η grows towards 1).
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Fig. 2. FDR and power relative to oracle as a function of the true proportion π0 of null hypotheses .
Target FDR is α = 5% , total number of hypotheses m = 100 . The mean for the alternatives is
µ̄ = 3. From top to bottom: pairwise correlation coefficient ρ ∈ {0, 0.2, 0.5}.
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Fig. 3. FDR and power relative to oracle as a function of the common alternative hypothesis
mean µ̄ . Target FDR is α = 5% , total number of hypotheses m = 100 . The proportion of true
null hypotheses is π0 = 0.5. From top to bottom: pairwise correlation coefficient ρ ∈ {0, 0.2, 0.5}.
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Remark 3.10. Another 2-stage adaptive procedure was introduced in Sarkar (2008a), which is very
similar to a plug-in procedure using [Storey-λ]. In fact, in the experiments presented in Sarkar
(2008a), the two procedures are almost equivalent, corresponding to λ = 0.995 . We decided not to
include this additional procedure in our simulations to avoid overloading the plots. Qualitatively,
we observed that the procedures of Sarkar (2008a) or [Storey-0.995] are very similar in behavior
to [Storey- 1

2 ]: very performant in the independent case but very fragile with respect to deviations
from independence.

Remark 3.11. One could formulate the concern that the observed FDR control for [Storey-α] could
possibly fail with other parameters settings, for example when π0 and/or ρ are close to one. We
performed additional simulations to this regard, which we summarize briefly here. We considered
the following cases: π0 = 0.95 and varying ρ ∈ [0, 1] ; ρ = 0.95 and varying π ∈ [0, 1] ; finally (π0, ρ)
varying both in [0.8, 1]2 , using a finer discretization grid to cover this region in more detail. In
all the above cases Storey-α still had its FDR very close to (or below) α. Note also that the case
ρ ≃ 1 and π0 ≃ 1 is in accordance with the result of Section 3.3, stating that FDR(Storey-α) = α
when ρ = 1 and π0 = 1 . Finally, we also performed additional experiments for different choices of
the number of hypotheses to test (m = 20 and m = 104) and different choices of the target level
(α = 10%, 1%). In all of these cases were the results qualitatively in accordance with the ones
already presented here.

4 New adaptive procedures with provable FDR control under

arbitrary dependence

In this section, we consider from a theoretical point of view the problem of constructing multiple
testing procedures that are adaptive to π0 under arbitrary dependence conditions of the p-values.
The derivation of adaptive procedures that have provably controlled FDR under dependences
appears to have been only studied scarcely (see Sarkar, 2008a, and Farcomeni, 2007). Here, we
propose to use a 2-stage procedure where the first stage is a multiple testing with either controlled
FWER or controlled FDR. The first option is relatively straightfoward and is intended as a refer-
ence. In the second case, we use Markov’s inequality to estimate π−1

0 . Since Markov’s inequality
is general but not extremely precise, the resulting procedures are obviously quite conservative
and are arguably of a limited practical interest. However, we will show that they still provide an
improvement, in a certain regime, with respect to the (non-adaptive) LSU procedure in the PRDS
case and with respect to the family of (non-adaptive) procedures proposed in Theorem 2.7 in the
arbitrary dependences case.

For the purposes of this section, we first recall the formal definition for PRDS dependence of
Benjamini and Yekutieli (2001):

Definition 4.1 (PRDS condition). Remember that a set D ⊂ [0, 1]H is said to be non-decreasing
if for all x, y ∈ [0, 1]H, x ≤ y coordinate-wise and x ∈ D implies y ∈ D. Then, the p-values
p = (ph, h ∈ H) are said positively regressively dependent on each one from H0 (PRDS on H0 in
short) if for any non-decreasing measurable set D ⊂ [0, 1]H and for all h ∈ H0, u ∈ [0, 1] 7→ P(p ∈
D|ph = u) is non-decreasing.

On the one hand, it was proved by Benjamini and Yekutieli (2001) that the LSU still has controlled
FDR at level π0α (i.e., Theorem 2.6 still holds) under the PRDS assumption. On the other hand,
under totally arbitrary dependences this result does not hold, and Theorem 2.7 provides a family
of threshold collection resulting in controlled FDR at the same level in this case.

Our first result concerns a two-stage procedure where the first stage R0 is any multiple testing
procedure with controlled FWER, and where we (over-) estimate m0 via the straightforward
estimator (m − |R0|) . This should be considered as a form of baseline reference for this type of
two-stage procedure.

Theorem 4.2. Let R0 be a non-increasing multiple testing procedure and assume that its FWER
is controlled at level α0 , that is, P [R0 ∩H0 6= ∅] ≤ α0 . Then the adaptive step-up procedure R
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with data-dependent threshold collection ∆(i) = α1(m − |R0|)−1β(i) has FDR controlled at level
α0 + α1 in either of the following dependence situations:

– the p-values (ph, h ∈ H) are PRDS on H0 and the shape function is the identity function.
– the p-values have unspecified dependences and β is a shape function of the form (4).

Here it is clear that the price for adaptivity is a certain loss in FDR control for being able to use
the information of the first stage. If we choose α0 = α1 = α/2 , then this procedure will outperform
its non-adaptive counterpart (using the same shape function) only if there are more than 50% ,
rejected hypotheses in the first stage. Only if it is expected that this situation will occur does it
make sense to employ this procedure, since it will otherwise perform worse than the non-adaptive
procedure.

Our second result is a two-stage procedure where the first stage has controlled FDR. First
introduce, for a fixed constant κ ≥ 2 , the following function: for x ∈ [0, 1],

Fκ(x) =

{
1 if x ≤ κ−1

2κ−1

1−
√

1−4(1−x)κ−1
otherwise

. (9)

If R0 denotes the first stage, we propose using Fκ(|R0|) as an (under-)estimation of π−1
0 at the

second stage. We obtain the following result:

Theorem 4.3. Let β be a fixed shape function, and α0, α1 ∈ (0, 1) such that α0 ≤ α1. Denote
by R0 the step-up procedure with threshold collection ∆0(i) = α0β(i)/m. Then the adaptive step-
up procedure R with data-dependent threshold collection ∆1(i) = α1β(i)Fκ(|R0|/m)/m has FDR
upper bounded by α1 + κα0 in either of the following dependence situations:

– the p-values (ph, h ∈ H) are PRDS on H0 and the shape function is the identity function.
– the p-values have unspecified dependences and β is a shape function of the form (4).

For instance, in the PRDS case, the procedure R of Theorem 4.3 with κ = 2, α0 = α/4 and
α1 = α/2, is the adaptive linear step-up procedure at level α/2 with the following estimator for
π−1

0 :
1

1 −
√

(2|R0|/m − 1)+
,

where |R0| is the number of rejections of the LSU procedure at level α/4 and (·)+ denotes the
positive part.

Whether in the PRDS or arbitrary dependences case, with the above choice of parameters, we
note that R is less conservative than the non-adaptive step-up procedure with threshold collection
∆(i) = αβ(i)/m if F2(|R0| / |H|) ≥ 2 or equivalently when R0 rejects more than F−1

2 (2) = 62, 5%
of the null hypotheses. Conversely, R is more conservative otherwise, and we can lose up to a
factor 2 in the threshold collection with respect to the standard one-stage version. Therefore,
here again this adaptive procedure is only useful in the cases where it is expected that a “large”
proportion of null hypotheses can easily be rejected. In particular, when we use Theorem 4.3 in
the distribution-free case, it is relevant to choose the shape function β from a prior distribution ν
concentrated on the large numbers of {1, . . . , m}. Finally, note that it is not immediate to see if
this procedure will improve on the one of Theorem 4.2. Namely, with the above choice parameters,
it has to reject more hypotheses in the first step than the procedure of Theorem 4.2 in order to
beat the LSU, and the first step is performed at a smaller target level. However, since the first
step only controls the FDR, and not the FWER, it can actually be much less conservative.

To explore this issue, we performed limited experiments in a favorable situation to test the two
above procedures, i.e. with a small π0 . Namely, we considered the simulation setting of Section 3.4
with ρ = 0.1, m0 = 100 and m = 1000 (hence π0 = 10%) and α = 5% . The common value µ̄ of the
positive means varies in the range [0, 5] . Larger values of µ̄ correspond to a very large proportion
of hypotheses that are easy to reject, which favors the first stage of the two above procedures.
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A positively correlated family of Gaussians satisfies the PRDS assumption (see Benjamini and
Yekutieli (2001)) , so that we use the identity shape function (linear step-up), and compare our
procedures against the standard LSU. For the FWER-controlled first stage of Theorem 4.2, we
chose a standard Holm procedure Holm (1979), which is a step-down procedure with threshold
family t(i) = αm/(m − i + 1) . In Figure 5, we report the average relative power to the oracle
LSU, and the False Non-discovery Rate (FNR), which is the converse of the FDR for type II
errors, i.e., the average of the ratio of non-rejected false hypotheses over the total number of non-
rejected hypotheses. Since we are in a situation where π0 is small, the FNR might actually be a
more relevant criterion than the raw power: in this situation, because of the small number of non
rejected hypotheses, two different procedures could have their power very similar and close to 1,
but noticeably different FNRs.

The conclusion is that there exists an (unfortunately relatively small) region where the adaptive
procedures improve over the standard LSU in terms of power. In terms of FNR, the improvement
is more noticeable and over a larger region. Finally, our two-step adaptive procedure of Theo-
rem 4.3 appears to outperform consistently the baseline of Theorem 4.2. These results are still
unsatisfying to the extent that the adaptive procedure improves over the non-adaptive one only
in a region limited to some quite particular cases, and underperforms otherwise. Nevertheless,
this demonstrates theoretically the possibility of provably adaptive procedures under dependence.
Again, this theme appears to have been theoretically studied in only a handful of previous works
until now, and improving significantly the theory in this setting is still an open challenge.

Average relative power to [LSU-oracle] False Non-discovery Rate (FNR)
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Fig. 5. Relative power to oracle and false non-discovery rate (FNR) of the different procedures,
as a function of the common alternative hypothesis mean µ̄ . Parameters are α = 5% , m = 1000 ,
π0 = 10% , ρ = 0.1 . “BR08-dep-Holm” corresponds to the procedure of Theorem 4.2 using α1 =
α0 = α/2 and Holm’s step-down for the first step, and “BR08-dep” to the procedure of Theorem
4.3 with κ = 2, α0 = α/4 and α1 = α/2 . The shape function β is the identity function. Each point
is an average over 104 independent repetitions.

Remark 4.4. Some theoretical results for two-stage procedures under possible dependences using
a first stage with controlled FWER or controlled FDR appeared earlier (Farcomeni, 2007). How-
ever, it appears that in this reference, it is implicitly assumed that the two stages are actually
independent, because the proof relies on a conditioning argument wherein FDR control for the
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second stage still holds conditionally to the first stage output. This is the case for example if the
two stages are performed on separate families of p-values corresponding to a new independent
observation. Here we specifically wanted to take into account that we use the same collection of
p-values for the two stages, and therefore that the two stages cannot assumed to be independent.
In this sense our results are novel with respect to those of Farcomeni (2007).

Remark 4.5. The theoretical problem of adaptive procedures under arbitrary dependences was
also considered by Sarkar (2008a) using two-stage procedures. However, the procedures proposed
there were reported not to yield any significant improvement over non-adaptive procedures. In fact,
in the explicit procedures proposed by Sarkar (2008a), it can be seen that there exists a function
β of the form (4) such that the second stage is always more conservative (and sometimes by a
large factor) than the non-adaptive step-up procedure with threshold collection ∆(i) = αβ(i)/m ,
which has FDR bounded by π0α(see Theorem 2.7).

5 Conclusion and discussion

We proposed several adaptive multiple testing procedures that provably control the FDR under
different hypotheses on the dependence of the p-values. Firstly, we introduced the one- and two-
stage procedures BR-1S and BR-2S and we proved their theoretical validity when the p-values are
independent. The procedure BR-2S is less conservative in general (except in marginal situations)
than the adaptive procedure proposed by Benjamini et al. (2006). Extensive simulations showed
that these new procedures appear to be robustly controlling the FDR even in a positive dependence
situation, which is a very desirable property in practice. This is an advantage with respect to the
[Storey- 1

2 ] procedure, which is less conservative but breaks down under positive dependences.
Moreover, our simulations showed that the choice of parameter λ = α instead of λ = 1/2 in the
Storey procedure resulted in a much more robust procedure under positive dependences, at the
price of being slightly more conservative. This fact is supported by a theoretical investigation of
the maximally dependent case. These properties do not appear to have been reported before, and
put forward Storey-α as a procedure of considerable practical interest.

Secondly, we presented what we think is among the first examples of adaptive multiple testing
procedures with provable FDR control in the PRDS and distribution-free cases. An important
difference with respect to earlier works on this topic is that the procedures we introduced here are
both theoretically founded and can be shown to improve on non-adaptive procedures in certain
(admittedly limited) circumstances. Although their interest at this point is mainly theoretical, this
shows in principle that adaptivity can improve performance in a theoretically rigorous way even
without the independence assumption.

The proofs of the results have been built upon the notion of self-consistency and other technical
tools introduced in a previous work (Blanchard and Roquain, 2008). We believe these tools allow
for a more unified approach than in the classical adaptive multiple testing literature, avoiding in
particular to deal explicitly with the reordered p-values, which can be somewhat cumbersome.

Another advantage of this approach is that it can be extended in a relatively straightforward
manner to the case of weighted FDR, that is, the quantity (2) where the cardinality measure |.|
has been replaced by a general measure W (R) =

∑
h∈R wh (with W (H) =

∑
h∈H wh = m). This

allows in particular to recover results very similar to those of Benjamini and Heller (2007) and can
also be used to prove that a (generalized) Storey estimator can be used to control the weighted
FDR. The modifications needed to include this generalizations are relatively minor; we omit the
details here and refer the reader to Blanchard and Roquain (2008) to see how the case of weighted
FDR can be handled using the same technical tools.

There remains a vast number of open issues concerning adaptive procedures. We first want to
underline once more that the theory for adaptive procedures under dependence is still underde-
veloped. It might actually be too restrictive to look for procedures having theoretically controlled
FDR uniformly over arbitrary dependence situations such as what we studied in Section 4. An
interesting future theoretical direction could be to prove that some of the adaptive procedures

22



showing good robustness in our simulations actually have controlled FDR under some types of
dependence, at least when the p-values are in some sense not too far from being independent.

6 Proofs of the results

6.1 Proofs for Section 3

The following proofs use the notations p0,h and p−h defined at the beginning of Section 3.2.

Proof of Theorem 3.1. Let R denote a non-increasing self-consistent procedure with respect to
∆ defined in (5); by definition R satisfies

R ⊂
{

h ∈ H | ph ≤ min

(
(1 − λ)

α|R|
m − |R| + 1

, λ

)}
.

Therefore, we have

FDR(R) =
∑

h∈H0

E

[
1 {h ∈ R(p)}

|R(p)|

]

≤
∑

h∈H0

E




1
{
ph ≤ (1 − λ) α|R(p)|

m−|R(p)|+1

}

|R(p)|




≤
∑

h∈H0

E




1
{
ph ≤ (1 − λ) α|R(p)|

m−|R(p0,h)|+1

}

|R(p)|




=
∑

h∈H0

E



E




1

{
ph ≤ (1 − λ) α|R(p)|

m−|R(p0,h)|+1

}

|R(p)|

∣∣∣∣p−h









≤ (1 − λ)α
∑

h∈H0

E

[
1

m − |R(p0,h)| + 1

]
,

The second inequality above comes from |R(p)| ≤ |R(p0,h)|, which itself holds because |R| is
coordinate-wise non-increasing in each p-value. The last inequality is obtained with Lemma 7.1 of

Section 7 with U = ph, g(U) = |R(p−h, U)| and c = (1−λ)α
m−|R(p0,h)|+1 , because the distribution of ph

conditionnally to p−h is stochastically lower bounded by a uniform distribution, |R| is coordinate-
wise non-increasing and because p0,h depends only on the p-values of p−h. Finally, since the
threshold collection of R is upper bounded by λ, we get

(1 − λ)E [m/(m − |R(p0,h)| + 1)] ≤ EG1(p0,h),

where G1 is the Storey estimator with parameter λ. We then use EG1(p0,h) ≤ π−1
0 (see proof of

Corollary 3.4) to conclude. �

Proof of Lemma 3.2. Denote G(t) = π0t+(1−π0)F (t) the cdf of the p-values under the random
effects mixture model. Let us denote by t̂m the threshold of the LSU procedure. The proportion
of rejected hypotheses from the initial pool is then exactly Ĝm(t̂m) , where Ĝm is the empirical
cdf of the p-values. It was proved by Genovese and Wasserman (2002) under the random effects
model, that as m tends to infinity the LSU threshold t̂m converges in probability to t⋆, which is
the largest point t ∈ [0, 1] such that G(t) = α−1t . Since Ĝm converges in probability uniformly
to G , we deduce that the proportion of rejected hypotheses converges to α−1t∗ in probability;
hence, if t∗ > α2 , the probability that the proportion of rejected hypotheses is less that α + 1/m
converges to zero; and conversely converges to 1 if t∗ < α2 .
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The definition of t∗ and the expression for G in the Gaussian mean shift model imply the
following relation whenever t∗ > 0 :

µ = Φ
−1

(t⋆) − Φ
−1

(
α−1 − π0

1 − π0
t⋆

)
.

It is easily seen that if π0 < (1 + α)−1 , the quantity µ∗ in the statement of the lemma is well
defined and we have t∗ > α2 for µ > µ∗. This gives the first part of the result.

Conversely, if π0 > (1 + α)−1 we have t∗ = 0 , and if π0 < (1 + α)−1 but µ < µ∗ , we have
t∗ < α2 ; this leads to the second part of the result. �

Proof of Theorem 3.3. By definition of self-consistency, the procedure R satisfies

R ⊂ {h ∈ H | ph ≤ α|R|G(p)/m}.

Therefore,

FDR(R) =
∑

h∈H0

E

[
1 {h ∈ R(p)}

|R(p)|

]
≤

∑

h∈H0

E

[
1 {ph ≤ α|R(p)|G(p)/m}

|R(p)|

]
.

Since G is non-increasing, we get:

FDR(R) ≤
∑

h∈H0

E

[
1 {ph ≤ α|R(p)|G(p0,h)/m}

|R(p)|

]

=
∑

h∈H0

E

[
E

[
1 {ph ≤ α|R(p)|G(p0,h)/m}

|R(p)|

∣∣∣∣p−h

]]
≤ α

m

∑

h∈H0

EG(p0,h).

The last step is obtained with Lemma 7.1 of Section 7 with U = ph, g(U) = |R(p−h, U)| and
c = αG(p0,h)/m, because the distribution of ph conditionnally to p−h is stochastically lower
bounded by a uniform distribution, |R| is coordinate-wise non-increasing and p0,h depends only
on the p-values of p−h. �

Proof of Corollary 3.4. We prove that the sufficient condition of Theorem 3.3 holds for the
nonincreasing estimators Gi, i = 1, 2, 3, 4. To that end, we reproduce here without major changes
the arguments used by Benjamini et al. (2006). The bound for G1 is obtained using Lemma 7.4
(see below) with k = m0 and q = 1 − λ: for all h ∈ H0,

E [G1(p0,h)] ≤ m(1 − λ)E

[( ∑

h′∈H0\{h}

1 {ph′ > λ} + 1

)−1]
≤ π−1

0 .

The proof for G3 and G4 is deduced from the one of G1 because G3 ≤ G4 ≤ G1 pointwise.
Let us prove that EG2(p0,h) ≤ π−1

0 , for any h ∈ H0 and any k0 ∈ {1, ..., m}. If k0 ≤ m1 + 1,
the result is trivial. Suppose now k0 > m1 + 1. Introduce the following auxiliary notation: for p
a family of p-values indexed by H , and a subset B ⊂ H , denote by S(i,p, B) the i-th ordered
p-value of the subfamily (x′

h)h′∈B . Pointwise, G2 can be rewritten as:

G2(p0,h) =
m

m + 1 − k0

(
1 − S(k0,p0,h,H)

)

=
m

m + 1 − k0

(
1 − S(k0 − 1,p,H \ {h})

)

≤ m

m + 1 − k0

(
1 − S(k0 − 1 − m + m0,p,H0 \ {h})

)
,
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the latter coming from the relation S(i,p, A) ≥ S(i − |A \ B|,p, B), for every finite sets B ( A
and integer i > |A\B| . Therefore, using that m0−1 independent random variables with marginal
distributions stochastically lower bounded by a uniform law have a j-largest value on average
larger than j/m0, we obtain:

EG2(p0,h) ≤ m

m + 1 − k0

(
1 − k0 − 1 − m + m0

m0

)
= π−1

0 .

�

Proof of Proposition 3.8. Let us first consider adaptive one-stage procedures: for any step-up
procedure R of threshold ∆(i) = αβ(i)/m we easily derive that the probability that R makes any
rejection is

P [∃i | pi ≤ ∆(i)] = P [∃i | p1 ≤ ∆(i)] = P [p1 ≤ ∆(m)] = ∆(m),

which is FDR(R) because m0 = m. The results for BR-1S-λ and FDR09-η follow.
With the same reasoning, we find that for any plug-in adaptive linear step-up procedure R

that uses an estimator G(p),
FDR(R) = P [p1 ≤ αG(p)] . (10)

Next, for the Storey plug-in procedure, we have G1(p1, ..., p1) = (1 − λ)m/(m1 {p1 > λ} + 1), so
that applying (10), we get

FDR(Storey-λ) = P [p1 ≤ αG1(p)]

= P [p1 ≤ λ, p1 ≤ α(1 − λ)m] + P [p1 > λ, p1 ≤ α(1 − λ)m/(m + 1)]

= min

(
λ, α(1 − λ)m

)
+

(
α(1 − λ)m

m + 1
− λ

)

+

.

For the quantile procedure, we have

P [p1 ≤ α(1 − p1)m/(m − k0 + 1)] = P [p1((1 + α)m − k0 + 1) ≤ αm] =
α

1 + α − (k0 − 1)/m
.

For the BKY06 procedure, we simply remark that since the linear step-up procedure of level λ
rejects all the hypotheses when p1 ≤ λ and rejects no hypothesis otherwise, the estimator G1 and
G3 are equal in this case. The proof for BR-2S-λ is similar. �

6.2 Proofs for Section 4

We begin with a technical lemma that will be useful for proving both Theorem 4.2 and 4.3. It is
related to techniques previously introduced by Blanchard and Roquain (2008).

Lemma 6.1. Assume R is a multiple testing procedure satisfying the self-consistency condition:

R ⊂ {h ∈ H|ph ≤ αG(p)β(|R|)/m} ,

where G(p) is a data-dependent factor. Then the following inequality holds:

FDR(R) ≤ α + E

[ |R ∩H0|
|R| 1 {|R| > 0}1

{
G(p) > π−1

0

}]
, (11)

under either of the following conditions:

– the p-values (ph, h ∈ H) are PRDS on H0 , R is non-increasing and β is the identity function.
– the p-values have unspecified dependences and β is a shape function of the form (4).
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Proof. We have

FDR(R) = E

[ |R ∩H0|
|R| 1 {|R| > 0}

]

= E

[ |R ∩H0|
|R| 1 {|R| > 0}1

{
G ≤ π−1

0

}]
+ E

[ |R ∩H0|
|R| 1 {|R| > 0}1

{
G > π−1

0

}]

≤
∑

h∈H0

E

[
1 {ph ≤ αβ(|R|)/m0}

|R|

]
+ E

[ |R ∩H0|
|R| 1 {|R| > 0}1

{
G > π−1

0

}]
.

The desired conclusion will therefore hold if we establish that for any h ∈ H0 , and c > 0 :

E

[
1 {ph ≤ cβ(|R|)}

|R|

]
≤ c .

In the distribution-free case, this is a direct consequence of Lemma 7.3 of Section 7 with U = ph

and V = β(|R|). For the PRDS case, we note that since |R(p)| is coordinate-wise nonincreasing in
each p-value, for any v > 0, D = {z ∈ [0, 1]H | |R(z)| < v} is a measurable non-decreasing set, so
that the PRDS property implies that u 7→ P(|R| < v | ph = u) is non-decreasing. This implies that
u 7→ P(|R| < v | ph ≤ u) by the following argument (see also Lehmann, 1966, cited by Benjamini
and Yekutieli, 2001, and Blanchard and Roquain, 2008): putting γ = P [ph ≤ u | ph ≤ u′] ,

P [p ∈ D | ph ≤ u′] = E [P [p ∈ D | ph] | ph ≤ u′]

= γE [P [p ∈ D | ph] | ph ≤ u] + (1 − γ)E [P [p ∈ D | ph] | u < ph ≤ u′]

≥ E [P [p ∈ D | ph] | ph ≤ u] = P [p ∈ D | ph ≤ u] .

We can then apply Lemma 7.2 of Section 7 with U = ph and V = |R|. �

Proof of Theorem 4.2. By definition of a step-up procedure, the two-stage procedure R satisfies

the assumption of Lemma 6.1 for G(p) = (1 − |R0|
m

)−1 , where R0 is the first stage with FWER
controlled at level α0 . Furthermore, it is easy to check that |R| is nonincreasing as a function of
each p-value (since |R0| is). Then, we can apply Lemma 6.1, and from inequality (11) we deduce

FDR(R) ≤ α1 + E

[ |R ∩H0|
|R| 1

{
1 − |R0|

m
< π0

}]

≤ α1 + P [R0 ∩H0 6= ∅]
≤ α0 + α1 .

In the case where R0 rejects all hypotheses, we assumed implicitly that the second stage also does.
�

Proof of Theorem 4.3. Assume π0 > 0 (otherwise the result is trivial). By definition of a
step-up procedure, the two-stage procedure R satisfies the assumption of Lemma 6.1 for G(p) =
Fκ(|R0|/m) , where R0 is the first stage. Furthermore, it is easy to check that |R| is nonincreasing
as a function of each p-value (since |R0| is). Then, we can apply Lemma 6.1, and from inequality
(11) we deduce

FDR(R) ≤ α1 + E

[ |R ∩H0|
|R| 1

{
Fκ(|R0|/m) > π−1

0

}]

≤ α1 + m0E

[
1

{
Fκ(|R0|/m) > π−1

0

}

|R0|

]
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For the second inequality, we have used the two following facts:
(i) Fκ(|R0|/m) > π−1

0 implies |R0| > 0,
(ii) because of the assumption α0 ≤ α1 and Fκ ≥ 1 , the output of the second step is necessarily

a set containing at least the output of the first step. Hence |R| ≥ |R0| .
Let us now concentrate on further bounding this second term. For this, first consider the gen-

eralized inverse of Fκ , F−1
κ (t) = inf {x | Fκ(x) > t} . Since Fκ is a non-decreasing left-continuous

function, we have Fκ(x) > t ⇔ x > F−1
κ (t) . Furthermore, the expression of F−1

κ is given by:
∀t ∈ [1, +∞), F−1

κ (t) = κ−1t−2 − t−1 + 1 (providing in particular that F−1
κ (π−1

0 ) > 1−π0). Hence

m0E

[
1

{
Fκ(|R0|/m) > π−1

0

}

|R0|

]
≤ m0E

[
1

{
|R0|/m > F−1

κ (π−1
0 )

}

|R0|

]

≤ π0

F−1
κ (π−1

0 )
P

[
|R0|/m ≥ F−1

κ (π−1
0 )

]
. (12)

Now, by assumption, the FDR of the first step R0 is controlled at level π0α0 , so that

π0α0 ≥ E

[ |R0 ∩H0|
|R0|

1 {|R0| > 0}
]

≥ E

[ |R0| + m0 − m

|R0|
1 {|R0| > 0}

]

= E
[
[1 + (π0 − 1)Z−1]1 {Z > 0}

]
,

where we denoted by Z the random variable |R0|/m . Hence by Markov’s inequality, for all t >
1 − π0,

P [Z ≥ t] ≤ P

(
[1 + (π0 − 1)Z−1]1 {Z > 0} ≥ 1 + (π0 − 1)t−1

)
≤ π0α0

1 + (π0 − 1)t−1
;

choosing t = F−1
κ (π−1

0 ) and using this into (12), we obtain

m0E

[
1

{
Fκ(|R0|/m) > π−1

0

}

|R0|

]
≤ α0

π2
0

F−1
κ (π−1

0 ) − 1 + π0

.

If we want this last quantity to be less than κα0 , this yields the condition F−1
κ (π−1

0 ) ≥ κ−1π2
0 −

π0 + 1 , and this is true from the expression of F−1
κ (note that this is how the formula for Fκ was

determined in the first place). �

7 Probabilistic lemmas

The three following lemmas have been established in a previous work (see Blanchard and Roquain,
2008, Lemma 3.2).

Lemma 7.1. Let g : [0, 1] → (0,∞) be a non-increasing function. Let U be a random variable
which has a distribution stochastically lower bounded by a uniform distribution, that is, ∀u ∈
[0, 1], P(U ≤ u) ≤ u . Then, for any constant c > 0, we have

E

(
1 {U ≤ cg(U)}

g(U)

)
≤ c .

Lemma 7.2. Let U, V be two non-negative real variables. Assume the following:

1. The distribution of U is stochastically lower bounded by a uniform distribution, that is, ∀u ∈
[0, 1], P(U ≤ u) ≤ u .
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2. The conditional distribution of V given U ≤ u is stochastically decreasing in u, that is,

∀ v ≥ 0 ∀ 0 ≤ u ≤ u′ , P(V < v | U ≤ u) ≤ P(V < v | U ≤ u′) .

Then, for any constant c > 0, we have

E

(
1 {U ≤ cV }

V

)
≤ c .

Lemma 7.3. Let U, V be two non-negative real variables and β be a function of the form (4).
Assume that the distribution of U is stochastically lower bounded by a uniform distribution, that
is, ∀u ∈ [0, 1], P(U ≤ u) ≤ u . Then, for any constant c > 0, we have

E

(
1 {U ≤ cβ(V )}

V

)
≤ c .

The following lemma was stated by Benjamini et al. (2006). It is a major point when we
estimate π−1

0 in the independent case. The proof is left to the reader.

Lemma 7.4. For any k ≥ 2, q ∈]0, 1] , let Y be a binomial random variable with parameters
(k − 1, q); then the following holds:

E[1/(1 + Y )] ≤ 1/kq.
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