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ABSTRACT 

This paper investigates how to adapt some discrepancy-based search methods to solve Hybrid Flow Shop (HFS) 

problems in which each stage consists of several identical machines operating in parallel. The objective is to determine 

a schedule that minimizes the makespan. We present here an adaptation of the Depth-bounded Discrepancy Search 

(DDS) method to obtain near-optimal solutions with makespan of high quality. This adaptation for the HFS contains no 

redundancy for the search tree expansion. To improve the solutions of our HFS problem, we propose a local search 

method, called Climbing Depth-bounded Discrepancy Search (CDDS), which is a hybridization of two existing 

discrepancy-based methods: DDS and Climbing Discrepancy Search. CDDS introduces an intensification process 

around promising solutions. These methods are tested on benchmark problems. Results show that discrepancy methods 

give promising results and CDDS method gives the best solutions. 
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1. INTRODUCTION 

 

In this paper, we consider the hybrid flow-shop (HFS) scheduling problem which can be stated as follows. Consider a 

set J={J1, J2, …, JN} of N jobs and a set E={1,2,…,L} of L stages, each job is to be processed in the L stages. Solving 

the HFS problem consists in assigning a specific machine to each operation of each job as well as sequencing all 

operations assigned to each machine. Machines used at each stage are identical and let M
(s) 

be the number of machines 

in the stage s. Successive operations of a job have to be processed serially through the L stages. Job preemption and job 

splitting are not allowed. The objective is to find a schedule which minimizes the maximum completion time, or 

makespan, defined as the elapsed time from the start of the first operation of the first job at stage 1 to the completion of 

the last operation of the last job at stage L. 

 

The HFS problem is NP-Hard even if it contains two stages and when there is, at least, more than one machine at a 

stage [7]. Using popular three-field notation (see for example [13]), this problem can be denoted by FL(P)||Cmax. 

Detailed reviews of the applications and solution procedures of the HFS problems are provided in [8][14][17][21]. 

 

Most of the literature has considered the case of only two stages. In [17], authors presented a case study in a two-stage 

HFS with sequence-dependent setup times and dedicated machines. For more general cases (i.e., with more than two 

stages), some authors developed a Branch and Bound (B&B) method for optimizing makespan, which can be used to 

find optimal solutions of only small-sized problem instances [2]. Later, this procedure has been improved in [23]. In this 

latter study, several heuristics have been developed to compute an initial upper bound and a genetic algorithm improves 

the value of this upper bound during the search. In order to reduce the search tree, new branching rules are proposed in 

[25]. Another B&B procedure for this problem is proposed by Carlier and Néron in [4]. They proved that their 

algorithm is more efficient than previous exact solution procedures. 

 

Different heuristic methods were developed to solve HFS problems. Brah and Loo [3] expanded five standard flow shop 

heuristics to the HFS case and evaluated them with respect to Santos et al.’s lower bounds [24]. Recently, a new 

heuristic method based on Artificial Immune System (AIS) has been proposed to solve HFS problems [5] and proves its 

efficiency. Results of AIS algorithm have been compared with Carlier and Néron’s lower bounds. 

 

Lower bounds are developed in the literature which can be used to measure the quality of heuristic solutions when the 

optimal solution is unknown. Various techniques were proposed for obtaining lower bounds. In [16], authors reduce the 

HFS problem to the classical one and the optimal makespan of the latter one is a lower bound on the optimal makespan 

of the original problem. In [18], authors defined lower bounds based on the single-stage subproblem relaxation. The 

aggregation of the work yields a very rich class of lower bounds based on computing the total amount of work on some 
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stages or machines [6]. Brah and Hunsucker proposed two bounds for the HFS problem, one based on machines and 

another based on jobs [7]. Their lower bounds have been improved, later, by Portmann in [23].  

 

The remainder of the paper is organized as follows. Section 2 gives an overview of discrepancy-based search methods. 

Section 3 presents how to adapt some of these methods to solve the HFS problem and details the lower bounds used. 

Section 4 is dedicated to an illustrative example to explain the proposed search methods. In Section 5, evaluations of the 

proposed methods on usual benchmarks are detailed. Finally we report some conclusions and open issues to this work. 

 

 

2. DISCREPANCY-BASED SEARCH METHODS 

 

Discrepancy-based methods are tree search methods developed for solving combinatorial problems. These methods 

consider a branching scheme based on the concept of discrepancy to expand the search tree. This can be viewed as an 

alternative to the branching scheme used in a Chronological Backtracking method. 

 

The primal method, Limited Discrepancy Search (LDS), is instantiated to generate several variants, among them, 

Depth-bounded Discrepancy Search (DDS) and Climbing Discrepancy Search (CDS). 

 

2.1 Limited Discrepancy Search 

 

The objective of LDS proposed by Harvey in [12] is to provide a tree search method for supervising the application of 

some instantiation heuristics (variable and value ordering). It starts from an initial variable instantiation suggested by a 

given heuristic and successively explores branches with increasing discrepancies from it, i.e. by changing the 

instantiation of some variables. This number of changes corresponds to the number of discrepancies from the initial 

instantiation. The method stops when a solution is found (if such a solution does exist) or when an inconsistency is 

detected (the tree is entirely expanded). 

 

The concept of discrepancy was first introduced for binary variables. In this case, exploring the branch corresponding to 

the best Boolean value (according a value ordering) involves no discrepancy while exploring the remaining branch 

implies one discrepancy. It was then adapted to suit to non-binary variables in two ways. The first one considers that 

choosing the first ranked value (rank 1) leads to 0 discrepancy while choosing all other ranked values implies 1 

discrepancy. In the second way, choosing value with rank r implies r–1 discrepancies. 

 

Dealing with a problem defined over N binary variables, an LDS strategy can be described as shown in Algorithm 1. 

 
k  0 -- k is the number of discrepancies 

kmax  N -- N is the number of variables 

Sref  Initial_solution() -- Sref is the reference solution 

while No_Solution() and (k < kmax) do 
 k  k+1 

 -- Generate leaves at discrepancy k from Sref 

 -- Stop when a solution is found 

 Sref’  Compute_Leaves(Sref, k) 

 Sref  Sref’ 

end while 

Algorithm 1. Limited Discrepancy Search 

 

In such a primal implementation, the main drawback of LDS is to be too redundant: during the search for solutions with 

k discrepancies, solutions with 0 to k–1 discrepancies are revisited. To avoid this, Improved LDS method (ILDS) was 

proposed in [15]. Another improvement of LDS consists in applying discrepancy first at the top of the tree to correct 

early mistakes in the instantiation heuristic; this yields the Depth-bounded Discrepancy Search method (DDS) proposed 

in [26]. In the DDS algorithm, the generation of leaves with k discrepancies is limited by a given depth. 

All these methods (LDS, ILDS, DDS) lead to a feasible solution, if it exists, and are closely connected to an efficient 

instantiation heuristic. These methods can be improved by adding local constraint propagation such as Forward 

Checking [11]. After each instantiation, Forward Checking suppresses inconsistent values in the domain of not yet 

instantiated variables involved in a constraint with the assigned variable. 

 

2.2 Climbing Discrepancy Search 

 

CDS is a local search method which adapts the notion of discrepancy to find a good solution for combinatorial 

optimization problems [20]. It starts from an initial solution suggested by a given heuristic. Then nodes with 

discrepancy equal to one are explored first, then those at discrepancy equal to 2, and so on. When a leaf with an 
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improved value of the objective function is found, the reference solution is updated, the number of discrepancies is reset 

to 0, and the process for exploring the neighborhood is again restarted (see Algorithm 2). 

 
k  0 -- k is the number of discrepancies 

kmax  N -- N is the number of variables 

Sref  Initial_Solution() -- Sref is the reference solution 

while (k < kmax) do 
 k  k+1 

 -- Generate leaves at discrepancy k from Sref 

 Sref’  Compute_Leaves(Sref, k) 

 if Better(Sref’, Sref) then 
  -- Update the current solution 

  Sref  Sref’ 

  k  0 

 end if 

end while 

Algorithm 2. Climbing Discrepancy Search 

 

The aim of CDS strategy is not to find only a feasible solution, but rather a high-quality solution in terms of criterion 

value. As mentioned by their authors, the CDS method is close to the Variable Neighborhood Search (VNS) [9]. VNS 

starts with an initial solution and iteratively explores neighborhoods more and more distant from this solution. The 

exploration of each neighborhood terminates by returning the best solution it contains. If this solution improves the 

current one it becomes the reference solution and the process is restarted. The interest of CDS is that the principle of 

discrepancy defines neighbourhoods as branches in a search tree. This leads to structure the local search method to 

restrict redundancies. 

 

2.3. Example 

 
As an example to illustrate the above exploration processes, let us consider a decision problem consisting of three 

binary variables x1, x2, x3. The value ordering heuristic orders nodes left to right and, by convention, we consider that 

we descend the search tree to the left with xi = 0, to the right with xi = 1,  i = 1,2,3. A solution is obtained with the 

instantiation of the three variables. Initially the reference solution Sref is reached with the instantiation [x1 x2 x3] = [0 0 0]. 

The solutions with 1 discrepancy from Sref are those with one digit of [x1 x2 x3] equal to 1, e.g., [0 0 1]. To graphically 

represent the discrepancies that are performed to reach a solution (and also to be more homogeneous in the explanation 

of the different strategies), we associate a black circle to an instantiation which follows the value ordering heuristic 

whilst an open circle designates a discrepancy. In particular, following this semantics, Sref is then associated to  and 

the solution with one discrepancy on x3 is associated to . Finally, the value of a given objective function f (suppose 

a minimization problem) is associated to a solution. 

 

Figure 1 illustrates the search trees obtained using LDS (a), DDS (b), and CDS (c). For all these three methods, the 

search starts from a reference solution Sref of value fref obtained with [x1 x2 x3] = [0 0 0]. We see in Figure 1.a that the 8 

leaves that are obtained with LDS correspond to the different solutions that are reachable from . In Figure 1.b, the 

tree contains 4 leaves only since the depth d is fixed at 2 and thus discrepancies can solely be made over x1 and x2. 

Figure 1.c illustrates the search tree obtained with CDS. The first reached solution from Sref is of value f1 with a 

corresponding discrepancy equal to 1. Since f1 is greater than fref, then a second solution of value f2 is generated. Again, 

its cost is compared with fref  and this process is repeated until a solution of value f4 having an improved cost is 

obtained. Thus, f4 becomes the new reference solution. Therefore, the next solution (of criterion value f5) is only at one 

discrepancy from this new reference solution. 
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Figure 1. Three discrepancy search methods 

 

 

3. DISCREPANCY-BASED METHODS TO SOLVE THE HYBRID FLOW SHOP PROBLEM 

 

3.1 Problem Variables and Constraints 

 

To solve the HFS problem under study, at each stage, we have to select a job, to allocate a resource for the operation of 

the selected job, and to fix its start time. Since the start time of each operation will be fixed as soon as possible to 

reduce the makespan, we only consider two kinds of variables: job selection and resource allocation. The values of 

these two kinds of variables are ordered following a given instantiation heuristic presented below. 

 

At each stage s, we denote by X
s
 the job selection variables vector and by A

s
 the resource allocation variables vector. 

Thus, 
s

i
X corresponds to the i

th
 job in the sequence and 

s

i
A is its affectation value ( Ni ,...,1= , with N the number of 

jobs). The domain of 
s

i
X  variable is {J1, J2, …, JN}, Ni ,...,1=  and Ls ,...,1=  which corresponds to the choice 

of job to be scheduled. The values taken by the s

iX  variables have to be all different. The s

iA domains are 

{1,…, M
(s)

}, Ni ,...,1= . Moreover, we consider precedence constraints between two consecutive operations of the 

same job and duration constraints for each operation at a given stage. 

 

3.2 Discrepancy for Hybrid Flow Shop 

 

Despite the fact we have two kinds of variables, we only consider here just one kind of discrepancy: discrepancy on job 

selection variables. Indeed, our goal is to improve the makespan of our solutions, and since all resources are identical, 

discrepancy on allocation variables cannot improve it. Thus, only the sequence of jobs to be scheduled may have an 

impact on the total completion time. More precisely, we aim at finding a good job order selection on the first stage. 

Next, stages 2,…,L are sequenced in turn. Each stage being sequenced using a specified priority rule. Hence a job 

selection order is defined for stage 1 and then a complete schedule is obtained through propagation. Clearly, an 

alternative strategy would require defining a specific job order selection for each stage. However, we have performed 

some preliminary computational experiments and we found that this latter strategy requires very long computer times 

without yielding significant better solutions. 

 

Therefore, doing a discrepancy consists in selecting another job to be scheduled than the job given by a value ordering 
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heuristic. Job selection variables are N-ary variables. The number of discrepancy is computed as follows: the first value 

given by the heuristic corresponds to 0 discrepancy, all the other values correspond to 1 discrepancy (see Figure 2). 
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Figure 2. Discrepancies on job selection (stage s) 

 

To obtain solutions of 1+k  discrepancies directly from a solution with k discrepancies (without revisiting solutions 

with 0,…, k-1 discrepancies), we consider the last instantiated variable having the k
th

 discrepancy value and we just 

have to choose a remaining variable for the k+1
th

 discrepancy value. 

 

At each stage s, the maximum number of discrepancy is 1N  which leads to develop a tree of !N  leaves (all the 

permutations of jobs are then obtained). 

 

3.3 Instantiation Heuristics and Propagation 

 

Variable ordering follows a stage-by-stage policy. The exploration strategy first consider job selection variable to 

choose a job, secondly consider resource allocation variable to assign the selected job to a resource. 

 

We have two types of value ordering heuristics: the first one ranks jobs whilst the second one ranks resources. 

 

Type 1: job selection. Several priority lists have been used. We first give the priority to the job with the earliest start 

time (EST) and in case of equality we consider three alternative rules: SPT (Smallest Processing Time) rule on the first 

stage, LPT (Longest Processing Time) rule on the first stage, and CJ (Critical Job) rule. The latter rule gives the priority 

to the job with the longest total duration. 

We also consider all different combinations between these three heuristics. So, we give priority to the job having the 

earliest start time (EST) and, in case of equality, we consider SPT (respectively LPT / CJ) rule on the first stage and LPT 

or CJ (resp. SPT or CJ / SPT or LPT) in the second, and so on. The idea behind these combinations has the aim to 

mitigate the various configurations of machines. 
 

Type 2: assignment of operations to machines. The operation of the job chosen by the heuristic of Type 1, is assigned to 

the machine such that the operation completes as soon as possible, that is, following an earliest completion time (ECT) 

rule. This latter rule is dynamic; the machine with the highest priority depends on the machines previously loaded. 

 

After each instantiation of Type 2, we use a Forward Checking constraint propagation mechanism to update the 

finishing time of the selected operation and the starting time of the following operation in the job routing. We also 

maintain the availability date of the chosen resource. 

 

3.4 Proposed Discrepancy-based Methods 

 

In our problem, the initial leaf (with 0 discrepancy) is a solution since we do not constrain the makespan value. 

Nevertheless we may use discrepancy principles to expand the tree search for visiting the neighborhood of this initial 

solution. The only way to stop this exploration is to fix a limit for the CPU time or to reach a given lower bound on the 

makespan. To limit the search tree, one can use the DDS method which considers in priority variables at the top of the 

tree (job selection at the initial stages). 

 

Thus, we first propose an adaptation of the initial DDS method based on the use of the variable ordering heuristics of 

types 1 & 2, joined with a computation of lower bounds at each node according to Portmann et al.’s rules [23] (see 

below). 
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Furthermore, to improve the search we may consider the CDS method which goes from an initial solution to a better 

one, and so on. The idea of applying discrepancies only at the top of the search tree can be also joined with the CDS 

algorithm to limit the tree search expansion. We have then developed a new strategy called CDDS method (Climbing 

Depth-bounded Discrepancy Search). With this new method, one can restrict neighborhoods to be visited by only using 

discrepancies on variables at the top of the tree (see Algorithm 3). 

 
k  0  -- k is the number of discrepancy 

kmax  N -- N is the number of variables 

Sref  Initial_Solution() -- Sref is the reference solution 

while (k < kmax) do 
 k  k+1 

 -- Generate leaves at discrepancy k from Sref 

 -- and at d-depth value from the top of the tree with 1  d  k 

 Sref’  Compute_Leaves(Sref, k) 

 if Better(Sref’, Sref) then 
  -- Update the current solution 

  Sref  Sref’ 

  k  0 

 end if 

end while 

Algorithm 3. Climbing Depth-bounded Discrepancy Search 

 

Figure 3 shows the tree obtained by CDDS from the examples depicted in Figures 1.b and 1.c 
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<  fref 
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Figure 3. The Climbing Depth-bounded Discrepancy Search method 

 

We can further enhance the CDDS strategy through the calculation of a lower bound at each node. So, we have the idea 

of introducing the lower bounds developed in [7] and improved in [23] which can be presented as follows (see also [14] 

as a survey presentation): 

 

Suppose all jobs are sequenced on stages 1 through L-1 and a subset Y of jobs is already scheduled at stage s. Let 

consider Sch
(s)

(Y) a partial schedule of jobs Y at stage s and let C[Sch
(s)

(Y)]m be the completion time of the partial 

sequence on machine m. Having fixed the schedule of jobs on the first L-1 stages and that of the jobs in Y at stage s, the 

average completion time of all jobs at stage s, ACT[Sch
(s)

(Y)], can be computed as follows: 

 ACT[Sch
(s)

(Y)]= 
)(

)(

)(

1

)( )]([
)(

s

YJj

s
j

s

m

M

m

s

M

p

M

YSchC
s

=
+  (1) 

The expression of the maximum completion time of jobs in Y at stage s, MCT[Sch
(s)

(Y)], is given by 

 

 MCT[Sch
(s)

(Y)]= 
)(1

max
s

Mm

 C[Sch
(s)

(Y)]m (2) 

 

The machine based lower bound, LBM, is defined by 

 

 

                                              

                              ACT[Sch
(s)

(Y)] + 
YJi

min {
+=

L

ss

s
ip

1'

)'( }  if  ACT[Sch
(s)

(Y)]  MCT[Sch
(s)

(Y)]  
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          LBM[Sch
(s)

(Y)]=                                                                     (3) 

                              MCT[Sch
(s)

(Y)] + 
Yi

min {
+=

L

ss

s
ip

1'

)'( }             otherwise 

The job based lower bound, LBJ, is given by 

 

 LBJ[Sch
(s)

(Y)]= 
)(1

min
s

Mm

{C[Sch
(s)

(Y)]m}+ 
YJi

min {
=

L

ss

s
ip

'

)'( } (4) 

Finally, we obtain the composite lower bound, LBC, which given by 

 

           LBC[Sch
(s)

(Y)]= max{ LBM[Sch
(s)

(Y)], LBJ[Sch
(s)

(Y)]}                                     (5)            

 

The LBM bound (3) is improved in Portmann et al. [23]. Namely, when ACT[Sch
(s)

(Y)]= MCT[Sch
(s)

(Y)] and J-Y=  

then it may happen that 

 

 
Yi

min {
+=

L

ss

s
ip

1'

)'( } > 
YJi

min {
+=

L

ss

s
ip

1'

)'( } (6) 

 

holds, for the processing times of the jobs in Y and J-Y are unrelated. In this case LBM can be improved by the 

difference of the left and right hand sides of (6). That is, when J-Y= the improved lower bound becomes 

 ACT[Sch
(s)

(Y)] + 
YJi

min {
+=

L

ss

s
ip

1'

)'( }  if  ACT[Sch
(s)

(Y)] > MCT[Sch
(s)

(Y)] 

 LBM[Sch
(s)

(Y)] = MCT[Sch
(s)

(Y)] + 
Yi

min {
+=

L

ss

s
ip

1'

)'( }  if  ACT[Sch
(s)

(Y)] < MCT[Sch
(s)

(Y)] (7) 

 ACT[Sch
(s)

(Y)] + max{
YJi

min

+=

L

ss

s
ip

1'

)'( ,
Yi

min

+=

L

ss

s
ip

1'

)'( } if  ACT[Sch
(s)

(Y)] = MCT[Sch
(s)

(Y)] 

 

It is noteworthy that better bounds are available in the literature (see Haouari and Gharbi [10]). However, we have 

chosen to implement LBM for the sake of simplicity and efficiency.  

In order to explain the global dynamics of the Climbing Depth-bounded Discrepancy Search method with the 

computation of lower bounds, Section 4 is dedicated to the description of an illustrative example. With this new method, 

one can restrict neighborhoods to be visited by using the evaluation of each visited node. This evaluation is ensured by 

the calculation of the lower bounds (see Algorithm 4). 

 
k  0 -- k is the number of discrepancy 

kmax  N -- N is the number of variables 

Sref  Initial_Solution() -- Sref is the reference solution 

UB  C0 -- C0 is the value of the initial makespan 

while (k  kmax) do  

       k  k+1 

    -- Generate leaves at discrepancy k from Sref  

    -- and at d-depth value from the top of the tree with 1  d  k 

    -- Each node such that LB(node) > UB is pruned 

       Sref’  Compute_leaves (Sref, k, UB) 

       if Better(Sref’, Sref) then 
           -- Update the current solution 
        Sref  Sref’ 

        k  0 

       end if 

end while 

Algorithm 4. Complete Climbing Depth-bounded Discrepancy Search (with lower bounds) 

 

 

4. AN ILLUSTRATIVE EXAMPLE 

 

Let consider a HFS of dimension 4 2 (i.e., 4 jobs and 2 stages) with the first stage composed of only one machine M1, 

the second stage of two machines M21 and M22. The allowed depth (d) is fixed at 2. 
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Table 1. Processing times of a 4 2 hybrid flow shop 

Jobs Stage 1 Stage 2 

1 O11 8 O12 7 

2 O21 7 O22 8 

3 O31 8 O32 8 

4 O41 7 O42 8 

 

Figure 4 shows the initial solution (0-discrepancy) provided by EST-SPT rule (in the first stage) which gives the 

following order for the job selection: (J2,J4,J1,J3) (the lexicographical order is applied for ties breaking). The makespan 

of the obtained solution is equal to 38. This latter value of makespan is considered as the first upper bound value of the 

problem: UB=38. 

 
 

  30   22   14    7 

J4 J1 J2 J3 

Stage 1 
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  15   22   29   38 
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Figure 4. Initial solution 

 
The neighbourhood associated to 1-discrepancy of this initial solution, as seen in Figure 5, consists of the following 

sequences (in bold the job upon which is done the discrepancy): 

 

d=1 d=2 

J4, J2, J1, J3 

J1, J2, J4, J3 

J3, J2, J4, J1 

J2, J1, J4, J3 

J2, J3, J4, J1 

 

 

All resource allocation variables take the same value 
1

1
MA

i
=  because we have only one machine at the first stage. 
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Figure 5. The neighborhood of the initial solution 

 

For each of these sub-sequences, the next iteration of our algorithm schedules all the jobs and computes at each node 

the value of the lower bound. We use the LBC bound presented in Section 3. We start by the first sequence {J4,J2,J1,J3} 

and we calculate the LB at each node. Consider the subset Y = {J4,J2,J1}, one has: 
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ACT[Sch
(s)

(Y)] = 
1

822+
= 30 ; MCT[S

(1)
(Y)] = 22. 

 Thus,   LBM [Sch
(s)

(Y)] = 30 + 8= 38 

 and   LBJ[Sch
(s)

(Y)] = 22 +16=38. 

 Consequently  LBC[Sch
(s)

(Y)] = max(38,38)=38. 

 

This value of LB is equal to the initial upper bound. So, we prune this branch (see Figure 6). The same strategy is 

applied for the second sequence {J1,J2,J4,J3} and we obtain at the first node LB=38. So, we stop the exploration of this 

branch. 
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Figure 6. Neighbourhood’s exploration 

 
The third sequence{J3,J2,J4,J1} gives a schedule of which the cost is Cmax = 37 (Figure 7). This latter will be considered 

as the new reference solution and the number of discrepancy is reset to zero. So, we stop the exploration of the 

neighbourhood of the sequence {J2,J4,J1,J3} and we define a new reference solution’s neighbourhood. This later is 

shown in Figure 8. The upper bound is updated and it will be equal to 37 (UB=37). 

 

J4 J1 J2 J3 

Stage 1 

Stage 2 

J2 

J4 J1 J3 

   8   15   22   30 
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Figure 7. The third sequence solution 

 
The neighbourhood associated to 1-discrepancy of the (new) reference solution is composed of the following sequences: 

 

d=1 d=2 

J2,J3,J4,J1 

J4,J3,J2,J1 

J1,J3,J2,J4 

J3,J4,J2,J1 

J3,J1,J2,J4 
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Figure 8. The neighbourhood of the new reference solution 

 
The calculation of lower bounds at each node will guide the method for searching in promising branches (see Figure 9). 

The search will be stopped when there are no more branches to explore. The best solution is given in Figure 7 

(Cmax=37). 
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Figure 9. Neighbourhood’s exploration for the new reference solution 

 

 

5. COMPUTATIONAL EXPERIMENTS 

 

5.1 Test beds 

 

We compare our adaptation of the DDS method and our proposed CDDS method for solving a set of 77 benchmarks 

instances which are presented in [4][22]. In [22], all the problems have been solved using a Branch & Bound (B&B) 

method operating with use of satisfiability tests and time-bound adjustments. They calculated lower bounds (LBs) of the 

problems and they limited their search within 1800 s (thus, several instances were not solved to optimality). We also, 

compare DDS and CDDS methods with AIS strategy [5] which is, to the best of our knowledge, the most recent and best 

solution approach developed so far for solving the HFS. 

 

In our study, we propose to compare our solutions with these LBs. We also run our algorithm within 1800 s. If no 

optimal solution was found within 1800 s, then the search is stopped and the best solution is output as the final schedule. 

The depth of discrepancy in our methods varies between 3 and 8 from the top of the tree. We have carried out our tests 

on a Pentium IV 3.20 GHz with 448 Mo RAM. DDS and CDDS algorithms have been programmed using C language 

and run under Windows XP Professional. 

 

5.2. Results 

 

In Table 2, for all considered problems, we present the best makespan values )( maxBestC  obtained by DDS and CDDS 

methods among the different value ordering heuristics (SPT, LPT, CJ, SPT-LPT, SPT-CJ, LPT-SPT, LPT-CJ, CJ-SPT, 



 - 13 - 

CJ-LPT ), and the B&B algorithm of [22] within 1800 s. Deviation from LBs is calculated as follows: 

 

% deviation = 
LowerBound

LowerBoundBestC
max   100 

 

Lower bounds and deviations from such LBs are given in the last four columns. 

 

In [22], some of the problems are grouped as hard problems. Hard problems consist of the c and d types of 10 5 and 

15 5 problems where for configuration c, machines of the center are critical and there are two machines in the central 

stage, while in configuration d there are three machines at all stages. The rest of the problems (all a, b types, and 10 10 

c type problems) are identified as easy problems. In configuration a, the machine of the central stage is critical and there 

is only one machine at this stage, while in configuration b the first stage is critical with only one machine. As shown in 

Table 2, for a and b type problems better results have been found than for c and d type problems. Indeed, the machine 

configurations have an important impact on problems complexity that affects solution quality [5]. 

 

Easy problems instances rapidly converge compared with hard ones. CDDS method takes 5 min in average to obtain all 

the solutions for easy problems, while DDS method takes 10 min in average. For hard problems, DDS algorithm takes 

30 min and CDDS methods takes 25 min in average. Both of B&B and AIS algorithms take 4 min in average when 

resolving easy problems, while for hard problems B&B algorithm takes 25 min and AIS algorithm takes 10 min. Finally, 

note that both DDS and CDDS methods have been evaluated in the same computational environment while execution 

times of B&B and AIS are just reported from [22] and [5], respectively. 

 

In Table 3, we compare the efficiency of the four methods for easy and hard problems. As it can be noticed from the 

table, for easy problems, DDS and CDDS algorithms provide better results than B&B, but for hard problems B&B 

algorithm and AIS strategy are better than DDS algorithm. Moreover, we observe that CDDS performs remarkably well 

on both problem classes since it yields better solutions than those provided by B&B and AIS methods. 

 

Table 2. Solutions of test problems (bold problems have been identified as hard problems) 

Cmax % deviation (from LBs) Problem 

B&B DDS CDDS AIS 

LB 

B&B  DDS CDDS AIS 

J10c5a 111.6 111.6 111.6 111.6 111.6 0.0 0.0 0.0 0.0 

J10c5b 122.7 122.7 122.7 122.7 122.7 0.0 0.0 0.0 0.0 

J10c5c 71.0 72.8 71.0 71.2 71.0 0.0 2.6 0.0 0.2 

J10c5d 66.8 68.5 66.8 66.8 66.8 0.0 2.5 0.0 0.0 

J10c10a 149.8 150.8 149.8 149.8 149.8 0.0 0.7 0.0 0.0 

J10c10b 163.0 163.2 163.0 163.0 163.0 0.0 0.1 0.0 0.0 

J10c10c 128.0 118.8 116.5 117.0 108.0 19.1 10.5 6.7 8.8 

J15c5a 161.8 162.3 161.8 161.8 161.8 0.0 0.4 0.0 0.0 

J15c5b 161.2 161.5 161.2 161.2 161.2 0.0 0.2 0.0 0.0 

J15c5c 87 ;8 92.0 86.2 86.2 85.8 2.7 7.5 0.4 0.4 

J15c5d 105.5 102.5 96.7 96.7 88.8 24.8 20.0 11.9 11.9 

J15c10a 207.0 207.5 206.8 206.8 206.8 0.1 0.3 0.0 0.0 

J15c10b 211.8 211.8 211.8 211.8 211.8 0.0 0.0 0.0 0.0 

Average           3.68 3.58 1.62 1.68 

 

We found that both CDDS and AIS methods give optimal solutions for 61 instances out of 75. Moreover, for the 

remaining 14 instances, CDDS outperforms AIS for 3 instances, while AIS outperforms CDDS for only one instance. 

 

Table 3. Relative efficiency of the four methods 

Method Easy problems Hard problems 

 % deviation % deviation 

B&B 2.21 6.88 

AIS 1.01 3.12 

DDS 1.42 8.01 

CDDS 0.96 3.06 
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If all problems are considered, the average deviation from LBs for DDS algorithm is 3.58%, while the average deviation 

of B&B is 3.68% and for AIS is 1.679%. For CDDS the average is only of 1.627%. 

 

Table 4 presents a comparison between the value ordering heuristics efficiency. For both DDS and CDDS methods, the 

third rule (CJ) gives always better solutions in a fixed running time. 

 

Table 4. Efficiency of value ordering heuristics 

heuristics SPT LPT CJ SPT-LPT SPT-CJ LPT-SPT LPT-CJ CJ-SPT CJ-LPT 

% deviation 4.00 4.93 2.30 2.85 3.23 2.85 3.10 4.00 3.01 

 

Our discrepancy-based methods (DDS and CDDS) prove their contributions in terms of improvement of the initial 

makespan. Within 1800 seconds of CPU time, the deviation of the initial makespan has been reduced with DDS 

algorithm by nearly 14.7% for hard problems and 9.7% for easy ones. If we consider all problems, the initial makespan 

has been reduced with DDS algorithm by nearly 10.4%. For CDDS, the initial makespan reduction is about 12%. This 

percentage is distributed as 20.2% for hard problems and 8.25% for easy ones. 

 

Enhancing CDDS with lower bounds computation has an important impact. Thus, CDDS method without integration of 

LBs has been developed and presented in a previous work [1] and its percentage deviation value from LBs was 2.32%. 

 

 

6. CONCLUSION AND FUTURE RESEARCH 

 

In this paper two discrepancy-based methods are presented to solve Hybrid Flow Shop problems with minimization of 

makespan. The first one is an adaptation of Depth-bounded Discrepancy Search (DDS) to suit to the problem under 

study. The second one, Climbing Depth-bounded Discrepancy Search (CDDS), combines both CDS and DDS. The two 

methods are based on instantiation heuristics which guide the exploration process towards some relevant decision points 

able to reduce the makespan. These methods include several interesting features, such as constraint propagation and 

lower bounds computations to prune the search tree, that significantly improve the efficiency of the basic approach. 

Computational results attest to the efficacy of the proposed approaches. In particular, CDDS outperformed the best 

existing methods. 

Future work needs to be focused on improving the efficiency of the CDDS method. In particular, we expect that the use 

of the energetic reasoning [19] would significantly reduce the CPU time. But, this needs to be investigated thoroughly. 

Moreover, a second research avenue that requires investigation is the implementation of the CDDS method for other 

complex scheduling problems. In particular, we have already obtained promising results with CDDS for solving the 

flexible job shop problem.     
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