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Introduction

The so-called Meyer sets have been introduced by Meyer [START_REF] Meyer | Algebraic numbers and harmonic analysis[END_REF][START_REF] Meyer | Quasicrystals, Diophantine approximation and algebraic numbers[END_REF] under the name of "quasicrystals" in order to formalize the quasicrystals discovered by the physicists in the eighties. A set X is a Delaunay set if it is uniformly discrete and relatively dense. A set X is a Meyer set if it is a Delaunay set and there exists a finite set F such that X -X ⊂ X + F . There exist strong relations between Meyer sets and some algebraic integers. Recall that a Pisot number (or a Pisot-Vijayaraghavan number) is an algebraic integer > 1 such that all its algebraic conjugates have modulus strictly less than one. A Salem number is an algebraic integer such that every conjugate has modulus smaller than or equal to 1, and at least one of them has modulus 1. The following result from Meyer makes the connection between Meyer sets and those algebraic integers. If X ⊂ R n is a Meyer set and if β > 1 is a real number such that βX ⊂ X then β is a Pisot or a Salem number. Conversely for each n and for each Pisot or Salem number β, there exists a Meyer set X ⊂ R n such that βX ⊂ X.

Note that all the quasicrystals encountered in the real world are linked to quadratic Pisot numbers, namely 1+ √ 5

2 , 1 + √ 2 and 2 + √ 3. In this paper we study Meyer sets Z β associated with β-expansions, β being a Pisot number, and give a construction of a minimal finite set F such that Z β -Z β ⊂ Z β + F .

Lagarias [START_REF] Lagarias | Meyer's concept of quasicrystal and quasiregular sets[END_REF] gave a general construction of a finite set F satisfying X -X ⊂ X + F for a Delaunay set X such that X -X is also a Delaunay set. But the ⋆ Work supported by the CNRS/JSPS contract number 13569 sets obtained are huge and no method of minimization of these sets is known. Minimal sets F are given in [START_REF] Burdik | Beta-integers as natural counting systems for quasicrystal[END_REF] for Z β when β is a quadratic Pisot unit. When β is a quadratic Pisot number, a possible set F for Z β is exhibited in [START_REF] Guimond | Arithmetics on beta-expansions[END_REF].

We first give finite automata describing the formal addition and substraction of beta-integers. We characterize the cases when the formal addition gives a system of finite type when the original system Z β is of finite type.

We then give a construction of a family of finite sets F such that Z β -Z β ⊂ Z β + F , and a method to minimize the size of the sets F we built. We obtain in this way a finite transducer that performs the decomposition of the result of the formal substraction Z β -Z β into a sum belonging to Z β + F .

Preliminaries

Let A be a finite alphabet. A concatenation of letters of A is called a word. The set A * of all finite words equipped with the empty word ε and the operation of concatenation is a free monoid. We denote by a k the word obtained by concatenating k letters a. The length of a word w = w 0 w

1 • • • w n-1 is denoted by |w| = n. One considers also infinite words v = v 0 v 1 v 2 • • • .
The set of infinite words on A is denoted by A N . An infinite word v is said to be eventually periodic if it is of the form v = wz ω , where w and z are in A * and z ω = zzz • • • . A factor of a finite or infinite word w is a finite word v such that w = uvz ; if u = ε, the word v is a prefix of w. A prefix of w is strict if it is not equal to w.

Definitions and results on numeration systems can be found in [START_REF] Lothaire | Algebraic combinatorics on words[END_REF]Chapter 7]. Let β > 1 be a real number. Any positive real number x can be represented in base β by the following greedy algorithm [START_REF] Rényi | Representations for real numbers and their ergodic properties[END_REF]. Denote by ⌊.⌋ and by {.} the integral part and the fractional part of a number. There exists k ∈ Z such that

β k ≤ x < β k+1 . Let x k = ⌊x/β k ⌋ and r k = {x/β k }. For i < k, put x i = ⌊βr i+1 ⌋, and r i = {βr i+1 }. Then x = x k β k + x k-1 β k-1 + • • • . If x < 1, we get k < 0 and we put x 0 = x -1 = • • • = x k+1 = 0. The sequence (x i ) k≥i≥-∞ is called the β-expansion of x,
and is denoted by

x β = x k x k-1 • • • x 1 x 0 • x -1 x -2 • • • most significant digit first. The part x -1 x -2 • • • after the "decimal" point is called the β-fractional part of x.
The digits x i are elements of the canonical alphabet A β = {0, . . . , ⌊β⌋} if β / ∈ N and A β = {0, . . . , β -1} otherwise. When a β-expansion ends in infinitely many zeroes, it is said to be finite, and the 0's are omitted.

A finite or infinite word w on A β which is the β-expansion of some number x is said to be admissible. Leading 0's are allowed.

The set Z β of β-integers is the set of real numbers x such that the β-fractional part of |x| is equal to 0,

Z β = {x ∈ R | |x| β = x k • • • x 0 } = Z + β ∪ Z - β
where Z + β is the set of non-negative beta-integers, and

Z - β = -Z + β .
Denote by D β the set of β-expansions of numbers of [0, 1) and the shift by σ. Then D β is shift-invariant. Let S β be its closure in A N β . The set S β is a symbolic dynamical system, called the β-shift. The set Z + β is equal to the set of finite factors of S β .

There is a peculiar representation of the number 1 which plays an important role in the theory. It is denoted by d β (1), and computed by the following process [START_REF] Rényi | Representations for real numbers and their ergodic properties[END_REF]. Let the β-transform be defined on [0, 1] by T β (x) = βx mod 1. Then d β (1) = (t i ) i≥1 , where t i = ⌊βT i-1 β (1)⌋. Note that ⌊β⌋ = t 1 . We recall a result of Parry [START_REF] Parry | On the β-expansions of real numbers[END_REF]: a sequence s of natural integers is an element of D β if and only if for every p ≥ 1, σ p (s) is strictly less in the lexicographic order than

d β (1) if d β (1) is infinite, or less than d * β (1) = (t 1 • • • t m-1 (t m -1)) ω if d β (1) = t 1 • • • t m is finite. A word w 1 • • • w n of A *
β is said to be a minimal forbidden word for S β if it is not a factor of S β and if w 1 • • • w n-1 and w 2 • • • w n are factors of S β . Recall that a symbolic dynamical system is said to be of finite type if the set of its minimal forbidden words is finite. More generally it is said to be sofic if the set of its finite factors is recognized by a finite automaton. The β-shift is sofic if and only if d β (1) is eventually periodic, and it is of finite type if and only if d β (1) is finite. By abuse we say that the set Z β of β-integers is of finite type (resp. sofic) if d β (1) is finite (resp. infinite eventually periodic). Recall that if β is a Pisot number, then d β (1) is finite or eventually periodic [START_REF] Bertrand | Développements en base de Pisot et répartition modulo 1[END_REF][START_REF] Schmidt | On periodic expansions of Pisot numbers and Salem numbers[END_REF].

A set X ⊂ R n is uniformly discrete if there exists a positive real r such that for any x ∈ R n , the open ball of center x and radius r contains at most one point of X. If Y ⊂ X and X is uniformly discrete, then Y is uniformly discrete. A set X ⊂ R n is relatively dense if there exists a positive real R such that for any x ∈ R n , the open ball of center x and radius R contains at least one point of X. If X ⊂ Y and X is relatively dense, then Y is relatively dense. A set X is a Delaunay set if it is uniformly discrete and relatively dense. A set X is a Meyer set if it is a Delaunay set and there exists a finite set F such that X -X ⊂ X +F . Lagarias proved [START_REF] Lagarias | Meyer's concept of quasicrystal and quasiregular sets[END_REF] that a set X is a Meyer set if and only if both X and X -X are Delaunay sets. Note that when X is a Delaunay set, then X -X is relatively dense, but not necessarily uniformly discrete. For example X = {n + 1 |n|+2 } is a Delaunay set and X -X has 1 as point of accumulation.

Proposition 1. [3] If β is a Pisot number, then the set Z β of β-integers is a Meyer set.

Automata for formal addition and substraction

In this section we construct automata that symbolically describe the elements of Z β -Z β when β is a Pisot number. Note that

Z β -Z β = (Z + β -Z + β ) ∪ (Z + β + Z + β ) ∪ -(Z + β + Z + β ). ( 1 
)
The reader is referred to [START_REF] Eilenberg | Automata, Languages and Machines[END_REF] and [START_REF] Sakarovitch | Eléments de théorie des automates[END_REF] for definitions and results in automata theory. We introduce some notations. Denote by

L + β ⊂ A * β the set of β-expansions of elements of Z + β with possible leading 0's. Set k = -k,
where k is an integer, and let A β = {⌊β⌋, . . . , 1, 0}. We denote by

L - β ⊂ A β * the set {w = w N • • • w 0 | w = w N • • • w 0 = -x β , x ∈ Z - β }. When d β (1)
is finite or eventually periodic, the set L + β is recognizable by a finite automaton [START_REF] Ch | On representation of integers in linear numeration systems[END_REF], of which we recall the construction. If

d β (1) = t 1 • • • t m is finite, the automaton A Z + β recognizing L +
β has m states q 1 , . . . , q m . For each 1 ≤ i ≤ m -1 there is an edge between q i and q i+1 labelled by t i . For each 1 ≤ i ≤ m there are t i edges between q i and q 1 labelled by 0, . . . , t i -1. The initial state is q 1 ; every state is terminal.

If

d β (1) = t 1 • • • t m (t m+1 • • • t m+p ) ω is infinite eventually periodic, the au- tomaton A Z + β recognizing L +
β has m + p states q 1 , . . . , q m+p . For each 1 ≤ i ≤ m + p -1 there is an edge between q i and q i+1 labelled by t i . For each 1 ≤ i ≤ m + p there are t i edges between q i and q 1 labelled by 0, . . . , t i -1. There is an edge from q m+p to q m+1 labelled by t m+p . The initial state is q 1 ; every state is terminal.

Clearly the set L - β is recognizable by the same automaton as L + β , but with negative labels on edges. Then the automaton for

Z β is A Z β = A Z + β ∪ A Z - β .
By a general construction one can compute the "sum" of two automata. Let A and B be two finite automata with labels in an alphabet of integers. One constructs a finite automaton S as follows :

the set of states of S is the cartesian product

Q S = Q A × Q B -there is an edge in S from (p, q) to (p ′ , q ′ ) labelled by a + b if and only if
there is an edge from p to p ′ labelled by a in A and an edge from q to q ′ labelled by b in B. -the set of initial (resp. terminal) states is the cartesian product of the sets of initial (resp. terminal) states of A and B.

Clearly the automaton S recognizes the set

{s N • • • s 0 | N ≥ 0, s i = a i + b i , 0 ≤ i ≤ N, a N • • • a 0 is recognized by A and b N • • • b 0 is recognized by B}.
The formal addition of elements of Z + β consists in adding elements without carry. More precisely,

L + β + L + β = {(a N + b N ) • • • (a 0 + b 0 ) | a N • • • a 0 , b N • • • b 0 ∈ Z + β } ⊂ {0, • • • , 2⌊β⌋} * .
Similarly the formal subtraction of elements of Z + β is defined by

L + β -L + β = {(a N -b N ) • • • (a 0 -b 0 ) | a N • • • a 0 , b N • • • b 0 ∈ Z + β } ⊂ {-⌊β⌋, • • • , ⌊β⌋} * .
From the construction of the sum automaton follows

Proposition 2. If d β (1)
is finite or eventually periodic, the set L + β + L + β corresponding to the formal addition Z + β + Z + β and the set L + β -L + β corresponding to the formal subtraction Z + β -Z + β are recognizable by a finite automaton.

By Equation (1),

A Z β -Z β = A Z + β +Z + β ∪ A Z + β -Z + β ∪ A -(Z + β +Z + β )
. The automata given by this construction are generally not minimal. It is an interesting question to see what is the result of formal addition or subtraction when the system Z β is of finite type. First recall that, from the result of Parry cited in Sect. 2, if d β (1) = t 1 • • • t m , the set of minimal forbidden words for Z + β is the set

I β = {t 1 • • • t m } ∪ {t 1 t 2 • • • t p-1 x p | t p < x p ≤ t 1 , 2 ≤ p ≤ m, x p ∈ A β }. Proposition 3. If d β (1) = t 1 • • • t m is finite, the formal subtraction Z + β -Z + β
defines a system of finite type.

Proof. Recall that if a word is admissible, any word with smaller nonnegative digits is admissible as well. Thus the set of forbidden words for the formal subtraction

Z + β -Z + β is equal to {w, w | w ∈ I β }, which is finite. ⊓ ⊔
The result for formal addition is quite different.

Proposition 4. If d β (1) = t 1 • • • t m is
finite, the formal addition Z + β + Z + β defines a system of finite type if and only if t m = t 1 and, for each 2 ≤ i ≤ m -1, t i = t 1 or t i = 0. The proof of Proposition 4 follows from several technical results.

Lemma 1. Suppose that d β (1) = t 1 • • • t m , and that there exists 2 ≤ j ≤ m with 0 < t j < t 1 (so t 1 ≥ 2), and t i = 0 or t i = t 1 for 2 ≤ i ≤ j -1. Then the set of minimal forbidden words in the formal addition is infinite.

Proof. For any k ≥ 1 consider the word u

(k) = [(t 1 + t 2 )(t 2 + t 3 ) • • • (t j-2 + t j-1 )(t j-1 + t j -1)(t j -1 + t 1 )] k (t 1 + t 2 )(t 2 + t 3 ) • • • (t m-1 + t m ). Let w (k) = (2t 1 -1)u (k)
. First we show that w (k) is forbidden in the formal addition system. This comes from the fact that w (k) is necessarily the digitsum of the two words

x (k) = (t 1 -1)[t 1 • • • t j-1 (t j -1)] k t 1 • • • t m-1 and y (k) = t 1 [t 2 • • • t j-1 (t j -1)t 1 ] k t 2 • • • t m . Clearly y (k)
is not admissible for Z + β because it ends in the forbidden word t 1 • • • t m , and x (k) is admissible for Z + β and maximal in the sense that adding 1 to one of its digits makes the word not admissible.

Note that all strict prefixes of y (k) are admissible for Z + β , so all strict prefixes of w (k) are also admissible. Now we show that the word u (k) is admissible in the formal addition system. By hypothesis the digits (t i + t i+1 ) for 1 ≤ i ≤ j -2 are equal to 2t 1 , t 1 or 0. So u (k) can be obtained as the digit-sum of v (k) and z (k) with the following method: a digit 2t 1 of u (k) gives a digit t 1 in v (k) and a digit t 1 in z (k) ; a digit t 1 of u (k) gives a digit t 1 -1 in v (k) and a digit 1 in z (k) ; a digit 0 of u (k) gives a digit 0 in v (k) and in z (k) . Since 0 < t j < t 1 , the digits t j-1 + t j -1 and k) and z (k) , which are both admissible for

t j -1 + t 1 are ≤ 2t 1 -2, which is the sum of t 1 -1 and t 1 -1. The suffix (t j -1 + t 1 )(t 1 + t 2 )(t 2 + t 3 ) • • • (t m-1 + t m ) of u (k) is thus the digit-sum of at 1 t 2 • • • t m-1 , with a ≤ t 1 -1, and of bt 2 t 3 • • • t m , with b ≤ t 1 -1. Hence u (k) is the digit-sum of v (
Z + β . ⊓ ⊔ Lemma 2. If d β (1) = t 1 • • • t m is finite and if t m = t 1 and, for each 2 ≤ i ≤ m -1, t i = t 1 or t i = 0
then the formal addition is a system of finite type.

Proof. As in Lemma 1 we consider the word u (k) , with t j = t 1 for a fixed j, 2 ≤ j ≤ m. The difference with Lemma 1 is that now the suffix s = (t j -

1 + t 1 )(t 1 + t 2 )(t 2 + t 3 ) • • • (t m-1 + t m ) is not admissible. Since t j = t 1 , s can be the the digit-sum of (t 1 -1)t 1 • • • t m-1 and t 1 t 2 • • • t m , or of (t 1 -1)t 1 • • • (t ℓ-1 )(t ℓ + 1)t ℓ+1 • • • t m-1 and t 1 t 2 • • • t ℓ-1 (t ℓ -1)t ℓ+1 • • • t m if t ℓ = 0, for 2 ≤ ℓ ≤ m -1.
But none of the factors t 1 • • • t ℓ-1 (t ℓ + 1) is admissible for Z + β . By considering all the positions 2 ≤ j ≤ m in u (k) , we see that it is not possible to construct an infinite family of minimal forbidden words of type w (k) . ⊓ ⊔

A family of finite sets F

When β is a Pisot number, the set of beta-integers Z β is a Meyer set so there exists a finite set F such that Z β -Z β ⊂ Z β + F . Our goal is to construct sets F as small as possible for Z β .

Remark 1. Note that there exist several sets F with minimal cardinality. For example when

β = (1+ √ 5)/2 then Z β -Z β ⊂ Z β +F , with F = {0, β-1, -β+1}, or F = {0, β -2, -β + 2} or F = {0, β -1, -β + 2}.
We first define finite sets from which can be extracted the finite sets F . Lemma 3. Let β be a Pisot number of degree d, let I ⊂ R be an interval of length 1 and let U be the following set

U = x ∈ Z[β] | x ∈ I and ∀ 2 ≤ j ≤ d, |x (j) | < 3⌊β⌋ 1 -|β (j) | ,
where x (2) , . . . , x (d) are the algebraic conjugates of x. Then U is finite, and there exists a subset

F of U such that Z β -Z β ⊂ Z β + F .
Proof. As the maximal distance between two consecutive points of Z β is equal to 1, one can find a set F such that Z β -Z β ⊂ Z β + F in any interval I of length 1.

Fix an interval I of length 1 and F ⊂ I as small as possible such that

Z β -Z β ⊂ Z β + F . Let x ∈ F , then x ∈ (Z β -Z β ) -Z β
and can be written as

x = N i=0 (a i -b i )β i - N i=0 c i β i with |a i |, |b i |, |c i | ≤ ⌊β⌋. so ∀ 2 ≤ j ≤ d x (j) = N i=0 (a i -b i -c i )(β (j) ) i with |a i -b i -c i | ≤ 3⌊β⌋. As β is a Pisot number, for all j ≥ 2, |β (j) | < 1 and | N i=0 (β (j) ) i | < (1 - |β (j) |) -1 .
We obtain in this way the announced bound on the moduli of the conjugates of x and x ∈ U . So F is a subset of U .

As it contains only points of Z[β] with bounded modulus and whose all conjugates have bounded modulus, the set U is finite. Thus F a finite set. ⊓ ⊔ The choice of any interval I ⊂] -1, 1[ of length 1 allows us to reduce the cardinality of the set containing a set F . Lemma 4. Let β be a Pisot number of degree d, let I ⊂] -1, 1[ be an interval of length 1 and let U ′ be the following finite set

U ′ = x ∈ Z[β] | x ∈ I and ∀ 2 ≤ j ≤ d, |x (j) | < 2⌊β⌋ 1 -|β (j) | .
Then there exists a subset

F of U ′ such that Z β -Z β ⊂ Z β + F .
Proof. We choose here I ⊂] -1, 1[ of length 1 and improve the bound on the moduli of the conjugates of x given in Lemma 3 by considering the decomposition

Z β -Z β = (Z + β -Z + β ) ∪ (Z + β + Z + β ) ∪ -(Z + β + Z + β ).
More precisely let x ∈ F ⊂ I, then x ∈ (Z β -Z β ) -Z β and can be written as

x = N i=0 (a i -b i )β i - N i=0 c i β i .
We study |a i -b i -c i | according to the signs of a i , b i and c i . In

Z + β -Z + β , the coefficients satisfy |a i -b i | ≤ ⌊β⌋. Moreover when F ⊂]-1, 1[, Z + β +Z + β ⊂ Z + β +F and -Z + β + Z + β ⊂ Z - β + F , then we have |a i -c i | ≤ ⌊β⌋. So when F ⊂] -1, 1[, we get in all cases |a i -b i -c i | ≤ 2⌊β⌋. Thus ∀ 2 ≤ j ≤ d x (j) = N i=0 (a i -b i -c i )(β (j) ) i with |a i -b i -c i | ≤ 2⌊β⌋,
and the announced bound on the moduli of the conjugates of x holds true. ⊓ ⊔ Example 2. Let β be a quadratic Pisot unit, then the set U ′ contains 5 points.

A first reduction of the cardinality of the sets containing F

In order to reduce the size of the sets containing F we study the properties of the elements of F . 

f 0 = f, ∀ 0 ≤ i ≤ N f i+1 = f i -(b i -a i ) β and f N +1 = 0.
Proof. An element f in F can be written as With these notations we get for all 0 ≤ i ≤ N ,

f = N i=0 (b i -a i )β i with x = N i=0 a i β i ∈ Z β ,
f i = N -i j=0 (b j+i -a j+i )β j and f N +1 = 0. ⊓ ⊔ Let V = x ∈ Z[β] | |x| < 2⌊β⌋ β-1 , and ∀ 2 ≤ j ≤ d, |x (j) | < 2⌊β⌋ 1-|β (j) | .
It is a finite set, with the following property that for all f ∈ ((Z β -Z β ) -Z β ) ∩ U ′ , the elements f 0 , . . . , f N of any sequence associated with f according to Lemma 5 belong to V . Indeed, from Lemmas 4 and 5, when F ⊂ U ′ , for all i, |b i -a i | ≤ 2⌊β⌋. So for 0 ≤ i ≤ N and 2 ≤ j ≤ d, the conjugates f

(j) i of f i satisfy |f (j) i | ≤ 2⌊β⌋/(1 -|β (j) |). Moreover the smallest C such that |x| < C implies |(x -(b -a))/β| < C is C = 2⌊β⌋/(β -1).
Following [START_REF] Indlekofer | Number systems and fractal geometry[END_REF], we define a directed graph G whose set of vertices is the set V and having an edge x (b,a)

-→ y labelled by (b, a) if y = (x -(b -a))/β. Lemma 6. Let F ⊂ U ′ be a minimal set satisfying Z β -Z β ⊂ Z β + F . Let V 0 be the subset of V of vertices connected to 0 in G. Then F ⊂ V 0 .
From each vertex f of G which is in U ′ we look for a path from f to 0 in G which is successful in A Z β -Z β × A Z β . Note that in G words are processed least significant digit first, contrarily to the automata for Z β and Z β -Z β , where words are processed most significant digit first (i.e. from left to right). So we first define an automaton G f having as underlying transition graph G with reversed edges, 0 as initial state and f as terminal state. We then compute the intersection automaton

I f = (A Z β -Z β × A Z β ) ∩ G f .
The following result then holds true. Proposition 5. An element f of U ′ is in V 0 if and only if the language recognized by I f is nonempty. 

Minimization of the cardinality of the set F

The finite sets U ′ ∩ V 0 obtained by the previous construction are not minimal. An element y ∈ Z β -Z β can be close to two different points of Z β , for example such that x < y < x ′ with x, x ′ ∈ Z β and y

= x+ f = x ′ + f ′ with f, f ′ ∈ U ′ ∩V 0 .
Theorem 1. A minimal set F ⊂ U ′ ∩ V 0 can be computed by an algorithm exponential in time and space. It consists in building a transducer which rewrites a representation of an element of Z β -Z β into its representation in Z β + F . Proof. To find a minimal set F ⊂ U ′ ∩ V 0 we proceed in two steps.

First for each f ∈ U ′ ∩ V 0 , we define a deterministic automaton A f that recognizes the set of admissible words for Z β -Z β that appear as the first component of the labels of the successful paths in I f . The automaton A f is obtained by erasing the second component of the labels (that belongs to Z β ) of the edges of I f and determinizing the automaton defined in this way. The determinization of automata is based on the so-called subset construction (see [START_REF] Eilenberg | Automata, Languages and Machines[END_REF]), which is exponential in space, and the automaton A f has O(2 QI f ) states.

Next we look amongst all subsets of U ′ ∩ V 0 for the smallest set F such that the language recognized by ∪ f ∈F A f contains an admissible representation of each element of Z β -Z β . To test the inclusion, we compute the complement C F of ∪ f ∈F A f . Then the language recognized by ∪ f ∈F A f contains an admissible representation of each element of Z β -Z β if and only if the intersection of C F and A Z β -Z β is empty. Note that the complexity of the search amongst all subsets of U ′ ∩ V 0 is exponential in time.

From the set F obtained above, we define a transducer that provides, given y = N i=0 b i β i ∈ Z β -Z β where b N . . . b 0 is admissible for Z β -Z β , a decomposition (a N . . . a 0 , f ) where a N . . . a 0 is admissible for Z β , f ∈ F and y = N i=0 a i β i + f . Consider the intersection automaton I F = (A Z β -Z β × A Z β ) ∩ G F (F is the set of terminal states of G F ). For any element y admissible for Z β -Z β there exists f ∈ F such that y is the first component of the label of a successful path w ending in (s, f ) where s is any state of (A Z β -Z β )×A Z β (by construction all states are terminal). Consequently we get y = x + f where x is the second component of the label of the same path w and so is admissible for Z β .

More generally the first component of the labels of the edges in I F can be interpreted as the inputs admissible for Z β -Z β of the transducer, the second component as the corresponding outputs admissible for Z β . The associated element of F is given by the first component of the label of the state where the path ends.

⊓ ⊔

To conclude, the method used here for determining minimal sets F could be generalized to more general Meyer sets related with integral matrices having β as spectral radius.

Example 1 . 5 2

 15 In the case where β = 1+ √ , d β (1) = 11 and d * β (1) = (10) ω . We give below the minimal automata A Z + β , A Zβ , A Z + β +Z + β , and A Z + β -Z + β . Initial states are indicated by an incoming arrow, and every state is terminal.

Corollary 1 .

 1 If β < 2 and d β (1) is finite then the formal addition Z + β + Z + β defines a system of finite type.

Lemma 5 .

 5 Let β be a Pisot number and let F ⊂ (Z β -Z β ) -Z β . If f ∈ F there exist a nonnegative integer N , and two finite words b N • • • b 0 and a N • • • a 0 respectively admissible for Z β -Z β and Z β such that

  a N • • • a 0 being admissible for Z β , and y = N i=0 b i β i ∈ Z β -Z β , b N • • • b 0 being admissible for Z β -Z β . Note that leading 0's are allowed.

Remark 2 .

 2 The number of states of the automaton I f constructed above is O K 3 × |V | where K is the number of states of A Z + β and |V | is the number of vertices of G.