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Abstract

We consider a model for decentralized collaborative net-
works that is based on stable matching theory. This model
is applied to systems with a global ranking utility function,
which admits a unique stable configuration. We study the
speed of convergence and analyze the stratification proper-
ties of the stable configuration, both when all collaborations
are possible and for random possible collaborations.

As a practical example, we consider the BitTorrent Tit-
for-Tat policy. For this system, our model provides an inter-
esting insight into peer download rates and a good under-
standing of upload settings strategy.

1 Introduction

Motivation Collaboration is a new paradigm for managing
QoS in large scale systems. A system is said to be collabo-
rative when participating peers offer resources to each other
so that they reach their goal. Apart from well-known con-
tent distribution applications [3, 4], collaborative systems
appear in numerous applications such as distributed com-
puting, online gaming, or decentralized backup. The com-
mon property of such systems is that participating peers ex-
change resources. The underlying mechanism provided by
protocols for such applications consists in selecting which
peers to collaborate with in order to maximize one’s peer
benefit with regards to its personal interest. This mechanism
generally uses a utility function taking local information as
input. One can ask if this approach can provide desirable
properties for the resulting collaboration graph, like scala-
bility and reliability.

For instance, the well-known protocol BitTorrent [3] im-
plements a Tit-for-Tat (TFT) exchange policy. More pre-
cisely, each node knows a subset of all other nodes of the
system and collaborates with the best ones from its point
of view: it uploads to the contacts it has most downloaded
from in the last 10 seconds. In other words, the utility of
peer i for node j is equal to the quantity of data peer j
has downloaded from i (in last 10”). The main interest in
using the TFT policy is incentive to cooperate. The na-
ture of the utility function then leads to a clustering pro-
cess which gather peers with similar upload performances
together, called stratification.

Recently, much research has been devoted to the study of
this phenomenon. So far, however, while it has been mea-
sured and observed by simulations, it has not been formally
proved. Understanding stratification is a first step towards
a better comprehension of the impact of the utility function
on system behavior. A theoretical framework to analyze and
compare different utility functions is needed, since choos-
ing a utility function that best suits a given application is
quite difficult. And it is not clear whether the utility func-
tions implemented lead to desirable properties.

Contribution In a previous work [5], we introduced a
generic framework that allows an instantiation of (known
and novel) utility functions that model collaboration. In the
present paper, we first apply this framework to model sys-
tems with a global ranking utility function, where each peer
has an intrinsic value. BitTorrent TFT policy is a canonical
example of such systems: the ranking function is the band-
width offered. These systems possess a unique stable con-
figuration. We simulate the speed of convergence with and
without churn (arrivals ans departures). The good conver-
gence properties observed validate the interest of studying



the stable configuration properties.
Second, we consider a toy model of fully connected net-

works where every peer can collaborate with every other
peers, and we study the stratification in the stable configura-
tion. If every peer tries to collaborate with the same number
of peers, we observe disjoint clustering. But with a vari-
able number of collaborations per peer, clustering turns into
strong stratification.

Third, we describe stratification in random graphs. For
Erdös-Rényi graphs, the distribution of collaborating peers
has a fluid limit. This limiting distribution shows that strat-
ification is a scalable result.

Lastly, we propose a practical application of our results
to the BitTorrent TFT policy. With the assumption that con-
tent availability is not a bottleneck in a BitTorrent swarm,
our model leads to an interesting characterization of the
download rate a peer can expect as a function of its up-
load rate. This description leads to a better understanding
of download/upload correlations, and is a first step to ana-
lyze possible strategies to optimize the download for a given
upload rate.

Roadmap In Section 2 we define our model and nota-
tions. Section 3 gives the related work, with an emphasis
on the stable matching framework on which this paper is
based. Section 4 presents a study on convergence issues.
We describe stratification in a complete neighborhood graph
in Section 5 and in random graphs in Section 6. Section 7
discusses the application of our results to BitTorrent and
Section 8 concludes the paper.

2 Model and notations

Our model is based on a dynamical version of the stable
b-matching problem [2] where each peer i has a global mark
S(i). More precisely we consider networks where there ex-
ists a total order on peers (based on bandwidth capacities
for instance).

Each peer i ranks a subset of participating peers (or all
peers) with respect to (w.r.t.) global marks. We denote by
preference list of peer i, the resulting ordered subset. If
peer i does not belong to peer j’s preference list, i is said
to be unacceptable for j. We thus introduce an acceptance
graph to represent compatibilities. An edge {i, j} belongs
to the acceptance graph if, and only if (iff) i belongs to j’s
preference list and j belongs to i’s preference list.

In our model, as in the b-matching problem, each peer
tries to improve its own payoff by collaborating (being
matched) with its best neighbors w.r.t. marks and the ac-
ceptance graph. We denote by configuration or matching
the subgraph of the acceptance graph that represents the ef-
fective collaboration between peers at a given instant. The
degree of a peer i in a configuration is bounded by b(i), its
collaboration quota.

A blocking pair for a given configuration is a set of two
peers unmatched together wishing to be matched together
(even if it means dropping one of their current collabora-
tions). A configuration without blocking pair is said to be
stable. In a stable configuration, a single peer cannot im-
prove its situation: it is a Nash equilibrium.

We introduce the concept of initiative to model the pro-
cess by which a peer may change its mates. Given a con-
figuration C, we say that peer i takes the initiative when
it proposes to other peers to be its new mate. Basically,
i may propose partnership to any acceptable peer. Never-
theless, only blocking pairs of C represent interesting new
partnerships. If i can find such a blocking mate, the initia-
tive is called active because it succeeds in modifying the
configuration (both peers will change their set of mates). If
i has already b(i) established collaborations in C, it drops
the worst (w.r.t. marks) to establish a new one.

To find a blocking mate, i contacts peers from its accep-
tance list and selects the best available (if any). We can now
complete our model with initiatives: starting from any ini-
tial configuration, an instance of our model evolves because
of initiatives taken by peers. For more information on ini-
tiative strategies, the reader may refer to [5].

3 Related work

Stable matching Tan [11] has shown that existence and
uniqueness of stable solutions were related to preference cy-
cles induced by the utility function used to compute prefer-
ence lists. A preference cycle of length k is a set i1, . . . , ik
of k distinct peers such that each peer of the cycle prefers its
successor to its predecessor. As proved by Tan, a stable con-
figuration exists if there is no odd preference cycle of length
greater than 1. He also proved that if no even cycle of length
greater than 2 exists, then the stable configuration is unique.
If peers have an intrinsic value, no strict preferences cycle
can occur , so a global-ranking matching problem admits
one unique stable solution.

Models of BitTorrent-like systems In [8], a model of
BitTorrent is derived, where the authors survey the evolu-
tion of seed and leecher numbers, and prove the existence
of an equilibrium state where the actual upload rate equals
the maximal upload rate. They model average peer behav-
ior and are not concerned with stratification or share ratio
issues. It is shown in [7], using a simple model of two pos-
sible bandwidths, that data replication is more efficient with
heterogeneous link capacities.

4 Convergence study

Previous work The stable solution of a global ranking
stable b-matching problem can be easily computed know-
ing the global ranking S, b and the acceptance graph. The



process is given by Algorithm 1: each peer i starts with
b(i) available connections. First, the best peer i1 picks
the best b(i1) peers from its acceptance list. As i1 is the
best, the chosen peers gladly accept (recall the acceptance
graph is symmetric) and the resulting collaborations are sta-
ble (no blocking pair can unmatch them). Note that if there
is not enough acceptable peers, i1 may not satisfy all its
connections. Peers chosen by i1 have one less connection
available. Then second best peer i2 does the same, and so
on. . . By immediate recurrence, all connections made are
stable. When the process reaches the last peer, the con-
nections are the stable configuration for the problem. As
it was said before, all connections are not necessarily sat-
isfied. For instance, if the last peer still has available con-
nections when its turn comes, his connections will not be
fetched, as all peers above him have by construction spent
all their connections. This is, of course, a centralized algo-
rithm, but we shall see below that decentralized algorithms
work as well.

Algorithm 1: Stable configuration in global ranking
Data: Acceptance graph G with n peers, global
ranking S(i), maximal number of connections b(i)
Result: The unique stable configuration of the
b-matching problem
Let a be a vector initialized with b
for each peer i sorted in increasing S(i) (best first) do

for each peer j such that S(j) > S(i), sorted in
increasing S(j) do

if (i, j) ∈ G and a(i) > 0 and a(j) > 0 then
connect(i, j)
a(i) = a(i)− 1
a(j) = a(j)− 1

We have shown in [5], that starting from any initial con-
figuration, an instance of our model evolves towards the
unique stable configuration. More precisely, in [5], we
proved that in static conditions (no join or departure, con-
stant utility function), the system eventually converges to-
wards the stable state. But to prove this stable state is worth
studying, we have to show convergence is fast in practice
(Algorithm 1 is optimal in number of initiatives but difficult
to implement in a large scale system) and can sustain a cer-
tain amount of churn. As a complete formal proof of this is
beyond the scope of this paper, we use simulations.

Experimental setup and definitions In our simula-
tions, peers were labeled from 1 to n (the number of peers).
We choose the canonical ranking S(i) = i, 1 being the best
peer and n the worst (if i < j, peer i is better than peer j).
We use Erdös-Renyi loopless symmetric graphs G(n, p) as
acceptance graphs, where p is the probability that a given
edge exists (the expected degree is d = p(n − 1)). Only

1-matching was considered.

For measuring the difference between two configurations
C1 and C2 we use the distance

δ(C1, C2) = Σn
i=1‖C1(i)− C2(i)‖.

1
n(n + 1)

,

where C(i) denotes the mate of peer i in configuration C
(by convention, C(i) = n + 1 if i is unmated in C).

δ is normalized: the distance between a complete match-
ing and the empty configuration (denoted C∅) is equal to
1. The disorder denotes the distance between the current
configuration and the stable configuration.

At each step of the process we simulate, a peer is chosen
at random and performs an initiative (the initiative can be
active or not). To compare simulations with different num-
ber n of peers, we call time unit a sequence of n successive
initiatives (in a time unit, the expected number of initiatives
per peer is one).

Simulations results A first set of simulations is made
to prove a rapid convergence when the acceptance graph is
static. In all simulations, the disorder quickly decreases,
and the stable configuration is reached in less than nd ini-
tiatives (that is d base unit). Figure 1(a) shows convergence
starting from C∅ for three typical parameters: (n, d) =
(100, 50), (n, d) = (1000, 10), (n, d) = (1000, 50).

Then we investigate the impact of an atomic alteration
of the system. Starting from the stable configuration, we re-
move a peer from the system and observe the convergence
towards the new stable configuration. Our simulations show
big variances in convergence patterns. However, conver-
gence always takes less than d time units and disorder is
always small. Due to a domino effect, removing a good
peer generally induces more disorder than removing a bad
peer. Figure 1(b) shows four representative trajectories for
(n, d) = (1000, 10).

Finally, we investigate continuous churn. A peer can be
removed or introduced in the system anytime, according to
a churn rate parameter. Simulations show that as the churn
rate increases, the system becomes unable to reach the in-
stant stable configuration. However, the disorder is kept un-
der control. That means the current configuration is never
far from the instant stable configuration. The average dis-
order is roughly proportional to the churn rate (Figure 1(c)
indicates typical patterns for (n, d) = (1000, 10), starting
from C∅).

All these simulations lead to the same idea: the stable
configuration acts like a strong attractor in the space of pos-
sible configurations when collaborations are established us-
ing intrinsic values for judging peers. Studying the proper-
ties of stable configurations is the next step.
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Figure 1. Evolution of disorder for three basic scenarios

5 Stratification on complete acceptance
graph

We first study the stable configuration in the special case
where everybody is acceptable for everybody. Hence the ac-
ceptance graph is complete. This is a valid, but not scalable,
assumption for small systems. Complete acceptance graph
is a toy model for highlighting the stratification effect.

5.1 Clustering in constant b0-matching

b0-matching is an instance of the b-matching problem
where everyone tries to connect to at most b0 peers (b0 is a
constant). Since the acceptance graph is complete, the sta-
ble configuration is very simple. It consists in a sequence
of complete subgraphs with b0 + 1 elements starting from
the best peer (the remainder, if any, is a truncated complete
subgraph). For example, Figure 2(a) shows this clustering
for the 2-matching problem on a complete graph.

As it has already been pointed out [1], full clustering
in file sharing networks induces poor performances. Many
designers try to produce overlay graphs with small world
properties: almost fully connected, high clustering coeffi-
cient, low mean distance, and navigable such that shortest
paths may be greedily found. But in file sharing networks,
having a compliant overlay with nice properties (connectiv-
ity, distances, resilience) is useless if the effective collabora-
tions graph has none of the desired properties. In our exam-
ple, although the knowledge graph is a complete graph, col-
laboration established through global ranking scatters the
graph in clusters. Hence content is sealed inside clusters,
and singularities are bound to occur.

5.2 Stratification in variable b-matching

b0-matching is not the most common case in practice.
The clustering from Figure 2(a) may be a consequence of

the specific parameters used. Indeed, adding one extra con-
nection suffices to turn a set of complete subgraphs of size
b0 + 1 into one unique connected component (see Figure
2(b) – settings are same than for Figure 2(a) except that an
extra connexion has been granted to peer 1).

In fact, both Figures 2(a) and 2(b) are not typical. If
we use a random quota distribution, we generally observe
many large connected components. More precisely, if we
consider that b is distributed according to a rounded normal
distribution N (b̄, σ2) (mean b̄, variance σ, all samples are
rounded to the nearest positive integer), we observe a sur-
prising phase transition. As soon σ is big enough to produce
heterogeneous samples (σ ≈ 0.15), the average connected
component size explodes, then stays almost constant. The
cluster typical size after the transition seems to grow facto-
rially with b̄ (computed values appear in Table 1). Figure 3
shows what happens for b̄ = 6.

Factorial cluster size growth grants the existence of a gi-
ant connected component when b̄ is large enough and n re-
mains bounded. This solves the clustering issue.

Nevertheless, distances in the obtained collaboration
graph are another question. A good estimate is given by
Mean Max Offset (MMO) which described the mean rank-
ing offset between one peer and its further neighbor in the
collaboration graph. The larger the MMO, the fewer hops
needed to link two peers with very different intrinsic value
in the same connected component. For instance, in Figure
2(a), the MMO is 5

3 since the Max Offset is 1 for peers
numbered 3k + 2, and 2 for peers numbered 3k or 3k + 1.
Remark that in b0-matching, MMO is easy to compute (it
is enough to compute it on the b0 + 1 complete graph). It
converges to:

MMO(b0) =
1

b0 + 1
(b0 + . . . +

⌈
b0

2

⌉
+ . . . + b0)

−−−−−→
b0→+∞

3/4b0

When b is variable, MMO becomes less obvious to com-
pute. However, simulations show that MMO has the same



Table 1. Clustering and stratification properties in a complete knowledge graph.
constant b0-matching normal N (b̄, σ2)-matching with σ = 0.2

b0 or b̄ 2 3 4 5 6 7 2 3 4 5 6 7
Average Cluster Size 3 4 5 6 7 8 6 20 78 350 1800 11000

Max Mean Offset (MMO) 1.67 2.5 3.2 4 4.71 5.5 1.33 2.10 2.52 3.21 3.65 4.31

1 2 3 4 5 6 3k + 1 3k + 2 3k + 3

(a) b0 = 2.

1 2 3 4 5 6 7 8

(b) b0 = 2 plus one extra connection for peer 1.

Figure 2. Stable collaboration graph for total knowledge (constant and altered b).

phase transition as the cluster size. But as cluster size ex-
plodes, MMO decreases, has shown by Figure 3 (for b̄ = 6)
and Table 1.
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Figure 3. Mean cluster size (dotted line) and
MMO (plain line) as a function of σ.

The conclusion of this first approach on complete graphs
is that whereas the clustering problem can be handled, peers
only collaborate with peers very close to them, which can
make content diffusion ineffective. This is stratification.

6 Stratification on random acceptance
graphs

We now consider the properties of the unique stable
configuration in Erdös-Rényi acceptance graphs G(n, p) (cf
Section 4). We start by working on a 1-matching model.
This allows to state an independence assumption and re-
lated mathematical results. We then extend the equations to
the b0-matching case.

6.1 Independent 1-matching model

Let C be the unique locally optimal stable configuration.
C(i) denotes the mate of peer i in C. Dn,p(i, j) is the prob-
ability that peer i is matched with peer j over all possible

G(n, p) graphs. If there is no ambiguity, p will be omitted.
Regarding n, as shown by Lemma 1, it can also be omitted,
leading to the notation D(i, j).
Lemma 1 For all integers i, j, n such that 1 ≤ i, j ≤ n
and for all p ∈ [0, 1],Dn,p(i, j) = Dmax(i,j),p(i, j).
Intuitively, the probability that i and j are mated does not
depend on the existence of peers of worst value.
Proof: Let G be an Erdös-Rényi G(n, p) graph. Wlog, sup-
pose i < j (i = j is trivial because Dn,p(i, i) = 0). Accord-
ing to Algorithm 1 (with S equal to the identity function),
the decision to mate i and j only depends on the subgraph
Gj of G induced by the first j peers. As G is an Erdös-
Rényi graph, edges are independent, and Gj is a G(j, p)
graph. That concludes the proof. �

An exact formula
D(i, .) is the distribution of C(i) (as peers may be unmated,
it is not necessary a probability). Obviously, D(i, j) =
D(j, i) and D(i, i) = 0. One can observe that i is mated
with j iff: {i, j} is an edge of the acceptance graph, i is
not mated with a peer better than j and j is not mated with
a peer better than i. This leads to the following exact for-
mula:

D(i, j)=pP (C(i) ≮ j)× P (C(j) ≮ i|C(i) ≮ j)
=p
(
1−

∑j−1
k=1 D(i, k)

)
P (C(j) ≮ i|C(i) ≮ j)

(1)
Using equation (1), we now can prove that for p > 0,

D(i, .) is asymptotically a probability.

Lemma 2 ∀p ∈]0, 1],∀i ∈ N∗,
∑∞

k=1 D(i, k) = 1.
Intuitively, each peer eventually finds a stable mate when
the network grows.
Proof: We first show that P (C(j) ≮ i|C(i) ≮ j) does not
go to 0 as j increases. For all j > i, conditioning on Ei :=
{C(1), ..., C(i− 1)},

P(C(j)≮ i|C(i)≮ j|Ei) =

empty conditioning if i∈Ei

0 if j ∈ Ei(and i /∈ Ei)
x≥p if j /∈ Ei and i /∈ Ei.

The last inequality holds because if j /∈ Ei and i /∈ Ei,
then knowing that C(i) ≮ j, i and j are linked if and only if



there exists an edge between both. Since C(j) = i implies
C(j) ≮ i, the inequality is satisfied.

Next, we show that P(j ∈ Ei|i /∈ Ei) does not tend to
1 when j tends to infinity: for some k < i, the function
j → P(C(k) = j|i /∈ Ei) gives probabilities of disjoint
events so that

∑∞
j=1 P(j ∈ Ei|i /∈ Ei) ≤ i− 1; the general

term thus tends to 0 and certainly not to 1.
We can now prove that D(i, .) is a probability: for any

given i, D(i, j) are the probabilities of disjoint events.
Thus D(i, j) −−−→

j→∞
0. From formula (1) we deduce∑j−1

k=1 D(i, k) −−−→
j→∞

1. �

Approximation: independent 1-matching model
Hereinafter we shall adopt the following assumption:
Assumption 1 These two events are independent:

• peer i is not with a peer better than j,

• peer j is not with a peer better than i,

Assumption 1 is reasonable when p is small (so the prob-
ability that i and j have a common neighbor is very low).
Then (1) can be approximated by:

D(i, j) = p

(
1−

j−1∑
k=1

D(i, k)

)(
1−

i−1∑
k=1

D(j, k)

)
(2)

This formula can easily be computed by dynamic pro-
gramming, as shown in Algorithm 2 (see Algorithm 3 for
the b0-matching case).

Algorithm 2: Independent 1-matching probability
Data: Erdös-Rényi parameters n, p
Result: D(i, j) the probability user i chooses user j

D ← zeros(n, n)
for i = 1 to n do

for j = i + 1 to n do
Compute D(i, j) using (2)
D(j, i)← D(i, j)

Formula (2) is not exact, as we can verify for the best
three peers: exact computation gives Dexact(1, 2) = p (prob-
ability that {1, 2} is acceptable), Dexact(1, 3) = p(1 − p)
({1, 3} is acceptable, {1, 2} is not), and Dexact(2, 3) =
p(1 − p)2 ({2, 3} is acceptable, {1, 2} and {1, 3} are not).
Algorithm 2 leads to the same values except D(2, 3) =
Dexact(2, 3) + p3(1 − p). The approximation (2) is not ac-
curate in this example, but it is quite close to (1) for small
values of p. Since an exact computation becomes more and
more complicated as the number of peers increases, we need
simulations to validate Assumption 1 in more general situ-
ations (see Section 6.4).

Correctness of Formula (2) We assume from now on
that D is defined by equation (2) instead of (1), so D is now
an approximation of probability events. Theorem 1 verifies
that Lemma 2 still holds with the approximate formula.

Theorem 1 ∀p ∈]0, 1],∀i ∈ N∗,
∑∞

k=1 D(i, k) = 1.

Proof of Theorem 1 D(i, j) no longer has the interpre-
tation of a probability of an event. Using formula (2) we
prove first that Si(j) :=

∑j
k=1 D(i, k) ≤ 1, and then that

Si(j) −−−→
j→∞

1.

First part is proved by recurrence: S1(1) = p ∈ [0, 1].
Suppose the bound is verified for i + j ≤ K. For i, j such
that i + j = K + 1, Si(j) = Si(j − 1) + D(i, j) = Si(j −
1) + (1− Si(j − 1))x, with x = p(1− Sj(i− 1)) ∈ [0, 1],
entailing that Si(j) ∈ [0, 1].

Then we show the limit is 1. If not, there exists some
ε > 0, such that

∑∞
k=1 D(i, k) < 1− ε. If we put this back

in formula (2), then:

D(i, j) ≥ pε

(
1−

i−1∑
k=1

D(k, j)

)
(3)

We know that
∑∞

k=1 D(i, k) has a finite limit, thus
D(i, j) → 0 when j → ∞. From equation (3) it follows
that

∑i−1
k=1 D(k, j) → 1. A particular consequence is that

for all j large enough:
∑i−1

k=1 D(k, j) ≥ 1
2 , which is im-

possible since the i − 1 sequences (D(k, j))1≤k<i;j=1..∞
converge towards 0.

6.2 Fluid limit

We present now some mathematical consequences of as-
sumption 1. When the number of peers is large, the model
scales and the normalized histogram of neighbors tends to
a continuous distribution and yields an equation satisfied in
this limit. Indeed the empirical distribution also converges,
which means that every instance of an Erdös-Rényi graph
is very likely to behave like the typical case of the above
assumption, as shown by the simulations below.

We are able to prove some parts of this program but must
leave the remainder as conjectures for further work. The
results bring considerable insight.

From a practical point of view, the main result is that
there exists a scaled version of D that converges towards a
distribution as n increases.

• If p is fixed, we have a Dirac limit,

• if d = p(n − 1) is fixed, the limit is a continuous dis-
tribution,

• the shape of D(i, j) is present in almost any given n-
peers system.



First, we define the scaled version of D: it consists in
representing a peer i by a normalized ranking 0 ≤ αn < 1.
The scaled version, denoted D, is defined by Dn,p(α, β) =
nDn,p(1 + bnαc, 1 + bnβc). Dn,p is a simple function on
[0, 1[2. Its range is the set of (Dn,p(i, j))1≤i,j≤n. The factor
n in its definition allows to express D(i, j) as an integral of

D: Dn,p(i, j) =
∫ j

n
j−1

n

Dn,p( i−1
n , x)dx.

With this scaling notations, a first limit (Dirac limit) is
given by Theorem 2.
Theorem 2

∀p ∈]0, 1],∀α ∈ [0, 1[,Dn,p(α, .) ∗−−−−→
n→∞

δα.

Theorem 2 expresses that when n increases and p is
fixed, the scaled version of D has a Dirac limit: the nor-
malized gap between a peer of a given normalized rank and
its mate becomes arbitrarily small if n is big enough.

Conjecture 1 gives the other limit (fluid limit):
Conjecture 1 (Fluid limit) Let d ∈ R+ be an average de-
gree and 0 ≤ α < 1 be a rank. We define pn := d

n−1 .
There exists µα,d ∈ P([0, 1]) that is absolutely continuous
with respect to Lebesgue measure such that:

Dn,pn
(α, .) −−−−→

n→∞
µα,d.

Conjecture 1 states that if d is fixed, the normalized gap
distribution weakly converges towards a continuous distri-
bution.

Sketch of proof of Theorem 2: Existence of a weakly
convergent subsequence is a standard tightness property on
[0, 1]: all the mass stays in a compact set and Dn,p(α, .)
has an increasing mass. For uniqueness, we admit that
Di+k,j+k is decreasing wrt k. Then, for α < β, we have

Dn,p(α, β) = nDn,p(1 + bnαc, 1 + bnβc)
≤ nDn,p(1, 1 + bnβc − bnαc)
≤ np(1− p)bnβc−bnαc−1 −−−−→

n→∞
0

This makes δα the unique possible weak limit.

Proof of Conjecture 1 for α = 0: Let β ∈
[0, 1[. Dn,pn

(0, β) = nDn,pn
(1, 1 + bnβc) =

npn (1− pn)bnβc−1. This implies

Dn,pn(0, β) ∼ d

(
1− dβ

nβ

)nβ

→ de−βd.

This in turn yields: µ0,d(dβ) = de−βddβ.
This theoretical result could be proved for 0 < α < 1

though at the expense of very long and technical develop-
ments. We do not anticipate any significant mathematical
difficulty though it does remain to carry through the demon-
strations. The results are not necessary to make the follow-
ing observations, but they explain why we have considered
some particular scaling.

6.3 Observations

The results in this section are obtained by solving Equa-
tion 2. We took n = 5000 to obtain the smoothest possible
curves (because of the fluid limit, n = 100 would give quite
similar results). d is set to 25. Figure 4 illustrates the differ-
ent cases that may arise.

Figure 4(a) shows the case of a well-ranked peer. For
i = 1 the right part is geometrically distributed. In average,
the best 5% peers are peered with peers of lower rank. This
changes quickly, and peers in the top 20% but not in the top
5% tend to get a significantly better mate.

The case of an average-ranked peer is illustrated in Fig-
ure 4(b). The distribution is symmetric; it simply shifts with
the rank of the considered peer (for top 25% to top 80%
peers). This second fact is a kind of finite horizon property
and illustrates the property we called stratification. Notice
that the distribution cannot be fit with a normal law, in any
case.

In Figure 4(c), the distribution shift continues for the bot-
tom 20% of peers, but as there is no worse peer to mate with,
the distribution is cut. This means that there is a probability
for not being matched (the area filled in blue). The lowest
matching frequency is for the worst peer, which is matched
exactly in half of the cases.

6.4 b0-matching independent model

The 1-matching case gives a flavor of the stratification
phenomenon. Formally there are no new issues in progress-
ing to a b0-matching model except for the weight of nota-
tion. As in the case of 1-matching, we state an indepen-
dence assumption which is not formally true but provides a
fairly good approximation compared to simulations.

Notation
The situation becomes more complicated, because the first
choice of one peer may correspond to the last choice of its
mate. Consequently we have to study a quantity Dc′

c (i, j)
which is not of direct interest. This is the probability that
choice number c of peer i is j and that for j, i is choice
number c′. As in the 1-matching case, Dc′

c (i, j) does not
depend on larger indexes for i, j, c and c′. Nor does it
depend on n. Intuitively this corresponds to the fact that
the first choice is made before making the second, and that
the best peers have priority for choosing their mates. The
quantity of interest is the probability that choice number c

of i is j: Dc(i, j) =
∑b0

c′=1 Dc′

c (i, j).
Independent b0-matching algorithm

Hereinafter we shall adopt the following assumption:
Assumption 2 Let i, j ≤ n and c ≥ 1 and c′ ≥ 1. These
two events are independent:

• peer i has chosen c− 1 peers better than j and choice
c is not a peer better than j,
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Figure 4. Distribution D(i, .) for three values of i.

• peer j has chosen c′− 1 peers better than i and choice
c′ is not a peer better than i.

Under Assumption 2, we evaluate Dc′

c (i, j) by multi-
plying the probabilities of the assumed independent events:
{i, j} is an edge of the acceptance graph (probability p);
choice c of i is not a peer better than j, but previous choices
are; the reciprocal condition on j.

The probability that choice c of i is not a peer
better than j, whereas previous choices are, is simply∑j−1

k=1 Dc−1(i, k) −
∑j−1

k=1 Dc(i, k): the probability that
choice c − 1 of i is a peer better than j minus the proba-
bility that choice c of i is a peer better than j (this formula
is mathematically exact because one of the two events is in-
cluded in the other). This proves, under assumption 2, that:

Dc′

c (i, j) = p

(
i−1∑
k=1

Dc′−1(j, k)−Dc′(j, k)

)
×

×

(
j−1∑
k=1

Dc−1(i, k)−Dc(i, k)

)
. (4)

Algorithm 3 show how to compute this formula by dy-
namic programming.

Remark that whereas Dc(i, j), the c-th choice distribu-
tion of i is no longer symmetric for b0 > 1, Dc′

c (i, j) has
more symmetry (see Algorithm 3). Matlab scripts for this
alhorithm can be found at [9]. This version is not optimized
(but sufficiently fast for the needs of this paper).

Validation of independent b0-matching As mentioned
above, Assumptions 1 and 2 are approximations, but they
should work very well except for very small numbers of
peers with p very large. Figure 5 illustrates this point. We
simulated a 2-matching by drawing a million realizations of
the Erdös-Rényi graph with n = 5000 and p = 1% (simula-
tions requiring several weeks) and compared obtained dis-
tributions D1(3000, .) and D2(3000, .) with those given by
our simplified formula. The results confirmed the accuracy
of the formula, as illustrated by Figure 5.
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Figure 5. Exact(simulated) and estimated (us-
ing (4)) values of D1(3000, .) and D2(3000, .).

7 Application to BitTorrent

Results of previous Sections allow us to closely estimate
for each peer, the ranks of peers it is likely to collaborate
with. All our results tend to give a theoretical proof of the
stratification phenomenon in systems that use a global rank-
ing function. In this Section, we will see how this stratifica-
tion can give insight into the effect of the Tit-for-Tat policy
used in BitTorrent.

We suppose that we are in the steady-state phase (af-
ter flashcrowd). In the flashcrowd phase, a unique seed
is uploading a new file, and the upload capacities of the
best peers are useless: all peers have downloaded the same
blocks. But during the post-flashcrowd phase, all blocks
have roughly the same dispersion, because of the download-
rarest-first policy of BitTorrent. So we can assume that con-
tent availability will not affect the acceptance graph and fo-
cus on bandwidth only.

The TFT policy consists in uploading to the peers from
which one gets the best download rates. The selection pro-
cess is renewed periodically. Furthermore, a generous up-
load connection allows to probe new peers for an even-
tual TFT exchange. This protocol acts like the peer initia-



Algorithm 3: Independent b0-matching probability
Data: Erdös-Rényi parameters n, p
matching quota b0

Result: Dc′

c (i, j) the probability that the c-th choice of
peer i is j and that the c′-th choice of j is i,
Dc(i, j), probability that the c-th choice of peer i is j

Dc ← zeros(b0, n, n)
Dc′

c ← zeros(b0, b0, n, n)
Dc

0 ← ones(1, b0, n, n)
D0

c ← ones(b0, 1, n, n)
for i = 1 to n do

for j = i + 1 to n do
for (ci, cj) ∈ [|1, b0|]× [|1, b0|] do

Compute Dc′

c (i, j) using (4)
for c = 1 to b0 do

Dc(i, j)←
∑b0

c′=1 Dc′

c (i, j)

for c′ = 1 to b0 do
Dc′(j, i)←

∑b0
c=1 Dc′

c (i, j)

tive described in Section 2. We thus claim that our results
apply to the TFT exchanges in BitTorrent. In particular,
we have a proof of the stratification effects (peers tend to
exchange with peers with similar bandwidths) empirically
observed by [1, 6].

However, the ranking of a peer just gives an intuition
about the Quality of Service (QoS) it is presumed to expe-
rience. In order to obtain relevant results, it is necessary to
bind ranking and performance. In the case of a file sharing
system like BitTorrent, the average expected download rate
is a very convenient performance metric, especially since it
is easy to compute within our model: it is enough to know
the upload bandwidth for each peer i.

To compute network performances, we have taken as ref-
erence the measurements made by Saroiu et al. [10]. Using
bandwidth estimation in the Gnutella network, they have
estimated the upstream for a large community of P2P users.
The cumulative distribution they obtained is shown Figure
6. One can observe a wide distribution of bandwidths (just
like in Orwell’s Animal Farm, “all peers are equal but some
peers are more equal than others”).

Applying our fluid model to the distribution observed by
Saroiu et al., we get the results shown in Figure 7. We chose
the following parameters:

• b0-matching with b0 = 3, corresponding to a BitTor-
rent network with all clients having the default number
of slots of 4 (the fourth is the “generous slot” used to
probe connections, not for tit-for-tat policy).
• expected number of acceptable peers (peers who are

known and interesting) d = 20 (realistic value)

Notice that the number n of peers does not have to be
given because our model does not depend on the network
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Figure 6. Upload capacity CDF (from [10]).
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Figure 7. Expected D/U ratio as a function of
the upload.

size: with a partial network knowledge, observed offsets
scale with the number of peers (see Section 6.1).

In order to present clear results, we chose to represent
expected download/upload ratio, which correspond to Bit-
Torrent share ratio. When this ratio is less than 1, a peer
gives on average more that it receives.

Some worthwhile observations are as follows:

• Best peers suffer from low sharing ratios: as they are
the best, they can only collaborate with lower peers,
so the exchange is suboptimal for them. The only way
for best peers to counter this effect is by adding ex-
tra connections until the upload bandwidth per slot is
close to the one of lower peers. This somehow explains
why BitTorrent proposes by default a greater number
of connections (up to TCP limitations) for peers with
high bandwidths, thus avoiding too much spoil.

• There are density peaks in the bandwidth distribution.
This peaks corresponds to typical Internet connections,
such as DSL or cable. Peers in the density peeks have
a ratio close to 1. This is due to the great probability
they have to collaborate with peers that have exactly
the same characteristics as them.



• Efficiency peeks appear for peers that have an up-
load just above a density peek. For these peers, lower
peers have almost the same upload bandwidth as them,
whereas upper peers are likely to offer greater band-
width.

• Surprisingly, the lowest peers have a high efficiency,
although there is some probability for them not to be
matched (see Fig. 4(c)). This is related to the high
bandwidth (compared to their) they sometimes obtain,
which overcompensate the probability to be rejected.

As a consequence of this non-uniform efficiency distri-
bution, it is tempting for an average peer to tweak its num-
ber of connections in order to increase the efficiency of its
connections. For instance, suppressing one connection can
improve the probability of collaborating with higher peers.
However, this leads to a Nash equilibrium where all peers
have just one TFT slot. This is unacceptable in terms of con-
nectivity, but rational peers trying to maximize their benefit
cannot be avoided. This is an explanation for the 4 slots (3
TFT and one generous slot) settings: obedient average peers
that uses the default settings must have at least 4 in order to
ensure connectivity in the TFT collaboration graph. On the
other hand, the more slots they have, the farther they are
from the Nash equilibrium that rational peers will try to fol-
low. Hence 4 seems to be the best trade-off.

8 Conclusion

In this paper, we identified the stable matching theory as
a natural candidate to model peer-to-peer networks where
peers choose their collaborators. Furthermore, we applied
elements of this theory to a specific case: b-matching with
global rankings. While there has been a lot of work in ana-
lyzing incentives to collaborate in some specific application
from an economical point of view, this is the first attempt to
analyze the behavior of a class of applications using graph
theory.

The main conclusion of this study is that matching the-
ory gives insights on the behavior of a P2P systems class,
namely the global ranking class. For both the case of
complete acceptance graphs and the case of random ac-
ceptance graphs, we studied clustering and stratification is-
sues. In most cases, clustering may be prevented using b-
matching with enough connections and some standard de-
viation. But stratification is an intrinsic property of such
networks. It seems impossible to overcome it as long as
each peer follows the try-to-collaborate-with-the-best rule.
Interestingly, for random overlay graphs, the crucial param-
eter is d, the average number of acceptable peers, which
makes stratification a flawlessly scalable phenomenon.

As a first application, our results provide some new in-
sights on BitTorrent parameters. They show that best peers

have to set up a large number of connections in order to
avoid a bad download/upload ratio. The by default num-
ber of collaborations (4) is justified. It allows, to a certain
extend, to maintain connectivity in the TFT exchanges and
to protect peers using default settings (obedient peers) from
peers with optimized settings (rational peers).

When considering the stable properties which emerge, it
also becomes clear that different classes of utility functions
lead to very different properties. This can be exploited ac-
cording to the needs of the targeted application. For exam-
ple, in a peer-to-peer streaming protocol, the most impor-
tant feature is a small playout delay but a strong stratifica-
tion, needed to give peers incentive to collaborate, produces
a collaboration graph with a large diameter (large playout
delay). In many cases, combining different utility functions
will be necessary. Such a combination can, for instance,
be achieved by introducing a second type of collaborations
depending on a different global ranking or depending on a
symmetric ranking such as latency.
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