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Abstract

The proportion π0 of true null hypotheses is a quantity that of-
ten appears explicitly in the FDR control bounds. In order to obtain
more powerful procedures, recent research effort has focussed on find-
ing ways to estimate this quantity and incorporate it in a meaningful
way in multiple testing procedures, leading to so-called ”adaptive”
procedures. We present here new adaptive multiple testing proce-
dures with control of the false discovery rate (FDR), respectively in
the independent, positive dependent and distribution-free context. In
the independent context, we present a procedure that is less conser-
vative than a recent adaptive procedure proposed by [BKY06]. In the
positive dependence and distribution-free contexts, owing to Markov’s
inequality, we propose adaptive versions of the existing procedures of
[BY01] and [BF07], which present an improvment of the power when
a ”large” number of hypotheses are expected to be rejected.

1 Introduction

Multiple testing is a topic coming from statistics that has generated growing
attention in the recent years due to an increasing number of application fields
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with a strong demand for powerful, large scale multiple testing procedures, in
particular in bioinformatics. For example with microarray data, the goal is
to detect which genes (among several ten of thousands) exhibit a significantly
different level of expression in two different experimental conditions. Each
gene represents a “hypothesis” to be tested in the statistical sense. The
genes’ expression levels fluctuate naturally (not to speak of other sources
of fluctuation introduced by the experimental protocol), and because they
are so many to choose from it is important to control precisely what can be
deemed a significant observed difference. Generally it is assumed that the
natural fluctuation distribution of a single gene is known and the problem is
to take into account the number of genes involved (for more details, see for
instance [DSB03]).

In this work, we focus on building procedures that control the False Dis-
covery Rate (FDR), which is defined as the expected proportion of rejected
true hypotheses among all the rejected hypotheses. This global type I error
has been introduced by [BH95] where they also propose a powerful pro-
cedure, called the linear step-up (LSU) procedure, that control the FDR
under independence between the p-values. Later, [BY01] have proved that
the LSU procedure still control the FDR under positive dependence. Under
general dependence, the same authors show that the FDR control is still
provided if the global threshold of the LSU procedure is divided by a factor
1+1/2+ · · ·+1/m, where m is the total number of hypotheses to test. More
recently, [BF07] have generalized the latter result, by showing that there
exists a family of step-up procedures (depending on the choice of a prior
distribution) that still control the FDR under general dependence between
the p-values.

All theses procedures, attempting to control the FDR at a level α, do
finally have a FDR smaller than π0α, where π0 is the proportion of true
null hypotheses. Therefore, when most of the hypotheses are false, these
procedure are inevitably conservative. The challenge of adaptive control of
FDR (see [BH00] and [Bla04]) is then to integrate in the threshold of the
previous procedures an estimation of the unknown proportion π0 and to
prove that the FDR is still rigorously controlled by α.

Recently, under independence, [BKY06] have shown that the Storey esti-
mator (proposed in [Sto02]) can be used to build an adaptive procedure that
control the FDR. They also give a new adaptive procedure (denoted here by
”BKY06”) that control the FDR under independence and that seems robust
to positive correlations. This adaptive procedure is said ”two-stage” because
it consists of two different steps: 1. Estimate π0. 2. Use this estimate in a
new threshold to build a new multiple testing procedure.
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In this paper, our main contributions are

1. To build a simple procedure with an explicit threshold more powerful
than the LSU procedure that control the FDR under independence
(this procedure is said ”one-stage adaptive”).

2. To build a new two-stage adaptive procedure more powerful than the
BKY06 procedure that control the FDR under independence and that
seems robust to positive correlations on simulations.

3. To propose a new two-stage adaptive version of the LSU procedure that
control the FDR under positive dependence, resulting in an improve-
ment of the power in a certain regime.

4. To propose new two-stage adaptive versions of all the procedures of
[BF07] that control the FDR under general dependence, resulting in
an improvement of the power in a certain regime.

In particular, we present in the two last points what we think are the
first examples of adaptive multiple testing procedures that control the FDR
when the p-values have dependencies. Although their interest is mainly the-
oretical, it shows in principle that adaptivity can improve performance in a
theoretically rigorous way even under dependence.

The paper is organized as follows: in Section 2, we introduced the nec-
essary mathematical notions, and we recall the existing non-adaptive results
in FDR control. Section 3 states the existing and new adaptive results in
the independence context, and compares them in a simulations study. The
positive dependent and general dependent case are examinated in Section
4. Section 5 contains the proofs of the new results and Section 6 presents
technical lemmas.

2 Preliminaries

2.1 Multiple testing framework

In this paper we stick to the traditional statistical framework for multiple
testing. Let (X , X, P) be a probability space and we want to infer a decision
on P from an observation x on X . Let H be a finite set of null hypotheses
for P, that is, each null hypothesis h ∈ H corresponds to some subset of
distributions on (X , X) and ”P satisfies h” means that P belongs to this

3



subset of distributions. The number of null hypotheses |H| is denoted by m.
The underlying probability P being fixed, we note H0 = {h ∈ H|P satisfies h}
the set of the true null hypotheses and m0 = |H0| the number of true null
hypotheses. We let also π0 := m0/m the proportion of true null hypotheses.
Since P is unknown, we remark that H0 and then m0 and π0 are unknown.

We suppose that there exists a set of p-values p = (ph, h ∈ H), meaning
that each ph : (X , X) 7→ [0, 1] is a measurable function and that for each
h ∈ H0, ph is bounded stochastically by a uniform distribution, that is,

∀t ∈ [0, 1], P(ph ≤ t) ≤ t. (1)

2.2 Multiple testing procedure and errors

A multiple testing procedure is a measurable function

R : [0, 1]H 7→ P(H),

which takes as input a realisation of the p-values and returns a subset of H,
corresponding to the rejected hypotheses. From an observation x ∈ X , the
function R(p) rejects then the null hypotheses which belongs to R(p(x)). To
clarify the notations in what follows, we will often write R instead of R(p) .

A multiple testing procedure R can make two kinds of errors: we said
that a type I error occurs for h when h is true and is rejected by R, that is
h ∈ H0∩R. The primary concern is to control the number of type I errors of
a testing procedure. Conversely, a type II error occurs for h when h is false
and is not rejected by R, that is h ∈ H1 ∩ Rc.

The most traditional way to control type I error is to bound the “Family-
wise error rate” which is the probability that one or more null hypotheses
is wrongly rejected. However procedures with a controlled FWER are very
“cautious” not to make a single error, and thus reject only few hypotheses.
More recently, a more liberal measure of type I errors has been introduced in
multiple testing (see [BH95]): the false discovery rate, which is the averaged
proportion of true null hypotheses in the set of all the rejected hypotheses:

Definition 2.1 (False discovery rate). The false discovery rate of a mul-
tiple testing procedure R is given by

FDR(R) := E

( |R ∩H0|
|R| 1{|R| > 0}

)
,

where |.| is the cardinality function.
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Remark 2.2. Throughout this paper we will use the following convention:
whenever there is an indicator function inside an expectation, this has logical
priority over any other factor appearing in the expectation. What we mean
is that if other factors include expressions that may not be defined (such as
the ratio 0

0
) outside of the set defined by the indicator, this is safely ignored.

This results in more compact notations, such as in the above definition.

The goal is then to build procedures R with a FDR smaller than a given
level α. Of course if we choose R = ∅, meaning that R rejects no hypotheses,
FDR(R) = 0 ≤ α trivialy. Therefore, we want procedures R with FDR(R) ≤
α and which have as small type II error as possible. Given two procedures
R and R′ that satisfy FDR(R) ≤ α and FDR(R′) ≤ α, we say that R is said
less conservative than R′ if R′∩H1 ⊂ R∩H1 pointwise (where H1 = H\H0).
Hence, provided that FDR(R), FDR(R′) ≤ α, R is less conservative than R′

if R ⊂ R′, meaning that, provided that FDR(R) ≤ α, we want to build
procedures that reject as many hypotheses as possible.

2.3 The step-up procedures in FDR control

Let us order the p-values p(1) ≤ · · · ≤ p(m) and put p(0) = 0.

Definition 2.3 (Step-up procedure). Given a level α ∈ (0, 1) and a non-
decreasing function β : R+ → R+. The step-up procedure at level α and of
threshold function β, denoted by Rα,β , is defined as

Rα,β := {h ∈ H|ph ≤ p(k)}, where k = max{i|p(i) ≤ αβ(i)/m}.
The function αβ(.)/m is called the global threshold of the procedure. In the
particular case where β is the identity function I on R+, the procedure Rα,I

is called the linear step-up procedure at level α. When this is not ambiguous,
we suppose α fixed by advance, and we note Rβ instead of Rα,β .

Remark 2.4. In our setting, the ”linear step-up procedure” should rather
being called the ”identity step-up procedure”. However, for historical reason,
we choose here to keep the usual name.

When the p-values are independent, the following theorem holds (the
first part has been proved in [BH95] whereas the second part was proved in
[FR01]):

Theorem 2.5. Suppose that the p-values (ph)h∈H are independent. Then the
linear step-up procedure RI has a FDR smaller than π0α. Moreover, if the
p-values associated to the true null hypotheses are exactly distributed like a
uniform distribution, that is, if (1) is an equality for all h ∈ H0, we have the
equality FDR(RI) = π0α.
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The authors [BY01] extend the previous FDR control of the linear step-up
procedure to the case of p-values with positive dependence: remember that
a set D ⊂ [0, 1]H is said to be nondecreasing if for all x, y ∈ [0, 1]H, x ≤ y
coordinate-wise and x ∈ D implies y ∈ D. Then, the p-values p = (ph)h∈H

are said positively regressively dependent on each one from H0 (PRDS on
H0 in short) if for all nondecreasing set D ⊂ [0, 1]H and for all h ∈ H0,
u ∈ [0, 1] 7→ P(p ∈ D|ph = u) is nondecreasing. The authors [BY01] have
proved the following result under the PRDS assumption:

Theorem 2.6. Suppose that the p-values (ph)h∈H are PRDS on H0. Then
the linear step-up procedure RI has a FDR smaller than π0α.

When no particular assumption can be made about the depence structure
of the p-values, it was proved in [BF07] extending a result in [BY01] that
there is a class of step-up procedures that control the FDR:

Theorem 2.7. Under general dependence between the p-values, let β be a
threshold function of the form:

β(r) =

∫ r

0

udν(u), (2)

where ν is some probability distribution on (0,∞). Then the step-up procedure
Rβ has a FDR smaller than απ0.

A direct corollary of Theorems 2.5, 2.6 and 2.7 is that the step-up proce-
dure Rβ⋆ with β⋆ = β/π0 has a FDR smaller than α in either of the following
situations:

- β = I when the p-values are independent or PRDS
- β of the form (2) in the general dependent case.
Moreover, since π0 ≤ 1, the procedure Rβ⋆ is always less conservative

than procedure Rβ, and then seems to be a better choice (especially when
π0 is small). However, since π0 is unknown, the procedure Rβ⋆ can not be
only derived from the observations. Therefore, the procedure Rβ⋆ is called
the oracle step-up procedure of threshold function β (and level α).

The adaptive step-up procedures mimic the oracle and are defined as the
oracle step-up procedures where π−1

0 has been replaced by an estimator F of
this value:

Definition 2.8 ((two-stage) adaptive step-up procedure). Given a
level α ∈ (0, 1), a non-decreasing threshold function β : R+ → R+ and an
estimator G : [0, 1]H → (0,∞) of π−1

0 . The (two-stage) adaptive step-up
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procedure at level α, of threshold function β and using estimator F , denoted
by Rα,βG, is defined as

Rα,βG := {h ∈ H|ph ≤ p(k)}, where k = max{i|p(i) ≤ αβ(i)G(p)/m}.

The (data-dependent) function r 7→ αβ(r)G/m is called the global threshold
of the adaptive procedure. In the particular case where β is the identity
function I on R+, the procedure Rα,IG is called the adaptive linear step-up
procedure at level α and using estimator G.

Following the previous definition, an adaptive procedure is composed of
two-steps:

1. Estimate π−1
0 with an estimator G

2. Take the step-up procedure of threshold function βG
The main theoretical task is to ensure that an adaptive procedure of this

type still correctly controls the FDR at the desired level, this including of
course the additional variations in the estimator G.

3 Adaptive step-up procedures that control

the FDR under independence

We suppose in this section that the p-values (ph, h ∈ H) are independent.
We introduce the following notation: for each h ∈ H, we denote by p−h the
collection of p-values (ph′, h′ 6= h) and by p0,h = (p−h, 0) the collection p
where ph has been replaced by 0.

3.1 A general theorem and some previously known
procedures

The theorem is strongly inspired from techniques developed in [BKY06]. It
gives general conditions on the estimator to provided FDR control of adaptive
procedure, with what we think is a more compact and synthetic proof that
the one proposed in [BKY06].

Theorem 3.1. Suppose that the p-values of p = (ph, h ∈ H) are independent
and consider a coordinate-wise non-increasing estimator G : [0, 1]H → R

+

such that for each h ∈ H0,

EG(p0,h) ≤ π−1
0 . (3)

Then, the linear adaptive step-up procedure Rα,IG of global threshold αIG/m
has a FDR smaller than α.
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Remark 3.2. If G is moreover supposed coordinate-wise left-continuous, we
can moreover prove that the Theorem 3.1 still hold when the condition (3)
is replaced by the slightly weaker condition:

EG(p̃h) ≤ π−1
0 , (4)

where for each h ∈ H0 , p̃h = (p−h, p̃h(p−h)) is the collection of p-values p
where ph has been replaced by p̃h(p−h) = max{p ∈ [0, 1]

∣∣ p ≤ απ(h)|R((p−h, p))|G((p−h, p))}.
Following [BKY06], we can consider propose the following choices for G:

Corollary 3.3 (essentially proved in [BKY06]). Assume that the p-
values of p = (ph, h ∈ H) are independent. The adaptive linear step-up
procedure at level α has a FDR smaller than α for one of the following choices
for the estimators G:

• G1(p) = (1−λ)m∑
h∈H

1{ph>λ}+1
, λ ∈ [0, 1[

• G2(p) = 1
1+α

m
m−|R0(p)|+1

, where R0 is the linear step-up procedure at

level α/(1 + α).

Remark 3.4. To be more precise, in [BKY06] the result is proved using a
slightly better version of G2 without the “+1” in the denominator (this could
be derived here from Remark 3.2). We forget about this refinement here,
noting that it results only in a very slight improvement.

Remark 3.5. The estimator
∑

h∈H
1{ph>λ}+1

(1−λ)m
of π0 is called the modified Storey’s

estimator and was initially introduced in [Sto02] and [STS04] (initially with-
out the “+1” in the numerator, hence the name “modified”). Note that G1

is not necessarily larger than 1.

3.2 A new one-stage adaptive step-up procedure

We now introduce our main first contribution, a ”one-stage adaptive proce-
dure”. This means that estimation step is directly includes in the threshold
function β , and so does fall in the framework of Definition 2.3 (and not in
the one of Definition 2.8).

Theorem 3.6. Suppose that the p-values of (ph, h ∈ H) are independent.
The step-up procedure with the global threshold

α

1 + α
min

(
I

m − I + 1
, 1

)
,

has a FDR smaller than α.
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Remark 3.7. As Figure 1 illustrates,
this explicit new procedure is less conservative than the non-adaptive

linear step-up procedure, since its global threshold is higher (except in the
quite marginal cases where the proportion of hypotheses rejected by the linear
step-up is more than a (1 + α)−1 , or less than 1/|H| + α/(1 + α)).
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Figure 1: For |H| = 1000 hypotheses. These graphs represent the global
threshold of the new adaptive one-stage procedure of Theorem 3.6 (dashed
line) and the global threshold of the linear procedure αI/|H| (full line). The
left (resp. center, right) graphs represent the case α = 0.1 (resp. α = 0.05,
α = 0.01).

3.3 A new adaptive two-stage procedure

We can now in turn use the previous one-stage procedure to estimate π−1
0

to build a two-stage procedure, exactly following the philosophy that led to
proposing G2. That is, we can use the same function G2 as proposed earlier,
except we replace the first step using the standard step-up linear procedure
by the above adaptive procedure. We obtain the following result:

Theorem 3.8. Assume that the p-values of p = (ph, h ∈ H) are independent
and note R′

0 the new one-stage adaptive procedure of Theorem 3.6. Then the
adaptive linear step-up procedure with the global threshold α I

m
G3(p), where

G3(p) =
1

1 + α

m

m − |R′
0| + 1

,

has a FDR less or equal to α.

3.4 Simulation study

How can we compare the different procedures defined above? Choosing λ =
α/(1 + α), we have pointwise G1 ≥ G3 ≥ G2 which shows that the adaptive
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procedure obtained using G1 is always less conservative than the one derived
from G3, itself less conservative that the one using G2 (except in the marginal
cases where the one-step adaptive procedure is more conservative than the
standard step-up procedure, delineated earlier). It would therefore appear
that one should always choose G1 and disregard the other ones. Nevertheless,
an argument made in [BKY06] for introducing G2 as a better alternative
to the (already known earlier) G1 was that on simulations with positively
dependent test statistics, the FDR of the adaptive procedure using G1 with
λ = 1/2 resulted in very bad control of the FDR, which was not the case for
G2. While the positively dependent case is not covered by the theory, it is
important to require that a multiple testing procedure is sufficiently robust
in practice so that the FDR does not vary too much in this situation.

Therefore, to assess the quality of our new procedures, we propose here
to evaluate the different methods on a simulation study following the setting
used in [BKY06]: Let for i, 1 ≤ i ≤ m, Xi = µi + εi, where ε is a R

m-
valued centred Gaussian random vector such that E(ε2

i ) = 1 and for i 6= j,
E(εiεj) = ρ, where ρ ∈ [0, 1] is a correlation parameter. Consequently,
when ρ = 0 the Xi’s are independent whereas when ρ > 0 the Xi’s are
positively correlated (with a constant correlation). For instance, the εi’s can
be constructed by taking εi :=

√
ρU +

√
1 − ρZi, where Zi, 1 ≤ i ≤ m and

U are all i.i.d ∼ N (0, 1).
Considering the one-sided hypotheses hi : ”µi ≤ 0” for 1 ≤ i ≤ m, we

define the p-values pi = Φ(Xi), for 1 ≤ i ≤ m, where Φ is the standard
Gaussian distribution tail. For i, 1 ≤ i ≤ m0, µi = 0 and for i, m0 + 1 ≤ i ≤
m, µi = 3, providing that the p-values corresponding to the null mean follow
exactly a uniform distribution. Recall that π0 = m0/m

We perform the following step-up multiple testing procedures:

- [LSU] the linear procedure as defined in Definition 2.3 i.e. with the
global threshold alphaI/m.

- [LSU Oracle] the procedure with the global threshold αI/m0.

- [Storey-λ] the two-stage procedures corresponding to G1 in Corollary
3.3. The classical choice for λ is 1/2. We try here also λ = α/(1 + α).

- [BKY06] The two-stage procedures corresponding to G2 in Corollary
3.3.

- [BR07-1S] The new one-stage adaptive procedure of Theorem 3.6.

- [BR07-2S] The new two-stage adaptive procedure of Theorem 3.8.
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3.4.1 The independent case (ρ = 0)

Recall that under independence (ρ = 0), the LSU procedure has a FDR
equal to απ0 and that the LSU Oracle procedure has a FDR equal to α
(given that α ≤ π0). The other procedures have their FDR bounded by α.
We can then define the power of a procedure as the number of true rejections
of the procedure divided by the number of true rejections of the LSU Oracle
procedure.

Figure 2 represents the FDR and the Power of these procedures in func-
tion of the proportion of true null hypotheses π0. These simulations show
that we can order the procedures in term of Power :

Storey-1/2 ≫ Storey-α/(1 + α) ≫ BR07-2S ≫ BKY06,

the symbol ”≫” meaning ”is (π0-uniformly) more powerful than”. The pro-
cedure BR07-1S is between BKY06 and BR07-2S. We see here that the
choice λ = 1/2 seems to be better than λ = α/(1 + α). However, as noticed
by [BKY06], simulations when ρ > 0 will prove that the procedure with
λ = 1/2 is not robust when there is positive dependence.

3.4.2 The positive dependent case (ρ > 0)

Under positive dependence (ρ > 0), the FDR of the procedure LSU (resp.
LSU Oracle) is still bounded by απ0 (resp. α), but without equality. We do
not know if the other procedures have a FDR smaller than α, so that we can
not compare them in term of power.

Figure 3 shows that the FDR control is no more provided for the proce-
dure Storey-1/2. The maximum FDR for BR07-2S is smaller than the one
of Storey-α/(1 + α). Thus our new two-stage procedure seems more robust
to positive correlations than Storey-α/(1 + α) (for ρ = 0.5, the maximum
FDR for BR07-2S is 0.0508 whereas the one of Storey-α/(1 + α) is 0.0539).
One explanation is that the procedure BR07-2S is more conservative than
Storey-α/(1+α) in its estimation of π0. When the p-value are very positively
correlated ρ = 0.9, both procedures control the FDR. One cause is that both
procedures are based on the linear step-up procedure which is in this case
very conservative.

4 New adaptive step-up procedures that con-

trol the FDR under dependence

When the p-values have a general dependency structure, we have to use
another device than Lemma 6.4 to estimate π−1

0 , we propose here to use the
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Figure 2: Independent case (ρ = 0), m = 100, left : FDR in function of π0;
right : Power in function of π0. Number of simulations : 10000.

Markov inequality. Obviously, because the Markov inequality is general but
not extremely precise, the resulting procedure will be quite conservative and
is arguably of a limited practical interest. However, we will show that it
still provides an improvement, in a certain regime, with respect to the non-
adaptive procedure proposed in Theorem 2.7. For a fixed constant κ ≥ 2 ,
define the following function:

Fκ(x) =

{
1 if x ≤ κ−1

2κ−1

1−
√

1−4(1−x)κ−1
otherwise.

(5)

We can prove the following general theorem:
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Figure 3: Positive dependent case (left: ρ = 0.2, right: ρ = 0.5), m = 100.
FDR in function of π0. Number of simulations : 10000.

Theorem 4.1. Consider a threshold function β (that is, a non-decreasing
function from R+ to R+) and fix α0 and α1 in (0, 1) such that α0 ≤ α1.
Define R0 is the step-up procedure with global threshold α0β(.)/m and R the
adaptive step-up procedure with global threshold α1β(.)Fκ(|R0|/m)/m. Sup-
pose moreover that FDR(R0) ≤ α0π0 and that for each h ∈ H0 and any
constant c > 0,

E

(
1{ph ≤ cβ(|R|)}

|R| 1{|R| > 0}
)

≤ c. (6)

Then R has a FDR smaller than α1 + κα0.

Combining Theorem 4.1 with Theorems 2.6 and 2.7, we obtain the fol-
lowing corollary:
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Corollary 4.2. Fix α0 and α1 in (0, 1) such that α0 ≤ α1 and let β be
a threshold function. Define R0 the step-up procedure with global thresh-
old α0β(.)/m. Then the adaptive step-up procedure with global threshold
α1β(.)Fκ(|R0|/m)/m has a FDR smaller than α1 + κα0 in either of the fol-
lowing dependence situations:

- the p-values (ph)h∈H are PRDS on H0 and β = I
- the p-values are general dependent and β is a threshold function of the

form (2)

Remark 4.3. If we choose κ = 2, α0 = α/4 and α1 = α/2 , the adaptive
procedure R of Corollary 4.2 has then a FDR smaller than α. We note that
R is less conservative than the non-adaptive step-up procedure with global
threshold αβ(.)Fc(|R0|/m)/m if F2(|R0| / |H|) ≥ 2 or equivalently when R0

rejects more than F−1
2 (2) = 62, 5% of the null hypotheses. Conversely, R is

more conservative otherwise, and we can lose up to a factor 2 in the global
threshold with respect to the standard one-stage version.
Therefore, this adaptive procedure is only useful in the cases where it is
expected that a “large” proportion of hypotheses can easily be rejected.

Remark 4.4. In the PRDS case, and choosing κ = 2, α0 = α/4 and α1 = α/2,
the procedure of Corollary 4.2 is the adaptive LSU procedure at level α/2
with the estimator

1

1 −
√

(2|R0|/m − 1)+

,

where |R0| is the number of rejections of the LSU procedure at level α/4 and
()+ denotes the positive part. This procedure has been performed with in
the simulation setting of section 3.4 with ρ = 0.1, m0 = 5, m = 100 (see
Figure 4). The common value µ of the positive means is taken in the range
[2, 5], so that large values for µ correspond to large rejection cases. We can
notice that there exists a regime where the adaptive procedure out-performs
the regular one.

Remark 4.5. In the general dependent case, to have a first step procedure that
rejects sufficiently, we can choose a prior distribution ν (and then a threshold
β of the form (2)) quite concentrate on the large numbers of {1, . . . , m}.

5 Proofs of the results

Proof. (of Theorem 3.1) By definition R := Rα,IG satisfies the following ”self-
bounding condition”:

R = {h ∈ H| ph ≤ α|R|G/m}. (7)
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Figure 4: Y axis: the number of rejected false null hypotheses of different
procedures, X axis: the common value of all the positive means. Number of
simulations 10000, m = 100, m0 = 5, ρ = 0.1. The full line corresponds to
the LSU procedure. The dashed line corresponds to the two-stage adaptive
procedure of Corollary 4.2 in the PRDS case with κ = 2, α0 = α/4 and
α1 = α/2.

Therefore, the FDR has the following expression :

FDR(R) = E

( |R ∩H0|
|R| 1{|R| > 0}

)
=
∑

h∈H0

E

(
1{ph ≤ α|R(p)|G(p)/m}

|R(p)|

)
.

Therefore, since G is non-increasing, we get:

FDR(R) ≤
∑

h∈H0

E

(
1{ph ≤ α|R(p)|G(p0,h)/m}

|R(p)|

)

=
∑

h∈H0

E

(
E

(
1{ph ≤ α|R(p)|G(p0,h)/m}

|R(p)|

∣∣∣∣p−h

))
≤ α

m

∑

h∈H0

EG(p0,h).

The last step is obtained with Lemma 6.1 with Y = ph, g(ph) = |R(p−h, ph)|
and c = αG(p0,h)/m, because ph conditionnally to p−h is stochastically
bounded by a uniform distribution, because |R| is coordinate-wise non-increasing
and because p0,h depend only on the p-values of p−h. We apply then (3) to
conclude.

Proof. (of Corollary 3.3) By Theorem 3.1, it is sufficient to prove that the
condition (3) holds for G1 and G2. The bound for G1 is obtained using lemma
6.4 with k = m0 and q = 1 − λ: for all h ∈ H0,

E[G1(p0,h)] ≤ m(1 − λ)E

[ ∑

h′∈H0\{h}

1{ph′ > λ} + 1

]−1

≤ π−1
0 .
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The proof for G2 is deduced from the one of G1 with λ = α/(1 + α) because
in this case G2 ≤ G1 pointwise.

Proof. (of Theorem 3.6) We denote by R the corresponding procedure. By
definition of a step-up procedure, R satisfies the ”cardinal control condition”
R = {h ∈ H|ph ≤ α

1+α
min

(
|R|

m−|R|+1
, 1
)
}. Therefore, we have

FDR(R) ≤
∑

h∈H0

E

(
1{ph ≤ α

1+α

|R(p)|
m−|R(p)|+1

}
|R(p)|

)

≤
∑

h∈H0

E




1{ph ≤ α
1+α

|R(p)|
m−|R(p0,h)|+1

}
|R(p)|




≤
∑

h∈H0

E


E




1{ph ≤ α
1+α

|R(p)|
m−|R(p0,h)|+1

}
|R(p)|

∣∣∣∣p−h






≤ α

1 + α

∑

h∈H0

E

(
1

m − |R(p0,h)| + 1

)
,

The last step is obtained with Lemma 6.1 with Y = ph, g(ph) = |R(p−h, ph)|
and c = α

1+α
1

m−|R(p0,h)|+1
, because ph conditionnally to p−h is stochastically

bounded by a uniform distribution and because p0,h depend only on the p-
values of p−h.
Finally, we see that since the global threshold is smaller than α/(1 + α),

α

1 + α
E (1/(|H| − |R(p0,h)| + 1)) ≤ EG1,

where G1 is the Storey Estimator with λ = α/(1 + α). We then use that
EG1 ≤ π−1

0 (see proof of Corollary 3.3) to conclude.

Proof. (of Theorem 3.8) By Theorem 3.1, it suffices to prove that EG3(p0,h) ≤
π−1

0 , and this is the case because R′
0 has a global threshold smaller than

α/(1 + α).

Proof. (of Theorem 4.1) Assume π0 > 0 (otherwise the result is trivial). Note
first that since R is a step-up procedure, it satisfies the ”cardinal control
condition” R = {h ∈ H|ph ≤ α1β(|R|)Fc(|R0|/m)/m}. Let us decompose
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the final output of the two-stage procedure the following way:

FDR(R) ≤
∑

h∈H0

E

[
1{ph ≤ β(|R|)α1/m0}

|R| 1{|R| > 0}
]

+
∑

h∈H0

E

[
1{α1β(|R|)/m0 < ph ≤ α1β(|R|)Fc(|R0|/m)/m}

|R| 1{|R| > 0}
]

≤ α1 + m0E

[
1{Fc(|R0|/m) > π−1

0 }
|R0|

1{|R0| > 0}
]

For the last inequality, we have used (6) with K = α1/m0 for the first term.
For the second term, we have used the two following facts:

(i) Fc(|R0|/m) > π−1
0 implies |R0| > 0

(ii) Because of the assumption α0 ≤ α1 and Fc ≥ 1 , the output of the
second step is necessarily a set containing at least the output of the first step.
Hence |R| ≥ |R0| .

Let us now concentrate on further bounding this second term. For this
first consider the generalized inverse of Fc , F−1

c (t) = inf {x : Fc(x) > t} .
Because Fc is a nondecreasing left-continuous function, we have Fc(x) >
t ⇔ x > F−1

c (t) . Furthermore, the expression of F−1
c is given by: ∀t ∈

[1, +∞), F−1
c (t) = c−1t−2 − t−1 + 1 (providing in particular that F−1

c (π−1
0 ) >

1 − π0). Hence

m0E

[
1{Fc(|R0|/m) > π−1

0 }
|R0|

]
≤ m0E

[
1{|R0|/m > F−1

c (π−1
0 )}

|R0|

]

≤ π0

F−1
c (π−1

0 )
P
[
|R0|/m ≥ F−1

c (π−1
0 )
]

. (8)

Now, by assumption the FDR of the first step R0 is controlled at level π0α0 ,
so that

π0α0 ≥ E

[ |R0 ∩H0|
|R0|

1{|R0| > 0}
]

≥ E

[ |R0| + m0 − m

|R0|
1{|R0| > 0}

]

= E
[
[1 + (π0 − 1)Z−1]1{Z > 0}

]
,

where we denoted Z the random variable |R0|/m . Hence by Markov’s in-
equality, for each t > 1 − π0,

P [Z ≥ t] ≤ P

(
[1+(π0−1)Z−1]1{Z > 0} ≥ 1+(π0−1)t−1

)
≤ π0α0

1 + (π0 − 1)t−1
;
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choosing t = F−1
c (π−1

0 ) and using this into (8), we obtain

m0E

[
1{Fc(|R0|/m) > π−1

0 }
|R0|

]
≤ α0

π2
0

F−1
c (π−1

0 ) − 1 + π0

.

If we want that this last quantity to be less than cα0 , this yields the condition
F−1

c (π−1
0 ) ≥ c−1π2

0−π0+1 , and this is true from the expression of F−1
c . (Note

that this is how the formula for Fc was determined in the first place).

Proof. (of Corollary 4.2) We have just to prove that (6) is true for any fixed
h ∈ H0. In the general dependent case, this is a direct consequence of
Lemma 6.3 with X = ph and Y = β(|R|). For the PRDS case, we note
that |R| is coordinate-wise non-increasing in the p-values and then for any
y, {p ∈ [0, 1]H| β(|R(p)|) < y} is a non-decreasing set, so that the PRDS
property implies that the function x 7→ P(β(|R(p)|) < y|ph ≤ x) is non-
decreasing. We can then apply Lemma 6.2 with X = ph and Y = β(|R|).

6 Technical lemmas

Lemma 6.1. Let g : [0, 1] → (0,∞) be a non-increasing function. Then for
any random variable Y stochastically larger than a uniform distribution, and
any constant c > 0,

E

(
1{Y ≤ cg(Y )}

g(Y )

)
≤ c.

of Lemma 6.1. We let U = {u : cg(u) ≥ u} , u∗ = sup U and C⋆ =
inf{g(u)|u ∈ U} . It is not difficult to check that u∗ ≤ cC∗ , for example
take any nondecreasing sequence un ∈ U ր u∗ , then we have g(un) ց C∗ .
If C∗ = 0 , the result is trivial. Otherwise, since g is non-increasing,

E

(
1{Y ≤ cg(Y )}

g(Y )

)
≤ P(Y ∈ U)

C∗
≤ P(Y ≤ u∗)

C∗
≤ u∗

C∗
≤ c.

Lemma 6.2. Let X, Y be two positive real variables. Assume the following:

1. X is stochastically larger than a uniform variable in [0, 1] , that is ∀x ∈
[0, 1], P(X ≤ x) ≤ x .

2. The conditional distribution of Y given X ≤ x is stochastically decreas-
ing in x, that is,

∀ y ≥ 0 ∀ 0 ≤ x ≤ x′ , P(Y < y|X ≤ x) ≤ P(Y < y|X ≤ x′) .
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Then for any constant c > 0:

E

(
1{X ≤ cY }

Y

)
≤ c.

Proof. Fix some ε > 0 and some ρ ∈ (0, 1) and choose K big enough so that
ρK < ε. Put y0 = 0 and yi = ρK+1−i for 1 ≤ i ≤ 2K + 1 .

Then

E

(
1{X ≤ cY }

Y ∨ ε

)
≤

2K+1∑

i=1

P(X ≤ cyi; Y ∈ [yi−1, yi))

yi−1 ∨ ε
+ ε

≤ c

2K+1∑

i=1

P(X ≤ cyi; Y ∈ [yi−1, yi))

P(X ≤ cyi)

yi

yi−1 ∨ ε
+ ε

= cρ−1
2K+1∑

i=1

P(Y ∈ [yi−1, yi)|X ≤ cyi) + ε

= cρ−1
2K+1∑

i=1

(P(Y < yi|X ≤ cyi) − P(Y < yi−1|X ≤ cyi)) + ε

≤ cρ−1

2K+1∑

i=1

(P(Y ≤ yi|X ≤ cyi) − P(Y ≤ yi−1|X ≤ cyi−1)) + ε

≤ cρ−1 + ε .

We obtain the conclusion by letting ρ → 1 , ε → 0 and applying the monotone
convergence theorem.

Lemma 6.3. Let X, Y be two positive real variables and β be a function of
the form (2). Assume that X is stochastically larger than a uniform variable
in [0, 1] , that is ∀x ∈ [0, 1], P(X ≤ x) ≤ x . Then, for any constant c > 0,
we have

E

(
1{X ≤ cβ(Y )}

Y

)
≤ c.

Proof. First note that since β(0) = 0, the expectation is always well defined.
Next, since for any z > 0,

∫ +∞

0
y−21{y ≥ z}dy = 1/z and so using Fubini’s
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theorem:

E

(
1{X ≤ cβ(Y )}

Y

)
= E

(∫ +∞

0

y−21{y ≥ Y }1{X ≤ cβ(Y )}
)

=

∫ +∞

0

y−2
E[1{y ≥ Y }1{X ≤ cβ(Y )}]

≤
∫ +∞

0

y−2
P(X ≤ cβ(y))

≤ c

∫ +∞

0

y−2β(y),

and we conclude because any function β of the form (2) satisfies
∫ +∞

0
y−2β(y) =

1.

The following lemma was already propose in [BKY06], it is a central
argument when we estimate π−1

0 in the independent case:

Lemma 6.4. For all k ≥ 2 and q ∈]0, 1], we have for any Y ∼ B(k − 1, q),

E[1/(1 + Y )] ≤ 1/kq, (9)
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