N
N

N

HAL

open science

Linear-time modular decomposition of directed graphs

Ross Mcconnell, Fabien de Montgolfier

» To cite this version:

Ross Mcconnell, Fabien de Montgolfier. Linear-time modular decomposition of directed graphs. Dis-
crete Applied Mathematics, 2005, 145 (2), pp.189-209. hal-00159571

HAL Id: hal-00159571
https://hal.science/hal-00159571
Submitted on 3 Jul 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00159571
https://hal.archives-ouvertes.fr

Linear-time modular decomposition
of directed graphs

Ross M. McConnell Fabien de Montgolfier
Colorado State University, USA LIRMM, Montpellier, France
rmm@cs.colostate.edu montgolfier@lirmm.fr
Abstract

Modular decomposition of graphs is a powerful tool with many appli-
cations in graph theory and optimization. There are efficient linear-time
algorithms that compute the decomposition for undirected graphs. The
best previously published time bound for directed graphs is O(n+mlogn),
where n is the number of vertices and m is the number of edges. We give
an O(n + m)-time algorithm.

Keywords

modular decomposition, algorithm, tournaments, directed graphs, parti-
tive families, tree-decomposable families, 2-structures

1 Introduction

A module in a graph G = (V, E) is a set X of vertices such that each vertex in
V\ X has a uniform relationship to all members of X. That is, if y € V'\ X, then
y has directed edges to all members of X or to none of them, and all members
of X have directed edges to y or none of them do. (See Figure 1.) Different
members y and y’ of V' \ X can have different relationships to members of X,
however. For instance y can have directed edges to all members of X when
y’ has directed edges to none of them. The members of X can have arbitrary
relationships to each other, as can the members of V' \ X.

It is not hard to see that if X and Y are two disjoint modules, then if
some vertex of Y is a neighbor of some vertex of X, then all vertices of Y are
neighbors of all vertices of X. Therefore, Y can be considered unambiguously
to be a neighbor of X or a non-neighbor of X. If P is a nontrivial partition
of V such that each member of P is a module, this observation gives rise to a
quotient graph, which is the graph of adjacencies between members of P. (See
Figure 2.) The subgraphs induced by the members of P record the relationships
in G that are not captured by the quotient. Together, the quotient and factors
give a representation of G.

Further simplification can often be obtained by decomposing the factors and
the quotient recursively. The modular decomposition is a unique, canonical way
to do this that implicitly represents all possible ways the decompose the graph
into quotients and factors. It can be represented by a rooted tree.



Figure 1: A module of an undirected graph is a set X of vertices such that each
vertex y € V' \ X has a uniform relationship to all members of X. For instance,
every member of X is a neighbor of d and no member of X has d as a neighbor,
so they all have the same relationship to d.

Factors

Quotient

Figure 2: If A and B are disjoint modules, then if B contains a neighbor of a
vertex in A, every member of B is a neighbor of every member of A. In this case,
B is adjacent to A. A partition P of G where each member of P is a module
defines a quotient graph, which describes the adjacencies among members of P.
The quotient, together with the subgraphs induced by the nontrivial members
of P, give a representation of GG, since the edges of G can be recovered from
them.



Modular decomposition theory originates from Gallai’s work about transi-
tive orientation [Gal67]. Mohring and Radermacher [MR84, Moh85| survey the
topic.

The class of cographs (and some extensions like P4-sparse, P4-reducible, and
P4-tidy) [CLS81, Hoa85, JO89, GRT97] are classes where a graph is uniquely
defined by the properties of its modular decomposition. A great number of
NP-hard optimization problems for graphs can be easily solved if a solution is
known for every quotient graph in the modular decomposition. If every quo-
tient is small, this gives an efficient solution. Its famous applications include
transitive orientation [Gal67], weighted maximum clique, and coloring. Modu-
lar decomposition is also used in graph drawing. Many classes, such as interval
graphs or permutation graphs have simple recognition algorithms using mod-
ular decomposition (see [Gol80, BLS99] for a survey). Fewer directed graph
classes are known, but modular decomposition can help in their recognition (see
[Miil97] for instance).

Some width parameters are also closely related to the modular decomposi-
tion. The clique-width of a graph is the maximum of clique-widths of quotient
graphs in the modular decomposition tree. Classes with a finite number of
possible quotients therefore have a bounded clique-width (2 for cographs, 3 for
P4-sparse, P4-reducible, and P4-tidy).

Many algorithms of various complexities have appeared, beginning in the
1960’s. The first linear-time algorithm was given by [MS94, MS99], which was
quickly followed by other linear time algorithms that use quite different ap-
proaches to the problem [CH94, DGMO01]|. The best previous time bound for
the directed case is O(n?) [EGMS94, McC95] or O(m logn)|[DGMO02|. Here we
present an O(n + m)-time algorithm.

A graph G can be thought of as a coloring of the edges of the complete
graph with two colors, one corresponding to edges that are contained in G and
one corresponding to edges that are in its complement. This abstraction awards
no special status to G over its complement; the modules are the same on both
graphs. The Z2-structures are a generalization of graphs: a 2-structure is a
coloring of the complete digraph with k color, instead of two. This object was
introduced by A. Ehrenfeucht and G. Rozenberg [ER90a, ER90b], who gave a
generalization of modular decomposition to 2-structures.

Chein, Habib and Maurer [CHMS81] characterized the properties that a fam-
ily of sets, such as the modules of a graph, must have in order to have a de-
composition tree such as the modular decomposition. Such families are called
partitive set families. Our algorithm exploits the modular decomposition of a 2-
structure, as well as the fact that the intersection of two partitive set families is
a partitive set family. We develop a procedure for finding the tree decomposition
of the intersection, given the tree decompositions of the two families.

The next section gives basic definitions and concepts. The third section
presents the algorithm for finding the decomposition tree of the intersection of
two partitive families. The fourth section gives a novel and simple algorithm
for decomposition of tournaments that we use in the main algorithm. The fifth
part of the paper gives the directed graph decomposition algorithm itself.



2 Preliminaries

2.1 Graphs and digraphs

Let G = (V,E) be a finite directed graph (or simply digraph) with vertex-
set V = V(G) and arcset E = E(G) C V(G) x V(G). Here a digraph is
loopless ((u,u) ¢ E). Given H C V, the digraph induced by X C V is G[X] =
(X, EN (X x X)). The pair (u,v) a simple arc if (u,v) € E and (v,u) ¢ E, an
edge if (u,v) € E and (v,u) € FE, and a non-edge if (u,v) ¢ FE and (v,u) ¢ E.
Let n(G) denote the number of vertices of G and m(G) denote the number of
arcs (with edges being counted twice). Let n and m denote these when G is
understood.

Let N*(v) = {u|(v,u) € E} and let N~ (v) = {u|(u,v) € E}. If X is a
module, we may write N*(X) and N~ (X). A digraph can be stored in O(n+m)
space using adjacency-list representation [CLRSO1]. A digraph is connected if
there is no partition of V' in two non-empty sets with no arcs between them; a
maximal connected subgraph is a component. An undirected graph (or simply
graph) has no simple arc. A tree is a connected directed graph such that every
vertex except one (the root) is the origin of one simple arc. A stable set is a
digraph such that F = (), a clique (or complete digraph) is a digraph, such that
E = {(u,v)|lu # v}, and a tournament is a digraph where there is a simple
arc between each pair of vertices. For our purposes, a linear order is an acyclic
tournament. A linear order has a unique topological sort.

2.2 Partitive families

The symmetric difference of two sets is AAB = (AU B) \ (AN B). Two sets
X and Y owverlap if they intersect, but neither is a subset of the other. That is,
they overlap if X \' Y, X NY, and Y \ X are all nonempty.

Let V be a finite set and F a family (set) of subsets of V. Let Size(F) =
Yorer|Fl. Fis tree-likeif 0 ¢ F, V € F, {x} € F for all z € V, and for all
X, Y € F, X and Y do not overlap.

Lemma 1 The Hasse diagram of the subset relation on a tree-like family is a
tree.

Let us call the Hasse diagram of such a family the family’s inclusion tree.
This defines a parent relation on members of F, and allows us to speak of the
siblings and children of a member of F.

The following is well-known:

Lemma 2 If F is a tree-like family on domain V and X is a nonempty subset
of V that does not overlap any member of F, then X is a union of one or more
stblings in F’s inclusion tree.

Proof: Let Y be the least common ancestor of X. If X is not a union of
siblings, then X fails to contain some child A of Y that it intersects. Then Y
overlaps A, a contradiction. O



F is a strongly partitive family [CHMS81] (also called decomposable set family
by [Moh85]) if:

e VeF, 0gF,andVweV, {v}eF

e VXY € F,if X and Y overlap, then X NY € F, X UY € F and
XAY € F.

In this paper we assume that the empty set is not a member of 7. A member
of a partitive family F is said to be strong if no other member of F overlaps it,
otherwise it is weak. S(F) is the family of strong sets of . Though F is not a
tree-like family, S(F) is. Let T'(F) denote the inclusion tree of S(F).

Theorem 1 [CHM81, Miéh85] Let F be a strongly partitive family and let X
be an internal node of T(F) with children S1,Ss,...,S,. Then X is of one of
the following two types:

e Complete: For every I C {1,...k}, such that 1 < |I| <k, U,c; 5 € F

e Prime: For every I C {1,...k}, such that 1 < |I| <k, U;c; S ¢ F

By Lemma 2, this implies that a set is a member of F iff it is a node of T'(F)
or a union of children of a complete node in T'(F).

Notice that Size(F) can be exponential in |V| (the boolean family 2V is
partitive) but that Size(S(F)) < |V|2. Therefore T(F) is a polynomial-size
representation of the family.

F is a weakly partitive family if:

e VeF, 0gF,andVweV, {v}eF

o VX,Y € F,if X and Y overlap, then XNY € F, XUY € F, X\Y € F,
and Y\ X € F.

When X and Y are overlapping members of a strongly partitive family, then
so is XAY, and this member overlaps X. Therefore, X \ Y = X N (XAY) is
also a member of the family. Similarly, Y\ X is in the family. This implies
that strongly partitive family is a weakly partitive family, but the converse is
not true.

Theorem 2 [Hab81] Let F be a weakly partitive family, let X be an internal
node of T(F), and let S1,Ss, ..., Sk be the children of X. Then X is of one of
the following three types:

e Complete: For every I C {1,...k}, such that 1 < |I| <k, U,c;S: € F

e Prime: For every I C {1,...k}, such that 1 < |I| <k, U;c; S & F

e Linear: There exists an ordering of {1,2,...,k} such that if I C {1,...k}
and 1 < |I| <k, then U,c; Si € F iff the members of I are consecutive
in the ordering.

Conversely, by Lemma, 2, if F is a weak partitive family, Y C V is a member
of F iff it is either a node of T(F), the union of a set of children children of
a complete node of T'(F), or the union of a consecutive set of children in the
ordering of a linear node.



2.3 2-structures

A 2-structure [ER90a] is a triple G = (V, E, k), where V is a finite vertex-
set, k € Nyand E: V xV — {1,...k} is a coloring function. A 2-structure
is symmetric if E(x,y) = FE(y,z). Notice that for K = 2 a 2-structure is a
digraph, and a symmetric 2-structure is a graph when one of the color classes is
interpreted as the edges and the other as the non-edges. Furthermore, a loopless
multigraph G = (V, E) where E is a multiset of pairs of vertices may be seen as
a 2-structure G = (V, E' k), where E’ counts the number of edges between two
vertices and k is the maximum of E.
M CV is a module of a 2-structure (V, E, k) if it is nonempty and

Ve,y e MVz ¢ M E(x,z) = E(y,z) and E(z,x) = E(z,y)

In other words, a module is a 2-structure is a set X of vertices that have
a uniform relationship to each z € V' \ X. The trivial modules are V and its
one-element (singleton) subsets.

Theorem 3 [ER90b]
The modules of a 2-structure form a weakly partitive family.
The modules of a symmetric 2-structure form a strongly partitive family.

The modular decomposition of a 2-structure H is the tree T(H) given by
Theorem 3 and Theorem 2 or Theorem 1, depending on whether H is symmetric.
If X is a nonempty subset of V, and H is a 2-structure, let H[X] denote the
substructure induced by X, that is, X and the coloring of X x X given by H.

If X and Y are disjoint modules of H, then all members of X x Y are colored
with the same color, and all members of Y x X are colored with the same color.
If P is a partition of V' where every partition class is a module, the quotient
induced by P is the 2-structure with the members of P as vertices, and where
for X,Y € P, the color of (X,Y) is the color of the edges of X x Y in H.

Let M be a node of T'(H) and let Let M; ... M) be its children. Since
{M, Ms, ..., My} is a partition of the vertices of H[M] where every part is a
module, it defines a quotient on H[M]. Let us call this M ’s quotient in T'(H).

A 2-structure is prime if it has only trivial modules. It is a c-clique if
E(z,y) = cfor all x and y. It is a (¢, ¢')-order if E(z,y) € {c, '} for all  and
y, and the relation 2Ry iff F(z,y) = c is a total order.

Proposition 1 [ERIOb] Let M be a strong module of o 2-structure G.
o If M is prime the quotient of M is a prime 2-structure.
o If M is complete, there exists ¢ such that the quotient of M is a c-clique.

o If M is linear there exists ¢ and ¢’ such that the quotient of M is a (¢, c')-
order.

Let us say that a node is c-complete if its quotient is a c-clique, and (¢, c’)-
linear if its quotient is a (¢, ¢’)-order.



2.4 Modular decomposition of digraphs

The modules of a graph are obtained by treating it as a 2-structure on V' with
two colors, one for edges and one for non-edges. The properties of modules
apply to graphs as a special case. By Proposition 1, if M is a a linear node of
T(G), then its quotient is a total order, and if it is a complete node of T'(G),
then its quotient is a clique or a stable set. A complete node is a series node if
its quotient is a clique and a parallel node if its quotient is a stable set.

Notice that a digraph has at most 2n — 1 strong modules, while there can
be 2™ different modules in a digraph (e.g. a stable set).

A vertex v cuts aset S C Vifv ¢ S and S is not a module of G[SU{v}]. The
vertices that cut S are its cutter-set. M is a module if and only if its cutter-set
is empty.

3 Intersection of Strongly Partitive Set Families

Let V be a set and F,, F be two partitive families on V. The intersection of
Fq and Fp is F = F, N Fp, the family of sets that are members of both families.

Lemma 3 The intersection of two strongly partitive families is a strongly par-
titive family.

Proof: Let F, and F;, be the two families. If X and Y are overlapping
members of F, N F;, they are members of F,, so X UY, X NY, and XAY
are members of F,. The same is true of F, s0o X UY, X NY, and XAY are
members of F, N Fp. O

This suggests a binary operator on decomposition trees over domain V.
Given two decomposition trees T, and T of strongly partitive families on domain
V, let Ty A Ty denote the partitive tree of F(T,) N F(Tp), which exists by
Lemma 3.

In this section, we give an algorithm for computing T, A T}, efficiently, given
partitive trees T, and T on the same domain V. In the rest of this section,
let 7, and F; denote the partitive families represented by T, and T}, and let
T=F,NFp.

Given a partitive tree T', let F(T') be the partitive set family that it repre-
sents. Let S(T') denote the strong members of that family. That is, S(T') is just
the set of nodes of 7.

If S C V is a union of one or more siblings in T,, then let P,(S) be their
parent. P, (S) is the smallest node of T, that contains S as a proper subset.
Let P,(S) be defined in the same way on Tj.

Given an arbitrary set family S of subsets of domain V', let the overlap graph
O(S) denote the graph whose vertices are the members of S and whose edges
are the pairs {(4, B)|A and B are overlapping members of S}. The connected
components of O(S) are known as the overlap components.

Lemma 4 IfC is an overlap component of S and X is a set that overlaps | JC,
then X overlaps some S € C.

Proof: Since X overlaps | JC, it is not contained in any member of C. Suppose
X overlaps no member of C. Let {A, B} be the partition of members of C that



are disjoint from X and contained in X, respectively. Since X overlaps | JC,
each of A and B is nonempty. No member of A overlaps any member of 15,
contradicting the assumption that C is an overlap component. O

Given strongly partitive trees T, and T3, let O(T,,Ty) = {|JC|C is an overlap
component of S(T,) US(Tp)}. V and its singleton subsets are members of
O(Ty,Ty). By Lemma 4, no members of O(Tg,T}) overlap, so it is a tree-like
family, and no nodes of T, or T}, overlap a member of O(7,,T}). No member of
7 overlaps a node of T, or of T}, so by Lemma 4, no member of 7 overlaps any
member O(T,,Ty). This gives the following by Lemma, 2:

Lemma 5 FEvery node of T, and Ty, and every member of I, is a union of
siblings in inclusion tree of O(T,,T).

Let A = {S|S € O(T,,Ty) and S is a node of T, or P,(S) is not prime in
T.}. Let B be defined analogously on Ty. If T, and T} are strongly partitive
trees, then let U (T, Tp) = AN B.

Let Ry be the following relation on members of U(T,,T,): for X,V €
U(T,, Ty), XRyY iff P,(X) = P,(Y), P,(X) = P,(Y), and neither of these
nodes is prime.

Clearly, Ry is an equivalence relation. Let S(Ty, Ty) = U (T, Ty) U {JD|D
is an equivalence class in Ry }.

Theorem 4 If T, and T} are the decomposition trees of strongly partitive fam-
ilies, then S(T,,Ty) is the set of nodes of T'(Z).

Proof: Suppose X € O(T,,T;) is a member of Z. Then it must be a node of
T, or a union of children of a degenerate node in 7,, hence, by Lemma 5 it is
a member of A. Similarly, it is a member of 5, so it is a member of ANB. X
overlaps with no member of Z, hence it is a node of T7.

If X € 7 is anode of T, or of T3, then, since X overlaps no other node of T,
or T} it is the sole member of its equivalence class, hence a member of O(T,, T3).
Any member Z of 7 that is not a member of O(7, T;) must be a union of more
than one and fewer than all children of some degenerate node Y, in T, and more
than one and fewer than all children of some degenerate node Y; in T}, hence
the union of some subfamily of the equivalence class of Ry corresponding to Y,
and Y,. Every union of members of this equivalence class is a member of 7, so
if Z is a node of T'(Z), it must be must be the union of the entire equivalence
class to avoid overlapping other such unions. This is also sufficient: if Z is the
union of the entire equivalence class, no member of Z overlaps Y, or Y3, and
therefore no member of 7 overlaps Z, hence Z is a node of T'(Z). O

We now describe some basic algorithmic tools.

Lemma 6 Given a tree-like family F, it takes O(Size(F)) time to construct
its inclusion tree.

Proof: If V is the domain, Size(F) = Q(|V]), since V € F. Sort the members
of F by size. This takes O(Size(F)) time when using radix sort, since the sizes
are in the ranges from 1 to |V| [CLRSO01]. Then, create a list, for each z € V,
of the members of F that contain z, in ascending order of size. This can be
accomplished by visiting each Y € F in descending order of size, and for each
x €Y, inserting a pointer to Y to the front of z’s list. This takes O(Size(F))



time. Then, visit each member x of V, putting a parent pointer from each
member of z’s list to its successor in z’s list if there isn’t already one, as these
are the chain of ancestors of {x}. O

Next, consider Algorithm 1 which is given in [Spi92], and which we reproduce
here for completeness. Given an inclusion tree on a domain V and an arbitrary
X C V, it finds the maximal members of F that are subsets of X. The algorithm
runs in O(|X|) time, with linear-time initializations performed once.

Input: An inclusion tree T on V' and an arbitrary subset X of V

Output: The maximal nodes Ny, ... Ny of T such that N; C X

begin

foreach leaf N = {2} of T, z € X do

| mark N

end

foreach node N of T such that all its children S1,...S; are marked do
Unmark Sq,...Sg
mark N

end

end

Algorithm 1: Mark the maximal nodes of an inclusion tree that are subsets of
XCV

Let an inclusion tree be initialized if each node carries a parent pointer, a list
of pointers to its children, an initialized field for marking, a record of how many
children it has, and an initialized field for recording how many of its children
are marked. The next lemma follows easily from Algorithm 1.

Lemma 7 [Spi92] Given an initialized inclusion tree of a tree-like set family
F on domain V and a set X C V, it takes O(|X|) time to find the maximal
members of F that are subsets of X, and then reinitialize the tree.

Corollary 1 Given the decomposition tree of a strongly partitive family F on
domain V and X CV, it takes O(|X|) time to determine whether X € F.

Proof: X is a member of F iff it is a node of the decomposition tree or a
union of children of a complete node. By Lemma 7, we may find the maximal
nodes of the decomposition tree that are subsets of X, and verify that if there
is more than one of them, they share a complete parent. O

Theorem 5 [Dah00] Given a set family S on domain V, it takes O(|V] +
Size(S)) time to find the overlap components of S.

The algorithm, which is straightforward to implement, finds the components
without actually computing the overlap graph. Finding the union of each of
these components using an initialized boolean array of size |V| gives O(T,,T).

The following is the main result of this section.

Theorem 6 Given decomposition trees T, and Ty of strongly partitive families
on domain V, it takes O(Size(S(F,)) + Size(S(Fp))) time to find T(Z) = To A
Ty.



Proof: By Theorem 5, the bound is observed for finding the overlap compo-
nents of the nodes S(F,) U S(F;) of T, and T}. The union of each component
is easily found within the bound using a boolean array of size O(|V|) that is
initialized once, and left in an initialized state after each union operation. This
gives O(T,,Ty). By Lemma 6, we may find the inclusion tree of O(T,, T}) within
the bound.

By Corollary 1, Algorithm 1 can be used to test each node in this tree for
membership in A and for membership in B in time linear in Size(O(T,,T5)),
which gives U(Ty, Tp).

We may then number the members of U(T,,T,) from 1 to O(n). Algo-
rithm 1 can then be used to find P,(X) and P,(X) for each X € U(T,,Tp) in
O(Size(U(T,,Tp)) time. The number labels of P,(X) and P,(X) give a pair of
integers, each from 1 to O(n); radix sorting the members of U(T,,, T}) according
to this number pair gives the equivalence classes of Ry. The union of each
equivalence class can be found in linear time using an initialized boolean array
of size O(|V]). O

4 Modular decomposition of tournaments

A factorizing permutation o of a graph G is a linear ordering of V(G) such that
every strong module of G is a factor (interval) of 0. An embedding of T(G)
gives a factorizing permutation, just by reading its leaves from left to right.
Conversely, Capelle, Habib and Montgolfier [CHAMO02] give an O(n + m) algo-
rithm for retrieving 7'(G), given a factorizing permutation. The algorithm that
we give in this section for finding the modular decomposition of a tournament
does so by computing a factorizing permutation and then making use of this
result.

Let say that a factorizing permutation is perfect if all modules of G, not just
the strong modules, are intervals in the ordering.

A factorizing permutation exists for every graph, but a requirement for a
perfect factorizing permutation to exist is that all nodes of the modular de-
composition be prime or linear. All tournaments admit a perfect factorizing
permutation. The factorizing permutation computed by the algorithm of this
section is a perfect one, a fact that we make use of in a later section.

The algorithm uses ordered partition refinement algorithm [PT87]. An or-
dered partition is a list P of non-empty and pairwise-disjoint subsets (classes)
of a set V, whose union is V, with a total order on the classes.

At each step, up to three new classes are substituted for an old one. Empty
classes are not inserted.

Correctness of the algorithm: The correctness of this algorithm is a con-
sequence of the following three invariants:

Invariant 1 For all 0 < i < n, P; is an ordered partition of V having at least
1 singleton classes.

Invariant 2 Let i be the current step and C any class of P; having more than
one verter.

o If C is not the leftmost class of P;, then the class on the left of C is a
singleton class {v;}, j <i. Furthermore, C C N7 (v;).

10



Input: A tournament G = (V, E)
Output: A perfect factorizing permutation P, of G
begin

Let vy ...v, be any ordering of V
Po — {V}
for i from 1 to n do
Let C be the class of P;_; such that v; € C
P; = P;—1 where C is replaced by CN N~ (v;) W {v;} §CNNT(v;)

end

end

Algorithm 2: A perfect factorizing permutation P, of G

o If C is not the rightmost class of P;, then the class on the right of C is a

singleton class {v}, k < i. Furthermore, C C N~ (vg).

Invariant 3 For all 0 < i < n, the partial order P; has a linear extension that
is a perfect factorizing permutation.

Invariant 3 is equivalent to the following: whenever M is a module of the
tournament, the members of P; that intersect M are consecutive in the ordering
on P;, and only the first and last of these can overlap with M.

The proof of the first two invariants is easy. Let us prove the third. Trivially
Py can be extended to a perfect factorizing permutation. Let us suppose that
P;_1 also can. Let M be a module. Since P; differs from P;_; only in the class
C that contains v;, it is clear that our proof deals only with C' € P;_;. Let C,
be C N N~ (v;) and Cp, be C N NT(v;). There are three cases:

1.
2.

If C € M, then the invariant is still true for M no matter how C' is split.
If M C C, then

o If v; € M, then M can overlap only the two classes C, and Cj, and
contains the class {v;} between them, so the invariant is true.

e If v; ¢ M then, since M is a module, M C C, or M C C} depending
on whether M C N*(v;) or M C N~ (v;).

. If M overlaps C, then M intersects either the class on the left of C, or the

class on its right. According to Invariant 2, this class is a singleton class,
say {w}. Suppose without loss of generality that w is to the right of C.
Then C C N~ (w).

o If v; ¢ M, then M C N*(v;) (because M is a module containing
w € N*(v;)). So M NC = M N Cy. Since Cj, is located on the right
of {v;}, the invariant still holds.

o If v; € M then Vz € Cp, w € Nt (z) and v; € N~ (z). As {v;,w} C
M, x € M (it cannot cut a module), thus C;, C M. M can overlap
only C,, and contains {v;} and Cj: the invariant still holds.

Theorem 7 Algorithm 4 computes a perfect factorizing permutation of any
tournament in O(n + m) time.

11



Proof: The correctness is directly given by Invariants 1 and 3. At the n'?
step, all classes are singleton, so the order is total. Since every vertex v; is used
once, and since computing C, and Cj, takes O(n) time, the whole process takes
O(n?) time, which is linear since G has ©(n?) arcs. O

5 Modular decomposition of directed graphs
If G = (V,E) is a digraph. Let us define the following auxiliary objects:

The undirected graph G, = (V, E;) such that {u,v} € E; if and only if (u,v) €
Eor (v,u) € E

The undirected graph G4 = (V, Ey), such that {u,v} € E; if and only if
(u,v) € E and (v,u) € E.

Let H and H' be two symmetric 2-structures on domain V. Let H A H',
denote the two structure on domain V' where two arcs have the same label iff
they have the same label in both H and H'.

Theorem 8 If H and H' are symmetric 2-structures on domain V, then
T(HAH'Y=TH)NT(H")

Proof: Let F be the modules of H and F' be the modules of H'. By the
definitions, M C V is a module of both H and H' iff for x € V' \ M, all edges
between x and M have the same color in H A H’'. Therefore, the modules of
H A H' are F N F', whose decomposition tree is T(H) AT(H'). O

Since undirected graphs are a special case of symmetric 2-structures, we may
define the symmetric 2-structure H(V, Ey) = G5 A G4. Let us assume that the
colors of edges of H are indicated with the following labels:

e Fy(u,v) =0 if {u,v} is a non-edge ({u, v} is a non-edge in both G and

Ga).
o Ey(u,v) =1if {u,v} is an edge ({u,v} is an edge in both G, and Gy).

o Ey(u,v) =2if (u,v) or (v,u) is a simple arc ({u,v} is an edge in G but
not in Gy).

Since the edges of G, are a subset of the edges of G, there is no color for
edges that are in G4 but not in Gg.

By Theorem 8, M is a module of H if and only if it is a module of both G
and Gd.

Lemma 8 FEvery module of G is a module of H.

Proof: Suppose X C V fails to be a module of G; or G5. Then there exist
x1,22 € X and y € V' \ X such that, in G4 or Gy, y is a neighbor of x; but not
of xo. If this happens in Gg, then (z1,y) or (y,z1) is an arc of G, but neither
(z2,y) nor (y,x2) is an arc of G, and X fails to be a module of G. If it happens
in G4, then both of (z1,y) and (y,z1) are arcs of G, but one of (z2,y) and
(y, o) fails to be an arc, and X again fails to be a module of G. O

12



Corollary 2 There ezists a way to order the children of each node in T(H) so
that the resulting leaf order is a factorizing permutation of G.

Proof: Let X be a complete node of T(H), and let S = {51, S2,..., Sk} be
its children. Let Fx denote the tree-like family on domain & whose root is
S, whose leaves are {9;|S; € S}, and whose internal nodes are {S'||JS’ is a
strong module of G}. Since no members of Fx overlap, it is a tree-like family on
domain S. If {57, 5s, ..., S;} is ordered according to their depth-first ordering
of the inclusion tree of Fx, all unions of children of X that are strong modules
of G will be consecutive. By Lemma, 8, every strong module of G is a node of
T(H) or a union of children of a degenerate node of T'(H), so applying such an
ordering at every degenerate node of T'(H ) will impose a factorizing permutation
of G on the leaves. (]

Our algorithm proceeds by ordering the children of nodes in T'(H) to obtain
a factorizing permutation of G in linear time. Combining this with the algorithm
of [CHAMO2] gives a linear-time algorithm for modular decomposition of G.

Let X be a 0-complete or 1-complete node of T'(H), and let Sy, So, ..., S, be
its children that are modules of G. Let Rx be the relation on {Si, Ss,..., Sk}
where SiRij iff N+(Sl)ﬁ(V\X) = N+(Sj)ﬁ(V\X) and Ni(Sl)ﬁ(V\S) =
N=(S;)n(V\ X). Clearly, Rx is an equivalence relation.

Lemma 9 If X is a 0-complete or 1-complete node of T(H) and Y is a strong
module of G that is a union of children of X and not strong in H, then Y is
the union of all the members of an equivalence class of Ry .

Proof: Suppose X is 0-complete. Y is a parallel node of the modular decom-
position tree of G. The connected components C1,...C) of G[Y] are modules
of H. X is a parallel module of G and C; is connected in G[Y], so no module
of G4 overlaps it. C; is then a node of the modular decomposition of H, that is
Rx-equivalent to C}.

Therefore, Y must be a union of children of X that are modules of G,
members of a single Rx equivalence class, and, since Y is not strong in H, it
must be the union of more than one child. The union of every subfamily of
members of an equivalence is a module of G[X| and has no cutters outside of
X, so it is a module of G. Y must overlap such a union and thereby fail to be
strong in G unless it is the union of all members of the equivalence class.

If X is 1-complete, then Y is a series module of G and of G4. A child C; of
Y in the modular decomposition tree of G is not connected in G4, therefore no
module of G4 overlaps it. Then the same proof holds. O

Lemma 10 Let X be a 2-complete node of T(H), let S1,S52, ..., Sk be its chil-
dren, and let S = {s1, s2, ..., Sp} be arbitrary representatives from S1, S, ..., Sk,
respectively. If (s1,s2,...,SE) s a perfect factorizing permutation of G[S], then
every subfamily of {S1, 52, ..., Sk} whose union is a module of G must be con-
secutive in (S1,S2, ..., Sk).

Proof: If M is a module of G that is a union of children of X, then M NS is a
module of G[S]. Since (s1, s2, ..., S ) is a perfect factorizing permutation of G[.5],
M NS is consecutive in this ordering, hence M is consecutive in (S1, Sa, ..., Sk)-
O

This gives an algorithm for finding the modular decomposition of G:

13



1. Find G4 and G4 and H

2. Find the modular decompositions T'(G4) and T(Gs) of G4 and G, using
one of the algorithms of [MS99, CH94, DGM99].

3. Find T(H) = T(G) AT(Gq)

4. At each 0-complete and 1-complete node X, order the children so that
each equivalence class of Ry is consecutive.

5. At each 2-complete node Y, select an arbitrary set S of representatives
from the children. Order the children of Y according to a perfect factor-
izing permutation of G[S]

6. The resulting leaf order of T'(H) is a factorizing permutation of G by
Lemmas 9 and 10. Use the algorithm of [CHdMO02] to find the modular
decomposition of G.

Algorithm 3: Modular decomposition of a digraph

5.1 Complexity analysis

A linear time bound for Step 1 is trivial and the linear time bounds for Steps 3
and 6 are immediate from the cited results. At each node Y of Step 5, we may
charge the cost of finding the perfect factorizing permutation of G[S] to the
corresponding edges of G at a cost of O(1) per edge, by Theorem 7. These
edges all have Y as their least common ancestor in 7'(H), so no edge of G is
charged more than once. It remains to derive the linear time bounds for steps 3
and 4.

5.1.1 Step 3
Theorem 9 Let G be a digraph and M the set of its strong modules.

> IM| < 2m+3n
MeM

Furthermore if G is connected, then

Z |M| < 2m +2n
MeM

Proof: Let p(G) be the sum }_,, ,|M]|. Clearly for a one-vertex digraph
p(G) = 1. Let us suppose the theorem holds for digraphs up to n — 1 vertices,
and let G be a digraph having n vertices.

If G is not connected, then G has k > 2 connected components G ...Gg.
Theorem 9 applies to each, so:

V1<i<k, p(G;) <2m; + 2n;

Moreover, a strong module of G is either a strong module of {G;},i € {1...k},
or the vertex-set V(G). Each arc of G appears in exactly one G;, so that

>oimi =m.

14



2,
Q

S~—
[

n+p(Gr)+ ...+ p(Gr)
n+2mi+2n1 + ...+ 2mg + 2ng
2m + 3n

VARVAN

If G is connected, let G; 1 < i < k be the maximal strong modules of G.
Each one has less than n vertices, so

There are two kinds of arcs in G: the > m,; arcs that are internal to one G,
and the m’ = m — " m; “external” arcs joining two G;’s.

1. If every G; has at least two vertices, then every vertex of G is adjacent to
at least two external arcs, so m’ > n. > m; <m —n.

p(G) = n+p(Gi)+...+p(Gk)
< n4+2mi+3ni+...4+2mg + 3ng
< 4n+22m1
< 2n+2m

2. Otherwise one G; (say GG1) has only one vertex. G is connected and, if its
internal arcs are removed, G remains connected. Therefore m’ > n — 1.
S>mi<m-n+1

p(G) = n+p(G1)+p(G2) + ...+ p(Gk)
< n4+142ms+3ns+...42myg + 3ng
< n—|—1+22m¢—|—3(n—1)
< n+l1+42m—-—2n+2+4+3n—-3
< 2n+2m

Corollary 3 Step 3 takes O(n +m) time.

Proof: The sizes of G4 and G are O(n+m), so the result follows immediately
from Theorems 6 and 9. g

5.1.2 Step 4

For Step 4, we must compute the equivalence classes of Rx at each 0-complete
or 1-complete node X of T'(H). For this, it suffices to identify those members of
of the children {51, Sa, ..., Sk} of X that are modules of G, and to group these
according to their adjacencies with vertices in V' \ X.

A solution to this problem on undirected graphs was first given in [Spi92]
and is a key step in the algorithms of [MS99, DGM99]. Its generalization to a
directed graph G using the decomposition tree Ty of H is straightforward, as
we show next. We present their a variation of the computation method.

The algorithm is general to any inclusion tree 7', not just Ty. Number
the elements of V from 1 to n in the order of left-to-right appearance in an
arbitrary embedding of 7T'. This gives a factorizing permutation . Each node
of T occupies a factor of 0. Let le(X) be the first occurrence of a vertex of X in

15



o and re(X) the last occurrence. If a node X of T has a cutter to its left in the
ordering, let [c(X) denote the the number label of the leftmost of its cutters;
otherwise let lc(X) = le(X). If it has a cutter to its right, let r¢(X) denote the
rightmost of its cutters; otherwise, let r¢(X) = re(X). Note that X is a module
iff Ie(X) = le(X) and re(X) = re(X).

Lemma 11 le(X), re(X), le(X) and rc(X) can be computed, for all nodes X
of Tw, in O(n 4+ m) time.

Proof: Computing re(X) and le(X) can be done bottom-up. If X is a leaf,
le(X) = re(X) = o(x). Else, le(X) and re(X) can be computed using the
following recurrence relations, where Si,...Sy are the children of X:

le(X) :mUin(lc(S’l) oo de(Sk), le({re(S1),1e(S2)}) . . . le({re(Sk—1),1e(Sk)}))
re(X) :moz}x(rc(S’l) co.re(Sk),re({re(S1),le(S2)}) .. .re({re(Sk—1),1e(Sk)}))

The proof for r¢(X) is that le(X) = min, (re({o(i),o(4)}) | le(X) <i #j <
re(X)). As a vertex cuts {o(i),0(j)} then it cuts {o(c),c(c +1)},i < ¢ < j,
we have : l¢(X) = ming (re({o(i),o(i + 1)}) | le(X) < i < re(X)) Factorizing
each S; gives the result. Same proof for l¢(X).

A vertex z, preceded by y and trailed by z in o, is used twice: one time
for the computation of the node that is the least common ancestor of = and y,
and one time for the least common ancestor of x and z. The key point of the
complexity analysis is to show that lc({z,y}) and re({z,y}) can be computed
in O(IN* ()| + [N~ (z)| + [NF(y)| + [N~ (y)]) time.

To do this, radix sort the edges of G according to o, with vertex of origin
as the primary key and destination vertex as the secondary key, in order to
get NT(z) in sorted order of destination vertex at each vertex z. This takes
O(n + m) time [CLRS01]. Reverse the roles of primary and secondary key and
sort again to get N~ (x) in sorted order of vertex of origin in O(n + m) time.
le({z,y}) is the first vertex of (NT(x)ANT(y)) U (N~ (2)AN~(y)). As these
lists are sorted according to o, it is easy to find. re({x,y}) is the last vertex of
these lists. O

For a node Y that is a module of G and child of a 0-complete or 1-complete
node X of Ty, let ST(Y) be N*(Y)\ X and a S~(Y) be N~ (Y)\ X. ST(Y)
and S~ (Y') can be computed by taking any vertex y € Y and pruning elements
of X from its adjacency list. Two children of X are Rx-equivalent iff they have
the same lists. Since the lists are sorted according to o, a partition refining
algorithm using their first element, then the second, and so on until the last,
separates the children of a 0-complete or 1-complete node X into Rx classes.

Lemma 12 Step 4 takes O(n + m) time.

Proof: Lemma 11 give the time bound for discrimination of modules. That
the lengths of the ST and S~ lists summed over all nodes of the tree is O(m)
follows easily from the fact that the sum Y~ . [S*({z})|+]S™ ({z})] of lengths
of lists at the leaves is m, and at each internal node X, the lengths of its
lists are at most half of the sum of lengths of the its children’s lists. That
is, if C(X) denotes the children of X, [ST(X)| < (1/2) Ygee(x) |97 ()] and
[ST(X)] < (1/2) Xseex) 157 (S)I-

The algorithm is linear in the lengths of the ST and S~ lists, so it takes
O(n 4+ m) time to find the Ry classes. O

16



References

[BLS99]

[CHO4]

[CHAMO02]

[CHMS1]
[CLRSO01]
[CLS81]

[Dah00]

[DGM99]

[DGMO1]

[DGM02]

[EGMS94]

[ER90a]

[ER90b]

[Gal67]
[Gol80]
[GRT97]

[Hab81]

A. Brandstiadt, V.B. Le, and J. Spinrad. Graph Classes: a Survey. STAM
Monographs on Discrete Mathematics and Applications. Society for Indus-
trial and Applied Mathematics, 1999.

A. Cournier and M. Habib. A new linear algorithm for modular decompo-
sition. In S. Tison, editor, Trees in algebra and programming—CAAP 94,
19th International Colloquium, Edinburgh, U.K., volume 787 of Lecture
Notes in Computer Science, pages 68-84, Berlin, April 1994. Springer-
Verlag.

Christian Capelle, Michel Habib, and Fabien de Montgolfier. Graph de-
composition and factorizing permutations. Discrete Mathematics and The-
oretical Computer Sciences, 5(1), 2002.

URL http://dmtcs.loria.fr/volumes/abstracts/dm050104.abs.htm.

M. Chein, M. Habib, and M. C. Maurer. Partitive hypergraphs. Discrete
Mathematics, 37:35-50, 1981.

Thomas Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein.
Introduction to Algorithms. MIT Press, 2001.

D. G. Corneil, H. Lerchs, and L. K. Stewart. Complement reducible graphs.
Discrete Applied Mathematics, 3:163-174, 1981.

E. Dahlhaus. Parallel algorithms for hierarchical clustering, and appli-
cations to split decomposition and parity graph recognition. Journal of
Algorithms, 36(2):205-240, 2000.

Elias Dahlhaus, Jens Gustedt, and Ross M. McConnell. Partially comple-
mented Representation of Digraphs. Technical Report RR3832, INRIA,
1999. soumis & Discrete Mathematics and Theoretical Computer Science.

Elias Dahlhaus, Jens Gustedt, and Ross M. McConnell. Efficient and prac-
tical algorithms for sequential modular decomposition. Journal of Algo-
rithms, 41(2):360-387, 2001.

Elias Dahlhaus, Jens Gustedt, and Ross M. McConnell. Partially comple-

mented representations of digraphs. Discrete Mathematics and Theoretical
Computer Science, 5(1):147-168, 2002.

Andrzej Ehrenfreucht, Harold N. Gabow, Ross M. McConnell, and
Stephen J. Sullivan. An O(n?) Divide-and-conquer algorithm for the Prime
Tree decomposition of 2-structures and the Modular Decomposition of
graphs. Journal of Algorithms, 16(2):283-294, 1994.

A. Ehrenfeucht and G. Rozenberg. Theory of 2-structures, Part I: clans, ba-
sic subclasses and morphisms. Theoretical Computer Sciences, 3(70):277—
303, 1990.

A. Ehrenfeucht and G. Rozenberg. Theory of 2-structures, Part II: Repre-
sentations throught tree labelled families. Theoretical Computer Sciences,
3(70):304-342, 1990.

Tibor Gallai. Transitiv orientierbare Graphen. Acta Math. Acad. Sci.
Hungar., 18:25-66, 1967.

M. C. Golumbic. Algorithmic graph theory and perfect graphs. Academic
Press, New-York, 1980.

V. Giakoumakis, F. Roussel, and H. Thuillier. On P4-tidy graphs. Discrete
Mathematics and Theoretical Computer Sciences, 1:17-41, 1997.

M. Habib. Substitution des structures combinatoires, théorie et algorithmes.
Thése d’Etat, Université Pierre et Marie Curie (Paris VI), 1981.

17



[Hoa85]
[J089]
[McC95]

[M6h85]

[Miil97]

[MR&4]

[MS94]

[MS99]

[PT87]

[Spi92]

C.T. Hoang. Perfect Graphs. PhD thesis, School of Computer Sciences,
McGill University, Montreal, 1985.

B. Jamison and S. Olariu. P4-reducible graphs: a class of uniquely tree
representable graphs. Studies in Applied Mathematics, 81:79-87, 1989.

R. M. McConnell. An O(n?) incremental algorithm for modular decompo-
sition of graphs and 2-structures. Algorithmica, 14:209-227, 1995.

R. H. Mohring. Algorithmic aspects of the substitution decomposition in
optimization over relations, set systems and boolean functions. Annals of
Operations Research, 6:195-225, 1985.

Haiko Miiller. Recognizing interval digraphs and interval bigraphs in poly-
nomial time. Discrete Applied Mathematics, 78:189-205, 1997.

R. H. Méhring and F. J. Radermacher. Substitution decomposition for dis-
crete structures and connections with combinatorial optimization. Annals
of Discrete Mathematics, 19:257-356, 1984.

R. M. McConnell and J. Spinrad. Linear-time modular decomposition and
efficient transitive orientation of comparability graphs. In Proceedings of
the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms (Arling-
ton, VA), pages 536-545, New York, 1994. ACM.

R. M. McConnell and J. Spinrad. Modular decomposition and transitive
orientation. Discrete Mathematics, 201:189-241, 1999.

R. Paige and R.E. Tarjan. Three partition refinement algorithms. SIAM
Journal on Computing, 16(6):973-989, 1987.

J. Spinrad. P4-trees and substitution decomposition. Discrete Applied
Mathematics, 39:263—291, 1992.

18



