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Université Paris 8, Christiane.Frougny@liafa.jussieu.fr

Abstract. The set Zβ of β-integers is a Meyer set when β is a Pisot
number, and thus there exists a finite set F such that Zβ −Zβ ⊂ Zβ +F .
We give finite automata describing the expansions of the elements of
Zβ and of Zβ − Zβ . We present a construction of such a finite set F ,
and a method to minimize the size of F . We obtain in this way a finite
transducer that performs the decomposition of the elements of Zβ − Zβ

as a sum belonging to Zβ + F .

1 Introduction

The so-called Meyer sets have been introduced by Meyer [11, 12] under the name
of “quasicrystals” in order to formalize the quasicrystals discovered by the physi-
cists in the eighties. A set X is a Delaunay set if it is uniformly discrete and
relatively dense. A set X is a Meyer set if it is a Delaunay set and there exists
a finite set F such that X − X ⊂ X + F . There exist strong relations between
Meyer sets and some algebraic integers. Recall that a Pisot number (or a Pisot-
Vijayaraghavan number) is an algebraic integer > 1 such that all its algebraic
conjugates have modulus strictly less than one. A Salem number is an algebraic
integer such that every conjugate has modulus smaller than or equal to 1, and
at least one of them has modulus 1. The following result from Meyer makes
the connection between Meyer sets and those algebraic integers. If X ⊂ R

n is a
Meyer set and if β > 1 is a real number such that βX ⊂ X then β is a Pisot or
a Salem number. Conversely for each n and for each Pisot or Salem number β,
there exists a Meyer set X ⊂ R

n such that βX ⊂ X .
Note that all the quasicrystals encountered in the real world are linked to

quadratic Pisot numbers, namely 1+
√

5
2 , 1 +

√
2 and 2 +

√
3.

In this paper we study Meyer sets Zβ associated with β-expansions, β being
a Pisot number, and give a construction of a minimal finite set F such that
Zβ − Zβ ⊂ Zβ + F .

Lagarias [8] gave a general construction of a finite set F satisfying X −X ⊂
X + F for a Delaunay set X such that X − X is also a Delaunay set. But the
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sets obtained are huge and no method of minimization of these sets is known.
Minimal sets F are given in [3] for Zβ when β is a quadratic Pisot unit. When
β is a quadratic Pisot number, a possible set F for Zβ is exhibited in [6].

We first give finite automata describing the formal addition and substraction
of beta-integers. We characterize the cases when the formal addition gives a
system of finite type when the original system Zβ is of finite type.

We then give a construction of a family of finite sets F such that Zβ −Zβ ⊂
Zβ + F , and a method to minimize the size of the sets F we built. We obtain
in this way a finite transducer that performs the decomposition of the result of
the formal substraction Zβ − Zβ into a sum belonging to Zβ + F .

2 Preliminaries

Let A be a finite alphabet. A concatenation of letters of A is called a word. The
set A∗ of all finite words equipped with the empty word ε and the operation
of concatenation is a free monoid. We denote by ak the word obtained by con-
catenating k letters a. The length of a word w = w0w1 · · ·wn−1 is denoted by
|w| = n. One considers also infinite words v = v0v1v2 · · · . The set of infinite
words on A is denoted by AN. An infinite word v is said to be eventually periodic
if it is of the form v = wzω, where w and z are in A∗ and zω = zzz · · · . A factor
of a finite or infinite word w is a finite word v such that w = uvz ; if u = ε, the
word v is a prefix of w. A prefix of w is strict if it is not equal to w.

Definitions and results on numeration systems can be found in [10, Chapter
7]. Let β > 1 be a real number. Any positive real number x can be represented
in base β by the following greedy algorithm [14]. Denote by ⌊.⌋ and by {.} the
integral part and the fractional part of a number. There exists k ∈ Z such that
βk ≤ x < βk+1. Let xk = ⌊x/βk⌋ and rk = {x/βk}. For i < k, put xi = ⌊βri+1⌋,
and ri = {βri+1}. Then x = xkβk + xk−1β

k−1 + · · · . If x < 1, we get k < 0
and we put x0 = x−1 = · · · = xk+1 = 0. The sequence (xi)k≥i≥−∞ is called the
β-expansion of x, and is denoted by

〈x〉β = xkxk−1 · · ·x1x0 · x−1x−2 · · ·

most significant digit first. The part x−1x−2 · · · after the “decimal” point is
called the β-fractional part of x.

The digits xi are elements of the canonical alphabet Aβ = {0, . . . , ⌊β⌋} if
β /∈ N and Aβ = {0, . . . , β−1} otherwise. When a β-expansion ends in infinitely
many zeroes, it is said to be finite, and the 0’s are omitted.

A finite or infinite word w on Aβ which is the β-expansion of some number
x is said to be admissible. Leading 0’s are allowed.

The set Zβ of β-integers is the set of real numbers x such that the β-fractional
part of |x| is equal to 0,

Zβ = {x ∈ R | 〈|x|〉β = xk · · ·x0} = Z
+
β ∪ Z

−
β

where Z
+
β is the set of non-negative beta-integers, and Z

−
β = −Z

+
β .



Denote by Dβ the set of β-expansions of numbers of [0, 1) and the shift by σ.
Then Dβ is shift-invariant. Let Sβ be its closure in AN

β . The set Sβ is a symbolic

dynamical system, called the β-shift. The set Z
+
β is equal to the set of finite

factors of Sβ .
There is a peculiar representation of the number 1 which plays an important

role in the theory. It is denoted by dβ(1), and computed by the following pro-
cess [14]. Let the β-transform be defined on [0, 1] by Tβ(x) = βx mod 1. Then
dβ(1) = (ti)i≥1, where ti = ⌊βT i−1

β (1)⌋. Note that ⌊β⌋ = t1. We recall a result
of Parry [13]: a sequence s of natural integers is an element of Dβ if and only
if for every p ≥ 1, σp(s) is strictly less in the lexicographic order than dβ(1) if
dβ(1) is infinite, or less than d∗β(1) = (t1 · · · tm−1(tm − 1))ω if dβ(1) = t1 · · · tm
is finite.

A word w1 · · ·wn of A∗
β is said to be a minimal forbidden word for Sβ if it

is not a factor of Sβ and if w1 · · ·wn−1 and w2 · · ·wn are factors of Sβ. Recall
that a symbolic dynamical system is said to be of finite type if the set of its
minimal forbidden words is finite. More generally it is said to be sofic if the set
of its finite factors is recognized by a finite automaton. The β-shift is sofic if and
only if dβ(1) is eventually periodic, and it is of finite type if and only if dβ(1) is
finite. By abuse we say that the set Zβ of β-integers is of finite type (resp. sofic)
if dβ(1) is finite (resp. infinite eventually periodic). Recall that if β is a Pisot
number, then dβ(1) is finite or eventually periodic [2, 15].

A set X ⊂ R
n is uniformly discrete if there exists a positive real r such that

for any x ∈ R
n, the open ball of center x and radius r contains at most one

point of X . If Y ⊂ X and X is uniformly discrete, then Y is uniformly discrete.
A set X ⊂ R

n is relatively dense if there exists a positive real R such that for
any x ∈ R

n, the open ball of center x and radius R contains at least one point of
X . If X ⊂ Y and X is relatively dense, then Y is relatively dense. A set X is a
Delaunay set if it is uniformly discrete and relatively dense. A set X is a Meyer
set if it is a Delaunay set and there exists a finite set F such that X−X ⊂ X+F .
Lagarias proved [8] that a set X is a Meyer set if and only if both X and X −X
are Delaunay sets. Note that when X is a Delaunay set, then X−X is relatively
dense, but not necessarily uniformly discrete. For example X = {n + 1

|n|+2} is a

Delaunay set and X − X has 1 as point of accumulation.

Proposition 1. [3] If β is a Pisot number, then the set Zβ of β-integers is a
Meyer set.

3 Automata for formal addition and substraction

In this section we construct automata that symbolically describe the elements
of Zβ − Zβ when β is a Pisot number. Note that

Zβ − Zβ = (Z+
β − Z

+
β ) ∪ (Z+

β + Z
+
β ) ∪ −(Z+

β + Z
+
β ). (1)

The reader is referred to [4] and [16] for definitions and results in automata
theory. We introduce some notations. Denote by L+

β ⊂ A∗
β the set of β-expansions



of elements of Z
+
β with possible leading 0’s. Set k̄ = −k, where k is an integer,

and let Aβ = {⌊β⌋, . . . , 1̄, 0}. We denote by L−
β ⊂ Aβ

∗
the set {w = wN · · ·w0 |

w = wN · · ·w0 = 〈−x〉β , x ∈ Z
−
β }.

When dβ(1) is finite or eventually periodic, the set L+
β is recognizable by a

finite automaton [5], of which we recall the construction. If dβ(1) = t1 · · · tm is
finite, the automaton A

Z
+
β

recognizing L+
β has m states q1, . . . , qm. For each

1 ≤ i ≤ m − 1 there is an edge between qi and qi+1 labelled by ti. For each
1 ≤ i ≤ m there are ti edges between qi and q1 labelled by 0, . . . , ti − 1. The
initial state is q1; every state is terminal.

If dβ(1) = t1 · · · tm(tm+1 · · · tm+p)
ω is infinite eventually periodic, the au-

tomaton A
Z
+
β

recognizing L+
β has m + p states q1, . . . , qm+p. For each 1 ≤

i ≤ m + p − 1 there is an edge between qi and qi+1 labelled by ti. For each
1 ≤ i ≤ m + p there are ti edges between qi and q1 labelled by 0, . . . , ti − 1.
There is an edge from qm+p to qm+1 labelled by tm+p. The initial state is q1;
every state is terminal.

Clearly the set L−
β is recognizable by the same automaton as L+

β , but with
negative labels on edges. Then the automaton for Zβ is AZβ

= A
Z
+
β
∪ A

Z
−

β
.

By a general construction one can compute the “sum” of two automata. Let
A and B be two finite automata with labels in an alphabet of integers. One
constructs a finite automaton S as follows :

– the set of states of S is the cartesian product QS = QA × QB
– there is an edge in S from (p, q) to (p′, q′) labelled by a + b if and only if

there is an edge from p to p′ labelled by a in A and an edge from q to q′

labelled by b in B.
– the set of initial (resp. terminal) states is the cartesian product of the sets

of initial (resp. terminal) states of A and B.

Clearly the automaton S recognizes the set {sN · · · s0 | N ≥ 0, si = ai + bi, 0 ≤
i ≤ N, aN · · · a0 is recognized by A and bN · · · b0 is recognized by B}.

The formal addition of elements of Z
+
β consists in adding elements without

carry. More precisely,

L+
β +L+

β = {(aN +bN) · · · (a0+b0) | aN · · · a0, bN · · · b0 ∈ Z
+
β } ⊂ {0, · · · , 2⌊β⌋}∗.

Similarly the formal subtraction of elements of Z
+
β is defined by

L+
β −L+

β = {(aN−bN) · · · (a0−b0) | aN · · · a0, bN · · · b0 ∈ Z
+
β } ⊂ {−⌊β⌋, · · · , ⌊β⌋}∗.

From the construction of the sum automaton follows

Proposition 2. If dβ(1) is finite or eventually periodic, the set L+
β + L+

β corre-

sponding to the formal addition Z
+
β + Z

+
β and the set L+

β −L+
β corresponding to

the formal subtraction Z
+
β − Z

+
β are recognizable by a finite automaton.



By Equation (1), AZβ−Zβ
= A

Z
+
β

+Z
+
β
∪ A

Z
+
β
−Z

+
β
∪ A−(Z+

β
+Z

+
β

). The automata

given by this construction are generally not minimal.

Example 1. In the case where β = 1+
√

5
2 , dβ(1) = 11 and d∗β(1) = (10)ω. We give

below the minimal automata A
Z
+
β
, A

Z
−

β
, A

Z
+
β

+Z
+
β
, and A

Z
+
β
−Z

+
β
. Initial states are

indicated by an incoming arrow, and every state is terminal.

0 1

0

1

0

0 1̄

0

1̄

0

0 12

0 1

1

02

0

0 1

1̄

0

1

0

1̄0

1̄

1

It is an interesting question to see what is the result of formal addition or
subtraction when the system Zβ is of finite type. First recall that, from the result
of Parry cited in Sect. 2, if dβ(1) = t1 · · · tm, the set of minimal forbidden words
for Z

+
β is the set Iβ = {t1 · · · tm} ∪ {t1t2 · · · tp−1xp | tp < xp ≤ t1, 2 ≤ p ≤

m, xp ∈ Aβ}.

Proposition 3. If dβ(1) = t1 · · · tm is finite, the formal subtraction Z
+
β − Z

+
β

defines a system of finite type.

Proof. Recall that if a word is admissible, any word with smaller nonnegative
digits is admissible as well. Thus the set of forbidden words for the formal sub-
traction Z

+
β − Z

+
β is equal to {w, w | w ∈ Iβ}, which is finite. ⊓⊔

The result for formal addition is quite different.

Proposition 4. If dβ(1) = t1 · · · tm is finite, the formal addition Z
+
β + Z

+
β de-

fines a system of finite type if and only if tm = t1 and, for each 2 ≤ i ≤ m − 1,
ti = t1 or ti = 0.

Corollary 1. If β < 2 and dβ(1) is finite then the formal addition Z
+
β + Z

+
β

defines a system of finite type.

The proof of Proposition 4 follows from several technical results.

Lemma 1. Suppose that dβ(1) = t1 · · · tm, and that there exists 2 ≤ j ≤ m with
0 < tj < t1 (so t1 ≥ 2), and ti = 0 or ti = t1 for 2 ≤ i ≤ j − 1. Then the set of
minimal forbidden words in the formal addition is infinite.



Proof. For any k ≥ 1 consider the word u(k) = [(t1 + t2)(t2 + t3) · · · (tj−2 +
tj−1)(tj−1 + tj − 1)(tj − 1 + t1)]

k(t1 + t2)(t2 + t3) · · · (tm−1 + tm).
Let w(k) = (2t1 − 1)u(k). First we show that w(k) is forbidden in the formal
addition system. This comes from the fact that w(k) is necessarily the digit-
sum of the two words x(k) = (t1 − 1)[t1 · · · tj−1(tj − 1)]kt1 · · · tm−1 and y(k) =
t1[t2 · · · tj−1(tj − 1)t1]

kt2 · · · tm. Clearly y(k) is not admissible for Z
+
β because it

ends in the forbidden word t1 · · · tm, and x(k) is admissible for Z
+
β and maximal

in the sense that adding 1 to one of its digits makes the word not admissible.

Note that all strict prefixes of y(k) are admissible for Z
+
β , so all strict prefixes

of w(k) are also admissible.

Now we show that the word u(k) is admissible in the formal addition system.
By hypothesis the digits (ti + ti+1) for 1 ≤ i ≤ j − 2 are equal to 2t1, t1 or
0. So u(k) can be obtained as the digit-sum of v(k) and z(k) with the following
method: a digit 2t1 of u(k) gives a digit t1 in v(k) and a digit t1 in z(k); a digit
t1 of u(k) gives a digit t1 − 1 in v(k) and a digit 1 in z(k); a digit 0 of u(k) gives
a digit 0 in v(k) and in z(k). Since 0 < tj < t1, the digits tj−1 + tj − 1 and
tj − 1 + t1 are ≤ 2t1 − 2, which is the sum of t1 − 1 and t1 − 1. The suffix
(tj − 1 + t1)(t1 + t2)(t2 + t3) · · · (tm−1 + tm) of u(k) is thus the digit-sum of
at1t2 · · · tm−1, with a ≤ t1 − 1, and of bt2t3 · · · tm, with b ≤ t1 − 1. Hence u(k) is
the digit-sum of v(k) and z(k), which are both admissible for Z

+
β . ⊓⊔

Lemma 2. If dβ(1) = t1 · · · tm is finite and if tm = t1 and, for each 2 ≤ i ≤
m − 1, ti = t1 or ti = 0 then the formal addition is a system of finite type.

Proof. As in Lemma 1 we consider the word u(k), with tj = t1 for a fixed j,
2 ≤ j ≤ m. The difference with Lemma 1 is that now the suffix s = (tj − 1 +
t1)(t1 + t2)(t2 + t3) · · · (tm−1 + tm) is not admissible. Since tj = t1, s can be the
the digit-sum of (t1 − 1)t1 · · · tm−1 and t1t2 · · · tm, or of (t1 − 1)t1 · · · (tℓ−1)(tℓ +
1)tℓ+1 · · · tm−1 and t1t2 · · · tℓ−1(tℓ − 1)tℓ+1 · · · tm if tℓ 6= 0, for 2 ≤ ℓ ≤ m − 1.
But none of the factors t1 · · · tℓ−1(tℓ +1) is admissible for Z

+
β . By considering all

the positions 2 ≤ j ≤ m in u(k), we see that it is not possible to construct an
infinite family of minimal forbidden words of type w(k). ⊓⊔

4 A family of finite sets F

When β is a Pisot number, the set of beta-integers Zβ is a Meyer set so there
exists a finite set F such that Zβ − Zβ ⊂ Zβ + F . Our goal is to construct sets
F as small as possible for Zβ .

Remark 1. Note that there exist several sets F with minimal cardinality. For
example when β = (1+

√
5)/2 then Zβ−Zβ ⊂ Zβ+F , with F = {0, β−1,−β+1},

or F = {0, β − 2,−β + 2} or F = {0, β − 1,−β + 2}.

We first define finite sets from which can be extracted the finite sets F .



Lemma 3. Let β be a Pisot number of degree d, let I ⊂ R be an interval of
length 1 and let U be the following set

U =

{

x ∈ Z[β] | x ∈ I and ∀ 2 ≤ j ≤ d, |x(j)| <
3⌊β⌋

1 − |β(j)|

}

,

where x(2), . . . , x(d) are the algebraic conjugates of x. Then U is finite, and there
exists a subset F of U such that Zβ − Zβ ⊂ Zβ + F .

Proof. As the maximal distance between two consecutive points of Zβ is equal
to 1, one can find a set F such that Zβ −Zβ ⊂ Zβ +F in any interval I of length
1.

Fix an interval I of length 1 and F ⊂ I as small as possible such that
Zβ − Zβ ⊂ Zβ + F . Let x ∈ F , then x ∈ (Zβ − Zβ) − Zβ and can be written as

x =
N

∑

i=0

(ai − bi)β
i −

N
∑

i=0

ciβ
i with |ai|, |bi|, |ci| ≤ ⌊β⌋.

so

∀ 2 ≤ j ≤ d x(j) =

N
∑

i=0

(ai − bi − ci)(β
(j))i with |ai − bi − ci| ≤ 3⌊β⌋.

As β is a Pisot number, for all j ≥ 2, |β(j)| < 1 and |∑N

i=0(β
(j))i| < (1 −

|β(j)|)−1. We obtain in this way the announced bound on the moduli of the
conjugates of x and x ∈ U . So F is a subset of U .

As it contains only points of Z[β] with bounded modulus and whose all
conjugates have bounded modulus, the set U is finite. Thus F is a finite set. ⊓⊔

The choice of any interval I ⊂] − 1, 1[ of length 1 allows us to reduce the
cardinality of the set containing a set F .

Lemma 4. Let β be a Pisot number of degree d, let I ⊂] − 1, 1[ be an interval
of length 1 and let U ′ be the following finite set

U ′ =

{

x ∈ Z[β] | x ∈ I and ∀ 2 ≤ j ≤ d, |x(j)| <
2⌊β⌋

1 − |β(j)|

}

.

Then there exists a subset F of U ′ such that Zβ − Zβ ⊂ Zβ + F .

Proof. We choose here I ⊂] − 1, 1[ of length 1 and improve the bound on the
moduli of the conjugates of x given in Lemma 3 by considering the decomposition

Zβ − Zβ = (Z+
β − Z

+
β ) ∪ (Z+

β + Z
+
β ) ∪ −(Z+

β + Z
+
β ).

More precisely let x ∈ F ⊂ I, then x ∈ (Zβ − Zβ) − Zβ and can be written
as

x =

N
∑

i=0

(ai − bi)β
i −

N
∑

i=0

ciβ
i.



We study |ai − bi − ci| according to the signs of ai, bi and ci. In Z
+
β − Z

+
β , the

coefficients satisfy |ai−bi| ≤ ⌊β⌋. Moreover when F ⊂]−1, 1[, Z
+
β +Z

+
β ⊂ Z

+
β +F

and −
(

Z
+
β + Z

+
β

)

⊂ Z
−
β +F , then we have |ai − ci| ≤ ⌊β⌋. So when F ⊂]−1, 1[,

we get in all cases |ai − bi − ci| ≤ 2⌊β⌋. Thus

∀ 2 ≤ j ≤ d x(j) =

N
∑

i=0

(ai − bi − ci)(β
(j))i with |ai − bi − ci| ≤ 2⌊β⌋,

and the announced bound on the moduli of the conjugates of x holds true. ⊓⊔

Example 2. Let β be a quadratic Pisot unit, then the set U ′ contains 5 points.

5 A first reduction of the cardinality of the sets

containing F

In order to reduce the size of the sets containing F we study the properties of
the elements of F .

Lemma 5. Let β be a Pisot number and let F ⊂ (Zβ − Zβ) − Zβ. If f ∈ F
there exist a nonnegative integer N , and two finite words bN · · · b0 and aN · · · a0

respectively admissible for Zβ − Zβ and Zβ such that

f0 = f, ∀ 0 ≤ i ≤ N fi+1 =
fi − (bi − ai)

β
and fN+1 = 0.

Proof. An element f in F can be written as f =
∑N

i=0(bi − ai)β
i with x =

∑N

i=0 aiβ
i ∈ Zβ , aN · · · a0 being admissible for Zβ , and y =

∑N

i=0 biβ
i ∈ Zβ−Zβ ,

bN · · · b0 being admissible for Zβ − Zβ . Note that leading 0’s are allowed.

With these notations we get for all 0 ≤ i ≤ N , fi =
∑N−i

j=0 (bj+i − aj+i)β
j

and fN+1 = 0. ⊓⊔

Let V =
{

x ∈ Z[β] | |x| < 2⌊β⌋
β−1 , and ∀ 2 ≤ j ≤ d, |x(j)| < 2⌊β⌋

1−|β(j)|

}

. It is a

finite set, with the following property that for all f ∈ ((Zβ − Zβ) − Zβ) ∩ U ′,
the elements f0, . . . , fN of any sequence associated with f according to Lemma
5 belong to V . Indeed, from Lemmas 4 and 5, when F ⊂ U ′, for all i, |bi − ai| ≤
2⌊β⌋. So for 0 ≤ i ≤ N and 2 ≤ j ≤ d, the conjugates f

(j)
i of fi satisfy

|f (j)
i | ≤ 2⌊β⌋/(1 − |β(j)|). Moreover the smallest C such that |x| < C implies

|(x − (b − a))/β| < C is C = 2⌊β⌋/(β − 1).
Following [7], we define a directed graph G whose set of vertices is the set V

and having an edge x
(b,a)−→ y labelled by (b, a) if y = (x − (b − a))/β.

Lemma 6. Let F ⊂ U ′ be a minimal set satisfying Zβ − Zβ ⊂ Zβ + F . Let V0

be the subset of V of vertices connected to 0 in G. Then F ⊂ V0.



From each vertex f of G which is in U ′ we look for a path from f to 0 in
G which is successful in AZβ−Zβ

× AZβ
. Note that in G words are processed

least significant digit first, contrarily to the automata for Zβ and Zβ −Zβ , where
words are processed most significant digit first (i.e. from left to right). So we first
define an automaton Gf having as underlying transition graph G with reversed
edges, 0 as initial state and f as terminal state. We then compute the intersection
automaton If = (AZβ−Zβ

×AZβ
) ∩ Gf . The following result then holds true.

Proposition 5. An element f of U ′ is in V0 if and only if the language recog-
nized by If is nonempty.

Remark 2. The number of states of the automaton If constructed above is
O

(

K3 × |V |
)

where K is the number of states of A
Z
+
β

and |V | is the number of

vertices of G.

6 Minimization of the cardinality of the set F

The finite sets U ′ ∩ V0 obtained by the previous construction are not minimal.
An element y ∈ Zβ − Zβ can be close to two different points of Zβ , for example
such that x < y < x′ with x, x′ ∈ Zβ and y = x+f = x′+f ′ with f, f ′ ∈ U ′∩V0.

Theorem 1. A minimal set F ⊂ U ′ ∩ V0 can be computed by an algorithm
exponential in time and space. It consists in building a transducer which rewrites
a representation of an element of Zβ − Zβ into its representation in Zβ + F .

Proof. To find a minimal set F ⊂ U ′ ∩ V0 we proceed in two steps.
First for each f ∈ U ′ ∩ V0, we define a deterministic automaton Af that

recognizes the set of admissible words for Zβ − Zβ that appear as the first
component of the labels of the successful paths in If . The automaton Af is
obtained by erasing the second component of the labels (that belongs to Zβ)
of the edges of If and determinizing the automaton defined in this way. The
determinization of automata is based on the so-called subset construction (see

[4]), which is exponential in space, and the automaton Af has O(2QIf ) states.
Next we look amongst all subsets of U ′ ∩ V0 for the smallest set F such that

the language recognized by ∪f∈FAf contains an admissible representation of
each element of Zβ −Zβ . To test the inclusion, we compute the complement CF

of ∪f∈FAf . Then the language recognized by ∪f∈FAf contains an admissible
representation of each element of Zβ−Zβ if and only if the intersection of CF and
AZβ−Zβ

is empty. Note that the complexity of the search amongst all subsets of
U ′ ∩ V0 is exponential in time.

From the set F obtained above, we define a transducer that provides, given
y =

∑N

i=0 biβ
i ∈ Zβ − Zβ where bN . . . b0 is admissible for Zβ − Zβ , a de-

composition (aN . . . a0, f) where aN . . . a0 is admissible for Zβ , f ∈ F and

y =
∑N

i=0 aiβ
i + f .

Consider the intersection automaton IF = (AZβ−Zβ
× AZβ

) ∩ GF (F is the
set of terminal states of GF ). For any element y admissible for Zβ − Zβ there



exists f ∈ F such that y is the first component of the label of a successful path w
ending in (s, f) where s is any state of (AZβ−Zβ

)×AZβ
(by construction all states

are terminal). Consequently we get y = x + f where x is the second component
of the label of the same path w and so is admissible for Zβ .

More generally the first component of the labels of the edges in IF can be
interpreted as the inputs admissible for Zβ − Zβ of the transducer, the second
component as the corresponding outputs admissible for Zβ . The associated el-
ement of F is given by the first component of the label of the state where the
path ends. ⊓⊔

To conclude, the method used here for determining minimal sets F could be
generalized to more general Meyer sets related with integral matrices having β
as spectral radius.
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