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Une famille d’algorithmes robustes pour
l’intégration de modèles de plasticité
cristalline

Andrey Musienko, Nikolay Osipov, Georges Cailletaud

Centre des Materiaux/Mines Paris, Paristech, CNRS UMR 7633,
B.P. 87, 91003 Evry Cedex, France

RÉSUMÉ. Cet article discute les possibilités d’implémentation numérique des modèles de plas-
ticité cristalline dans un code de calcul par éléments finis. Comme il s’agit d’approches à po-
tentiels multiples, il faut faire face au problème de non-unicité de la solution, puisque plusieurs
ensembles de multiplicateurs plastiques (ou pseudo-multiplicateurs en viscoplasticité) sont à
même de fournir un incrément de déformation inélastique donné. Plusieurs approches sont tes-
tées pour ce qui concerne l’intégration locale et le calcul de la matrice tangente, en petites et
en grandes transformations.

ABSTRACT. This paper deals with the numerical implementation of crystal plasticity models into
a finite element code. This type of approach involves several potentials, one has then to deal
with the problem of non-unicity of the solution, since several sets of plastic multipliers (pseudo-
multipliers in viscoplasticity) are able to produce a given inelastic strain rate. Several ap-
proaches are tested, both for stress update algorithm, and for the tangent matrix computation,
in small and large strain formulation.

MOTS-CLÉS : Algorithme implicite, intégration de loi de comportement, grandes déformations,
plasticité cristalline

KEYWORDS: Implicit algorithm, integration of constitutive equations, large transformations,
crystal plasticity
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1. Introduction

The framework of crystal plasticity modeling becomes more and more classical,
but there is still a need for more robust and efficient numerical implementation of
the material models, due to the specific aspects related to the multiple potentials. The
non-unicity of the set of plastic multipliers is well documented in the literature. The
problem is related to the fact that crystals often present more than five slip mecha-
nisms, and that several sets of mechanisms can be candidate to accommodate a given
inelastic strain rate. A classical solution is provided by viscoplastic models without
any threshold (Asaro, 1983, Anand et al., 1994), for which all the slip systems are
always active. Time-independent behavior can be recovered by using very high values
of the viscosity exponent. Nevertheless, this introduces an artificial regularization near
the corners of the yield surface, which can locally influence the direction of the inelas-
tic flow. On the other hand, it must be pointed out that the occurrence of the problem is
not related only to the plastic or viscoplastic framework, but to the presence of an elas-
tic region in the stress space. In the present paper, we show a unified view toward this
problem, dealing with the problem of unicity for plastic or viscoplastic-with-threshold
models, in small or large deformations. In an extended version of the paper, this nu-
merical procedure will be compared to two other classical solutions. The first type of
solution comes from the physical analysis of the deformation process, the second one
is an algorithmic solution. In the first type of approach, the references are the papers
by Bishop and Hill (Bishop et al., 1951), and Chin and Mammel (Chin et al., 1969),
who propose a maximization of the plastic work. On the other hand, a series of algo-
rithmic solutions are proposed (Simo et al., 1997, Schröder et al., 1997, Cuitino et al.,
1992, Anand et al., 1996, McGinty et al., 2006). A comparative study is provided in
(Busso et al., 2005).

A more recent discussion is now open around the dilemma : explicit or implicit
integration. Relative performance of implicit versus explicit solvers is tested in (Hare-
wood et al., n.d.). A better computation time is found for implicit solvers, with a factor
1.46 to 5 if compared to explicit ones. Generally speaking, explicit integration is pro-
moted for large scale parallel problems with multiple nonlinear interfaces. An other
recent study (Kuchnicki et al., 2006), where the authors have implemented the expli-
cit analogue of the classical implicit method of (Cuitino et al., 1992) concludes that
implicit procedures are best suited for quasi-static computations allowing larger time
steps. Between the two, one can imagine to perform an explicit Runge-Kutta local in-
tegration, together with the use of a consistent tangent matrix (Raphanel et al., 2004).
Quadratic convergence is reported by the authors for several specific crystallographic
orientations.

One challenge of this work is to review the full implicit solution, in order to clarify
(and extend) the practical limits of theoretically expected quadratic convergence.Also,
the most simple form of tangent matrix was looked for, in the case of finite strains.
Another attempt was made to compare the full implicit and hybrid explicit-implicit
solution, to propose the best practical strategy.
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2. Single crystal model

The model used in this paper was introduced in (Méric et al., 1991), in the small
deformation framework. It was extensively used for the computations of polycrystal-
line aggregates (Barbe et al., 2001, Diard et al., 2005). Thus only the list of the main
equations for the finite strain framework is recalled below. It considers the classical re-
laxed configuration introduced by Mandel (Mandel, 1973). For the sake of brevity, we
do not reproduce here the equations corresponding to kinematic hardening. Classical
notations are used.
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3. Integration methods

Two integration methods have been used for this model : an explicit Runge–
Kutta method, and an implicit mid-point method resolved by a Newton–Raphson local
convergence loop. For both methods, the following set of variables of integration is
defined, taking into account the number of slip systems S :

V int =
{
E
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e
,(vs
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}

[6]

where the terms vs are the cumulated values of γs. For Runge–Kutta method, one just
has to prescribe the rate of each variable. In the implicit case, residuals have to be
defined.

For each scheme two types of equations are considered :

– the tensorial equations describing elasto-plastic decomposition. The shape of
these equations depends on the chosen framework : for small deformations, (eq. 7)
simply results from the elastic-plastic additive partition of the total strain increment ;
for large deformations, (eq. 8) comes from a first order development of the trial gra-
dient F
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– the N scalar equations (N being the number of active slip systems) defining in-
elastic flow, which shape changes according to the model (rate–independent (eq.9) or
rate–dependent (eq. 10)). For the implicit case one can obtain, for s = 1..N :
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where f s – criteria of plastic flow and φ( f s) – plastic potential derivative. It has to be
checked that all the Δvs are null for systems with a negative value of f s, and strictly
positive for systems presenting a viscoplastic ( f s > 0) or a plastic ( f s = 0) flow.

In the theta–method, the values of all associated forces and parameters are calculated
from the internal variables evaluated at an intermediate time t + θΔt, which allows
us to introduce the following reduced form of the equations (eq.12), and a Newton–
Raphson loop (eq.13) which provides the new estimation of ΔV int (eq.14) :
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where the θ subscript indicates calculation of ΔV int at time t +θΔt. In fact, the method
provides the most robust integration schemes for θ = 1. After convergence, the top left

subcomponent of the inverted Jacobian matrix
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evaluate the partial derivatives of Δσ
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tangent matrix consistent with the integration algorithm is (Simo et al., 1997) :
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An alternative to the full implicit algorithm can be considered by using and hybrid
integration technique. In such a case, the local integration is performed by a Runge–
Kutta method, but a tangent matrix is then computed. The construction of this matrix
is allowed by a "one–shot" resolution of the implicit system built with the residuals
attached to the theta–method, which is initialized by means of the solution of the
Runge–Kutta integration. In this case, the tangent matrix is not exactly consistent with
the integration scheme, but its quality is still quite satisfactory and usually provides
quadratic convergence.
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Let us mention that a simplified form of tangent matrix has also be successfully
tested in our large deformation computations :
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4. Discussion and concluding remarks

It is worth noting that the proposed approach does not need any specific technique
for the choice of the slip systems. This produces faster convergences, if compared to
solutions studied by other authors ((Anand et al., 1996) with a SVD decomposition of
the matrix ; (McGinty et al., 2006) with an iterative scheme that introduces the active
slip systems one-by-one). The method is more inspired from (Simo et al., 1997) who
proposes just a control of the active slip systems at each iteration. All the techniques
were compared together in a previous paper, and were found to give similar results,
even for non proportional loading paths (Busso et al., 2005). It has to be noted that the
literature shows very few numerical tests with arbitrary crystal orientations : authors
use to try either single slip case, or perfect multiple slip. In order to investigate the way
the method performs in a polycrystal, a series of randomly chosen crystal orientations
have been chosen, in a unique cube element. A simple interaction matrix [h] is chosen,
with hi j = h2 +(1− h2)δi j. Different values are tested for h2 (resp. 0, 0.5, 1, 1.5). A
tension from 0 to 1% is applied to the cube. The global convergence is illustrated in
Fig.4. It is found that the convergence is quadratic, as shown in Fig.4a for most of
the cases (small dots in the standard triangle, Fig.4c). Nevertheless, the convergence
may become linear only for orientations near multiple slip (large dots in the standard
triangle, and Fig.4b), since, in this case, the number of active slip systems may vary
during the global equilibrium iterations.
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Figure 1. Examples of quadratic (a) and linear (b) convergence according to (c) the
position in the standard triangle – inverse pole figure (tension direction) with 40 ran-
dom orientations. Bold points – linear global convergence, small dots – quadratic
convergence
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