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Partitive set families are families of sets that can be quite large, but have a compact, recursive representation in the form of a tree. This tree is a common generalization of PQ trees, the modular decomposition of graphs, certain decompositions of boolean functions, and decompositions that arise on a variety of other combinatorial structures. We describe natural operators on partitive set families, give algebraic identities for manipulating them, and describe efficient algorithms for evaluating them. We use these results to obtain new time bounds for finding the common intervals of a set of permutations, finding the modular decomposition of an edge-colored graph (also known as a two-structure), finding the PQ tree of a matrix when a consecutive-ones arrangement is given, and finding the modular decomposition of a permutation graph when its permutation realizer is given.

Introduction

A 0-1 matrix has the consecutive-ones property if there exists a permutation of the set of columns such that the 1's in each row occupy a consecutive block. Such a permutation is called a consecutive-ones ordering (Figure 1).

In general, the number of consecutive-ones orderings need not be polynomial; there may be |V|! of them. However, the PQ tree of a family that has the consecutive-ones property gives a way to represent all of its consecutive-ones orderings using O(|V|) space, as in Figure 1. The PQ tree is a rooted, ordered tree whose leaves are the elements of V, and whose internal nodes are each labeled either P or Q. The leftto-right leaf order gives a consecutive-ones ordering, and any new leaf order that can be obtained by permuting arbitrarily the children of a P node or reversing the order of children of a Q node is also a consecutive-ones ordering. There are no other consecutive-ones orderings.

One of the most significant applications of PQ trees is in finding planar embeddings of planar graphs. Booth and Lueker used PQ trees to develop an algorithm for determining whether a family of sets has the consecutiveones property [START_REF] Booth | Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms[END_REF]. The algorithm runs in O(|V|+l(F )) time, where l(F ) is the sum of cardinalities of members of F , or length of F .
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Figure 1: A consecutive-ones ordering of a matrix, and the corresponding PQ tree. The zeros in the matrix are omitted. The ordering of the columns is a consecutive-ones ordering because the 1's in each row are consecutive. The left-toright leaf order of the PQ tree gives this ordering. Reversing the left-to-right order of children of a Q node (rectangles) or permuting arbitrarily the left-to-right order of children of a P node (points) induces a new leaf order, which is also a consecutive-ones ordering. For instance, permuting the order of children of the left child of the root and reversing the order of children of the right child gives (d, a, b, c, e, f, k, j, h, i, g) as a consecutive-ones ordering. An ordering of columns of the matrix is a consecutive-ones ordering iff it is the leaf order of the PQ tree induced by reversing the children of some set of Q nodes and permuting the children of some set of P nodes.

rise to an interval graph, which has one vertex for each member of F , and an adjacency between two vertices if and only if the corresponding members of F intersect. Booth and Lueker's result gave a linear-time algorithm for determining whether a given graph is an interval graph, and, if so, finding such a set family F for it. This problem played a key role during the 1950's in establishing that DNA has a linear topology [START_REF] Benzer | On the topology of the genetic fine structure[END_REF], though linear-time algorithms were unavailable at that time. Variations on this problem come up in the physical mapping of a genome, using laboratory data that can be modeled with a graph [START_REF] Mcmorris | On probe interval graphs[END_REF][START_REF] Zhang | United states patent: Method of mapping DNA fragments[END_REF].

A module of an undirected graph G = (V, E) is a set X of vertices such that each vertex y ∈ V -X is either adjacent to all members of X or adjacent to none of them. The number of modules can be exponential in the size of G. However, there exists a compact O(|V|) representation of all the modules, called the modular decomposition. The modular decomposition, first described by Gallai [START_REF] Gallai | Transitiv orientierbare Graphen[END_REF], is a tree that has the members of V as its leaves, and where the internal nodes are all labeled prime or degenerate. Details of the representation are given below. The modular decomposition can be computed in O(|V| + |E|) time [START_REF] Mcconnell | Modular decomposition and transitive orientation[END_REF].

A close relationship between the modular decomposition and a variety of combinatorial problems on graphs have been described. Gallai [START_REF] Gallai | Transitiv orientierbare Graphen[END_REF] showed a close relationship to the transitive orientation problem, which is the problem of orienting the edges of an undirected edge so that the resulting digraph is transitive (i.e. a poset relation). Using the modular decomposition, a transitive orientation, if it exists, can be found in O(|V| + |E|) time [START_REF] Mcconnell | Modular decomposition and transitive orientation[END_REF]. This result has led to linear time bounds for maximum clique and minimum coloring on transitively orientable graphs (i.e. comparability graphs), and recognizing permutation graphs and co-interval graphs. Surveys on applications can be found in [START_REF] Möhring | Algorithmic aspects of comparability graphs and interval graphs[END_REF][START_REF] Möhring | Algorithmic aspects of the substitution decomposition in optimization over relations, set systems and boolean functions[END_REF][START_REF] Möhring | Substitution decomposition for discrete structures and connections with combinatorial optimization[END_REF].

The modular decomposition has a straightforward extension to directed graphs, and linear time bounds have recently been given for finding it [START_REF] Mcconnell | Linear-time modular decomposition of directed graphs[END_REF].

The modules of a graph are an example of a partitive set family [START_REF] Chein | Partitive hypergraphs[END_REF][START_REF] Möhring | Algorithmic aspects of comparability graphs and interval graphs[END_REF]. All partitive set families have a compact representation by means of a tree; the modular decomposition is just an example of it when the set family is the modules of a graph. The PQ tree is another example of this phenomenon. In [START_REF] Mcconnell | A certifying algorithm for the consecutiveones property[END_REF], it is shown that the PQ tree is this representation of a certain partitive family defined by the 0-1 matrix, and, more generally that, like the modular decomposition, the PQ tree is an example of a substitution decomposition [START_REF] Möhring | Algorithmic aspects of the substitution decomposition in optimization over relations, set systems and boolean functions[END_REF], a combinatorial abstraction that has partitive families as a central ingredient.

Other partitive families have played a role in linear time bounds for recognizing circular-arc graphs [15, ?], O(n + m logn) bounds for recognizing probe interval graphs [START_REF] Mcconnell | Construction of probe interval models[END_REF], and arise in decompositions of boolean expressions [START_REF] Möhring | Algorithmic aspects of the substitution decomposition in optimization over relations, set systems and boolean functions[END_REF].

In this paper, we describe natural algebraic operators on decomposition trees of partitive families, give identities for manipulating them, and develop algorithms for evaluating them. We use these results to obtain new time bounds for combinatorial problems that involve partitive families, such as finding the common intervals of a set of permutations [?, ?], finding the modular decomposition of edgecolored graphs, or two-structures [START_REF] Ehrenfeucht | Theory of 2-structures, part 2: Representations through labeled tree families[END_REF], finding the PQ tree of a matrix when a consecutive-ones arrangement is given, and finding the modular decomposition of a permutation graph when its realizer in the form of a permutation is given.

Preliminaries

Two sets X and Y overlap if they intersect, but neither is a subset of the other. That is, they overlap if X -Y, Y -X, and X ∩ Y are all nonempty.

Let F is a family of subsets of a set V. Then let |F | denote the number of sets in F ; this contrasts with l(F ), which is the sum of cardinalities of the sets in F .

In general, it takes Ω(l(F )) space to represent F in the computer. However, suppose that F satisfies the following: V ∈ F , {x} ∈ F for all x ∈ V, and no two members of F overlap. In this case, it is easy to see that l(F ) can be Ω(|V| 2 ), but F can be represented in O(|V|) space. The Hasse diagram of the subset relation on members of F is a tree whose root is V and whose leaves are its oneelement subsets. Labeling only the leaves of this tree with the corresponding set gives a representation of F . Given a node of the tree, the set X that it represents can be returned in O(|X|) time by traversing its subtree and assembling the disjoint union of its leaf descendants. This is as efficient as any representation of X, but takes O(1) space to represent X.

Let us call such a set family a tree-like family, and its tree representation its inclusion tree. Partitive families are a generalization of tree-like families, called partitive families, that may have a number of members that is exponential in the size of V, yet still has an O(|V|) representation. DEFINITION 2.1. [START_REF] Gallai | Transitiv orientierbare Graphen[END_REF][START_REF] Chein | Partitive hypergraphs[END_REF][START_REF] Möhring | Algorithmic aspects of the substitution decomposition in optimization over relations, set systems and boolean functions[END_REF][START_REF] Ehrenfeucht | Theory of 2-structures, part 2: Representations through labeled tree families[END_REF] A set family F on domain V is partitive iff it has the following properties:

• V ∈ F , / 0 ∈ F , and for all v ∈ V, {v} ∈ F • For all X, Y ∈ F , if X and Y overlap, then X ∩ Y ∈ F , X ∪ Y ∈ F , X -Y ∈ F , and Y -X ∈ F .
Let the strong members of a partitive family be those that overlap with no other member of F , and let the weak members be the remaining members. THEOREM 2.1. [START_REF] Chein | Partitive hypergraphs[END_REF][START_REF] Möhring | Algorithmic aspects of the substitution decomposition in optimization over relations, set systems and boolean functions[END_REF] The strong members of a partitive family F are a tree-like family where the Hasse diagram T of the subset relation has the following properties:

1. Every weak member of F is a union of siblings in T ; 2. Each internal node X can be classified as one of the following types:

(a) Degenerate: Every union of more than one child is a member of F ;

(b) Prime: Other than X itself, no union of more than one child is a member of F ;

(c) Linear: There exists a linear order on the children such that a union of more than one child is a member of F if and only if the children are consecutive in the linear order.

Conversely, every set family that has such a representative is partitive. Let us call the tree representation of F given by the theorem the decomposition tree of F . EXAMPLE 2.1. Removing the empty set from the power set of V gives a partitive family. Its decomposition tree has one internal node, V, which is degenerate, and one leaf for each member of V. EXAMPLE 2.2. A nonempty set X of vertices of a directed graph G = (V, E) is a module iff it satisfies the following conditions for to every y ∈ V -X:

1. Either every element of X is a neighbor of y or no element of X is a neighbor of y;

2. Either y is a neighbor of every element of X or a neighbor of no element of X.

It is not hard to show that the modules of a graph satisfy the requirements of Definition 2.1. It follows that the modules of a graph can be represented in O(|V|) space with a tree [START_REF] Gallai | Transitiv orientierbare Graphen[END_REF][START_REF] Möhring | Algorithmic aspects of the substitution decomposition in optimization over relations, set systems and boolean functions[END_REF]. As illustrated by the complete graph on V, the number of modules can be exponential in V. Figure 2 gives a nontrivial example. This tree is the modular decomposition of the graph. It takes O(|V| + |E|) time to compute the modular decomposition of an arbitrary directed graph [START_REF] Mcconnell | Linear-time modular decomposition of directed graphs[END_REF]; linear time bounds for the special case of undirected graphs were given in [START_REF] Mcconnell | Modular decomposition and transitive orientation[END_REF].

If F is a partitive set family, let T (F ) denote its decomposition tree, and if T is a partitive decomposition tree, let F (T ) denote the set family that it represents. There is no way to distinguish whether a node with two children is prime, degenerate or linear, but the classification is unique for nodes with three or more children. Henceforth, we will consider a node to be classified as prime, degenerate, or linear only if it has at least three children. DEFINITION 2.2. A partitive set family is symmetric if, whenever X and Y are overlapping members of F , the symmetric difference X∆Y = (X -Y) ∪ (Y -X) is a member of F . It is antisymmetric if X∆Y is never a member when X and Y are overlapping members. The modular decomposition represents the modules of a graph with an ordered tree whose nodes are subsets of V. Each internal node is labeled linear (L), prime (P), or degenerate(D). A subset of the vertices is a module iff it is a node of the tree, the union of a set of children of a degenerate node, or the union of a set of children of a linear node that is consecutive in the left-to-right order of its children. The modules of the depicted graph that are not nodes of the tree are unions of children of {e, f, g}, namely, {e, f}, {e, g}, and {f, g}, and unions of consecutive children of {a, b, c, d, e, f, g, h, i}, namely, {a, b, c, d, e, f, g, h} and {c, d, e, f, g, h, i}. To represent the decomposition, it is not necessary to label internal nodes with the set that they correspond to, as this is given by the union of leaf descendants of the node. .

It is not hard to see that if a graph is symmetric (undirected), its modules are a symmetric partitive family, and that if it is antisymmetric, its modules are an antisymmetric partitive family, unless it has modules that induce disconnected subgraphs. In particular, the modules of a tournament are an antisymmetric partitive family. A partitive set family is symmetric if and only if its decomposition tree has no linear nodes, and it is antisymmetric if and only if its decomposition tree has no degenerate nodes.

If F is an arbitrary set family, let C (F ) denote the partitive closure of F , namely, the smallest partitive family F such that F ⊆ F . Let S (F ) denote the symmetric partitive closure of F , namely, the smallest symmetric partitive family F such that F ⊆ F . It is shown in [START_REF] Mcconnell | A certifying algorithm for the consecutiveones property[END_REF] that each of these closures is unique.

If M is a zero-one matrix, then let V denote its columns, and let F (M) denote the set family on V that has one set for each row of M, namely, the one obtained by interpreting the row as the bit-vector representation of a set. That is, the set represented by a row is the set of columns where the row has a 1. Conversely, if F is a family of subsets of a domain V, we may obtain a representation of F with M, such that F (M) = F . M has the consecutive-ones property if and only if there exists an ordering of V such that every member of F is consecutive, and, in this case, we may refer to the PQ tree of M as the the PQ tree of F .

The following gives a generalization of the PQ tree to arbitrary set families or zero-one matrices: DEFINITION 2.3. [START_REF] Mcconnell | A certifying algorithm for the consecutiveones property[END_REF] Let F be an arbitrary set family. Let the PQR tree of F be the decomposition tree of C (F ), where the prime nodes are labeled P, the linear nodes are labeled Q, and the degenerate nodes are labeled R.

THEOREM 2.2. [16] F has the consecutive-ones property if and only if its PQR tree has no R nodes, and, in this case, its PQR tree is its PQ tree.

Let F be an arbitrary set family on V, and N (F ) denote the family of nonempty subsets of V that don't overlap with any member of F . THEOREM 2.3. [14] N (F ) is a symmetric partitive set family, and if F has the consecutive-ones property, its decomposition tree is the PQ tree, where the prime nodes are interpreted as Q nodes and the degenerate nodes are interpreted as P nodes.

The proof of the following is elementary: THEOREM 2.4. [START_REF] Mcconnell | Linear-time modular decomposition of directed graphs[END_REF] If F 1 and F 2 are two partitive families, then so is F 1 ∩ F 2 . If they are both symmetric partitive families, then so is F 1 ∩ F 2 , and if they are both antisymmetric partitive families, then so if

F 1 ∩ F 2 .
DEFINITION 2.4. If T 1 and T 2 are partitive decomposition trees, then let T 1 ∩ T 2 be the decomposition tree of F (T 1 ) ∩ F (T 2 ), which exists by Theorem 2.4. THEOREM 2.5. [START_REF] Mcconnell | Linear-time modular decomposition of directed graphs[END_REF] Given decomposition trees T 1 and T 2 of symmetric partitive families, it takes time proportional to the sum of cardinalities of their nodes to find T 1 ∩ T 2 .

New Results

Intersection of Arbitrary Partitive

Families. Theorem 2.5 applies only to symmetric partitive families. The case where they are not symmetric is more difficult.

The additional difficulties posed by linear nodes are illustrated by the simple case of two trees T 1 and T 2 that each have V = {1, 2, .., 8} as their only internal node. If T 1 and T 2 are decomposition trees of symmetric partitive families, then V is prime or degenerate in each. In T 1 ∩ T 2 , V is the only internal node, and it is degenerate if it is degenerate in both trees and prime otherwise. The intersection is trivial to compute in this case.

On the other hand, suppose V is linear in each of T 1 and T 2 , and ({1}, {2}, ..., {8}) is the order of its children in T 1 and ({6}, {5}, {8}, {7}, {2}, {1}, {4}, {3}) is the order of children in T 2 . Then {1, 2}, {3, 4}, {5, 6}, {7, 8}, {1, 2, 3, 4}, and {5, 6, 7, 8} are internal nodes. In general, two linear nodes in two partitive trees can give rise to a complicated subtree in the intersection.

We improve the bound of Theorem 2.4 and generalize it to arbitrary partitive families, not just symmetric ones: THEOREM 3.1. Given arbitrary partitive decomposition trees T 1 and T 2 on domain V, it takes O(|V|) time to find

T 1 ∩ T 2 .
Let the intervals of a permutation (v 1 , v 2 , ..., v n ) be a nonempty set of the form {v i , v i+1 , ..., v j }. The common intervals of a set of permutations of the same set are the intervals that are common to all of them.

If π is a linear ordering of V, then its intervals are an antisymmetric partitive family: their decomposition tree T (π) is the tree with one internal linear node, and leaf set V ordered in the order given by π. It follows that the common intervals of a set {π 1 , π 2 , ..., π k } is a partitive set family whose decomposition tree is given by T APPLICATION 3.2. The conceptual complexity of many linear-time algorithms for computing the PQ tree is wellknown. However, Theorem 3.1 gives a simple O(nm) approach to finding the PQ tree of an n × m matrix. Let M be a 0-1 matrix with m columns and n rows, let M 1 be the submatrix given by the top m/2 rows and let M 2 be the submatrix given by the remaining m/2 rows. To find the PQ tree of M, we may find the PQ trees T 1 and T 2 of M 1 and M 2 by recursion, and then return T 1 ∩ T 2 as the PQ tree of M. The correctness follows from Theorem 2.3.

(π 1 ) ∩ T (π 2 ) ∩ ... ∩ T (π k ).

APPLICATION 3.3. [?] If

T is a PQ tree, let Π(T ) denote the set of permutations represented by T . If T and T are PQ trees on domain V, then let T T denote that Π(T ) ⊆ Π(T ). Given the PQ trees T 1 and T 2 of two set families on the same domain V, let the the join of T 1 and T 2 be the minimal PQ tree T 3 (with respect to ) such that T 1 T 3 and T 2 T 3 .

The join of two PQ trees was first described by Landau, Parida, and Weimann [?], who have used it in an application to genomics, and who obtained an O(|V| 3 ) algorithm to compute it. When we communicated Theorem 3.

2, they used it to improve the bound to O(|V|).

A two-structure is a directed graph whose edges are colored. A module of a two-structure is a module X of the underlying graph that satisfies the following additional requirement: whenever y ∈ V -X, all edges from members of X to y are the same color, and all edges from y to members of X are the same color. The modules of a two-structure are a partitive family [START_REF] Ehrenfeucht | Theory of 2-structures, part 2: Representations through labeled tree families[END_REF].

The following give a relationship between modular decomposition of two-structures and problems in other areas that have not been observed before. EXAMPLE 3.1. A distance function d on a set V is an ultrametric if, for all x, y, z ∈ V, either d(x, y), d(y, z) and d(x, z) are all equal, or two are equal and the third is smaller. Ultrametrics arise in many clustering applications, such as the problem of inferring phylogenetic trees. An example is the distance metric in a graph with edge weights, where the height of a path is the maximum weight of an edge on the path, and where the distance between two vertices is the height of the minimum-height path between them. An ultrametric can be modeled as a two-structure, where for x, y ∈ V, the "color" of edge xy is d(x, y). In this case, the modular decomposition of the two structure is the tree returned by the well-known UPGMA clustering algorithm [?]. EXAMPLE 3.2. Given a string a 1 a 2 , ..., a n , let us define a two-structure with vertices {1, 2, ..., n}, and for vertices i and j, let the label ("color") of edge ij be the longest common prefix of a i a i+1 ...a n and a j a j+1 ...a n . It is not hard to show that the modular decomposition of this two-structure is the well-known suffix tree of the string, which is used in efficient solutions to a variety of combinatorial problems on strings [START_REF] Crochemore | Text Algorithms[END_REF][START_REF] Gusfield | Algorithms on Strings, Trees, and Sequences[END_REF].

Though these last two examples yield an interesting structural relationship, they do not yield more efficient algorithms. However, in [START_REF] Mcconnell | Linear-time modular decomposition of directed graphs[END_REF], we give a linear-time algorithm for finding the modular decomposition of a symmetric (undirected) two-structure. This is a key step in the linear time bounds we show there for finding the modular decomposition of a directed graph.

Because of the added difficulties posed by linear nodes in the decomposition, the best bound until now for finding the modular decomposition of arbitrary two-structures has been O(|V| 2 ) [START_REF] Ehrenfeucht | An O(n 2 ) divide-and-conquer algorithm for the prime tree decomposition of two-structures and modular decomposition of graphs[END_REF]. However, given Theorem 3.1, we can now improve this quite easily: Proof. Let G i denote the graph on V given by edges of color i. Find the modular decomposition T i of each G i for each i from 1 to k using the linear-time modular decomposition algorithm for directed graphs given in [START_REF] Mcconnell | Linear-time modular decomposition of directed graphs[END_REF]. Since the edge sets are disjoint, this takes a total of O(k|V| + |E|) time. The modular decomposition of the two-structure is given by

T 1 ∩ T 2 ∩ ... ∩ T k-1 , which takes O(k|V|) time to find, by Theorem 3.1.
By an only slightly more involved proof, we can get a linear time bound, as follows. Let the essential subtree of a partitive decomposition tree T be the tree T obtained by deleting leaf children of the root if the root is degenerate, and let its size be the number of leaves in the tree. Proof. Let G 1 , G 2 , ..., G k be as in the proof of Proposition 3.1. It is easy to see that the essential subtree of the modular decomposition of G i can be obtained from the modular decomposition of the subgraph induced by non-isolated vertices, which has O(|E i |) vertices. Therefore, given E i , the modular decomposition of G i can be found in O(|E i |) time using the linear-time modular decomposition algorithm of [START_REF] Mcconnell | Linear-time modular decomposition of directed graphs[END_REF]. Using this observation, and replacing Theorem 3.2 with Lemma 3.1 in the proof of Proposition 3.1, yields the linear time bound.

New Algebraic Operators on Symmetric Partitive

Families. By Theorem 2.3, N (F ) has a decomposition tree even when F does not have the consecutive-ones property. Therefore, N (F ) is defined even when F is itself a symmetric partitive family. THEOREM 3.4. If F is a symmetric partitive family, then T (N (F )) is obtained from T (F ) be relabeling each degenerate node as prime and each prime node as degenerate. DEFINITION 3.1. If T is the decomposition tree of a symmetric partitive family, let its complement T denote T (N (F (T ))). That is, T is the result of exchanging the roles of prime and degenerate nodes. THEOREM 3.5. If F is an arbitrary set family, then T (S (F )) = T (N (F )). DEFINITION 3.2. Let F 1 and F 2 be symmetric partitive families on V, and let T 1 and T 2 be their decomposition trees. The union F 1 ∪ F 2 is not necessarily partitive, so let T 1 ∪ T 2 denote the smallest symmetric partitive family that has F 1 ∪ F 2 as a subfamily, that is, let

T 1 ∪ T 2 = T (S (F 1 ∪ F 2 )).
These definitions of intersection and union therefore define a lattice on the set of all symmetric partitive trees on domain V. The minimal element of the lattice is the tree with V as its only internal node, with V labeled as prime, and the maximal element is this same tree, but with V labeled degenerate.

The following shows that the definitions satisfy familiar properties expected of these operators; the proof will appear in the journal version. THEOREM 3.6. Let T 1 and T 2 be decomposition trees of symmetric partitive families. Then:

• T 1 = T 1 . • T 1 ∩ T 2 = T 1 ∪ T 2 ; • T 1 ∪ T 2 = T 1 ∩ T 2 .

COROLLARY 3.1. It takes O(|V|) time to find the union of two symmetric partitive trees.

Clearly, the intersection operator is commutative and associative, as is the union operator. However, together, they are not distributive. That is, it is not true in general that T 1 ∩ (T 2 ∪ T 3 ) = (T 1 ∩ T 2 ) ∪ (T 1 ∩ T 3 ), as the following example illustrates. Let V = {1, 2, 3}, let T 1 , T 2 , T 3 be decomposition trees on V where {1, 2} is the only non-root internal node of T 1 , {1, 3} is the only non-root internal node of T 2 , and {2, 3} is the only non-root internal node of T 3 . Then T 2 ∪ T 3 is the maximal element of the lattice, hence

T 1 ∩ (T 2 ∪ T 3 ) = T 1 . However, T 1 ∩ T 2 = T 1 ∩ T 3 is the minimal element of the lattice, hence so is (T 1 ∩ T 2 ) ∪ (T 1 ∩ T 3 ).
Let a symmetric decomposition tree on domain V be elementary if it has at most one non-root internal node. THEOREM 3.7. If T is the decomposition tree of a symmetric partitive family on domain V and T has k ≥ 1 non-root internal nodes, then T can be written as T = T 1 op 1 T 2 op 2 , ..., op k-1 T k , where each op i is either ∪ or ∩, the operators are evaluated left-to-right, and each T i is elementary.

Proof. (By induction on the number of non-root internal nodes.) If there is only one non-root internal node in T , it is already elementary. Otherwise, let X be a minimal internal node, and let T be the result of removing X from T and letting its parent, Y, adopt its children. Let T k be the tree with root V and one other internal node, X. In T k , V and X have the same prime/degenerate labels as Y and X, respectively, in T . If Y is degenerate, then T = T ∩ T k , and if Y is prime, then T = T ∪ T k . Since T has k -1 non-root internal nodes, T can be decomposed into unions and intersections of k -1 elementary trees to complete the expression. Theorem 3.7 is a key element in our time bound for intersecting partitive trees (see Section 4.3).

Modules and the quotients they induce in a graph are examples of a substitution decomposition on the domain of graphs [START_REF] Möhring | Algorithmic aspects of the substitution decomposition in optimization over relations, set systems and boolean functions[END_REF]. We can define a substitution decomposition on the domain of decomposition trees of symmetric partitive families where where the roots carry a bit that it as strong or weak. Let an autonomous set denote a node of T or a union of siblings in T . Note: It is not necessary for the parent of C to be degenerate. If X is autonomous, then if it is a node of T , the factor T [X] is the subtree rooted at X, and if it is a union of a set C of siblings, the factor T [X] is the tree where X is the root, and its subtrees are the subtrees of T rooted at members of C ; in this case, if X has at least three children, then it has the same prime/degenerate label as the parent of C . Let the quotient T/X denote the operation of nodes that are subsets of X and replacing them with a single leaf. The quotient is strong if X is a node of T , and weak if it is a union of siblings that is not a node of T .

Clearly, these operations are invertible: T can be uniquely reconstructed from a quotient T/W and factor T [W] if the leaf w of T/W that corresponds to W is indicated, and a bit at the root of T [W] identifies whether the quotient was strong or weak.

Several algebraic properties have been described previously for substitution decompositions, but the introduction of union and intersection operators on partitive trees yields the following new identities, which we use in obtaining the new time bounds in this paper (Section 4.3): THEOREM 3.8. If T a and T b are decomposition trees of symmetric partitive families on domain V and A is autonomous in both T a and T b , then:

• (T a ∩ T b )/A = T a /A ∩ T b /A. • (T a ∪ T b )/A = T a /A ∪ T b /A. • (T a ∩ T b )[A] = T a [A] ∩ T b [A] • (T a ∪ T b )[A] = T a [A] ∪ T b [A]
If X and Y are disjoint autonomous sets, (T/X)/Y = (T/Y)/X. Therefore, we can write this as T/{X, Y}, and, more generally, if {A 1 , A 2 , ..., A k } are disjoint autonomous sets, the quotient T/{A 1 , A 2 , ..., A k } is uniquely defined.

Algorithmic Uses of Compact Representations.

Any algorithm can be made to run in time linear in the size of its input simply by selecting a suitably space-inefficient representation for the input. For instance, many algorithms for NP-complete problems can be made to run in "linear" time by choosing a unary representation for integer inputs. Linearity of an algorithm does not imply an optimal time bound unless the representation of the input is also asymptotically optimal.

When Booth and Lueker's algorithm [START_REF] Booth | Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms[END_REF] for finding the PQ tree is applied to a set family that is not known to have the consecutive-ones property, the algorithm either returns the PQ tree, or else rejects the family as not having the consecutive-ones property. The running time of O(|V| + l(F )) is an optimum time bound, since it uses a spaceefficient representation of arbitrary set families.

However, when it is applied to a set family that is already known to have the consecutive-ones property, the proof of optimality of the time bound is no longer valid because it assumes an input of size Θ(|V| + l(F )). Families with the consecutive-ones property have a representation that is more compact than the standard listing of elements of each member of the family. A consecutive-ones family F can be represented in O(|V| + |F |) space by giving a consecutiveones ordering, and representing each member X of F in O(1) space by giving the first and last member of the interval occupied by X in this ordering. THEOREM 3.9. It takes O(|V|+|F |) time to find the PQ tree of a consecutive-ones family F , given a consecutive-ones ordering and, for each X ∈ F , the first and last element of X in the ordering.

It is worth noting that Theorem 3.9 is the key starting point in the proofs of all of the remaining results of this paper. It also implies that, given the interval representation of an interval graph, the graph's PQ tree can be obtained in O(|V|) time if the endpoints of the intervals are integers from 1 to O(1), and in O(|V| log|V|) time if they are given as real numbers.

A similar type of result can be obtained for modular decomposition of permutation graphs. A permutation graph is obtained from two permutations of V, by letting the members of V be the vertices and letting two vertices x and y be adjacent if x is before y in one of the permutations and after it in the other [START_REF] Golumbic | Algorithmic Graph Theory and Perfect Graphs[END_REF]. Recognizing permutations and deriving their modular decomposition takes linear time [START_REF] Mcconnell | Modular decomposition and transitive orientation[END_REF]. However, it turns out that this bound for finding the modular decomposition is not optimal if the input graph is known to be a permutation graph: THEOREM 3.10. Given an O(|V|) representation of a permutation graph using two permutations of V, it takes O(|V|) time to find its modular decomposition.

4 Sketches of proofs 4.1 Theorem 3.9. If F is a set family, let its overlap graph G o (F ) be the graph that has one vertex for each member of F and an edge between two vertices iff the corresponding members of F overlap.

Given a connected component C of G o (F ), let ≡ C be an equivalence relation on S C , where if x, y ∈ S C , then x ≡ C y iff the family of members of C that contain x is the same as the family of members of C that contains y. Let C 's blocks be the equivalence classes of ≡ C . THEOREM 4.1. [START_REF] Mcconnell | A certifying algorithm for the consecutiveones property[END_REF] If F is a set family on domain V, then X ⊆ V is a node of the decomposition tree of N (F ) iff it is one of the following:

1. V or a one-element subset of V;

2.

S C for some connected component C of F 's overlap graph;

A block of a connected component of F 's overlap graph.

By Theorem 4.1, it suffices to find the connected components of F 's overlap graph and, for each component, find the component's union and its blocks. The sum of cardinalities of these unions and blocks is not O(|V|+|F |), but, since they each correspond to intervals in the consecutive-ones ordering, we can represent each of them in O(1) space by giving the starting and ending position of the interval it occupies in the consecutive-ones ordering. Since the decomposition tree has |V| leaves and each node of the decomposition tree of N (F ) has at least two children, this takes O(|V|) space.

The overlap graph does not even have O(|V| + l(F )) size. However, it suffices to find only the components of the overlap graph. Dahlhaus has given an algorithm for finding these in O(|V| + l(F )) time [START_REF] Dahlhaus | Parallel algorithms for hierarchical clustering, and applications to split decomposition and parity graph recognition[END_REF], but even this bound is too large for our purposes.

Each block of ones in a consecutive-ones ordering of a matrix can be viewed as an interval on the real line whose endpoints happen to be integers, namely, the column numbers of the first and last interval. It is easy to then perturb them to obtain a list of endpoints where no two endpoints coincide, without disturbing the overlap relation among the intervals.

Next, if x is an interval, let R(x) denote the set of intervals that overlap with x and whose right endpoints lie to the right of x. If R(x) is nonempty, let x's right parent be the member of R(x) with the rightmost right endpoint. It's left parent is defined symmetrically: let L(x) denote the set of intervals that overlap with x and whose left endpoints lie to the left of x. If L(x) is nonempty, then x's left parent is the member of L(x) whose left endpoint is leftmost. The parent graph is the graph whose vertex set is the intervals and whose edge set is {xy| one of x and y is the left or right parent of the other}.

We then apply the following lemma, whose proof is omitted because of space limitations. Given the consecutive-ones arrangement and the connected components of the overlap graph, it is easy to find the blocks, hence the PQ tree, in O(n) time.

Theorem 3.2.

DEFINITION 4.1. [START_REF] Capelle | Graph decomposition and factorising permutations[END_REF] Let {π 1 , π 2 , ..., π k } be a set of permutations of V, and let π 1 = (x 1 , x 2 , ..., x n ). If there exists j < i such that x p lies in between x i and x i+1 in one of the permutations {π 2 , ..., π k }, then let p be the minimum such j, and let us call the set {x p , x p+1 , ..., x i } a left fracture for i. Similarly, if there exists j > i + 1 such that x j lies between x i and x i+1 in one of {π 2 , ..., π k }, then let let q be the maximal such j ; {x i+1 , x i+2 , ..., x q } is a right fracture for i + 1. The fractures are the set of all left and right fractures for 1 through n.

Clearly, the fractures have the consecutive-ones property. LEMMA 4.2. Let F be the set of fractures of a set {π 1 , π 2 , ..., π k } of permutations of V. Then the decomposition tree of the common intervals is obtained from the PQ tree of F by relabeling each Q node as prime and relabeling each P node as linear. and ordering its children in the ordering in which they appear as intervals in π 1 .

The proof is omitted because of space limitations, but is not especially difficult. Lemma 4.2 and Theorem 3.9, reduce the problem of Theorem 3.2 to that of finding the fractures of {π 1 , π 2 , ..., π k } in O(kn) time. To do this, we find the fractures of {π 1 , π j } for each j from 2 to k; the ones needed for Lemma 4.2 are a subset.

To do this, we make use of the following theorem, which is due to Gabow, Bentley, and Tarjan [START_REF] Gabow | Scaling and related techniques for geometry problems[END_REF]: THEOREM 4.2. Given a length-n list L of real values and a set of p intervals {[i 1 , j 1 ], [i 2 , j 2 ], ..., [i p , j p ]} of L, it takes O(n + p) time to find a maximum element of L in each of the intervals.

Let π 1 = (x 1 , x 2 , ..., x n ) and let π = π j = (x π(1) , x π(2) , ..., y π(n) ).

Finding the right fracture of {π 1 , π j } can be accomplished by creating a list of n integers, where the integer in position π(i) is i. The right fracture of x i and x i+1 is now just the maximum integer that occurs in the interval [π(i), π(i + 1)] in this list. By Theorem 4.2, we may find all right fractures of {π 1 , π j } in O(n) time, and by a symmetric operation, all left fractures in O(n) time.

Theorem 3.1.

Let T a and T b be the two trees to be intersected. To understand the approach of the general algorithm, let us first consider the case where the trees have no prime or degenerate nodes. For T a and T b , we may construct two permutations of V whose common intervals have T a as their decomposition tree, as follows. Arrange each node's children according to their implied linear order. Get the first linear order by listing the elements in the leaves according to their left-to-right order in this ordered tree. Then, reverse the order of children at each node that is at odd depth in the tree and once again list the ordering of elements in the leaves to obtain the second linear order.

Similarly, we may construct two linear orders whose common intervals have T b as their decomposition tree. It is easy to see that, together, the two permutations from T a and the two from T b have T a ∩ T b as the decomposition tree of their common intervals.

If we allow prime nodes, but assume that T a and T b have no degenerate nodes, the procedure is similar, except that three permutations may be required to represent each of T a and T b . We omit the details, but they are not difficult.

Let us now consider the case where no linear nodes are allowed, that is, where T a and T b represent symmetric partitive families. DEFINITION 4.2. Suppose A is a set of disjoint autonomous sets in a tree T , and let X be a subset of V that does not overlap any member of A. Let R be a set consisting of one representative from each member of A. Then the set X = X ∩ ((V -S A) ∪ R) is the homomorphic image of X in the domain of T a /A and T b /A.

To find T a ∩ T b , let us write T a as a composition T 1 op 1 T 2 op 2 , ..., op k-1 T k of elementary decomposition trees, using Theorem 3.7. As in the constructive proof of the theorem, we may assume that the non-root internal node of T k is a minimal internal node X of T a , that is, a node that has only leaf children. Let T a = T 1 op 1 T 2 op 2 , ..., op k-2 T k-1 , so that T a can be written as T a op k-1 T k . It is easy to see from the proof of Theorem 3.7 that T a is obtained from T a by removing X and letting its parent inherit its children.

Let T k be the result of changing the root of T k to degenerate, if it is not already degenerate. Let A be the maximal unions of siblings of T b that are subsets of X. Then each member of A is autonomous T a , T a , T k , and T b . Let X and V be the homomorphic images of X and V, respectively, under the quotient by A. X can be represented by selecting one representative vertex from each member of A, and V can be represented as (V -X) ∪ X . Note that X is a node of T a /A, and V is the domain of T a /A, T a /A, T k /A, and T b /A.

The following is not hard to prove using the algebraic operators of Section 3.2: Steps 1 and 6 are obvious.

LEMMA 4.3. (T a ∩ T b )/A = T a /A ∩ T k /A ∩ T b /A.
Step 5 is trivial:

(T a ∩ T b )[Y] is equal to T a [Y] if Y is prime, and it is equal to T b [Y] if Y is degenerate.
Step 4 is solved by recursion, and works by induction on the number of nodes of T a ; its correctness follows from Lemma 4.3. The difficulty for the time bound is Steps 2 and 3.

It is easy to get an O(|X|) bound for Step 2 using the following trick, which is given in a variety of sources, such as [START_REF] Mcconnell | Linear-time modular decomposition of directed graphs[END_REF]: LEMMA 4.4. Given X ⊆ V and the inclusion tree of a treelike family F , it takes O(|X|) time to find the maximal members of F that are subsets of X. Initially, this is O(|V|) and it is positive for every tree passed as T b to a recursive call.

Let N be the set of nodes that are both proper ancestors of leaf subsets of X in T b /A and proper descendants of their least common ancestor. Since no internal node has more than one leaf child in X , it is easy to see that |N | = Ω(|X |). Using Lemma 4.4, we must spend O(|X|) time finding A. In addition, we show that we must spend O(1) time operating on each each member of N . However, we also show that each prime node in N is destroyed, reducing the potential by 1 (n(T b /A) decreases), and each degenerate node either loses a child or is split into two degenerate nodes This gives O(n) algorithms for finding the intersection of symmetric partitive families when the nodes are prime and linear, or prime and degenerate. The case where T a and T b can have all three types of nodes can be solved in O(n) time by a combination of these steps; full details will be given in the journal version.

Conclusions and Open Problems

Though they have allowed us to get improved bounds for problems involving arbitrary partitive families, the operators of Section 3.2 have been defined only for symmetric partitive families. An obvious question is how to to generalize them to arbitrary partitive families.

A definition of the intersection of two partitive is immediate from Theorem 2.4. One way to define the union of arbitrary partitive trees T 1 and T 2 is T 1 ∪ T 2 = C (F (T 1 ) ∪ F (T 2 )).

Here is one argument in favor of this definition. In Application 3.2, the algorithm returns the decomposition tree of a symmetric partitive tree as the PQ tree, and therefore fails to assign the orderings to children of Q nodes. This can be added in a separate step. However, a simpler alternative is to compute the PQR tree for the top half M 1 of the matrix and for the bottom half M 2 , interpret the P nodes as prime, the Q nodes as linear, and R nodes as degenerate, and compute the union of these two trees as we have just defined it. It is immediate from the definition of the PQR tree that this is the PQR tree of the whole matrix. If the matrix has the consecutive-ones property, there are no R nodes, and the linear order on children of linear nodes gives the desired ordering of children of Q nodes.

In addition, we claim that, under these definitions of union and intersection, Theorem 3.7 generalizes easily to arbitrary partitive families. One disadvantage of this definition of the union is that it is not a generalization of the definition of Section 3.2, since the union of two symmetric partitive families need not be symmetric: if V = {a, b, c}, T 1 has {a, b} as an internal node, and T 2 has {b, c} as an internal node, then the union has a linear root. Thus, this union operation gives a different result from that of Section 3.2. Also, we do not know of a reasonable definition of the complement operation that gives an analog of Theorem 3.6 on arbitrary partitive families. If this is possible, it may require not just a definition of the complement, but also a different definition of the union than the one we have suggested here.

  Figure2: The modular decomposition represents the modules of a graph with an ordered tree whose nodes are subsets of V. Each internal node is labeled linear (L), prime (P), or degenerate(D). A subset of the vertices is a module iff it is a node of the tree, the union of a set of children of a degenerate node, or the union of a set of children of a linear node that is consecutive in the left-to-right order of its children. The modules of the depicted graph that are not nodes of the tree are unions of children of {e, f, g}, namely, {e, f}, {e, g}, and {f, g}, and unions of consecutive children of {a, b, c, d, e, f, g, h, i}, namely, {a, b, c, d, e, f, g, h} and {c, d, e, f, g, h, i}. To represent the decomposition, it is not necessary to label internal nodes with the set that they correspond to, as this is given by the union of leaf descendants of the node. .

APPLICATION 3 . 1 .

 31 The following is immediate from this example and Theorem 3.1: THEOREM 3.2. It takes O(kn) time to find the common intervals of a set {π 1 , π 2 , ..., π k } of permutations of a set V.The previous time bound for this problem was O(nk + K), where K is the number of common intervals [?]. (Note that K can be quadratic in n).

PROPOSITION 3 . 1 .

 31 It takes O(k|V| + |E|) time to find the modular decomposition of a two-structure that has vertex set V, edge set E, and k edge colors.

LEMMA 3 . 1 .

 31 Let T 1 , T 2 , ..., T k be partitive trees on domain V, and let T 1 , T 2 , ..., T k be their essential subtrees. It takes time proportional to the sum of sizes of T 1 , T 2 , ..., T k to find T 1 ∩ T 2 ∩ ... ∩ T k . THEOREM 3.3. It takes O(|V|+|E|) time to find the modular decomposition of an arbitrary two-structure.

LEMMA 4 . 1 .

 41 The connected components of the parent graph are the same as the connected components of the overlap graph.

ALGORITHM 4 . 1 . 3 . 6 .

 4136 Find the intersection T a ∩ T b of two decomposition trees of symmetric partitive families.1. Choose a minimal internal node X of T a .2. Find the familyA of maximal autonomous sets of T b that are subsets of A, let T a and T k be as in Lemma 4.3. Using the simple structure of T k , find T b = T k /A ∩ T b /A. 4. Find (T a ∩ T b )/A by recursively evaluating T a /A ∩ T b . 5. Find (T a ∩ T b )[Y] for each Y ∈ A. Substitute these trees into (T a ∩ T b )/A to obtain T a ∩ T b .

  To obtain the O(|V|) time bound for Algorithm 4.1, we use an amortized analysis[START_REF] Tarjan | Data structures and network algorithms[END_REF][START_REF] Cormen | Introduction to Algorithms[END_REF]. Let n(T ) denote the number of nodes of of a decomposition tree T , let D(T ) denote the set of degenerate nodes, and if Z ∈ D(T ) let d(Z, T ) denote the number of children of Z in T . Let us define a potential function φ(T b ) = n(T b ) + Z∈D(T b ) (d(Z, T b ) -1).

  ( Z∈D(T b /A) (d(Z, T b /A) -1) decreases). This drop in potential covers the cost of operating on members of N , and Ω(|X |) of the O(|X|) cost of applying Lemma 4.4. The remaining O(|X| -|X |) cost is covered by the decrease of Ω(|X| -|X |) in going from φ(T b ) to φ(T b /A), which reduces in the number of nodes by that amount.