
A simple linear-time modular decomposition

algorithm for graphs, using order extension?

Michel Habib, Fabien de Montgolfier, and Christophe Paul

CNRS - LIRMM, 161 rue Ada, 34392 Montpellier Cedex 5, France,
{habib,montgolfier,paul}@lirmm.fr

Abstract. The first polynomial time algorithm (O(n4)) for modular de-
composition appeared in 1972 [8] and since then there have been incre-
mental improvements, eventually resulting in linear time algorithms [22,
7, 23, 9]. Although an optimal time complexity these algorithms are quite
complicated and difficult to implement. In this paper we present an easily
implementable linear time algorithm for modular decomposition. This
algorithm use the notion of factorizing permutation and a new data-
structure, the Ordered Chain Partitions.

1 Introduction

The notion of module naturally arises from different combinatorial structures [26]
and appears under the names of autonomous sets, homogeneous sets, intervals,
partitive sets, clans. . . Modular decomposition is often the first algorithmic step
for many graph problems including recognition, decision and optimization prob-
lems. Indeed, it plays an important role in various graphs recognition algorithms
(eg. cographs [5], interval graphs [25], permutation graphs [29] and other classes
of perfect graphs [12, 2]), and in the transitive orientation problem (see [11, 23]).
Interested reader should refer to [26] for a survey on modular decomposition.

For a few years, linear-time algorithms have been known to exist ([22, 7, 23,
9]) but remain still rather complicated. Therefore in the late 90’s, a series of
authors attempts to design practical modular decomposition algorithms, even
quasi-linear. In [24], an O(n + m log n) algorithm was proposed while [16, 9] got
an O(n+m.α(n, m)) complexity bound (where α(n, m) is the reverse Ackermann
function). Such phenomena in the algorithmic progresses for a given problem is
quite common. For example the first linear time algorithm for the interval graph
recognition problem appears in 1976 [1]. This algorithm uses sophisticated data-
structures, namely the PQ-trees. Since then, successive simplifications has been
proposed [20, 6, 14]. One can also refer to planarity. The first linear time planarity
testing algorithms that appear in the early 70’s [19, 1] are rather complicated.
Simpler algorithms have been later designed. Designing optimal but simple al-
gorithms is a great algorithmic challenge. It was still an open problem to design
a very simple linear time modular decomposition algorithm. We propose one
(depicted in Figure 7) in this paper.

? For a full version of this extended abstract, see [15]

2 M. Habib, F. de Montgolfier and C. Paul

Any graph G = (V, E) considered here will be simple and undirected, with
n = |V | vertices and m = |E| edges. The complement of a graph G is denoted
by G. If X is a subset of vertices, then G[X] is the subgraph of G induced
by X . Let x be an arbitrary vertex, then N(x) and N(x) stand respectively
for the neighborhood of x and its non-neighborhood. A vertex x separates (or
distinguishes) two vertices u and v iff (x, u) ∈ E and (x, v) /∈ E. A module M of
a graph G is a set of vertices that is not separated by any vertex:

∀x /∈ M, ∀y, z ∈ M, (x, y) ∈ E ⇐⇒ (x, z) ∈ E.

The modules of a graph are a potentially exponential-sized family. However,
the sub-family of strong modules, the modules that overlap1 no other module,
has size O(n). The inclusion order of this family defines the modular tree de-
composition, which is enough to store the module family of a graph [26]. The
root of this tree is the trivial module V and its n leaves are the trivial modules
{x}, x ∈ V .

21

3

4

5

7

1 2 3 4 5 6 7 8

series

prime series

parallel

9

parallel

8

6

9

Fig. 1. A graph and its modular tree decomposition. The set {1, 2} is a strong module.
The module {7, 8} is weak: it is overlapped by the module {8, 9}. The permutation
σ = (1, 2, 3, 4, 5, 6, 7, 8, 9) is a modular factorizing permutation.

It is well-known that any graph G with at least three vertices either is not
connected (G is obtained from a parallel composition of its connected compo-
nents); either its complement G is not connected (G is obtained from a series
composition of the connect components of G); or G and G are both connected.
In the last case, the maximal (with respect to inclusion) modules define a parti-
tion of the vertex-set and are said to be a prime composition. It follows that the
modular decomposition tree can be recursively built by top-down approach: at
each step, the algorithm recurses on graphs induced by the maximal strong mod-
ules. Such a technique gives an O(n4) algorithm in [8], the first polynomial-time
algorithm of a list that counts dozens of them2.

The idea of modular factorizing permutation has been introduced in [3]: a
permutation σ of the vertices of the graph such that, for each strong module,
the reverse image σ1(M) is an interval of N. It is clear that a DFS on the mod-
ular tree decomposition orders the leaves as a modular factorizing permutation.
Conversely, [4] proposed a simple and linear-time algorithm that, given a graph
and one of its factorizing permutations, computes the modular decomposition

1 A overlaps B if A ∩ B 6= ∅, A \ B 6= ∅ and B \ A 6= ∅
2 See [27] or http://www.lirmm.fr/~montgolfier/HistDM.html

A simple linear-time modular decomposition algorithm 3

tree. This algorithm first computes a bracketing of the factorizing permutation,
where each couple of parentheses encloses the separators of two consecutive ver-
tices. This bracketing defines a tree, and with a few node operations, one can
produce the modular decomposition tree (in other words, a factorizing permu-
tation can be seen as the compression of the modular tree decomposition into
a linear structure). It follows that the modular decomposition problem reduces
to the computation of a modular factorizing permutation. In some cases such
a permutation is given for free. In the case of chordal graphs, any Cardinality
Lexicographic BFS yields a modular factorizing permutation [20]. [10, 13] used
a similar notion to decompose an inheritance graph into blocks or modules. Re-
cently, it has been shown for some intersection graphs families (namely interval
graphs and permutation graphs), whose intersection model requires O(n) space,
that a factorizing permutation can be easily retrieved from the model yielding
an O(n) algorithm that computes the modular tree decomposition (see [27] or
[21] for similar results).

We propose here the first linear-time algorithm that computes a modular fac-
torizing permutation without computing the underlying decomposition tree. The
present algorithm, combined with the one of [4], is therefore a simple linear-time
modular decomposition algorithm, in two steps (first the modular factorizing
permutation, then the modular decomposition tree). Using new data-structure,
the Ordered Chain Partitions, we reduce the complexity to linear time. Avoiding
in a first step the computation of the decomposition tree provides a real simpli-
fication of the modular decomposition algorithm. Indeed, as in [16], easy vertex
partitioning rules are used.

2 Module-factorizing orders

Let G = (V, E) be a graph and let O be a partial order on V . For two comparable
elements x and y where x≺O y we state x precedes y and y follows x. Two subsets
A and B cross if ∃a, a′ ∈ A and ∃b, b′ ∈ B such that a ≺O b and a′ �O b′. A
linear extension of a poset is a completion of the poset into a total order.

Definition 1. A partial order O is a Module-Factorizing Partial Order (MFPO)
of V (G) if two non-intersecting strong modules of G do not cross.

The modular factorizing permutations (hereafter factorizing permutation for
short) are exactly the module-factorizing total orders.

Proposition 1. A partial order O is an MFPO if and only if it can be completed
into a factorizing permutation.

Our algorithm starts with the trivial partial order (with no comparison be-
tween any pair of vertices), which is an MFPO. Then the order is extended with
new comparisons between vertices. When the order is total, the process stops.
Proving that the extensions preserve its module-factorizing property shows the
correctness of the algorithm, namely the final order is a factorizing permutation.

4 M. Habib, F. de Montgolfier and C. Paul

3 Towards a linear time algorithm

In [16], an O(n + m log n) algorithm, based on partition refinement techniques
[28], was proposed to compute a modular factorizing permutation. This algo-
rithm uses a restricted class of MFPO: the ordered partitions [28]. They are
easy to handle, using a simple implementation, where most operations can be
performed in O(1). This section describes the main techniques of [16], also used
by our algorithm.

Definition 2. An ordered partition is a collection {P1, . . .Pk} of pairwise dis-
joint parts, with V = P1] . . .]Pk, and an order O such that for all x ∈ Pi and
y ∈ Pj, x≺O y iff i < j.

Algorithm of [16] starts with the trivial partition (a single part equal to the
vertex set) and iteratively extends (or refines) it until every part is a singleton.
A center vertex c ∈ V is distinguished and two refining rules, preserving the
MPFO property, are used. These rules are defined by Lemma 1.

Lemma 1. [16]

1. Center Rule: For any vertex c, the ordered partition N(c)] {c}] N(c) is
module-factorizing.

2. Pivot Rule: Let O = P1] . . .] {c}] . . .] Pk be an ordered partition with
center c and let p ∈ Pi such that Pj, i 6= j, overlaps N(p). If O is an MFPO,
then the following refinements preserve the module-factorizing property:

(a) if Pi≺OPj ≺O {c} or {c}≺OPj ≺OPi, then replace Pj by (N(p)∩Pj)]
(N(p) ∩ Pj) (in that order),

(b) otherwise replace Pj by (N(p) ∩ Pj)] (N(p) ∩ Pj) (in that order),

Pi

c
p

The pivot rule, case (b) N(p) ∩ Pj N(p) ∩ Pj

PjPi

The center rule

N(c) c N(c)

c
p

N(p) ∩ PjN(p) ∩ Pj

Pj

The pivot rule, case (a)

Fig. 2. The refinement rules defined in [16].

A simple linear-time modular decomposition algorithm 5

The center rule set a center and breaks a trivial partition to start the algo-
rithm. Once launched, the process goes on based on the pivot rule, that splits
each part Pj (saves the pivot part Pi), according to the neighborhood of the
pivot. When Algorithm of Figure 3 ends, every part is a module. To obtain a
factorizing permutation, it has to be recursively relaunched on the non-singleton
parts. The complexity issues depend on the choice of the part P (l.4 of Al-
gorithm of Figure 3). Using Hopcroft’s rule [18], [16] achieves an O(m log n)
time-complexity.

Refine(G,O = {V })
1. Pick a center c

2. Extend O using the center rule with c

3. While the partition can be extended further Do

4. Select a part P
5. For each p ∈ P Do

6. Extend O using the pivot rule with p

7. End of while

Fig. 3. Partition refinement scheme of [16].

4 Ordered chain partition and linear time algorithm

To improve the complexity down to linear-time, our algorithm uses each vertex
a constant number of times as a pivot. This algorithm is depicted in Figure 7.
An example of execution is presented in Appendix.

Definition 3. An ordered chain partition (OCP) is a partial order such that
each vertex belongs to one and only one chain, and one chain belongs to one and
only one part. The vertex of the same chain are totally ordered, the chains of
the same part are uncomparable, and the parts are totally ordered

Parts Chains

Fig. 4. An Ordered Chain Partition.

A trivial chain contains only one vertex, and a monochain part contains
only one chain. The OCPs generalize the Ordered Partitions since in the latter

6 M. Habib, F. de Montgolfier and C. Paul

ones contain only trivial chains. C(x) will denote the chain containing x while
P(x) will denote the part of the partition containing x. Each chain C has a
representative vertex r(C) ∈ C. During the algorithm, the chains will behave
as their representative vertex (the tests for the refinement rules are done on
the representatives). Notice that chains are possibly merged. In that case, the
representative of the new chain is one of the former representatives (indeed it
will be the old center). But chains will never be split.

The algorithm still uses the center rule and the pivot rule (see Lemma 1).
The chains are moved by these two rules, according to the adjacency between
their representative vertex and the center or the pivot. There is a third rule,
the chaining rule (line 9 of algorithm of figure 7). Unlike the two first ones,
this third rule removes comparisons from the order. This rule first concatenates
a sequence of monochain parts, that occur consecutively in O, into one chain.
Then this new chain is inserted into one of the two parts, say P , neighboring the
chain (see Figure 5). The comparisons between the chain and P are lost. But
since the number of chains strictly decreases during the algorithm, the process
is guaranteed to end. Finally the above invariant is satisfied.

Before

PAfter

P

Fig. 5. The chaining rule, chaining the black vertices into P .

Invariant 1 The ordered chain partition O is an MFPO of V (G) and no chain
is overlapped by some strong module.

Fig. 6. Position of a strong module M (black vertices) in O (Invariant 1).

To use any vertex O(1) times as a pivot, the algorithm picks only one vertex
per part to extend the OCP (instead of all the vertices of the part as [16]
did). A chain is used if its representative vertex has been yet used as pivot.
Similarly a part is used if it contains an used chain. Any used part already has
a pivot, therefore no other vertex can be chosen as pivot. Unlike Algorithm of
Figure 3, when all parts are used, the non-trivial (multichain) parts are not
necessarily modules. The algorithm chooses a new center and recurses (see line
12 of Algorithm of Figure 7).

A simple linear-time modular decomposition algorithm 7

Refine(G,O,[[i, j]],c) /*[[i, j]] denotes the working factor of O
1. Split [[i, j]] using the c center rule /* in which the pivots are chosen
2. While some multichain part in [[i, j]] exists Do

3. While there is an unused part in [[i, j]] Do

4. Select a unused part P ⊂ [[i, j]] and a chain C ∈ P
5. Extend O using the pivot rule with p = r(C)
6. End of while

7. If some multichain part in [[i, j]] exists Then

8. Find the multichain part P ′ of the new center cn

9. Create the new chain S containing c and cn using the chaining rule
10. Add C to P ′

11. Extend O using the pivot rule with cn

12. Refine(G,O,P(cn),cn)
13. End of if

14. End of while

Fig. 7. Linear-time algorithm.

Choice of the new center (line 8 of Algorithm of Figure 7) As already seen in
the algorithm of [16], the center plays an important role (see Lemma 1). The rule
described below was already defined and proved in the context of cographs [17].
Indeed the following invariant is the basis of the correctness proof:

Invariant 2 Let M be a strong module and c be the center. Then either c belongs
to M , or any parts intersecting M is monochain, or a part P such that M ⊆ P
exists.

The new center cn must fulfill Invariant 2, as the old center c did. If all the
strong modules containing c but not cn are included in P(c), then Invariant 2
holds. Let PL (resp. PR) be the rightmost (resp. leftmost) multichain part that
precedes (resp. follows) c. As both parts are used, their pivots pL and pR are
defined. One of them is chosen for the recursive call, and its pivot becomes the
new center. Only one pivot among pL and pR distinguishes the other from the
center c. The rule chooses that pivot (wlog. say pL see Figure 8.b) as new center.
A simple adjacency test between pL and pR is enough to implement that choice.
Assume the other choice is made: ie. pL distinguishes c and pR and pR has been
chosen as the new center. It could exist a module containing c and pL but not
pR: such a module would violate Invariant 2, a contradiction.

b)
cpL pR pL c pR

a)

Fig. 8. In case a), the new center is pR, in case b) pL is chosen.

8 M. Habib, F. de Montgolfier and C. Paul

Center and pivot rules modified The pivot rule works as described in
Lemma 1 (rule 2). The center rule should be handled carefully. It breaks P(c),
the part containing the new center c, into three parts (see Lemma 1, rule 1). The
case where P(c)∩N(c) or P(c)∩N(c) is empty, could hinder the algorithm since
the number of parts does not increase (a similar problem was observed in [17]
for the cograph recognition). This case occurs when c and the previous center
cp are both adjacent (respectively nonadjacent) to the other representatives of
P(c). It can be shown that P(c) has at least three chains. Therefore if C(cp),
the chain containing the old center, is put in that empty part, then cycling is
avoided and the module-fatorizing property is still valid.

The chaining rule (line 9, Algorithm of Figure 7) When a new center cn is
chosen, there are only monochain parts between cn and c. The chain to con-
catenate with P(cn), using the chaining rule, starts from P(cn), contains c and
extends until a certain chain C(a) that is contained in a monochain part. Wlog.
assume that cn ≺ c and define (1) as the property that a part P in the working
factor (P ⊂ [[i, j]]) fulfills if:

P �O P(c) is a monochain part and (Pivot[P], cn) /∈ E (1)

Let P ′ be the leftmost part (wrt. O) that violates (1) and such that any
part between P(c) and P ′ satisfies (1). Since P(c) fullfills (1), part P ′ exists.
The chain S to concatenate with P(cn) starts from the part that follows P(cn)
and extends until P ′ (excluded). Lemma 2, required in the proof of Theorem 1,
ensures that the strong modules containing c but not cn are included in P(cn).
Invariant 2 will be fulfilled, and the algorithm can be relaunched.

Lemma 2. Let Pc be the part resulting from the concatenation of P(cn) and S
by the chaining rule. Every module containing c but not cn is included in Pc.

Notice that the part P(c) now contains two used chains, C(c) and C(cn). But
the center rule, at next recursive call, will separate. Then the invariant property
(usefull for proving time complexity) that every part contains at most one used
chain, holds.

The problem of bad pivots, and the working factor In [16], it has been
shown that the refinement rules (center and pivot rule, see Lemma 1) can be
applied as long as any pivot that precedes the center c is non-adjacent with it,
while a pivot that follows the center is one of its neighbors. In the new algorithm,
the choice of a new pivot could hinder that property. A vertex x ∈ P is said to
be bad if:

either x ≺O c and x ∈ N(c); or x �O c and x ∈ N(c)

A chain is bad if its representative is bad; and a part is bad if it contains a
bad part. Notice that the choice of pivot is restricted to a working factor. But
any refinement rule applies on any part (even those that do not belong to the

A simple linear-time modular decomposition algorithm 9

working factor). The vertices of the working factor are those that are in P(c)
when c becomes the new center. They are exactly the scope of the center rule
that is used with c. Even after some split of P(c), it remains a factor of O. It
follows that the working factor contains no bad vertex wrt. the current center.
The working factor is denoted [[i, j]], where i and j are two integers such that,
for any linear extension σ of O, x is in the working factor iff i ≤ σ(x) ≤ j.

The following invariant shows that the bad parts are “almost” modules (in-
deed they are the union of some strong modules) and explains the role of the
working factor.

Invariant 3

1. Let x ∈ P be a bad vertex. If a part P is bad, then all of its chains are bad,
no strong module overlaps P and P ∩ [[i, j]] = ∅.

2. Let [[i, j]] be the working factor and c the center. No part overlaps [[i, j]]. If a
strong module M overlaps [[i, j]] then c ∈ M .

Line 11 of Algorithm of Figure 7 uses the new center once more as a pivot
in order to avoid the existence of bad chain in the incoming working factor. It
is worth to remark that the working factors are nested. Moreover the working
factor returned by any recursive call only contains monochain parts (a total
order on its vertices). As the whole vertex-set is the working factor of the main
(initial) call, when it ends, V is linearly ordered in a factorizing permutation.
Thus we have:

Theorem 1. Algorithm of Figure 7 computes a factorizing permutation of a
graph G.

5 Linear-time implementation

The algorithm described above can be implemented to run in O(n + m) time.
It uses a simple implementation of the OCP presented below. Some hints of the
complexity analysis are explained.

Ordered Chain Partition (see Figure 9) The parts of the OCP form a doubly
linked list. A part itself has a doubly linked list of its representatives vertices.
The order inside this list does not matter. The part of a representative vertex x
is explicitly mentioned using an field Part[x]. Finally, each representative vertex
points its part, and maintains and ordered list of the chain C(x), with pointers
towards heads and tails. The concatenation of two chains can thus be performed
in O(1).

Implementation of Refine Procedure First, to choose a pivot in a given
part, the algorithm simply selects the head of this list (line 4, Algorithm of Fig-
ure 7). Moreover, the choice of an unused part (line 4) can be done in O(1) time,

10 M. Habib, F. de Montgolfier and C. Paul

h k m Representative vertices

Parts

Chains

a

c d e h i l m

gf

b j

k

a c f g

Fig. 9. Implementation of an Ordered Chain Partition.

within the working factor. Indeed it suffices to manage one stack per recursive
call that contains such parts. Each time a new unused part is created (when a
part is split), it is pushed in the corresponding stack. Finally, a search of the
working factor from the part containing the current center, find, if they exist,
the parts PL and PR (line 8, Algorithm of Figure 7). If the working factor is
completely visited, then the recursion stop since no such part exists.

From the above discussion and Lemma 3, it follows that the overall running
time of the recursive calls, apart the time spent by the refinement rule, is O(n).

Lemma 3. A given vertex can be used at most once as center and twice to
extend the OCP.

Implementation of refinement rules As in [16], the center rule (line 1),
Algorithm of Figure 7) and the pivot rule (line 5) can be processed in O(|N(x)|)
time, where x is either the center or the pivot. For the chaining rule (line 9), the
”closest” part that does not satisfies Property 1 should be find. A search in the
list of parts is necessary and an adjacency test that should be done between the
new center and the pivot of the current part. It is possible to show that these
tests can be done in O(1) amortized time.

Theorem 2. Given a graph G = (V, E), the time bound of Algorithm of Figure 7
is O(n + m).

References

1. K.S. Booth and G.S. Lueker. Testing for the consecutive ones properties, interval
graphs and graph planarity using PQ-tree algorithm. J. Comput. Syst. Sci., 13:335–
379, 1976.

2. A. Brandstädt, V.B. Le, and J. Spinrad. Graph Classes: a Survey. SIAM Mono-
graphs on Discrete Mathematics and Applications. Society for Industrial and Ap-
plied Mathematics, 1999.

3. C. Capelle and M. Habib. Graph Decompositions and Factorizing Permutations.
In proceedings of ISTCS’97, pages 132–143, Ramat Gan (Israel), June 1997. IEEE.

4. C. Capelle, M. Habib, and F. de Montgolfier. Graph decomposition and factorizing
permutations. Discrete Mathematics and Theoretical Computer Sciences, 5(1):55–
70, 2002.

A simple linear-time modular decomposition algorithm 11

5. D.G. Corneil, Y. Perl, and L.K. Stewart. A linear recognition algorithm for
cographs. SIAM Journal of Computing, 14(4):926–934, 1985.

6. D.G. Corneil, S. Olariu, and L. Stewart. The ultimate interval graph recognition
algorithm? In Proceedings of the ninth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 175–180, 1998.

7. A. Cournier and M. Habib. A new linear algorithm for modular decomposition. In
S. Tison, editor, Trees in algebra and programming—CAAP 94, 19th International
Colloquium, Edinburgh, U.K., volume 787 of Lecture Notes in Computer Science,
pages 68–84, Berlin, April 1994. Springer-Verlag.

8. D.D. Cowan, L.O. James, and R.G. Stanton. Graph decomposition for undirected
graphs. In R. B. Levow eds. F. Hoffman, editor, 3rd S-E Conf. Combinatorics,
Graph Theory and Computing, Utilitas Math, pages 281–290, Winnipeg, 1972.

9. E. Dahlhaus, J. Gustedt, and R.M. McConnell. Efficient and practical algorithms
for sequential modular decomposition. Journal of Algorithms, 41(2):360–387, 2001.

10. R. Ducournau and M. Habib. La multiplicité de l’héritage dans les langages à
objects. Technique et Science Informatique, 8(1):41–62, 1989.

11. T. Gallai. Transitiv orientierbare Graphen. Acta Math. Acad. Sci. Hungar., 18:25–
66, 1967.

12. M.C. Golumbic. Algorithmic graph theory and perfect graphs. Academic Press,
New-York, 1980.

13. M. Habib, M. Huchard, and J.P. Spinrad. A linear algorithm to decompose inher-
itance graphs into modules. Algorithmica, 13:573–591, 1995.

14. M. Habib, R. McConnell, C. Paul, and L. Viennot. Lex-BFS and partition refine-
ment, with applications to transitive orientation, interval graph recognition and
consecutive ones testing. Theoretical Computer Science, 234:59–84, 2000.

15. M. Habib, F. de Montgolfier, and C. Paul. A simple linear-time modular decompo-
sition algorithm. Research Report LIRMM, Université de Montpellier 2, number
RR-LIRMM-03007, April 2003.
http://www.lirmm.fr/∼montgolfier/plublications/.

16. M. Habib, C. Paul, and L. Viennot. Partition refinement techniques: an interesting
algorithmic toolkit. International Journal of Foundations of Computer Science,
10(2):147–170, 1999.

17. M. Habib, and C. Paul. A simple linear time algorithm for cograph recognition.
Discrete Mathematics, To appear in 2004.

18. J. Hopcroft. An n log n algorithm for minimizing states in a finite automaton.
In Z. Kohavi and A. Paz, editors, Theory of Machines and Computations, pages
189–196, New York, 1971. Academic Press.

19. J. Hopcroft and R.E. Tarjan. Efficient planarity testing. J. Assoc. Mach., 21:549–
568, 1974.

20. W.-L. Hsu and T.-H. Ma. Substitution decomposition on chordal graphs and ap-
plications. In Proceedings of the 2nd ACM-SIGSAM Internationnal Symposium on
Symbolic and Algebraic Computation, number 557 in LNCS, pages 52–60. Springer-
Verlag, 1991.

21. W.-L. Hsu and R.M. McConnell. PC-trees and circular-ones arrangements. Theo-
retical Computer Science, 296:99–116, 2003.

22. R. M. McConnell and J. Spinrad. Linear-time modular decomposition and efficient
transitive orientation of comparability graphs. In Proceedings of the Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms (Arlington, VA), pages 536–545,
New York, 1994. ACM.

23. R.M. McConnell and J.P. Spinrad. Modular decomposition and transitive orienta-
tion. Discrete Mathematics, 201:189–241, 1999.

12 M. Habib, F. de Montgolfier and C. Paul

24. R.M. McConnell and J.P. Spinrad. Ordered vertex partitioning. Discrete Mathe-
matics and Theoretical Computer Sciences, 4:45–60, 2000.

25. R.H. Möhring. Algorithmic aspects of comparability graphs and interval graphs.
In I. Rival, editor, Graphs and Orders, pages 41–101. D. Reidel Pub. Comp., 1985.

26. R.H. Möhring and F. J. Radermacher. Substitution decomposition for discrete
structures and connections with combinatorial optimization. Annals of Discrete
Mathematics, 19:257–356, 1984.

27. F. de Montgolfier. Décomposition modulaire des graphes - théorie, extensions et
algorithmes. PhD Thesis, Université de Montpellier, 2003.

28. R. Paige and R.E. Tarjan. Three partition refinement algorithms. SIAM Journal
on Computing, 16(6):973–989, 1987.

29. A. Pnueli, S. Even, and A. Lempel. Transitive orientation of graphs and identifi-
cation of permutation graphs. Canad. J. Math., 23:160–175, 1971.

A Appendix: an example of execution

Vertex x is selcted as the first center.

t u v wa s y

a s y

y x z

y x z

y x z

y x z

y x z

xa s y 1. z is used as pivot and split [a,s,y]

x 2. y is used as pivot and split [z,t,u,v,w]

x

z u v w

z

t

t u v w 3. a and u are used, but do not refine anything

x, y, z are chained and u is the new center

tv w ua s

v w u t

v w u t Any part of the working factor is monochain

The part are linked. The center changes to a

and the process stop since a is independant.

between u and a, the adjacency test select u as new center

a s

sa

v w u tsa

parallel

series

prime

parallel t

s

uz

x

yv

w

a

*

*

* *

*

*

4. the working factor is [v...t]. u is the new center.

t is used as pivot and split [a,s] and [v,w]

Notice that part {a,s} outside the working factor is split.

5. v is used as pivot and split [y−x−z,t]

z

Fig. 10. The resulting factorizing permutation is a, s, v, w, u, y, x, z, t

