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Abstract. In [22], it was shown that MSO logic for ordered unranked trees becomes
undecidable if Presburger constraints are allowed at children of nodes. We now show
that a decidable logic is obtained if we use a a modal fixpoint logic instead. We present
an automata theoretic characterization of this logic by means of deterministic Pres-
burger tree automata (PTA) and show how it can be used to express numerical doc-
ument queries. Surprisingly, the complexity of satisfiability for the extended logic is
asymptotically the same as for the original logic. The non-emptiness for PTAs is in
general pspace-complete which is moderate given that it is already pspace-hard to
test whether the complement of a regular expression is non-empty. We also identify a
subclass of PTAs with a tractable non-emptiness problem. Further, to decide whether
a tree t satisfies a formula ϕ is polynomial in the size of ϕ and linear in the size of t.
A technical construction of independent interest is a linear time construction of a
Presburger formula for the Parikh set of a finite automaton.
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1 Introduction

In XML schema description languages as DTDs and XML Schema, the content types of ele-
ments, i.e., the possible sequences of children elements of a node, is described mainly by regular
expressions.1 This is sufficient in very many cases. But often one is interested in expressing
conditions on the frequency of occurrences of elements in the children sequence. When the or-
der of elements is very constrained regular expressions still do the job, e.g. by (title author

author+) one might express that there have to be at least two authors in a paper. If the order
is not fixed, even simple conditions require complicated regular expressions. E.g., saying that
there is exactly one title and there are at least two authors would require an expression like
(title author author+) | (author+ title author+) | (author author+ title). It would be
desirable to describe this condition simply by an expression like |title| = 1 ∧ |author| ≥ 2.

Whereas these conditions do not go beyond the scope of regular expressions, other simple
ones do. E.g., it is of course not possible to express a condition like |author| ≤ 2 · |title|.

Most of the existing theoretical work on XML schema languages has concentrated on
regular tree languages. These languages can be described by tree automata [14, 15] and a
variety of other formalisms [16, 8] including fixpoint formulas [13]. In these formalisms the
interaction between the children of a node and the node itself are usually expressed in terms
of a regular expression. Other work extended these formalisms to let them formulate (at least
unary) queries. The resulting query facilities usually have the expressive power of monadic
second-order logic.

In the present paper we study extensions of such formalisms by numerical conditions as
above. In particular, we are interested in the main complexity questions.

The conditions we allow are Boolean combinations of regular expressions and Presburger
formulas. Presburger formulas basically allow linear (in)equalities and expressions of the form
t ≡ c (mod n). A more detailed definition can be found in Section 2. Counting conditions in
schema languages have been used, e.g., in [12].

In a previous paper [22] we considered non-deterministic tree automata with such extended
conditions. It turned out that, whereas their non-emptiness problem (whether an automaton
accepts some tree) is decidable, the universality problem (whether it accepts all trees) is
not. Consequently, monadic second-order logic extended by such conditions has undecidable
satisfiability. In the present paper, we study two weaker formalisms. We consider a fixpoint
logic instead of monadic second-order logic and deterministic tree automata instead of non-
deterministic tree automata. We refer to them as Presburger fixpoint formulas and Presburger
tree automata, respectively.

It turns out that both define the same class of tree languages. Furthermore, their non-
emptiness (resp., satisfiability) problem becomes decidable. Actually, it came as a surprise
that the complexities of these problems are as low as one could hope for 2:

– It is already pspace-hard to check whether the intersection of several regular expressions
is empty. Therefore, the non-emptiness problem for Presburger tree automata is trivially
pspace-hard. We prove that it is also in pspace. Additionally, we show that it becomes
tractable when each precondition of the automaton is a disjunction of formuls r∧f , where
r is a regular expression and f is an equation (with existentially quantified variables).

– Satisfiability for fixpoint formulas (without numerical conditions) is exptime-complete.
We show that the complexity does not increase when we add numerical conditions.

– The same complexities can be easily derived for the containment problem.
– Checking whether a tree t is accepted by a Presburger tree automaton A or a fixpoint

formula φ can be decided in time O(|t||A|) and O(|t||φ|2), respectively.

1 We view an XML document here and in the rest of the paper as a labeled, unranked, ordered tree.
2 Actually these complexities hold only with quantifier-free Presburger formulas. However, this does

not restrict the expressivity of the logic.



Furthermore, we show how Presburger fixpoint formulas can be adapted to allow the formu-
lation of unary queries. These queries can be evaluated time linear in the size of the tree and
polynomial in the size the formula.

During our investigation we also studied the relationship between regular expressions and
Presburger formulas. It is well-known that the Parikh image of each regular language (i.e.,
basically the set of symbol frequency vectors of words) can be expressed by a Presburger
formula. We show that such a formula can be constructed very efficiently, in linear time, even
from a non-deterministic finite automaton.

The paper is organized as follows. In Section 2 we give the basic definitions for Presburger
logic. Section 3 explains how from an NFA a Presburger formula can be obtained. Section
4 introduces Presburger fixpoint formulas. In Section 5 we define Presburger automata and
prove the equivalence with Presburger fixpoint formulas. Section 6 contains the complexity
results. In Section 7 we define a query extension of Presburger fixpoint formulas and consider
its evaluation complexity. We end with a short conclusion. Due to space restriction many
proofs are given in an appendix.

Related work. Unordered document trees are closely related to the generalization of feature
trees considered by Niehren and Podelski in [17] where they study the (classical) notion of
recognizability and give a characterization of this notion by means of feature automata. No
counting constraints are considered. Query languages for unordered trees have been proposed
by Cardelli and Ghelli [2, 1, 3, 4] (and their co-workers). Their approach is based on first-
order logic and fixpoint operators. An extension to numerical constraints has recently been
proposed by Dal Zilio et al. [5].

Kupferman, Sattler and Vardi study a µ-calculus with graded modalities where one can
express, e.g., that a node has at least n successors satisfying a certain property [10]. The
numbers n there, however, are hard-coded into the formula. Orderings on the successors is
not considered. Klaedtke and Ruess consider automata on the unlabeled infinite binary tree,
that have an accepting condition depending on a global Presburger constraint [9].

Our notion of Presburger Tree Automata for ordered trees, which combines both regular
constraints on the children of nodes as well as numerical constraints given by Presburger
formulas, has independently been introduced by Lugiez and Dal Zilio [11] and Seidl et al.
[22]. In their paper, Lugiez and Dal Zilio indeed propose a modal logic for XML documents
which they call Sheaves logic. This logic allows to reason about numerical properties of the
contents of elements but still lacks recursion, i.e., fixpoint operators. Lugiez and Dal Zilio
consider the satisfiability and the membership problem and they show that Sheaves logic
formulas can be translated into deterministic automata. Seidl et al. in [22] on the other hand,
prove that Presburger tree automata precisely correspond to the existential fragment of MSO
logic on ordered trees enhanced with Presburger constraints on the children of nodes. As a
technical result, they also show that first-order formulas can be translated into deterministic
Presburger automata.

2 Preliminaries

.
Presburger Logic is first-order logic over the structure (N,≤,+). Given a formula f and

an assignment σ mapping the variables of f to numbers, we write σ |= f if f holds for σ (in
the obvious sense) and call σ a solution of f .

For convenience, we use an extended language and make use of some abbreviations. We
allow to write cx for x + · · · + x (c times) and we also allow terms with negative coefficients
as in 2y − 3x. A typical Presburger formula is ∃y (2y = x) stating that x is even. It is well-



known that the extension of Presburger logic by 0, 1 and the binary predicates x ≡ y (mod n),
for each constant n, has quantifier elimination, i.e., for each formula there is an equivalent
quantifier-free formula [20]. E.g., the above formula can be written as x ≡ 0 (mod 2).

In this paper, we call quantifier-free formulas in the extended language with modulo pred-
icates and equality over terms with integer coefficients quantifier-free Presburger formulas.

We say that formulas of the form ∃x1, . . . , xk

∨m
i=1 fi, where each disjunct fi is a conjunc-

tion of equations t = c with a term t and an integer constant c are in equation normal form.
Note that formulas in equation normal form do not contain any negations.

Lemma 1. Every Presburger formula has an equivalent formula in equation normal form.

Proof. Let f be a quantifier-free Presburger formula. We bring it into disjunctive normal form
(DNF). Then we replace atomic and atomic negated formulas by equations, if necessary by
introducing new existentially quantified variables. E.g., t < c can be replaced by ∃y1(t + 1 +
y1 = c), t 6= c by ∃y2(t + y2 + 1 = c ∨ t− y2 − 1 = c). Further, t ≡ c (mod d) can be replaced
by ∃y3(t − dy3 = c ∨ t + dy3 = c) and t 6≡ c (mod d) by

∃y4, y5(t − dy4 − y5 = 0 ∨ t + dy4 − y5 = 0) ∧ (y5 < c ∨ (y5 > c ∧ y5 < d)).

Note that the resulting formula is in general not in DNF, but it is free of negations and can
be easily transformed into equation normal form. Note that, although the size of the formula
might increase, the maximum number of conjuncts in a conjunction remains the same. ⊓⊔

It is well-known that sets of assignments which fulfill a given Presburger formula f are
equivalent to semi-linear sets [7]. A semi-linear set is a finite union of linear sets of the form

{σ +

m
∑

i=1

σizi | zi ∈ N}, where σ and the σi are assignments to a finite set of variables (using

a fixed enumeration of the variables) or vectors from N
k for a given k.

The Parikh image of a word w = a1 · · · ak, aj ∈ Σ is the assignment σ ∈ N
Σ which maps

the variables |a|, a ∈ Σ, to the number of occurrences of the letter a in w, i.e., σ(|a|) = |{j |
a = aj}|. Accordingly, the Parikh image of a set L ⊆ Σ∗ is the set of Parikh images of w ∈ L.

3 Regular string languages and Presburger formulas

The fixpoint formulas as well as the tree automata studied in this paper can use conditions
on the children of a node which are Boolean combinations of regular expressions and Pres-
burger formulas. Whereas it is well-known that the Parikh image of a regular language (and
even context-free language, [19]) is semilinear and thus can be described by a formula from
Presburger arithmetic with free variables |a|, a ∈ Σ, it seems to be not quite as well-known
how large the corresponding formula must be. In this section, we show that even for NFA, a
Presburger formula which describes the Parikh image of the corresponding language can be
computed in linear time. In particular, the formula is of linear size.

Theorem 1. For any NFA A, an existential Presburger formula ϕA for the Parikh image of
the language L(A) of A can be constructed in time O(|A|).

Proof. Let A = (Q,Σ, δ, F, q0) be a non-deterministic finite string automaton (NFA). With
an accepting run of A on a string w we can associate a flow f as follows: each transition
(p, a, q) of A is labeled by the number of times it is taken in the computation. We construct
a Presburger formula which checks that

– f is locally consistent, e.g., for each inner node the incoming flow equals the outgoing
flow, and

– the subgraph induced by the states with a non-zero flow is connected. This is done by
guessing numbers corresponding to the distance of nodes from s w.r.t. non-zero flow edges.

Details are given in the appendix. ⊓⊔



4 Presburger Fixpoint Formulas

In many applications, e.g., where documents are automatically generated from databases as
textual representations of querying results, the element ordering on the children does not
matter (or it is not known in advance). In other applications, though, which are more related
to classical document processing the ordering matters. Since we cannot tell just from looking
at a linearized textual representation of the document whether the ordering of children is
irrelevant, we prefer to work with ordered trees only but allow the logic to express properties
of unordered documents. Thus, given an alphabet Σ of element or node names, the set of all
(ordered but unranked) trees t is given by:

t ::= a〈t1, . . . , tk〉 , a ∈ Σ, k ≥ 0

We write TΣ for the set of all such trees. We consider a calculus of fixpoint formulas which
allows to express both regular and Presburger constraints on children of nodes. Fixpoint
formulas ϕ are constructed according to the following grammar:

ϕ ::= ⊤ | x | µx. ϕ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | a〈F 〉 | ∗〈F 〉
F ::= r | ¬r | f

Here, “∗” denotes an arbitrary node label, and F denotes a generic pre-condition on the
children of a node. Such a pre-condition is either a regular expression r over letters ϕ, ϕ a
fixpoint formula, or a Presburger formula f with free variables |ϕ| denoting the number of
children satisfying ϕ. Essentially the same calculus is obtained if we enhance the Sheaves logic
of Dal Zilio and Lugiez [11] with recursion.

In the following, we assume throughout that ϕ is a formula where all bound variables are
distinct. Let Φ denote the set of all subformulas of ϕ plus ⊤ (the constant true). We consider
assertions t : ψ, t ∈ TΣ , ψ ∈ Φ. We write ⊢ t : ψ either if ψ ≡ ⊤ (every tree satisfies ⊤) or if
the assertion t : ψ can be derived from valid assertions by means of the following rules:

t : ψ µx.ψ ∈ Φ

t : x

t : ψ µx.ψ ∈ Φ

t : µx.ψ

t : ψ1 t : ψ2

t : ψ1 ∧ ψ2

t : ψi

t : ψ1 ∨ ψ2

u : F

a〈u〉 : a〈F 〉
u : F

a〈u〉 : ∗〈F 〉

Thus, besides assertions t : ψ, t ∈ TΣ , we additionally need auxiliary assertions u : F where u

is a sequence of trees and F is either a regular expression or a Presburger formula. A sequence
u = t1 . . . tk satisfies a regular pre-condition r (or ¬r) iff there are formulas ψ1, . . . , ψk such
that ti : ψi and the sequence of formulas ψ1 . . . ψk is (not) contained in the language L(r) of
r. In case of a Presburger formula f , we collect for every formula ψ the number of children
ti satisfying ψ. Then u satisfies f iff the resulting variable assignment σ makes f true. Thus
we have the rules:

ti : ψi (i = 1, . . . , k) ψ1 . . . ψk ∈ L(r)
t1 . . . tk : r

σ |= f where σ(|ψ|) = #{i | ti : ψ}
t1 . . . tk : f

Note that according to this rule for Presburger formulas, the same tree ti may be counted
several times, once for every ψ such that ti : ψ.

A proof of an assertion t : ψ consists of all rule applications to derive this assertion. In
particular this means for t = a〈t1 . . . tk〉 and ψ = a〈f〉, f a Presburger formula, that a proof
of t : ψ contains for every i = 1, . . . , k, and every ψ′ a subproof of ⊢ ti : ψ′ – whenever it



exists. Moreover, we silently assume that a proof always has tree-like structure. Thus, we may
have several copies of a subproof for distinct occurrences of the same subtree within t.

Finally, the language denoted by the formula ϕ is given by:

L(ϕ) = {t ∈ TΣ | ⊢ t : ϕ}

In particular, L(⊤) = TΣ and L(µx. x) = ∅. Using the convenient abbreviation “ ” for ⊤∗,
i.e., an arbitrary sequence of trees, we may write µx. (a〈 〉 ∨ ∗〈 x 〉) for the set of all trees
with at least one inner node labeled a. Note that our fixpoint expressions do not provide an
explicit notion of negation. However, we always can construct an equivalent expression with
guarded fixpoints for which complementation is easy [23].

5 Presburger Automata

We recall the notion of a Presburger tree automaton (PTA) for ordered trees from [22, 11].
A Presburger tree automaton A is a tuple (Q,Σ, δ, T ) where, as usual, Q, Σ, δ and T ⊆ Q

are the finite set of states, the input alphabet, the transition relation and the set of accepting
states of A, respectively. Here the transition relation δ is given by a mapping from Q × Σ

to a pre-condition on the children of a node with label a to reach q in a bottom-up run
over an input tree. In case of PTA, such a pre-condition is a Boolean combination of regular
expressions r over the state set Q and Presburger formulas f with free variables |q|, q ∈ Q.
We define satisfaction relations t |=A q now for trees t and states q and u |= p for sequences
of states u ∈ Q∗ and pre-conditions p:

a〈t1 . . . tk〉 |=A q iff ti |=A qi for all i and q1 . . . qk |= δ(q, a), where
q1 . . . qk |= p1 ∨ p2 iff q1 . . . qk |= p1 or q1 . . . qk |= p2

q1 . . . qk |= p1 ∧ p2 iff q1 . . . qk |= p1 and q1 . . . qk |= p2

q1 . . . qk |= ¬p iff q1 . . . qk 6|= p

q1 . . . qk |= r iff q1 . . . qk ∈ L(r)
q1 . . . qk |= f iff σ |= f where σ(|q|) = |{i | q = qi}|

It should be noted here that satisfaction of a Presburger pre-condition f takes a different
flavor than the corresponding definition for fixpoint formulas: In an automaton each subtree
of a node takes only one state and thus contributes exactly once to the value of some σ(|q|).
As opposed to this, the variables |ψ| in fixpoint formulas count every subtree on which ψ

holds, hence a subtree might contribute to the value of several (or no) variables.
The automaton A is called deterministic iff for all a ∈ Σ and all α ∈ Q∗, α |= δ(q, a) for

exactly one q ∈ Q.
In the proof that deterministic PTA and Presburger fixpoint formulas are equivalent we

use the following notion. For a subset B ⊆ Φ of subformulas of φ, define the closure cl(B) as
the least superset B′ of B such that:

– ⊤ ∈ B′;
– If φ′ ∈ B′ then µx.φ′ ∈ B′ and x ∈ B′ whenever µx.φ′ ∈ Φ;
– If φ1 ∈ B′ and φ2 ∈ B′ then also φ1 ∧ φ2 ∈ B′ whenever φ1 ∧ φ2 ∈ Φ;
– If φ1 ∈ B′ or φ2 ∈ B′ then also φ1 ∨ φ2 ∈ B′ whenever φ1 ∨ φ2 ∈ Φ.

Intuitively, the closure of a set B of subformulas contains all subformulas which are implied
by the formulas in B and reachable by a (virtual) bottom-up traversal over an input tree
constructing a proof for the fixpoint formula φ.

Theorem 2. For a tree language L ⊆ TΣ the following statements are equivalent:

(1) L = L(φ) for some fixpoint formula φ;



(2) L = L(A) for some deterministic PTA A.

Proof. (1) ⇒ (2): Let φ be a Presburger fixpoint formula. We assume for simplicity that all
regular expressions in φ are unnegated. We construct a PTA A as follows. Let Ψ denote the
set of all subformulas of φ of the form a〈F 〉 or ∗〈F 〉. The set Q of states of A is given as the
set of all subsets B ⊆ Ψ . The set T of accepting states consists of all subsets B such that
φ ∈ cl(B), i.e., whose closure contains the whole formula φ.

Given a state B ∈ Q and a ∈ Σ, we determine the pre-condition δ(B, a) as

δ(B, a) =
∧

ψ∈B δ(ψ, a) ∧
∧

ψ 6∈B ¬δ(ψ, a)

where:
δ(a〈F 〉, a) = F̄

δ(∗〈F 〉, a) = F̄

δ(b〈F 〉, a) = false if a 6= b

where F̄ is constructed as follows. For a regular expression r, we obtain r̄ from r by sub-
stituting (B1 | . . . | Bm) for every occurrence of a formula ψ if {B1, . . . , Bm} is the set of
all states B such that ψ ∈ cl(B). For a Presburger formula f , let f̄ be obtained from f by
substituting

∑

ψ∈cl(B) |B| for every occurrence of the free variable |ψ|. By construction, the
resulting automaton is deterministic. We claim:

1. For every ψ ∈ Φ, ⊢ t : ψ iff t |=A B for some B ∈ Q with ψ ∈ cl(B);
2. ⊢ t1 . . . tk : r iff ti |=A Bi for some states Bi such that B1 . . . Bk ∈ L(r̄);
3. ⊢ t1 . . . tk : f iff ti |=A Bi for some states Bi such that σ |= f̄ where σ is the Parikh image

of B1 · · ·Bk.

In particular, the first item of the claim implies that L(φ) = L(A).

(2) ⇒ (1): For the reverse implication, consider a deterministic PTA A = (Q,Σ, δ, F ). W.l.o.g.
we may assume that no negation occurs in preconditions. We introduce one variable xq for
every state q ∈ Q. For these variables, we construct an equation system SA:

xq = ψq , q ∈ Q

where the right-hand sides are fixpoint expressions. The semantics of such equation systems
is an extension of the semantics for fixpoint expressions. The only addition is a rule:

t : ψ

t : x

for every equation x = ψ. Thus, whenever a tree satisfies the right-hand side of an equation,
then it also satisfies the variable to the left. The right-hand sides φq of the equation system
SA are constructed from the right-hand sides δ(q, a), a ∈ Σ, as follows:

φq =
∨

a∈Σ

[δ(q, a)]a

where the transformation [.]a takes a pre-condition and returns a fixpoint expression (without
fixpoints) as follows:

[r]a = a〈r{q 7→ xq | q ∈ Q}〉
[f ]a = a〈f{|q| 7→ |xq| | q ∈ Q}〉
[p1 ∨ p2]a = [p1]a ∨ [p2]a
[p1 ∧ p2]a = [p1]a ∧ [p2]a



Thus, a regular expression r over states q is transformed by first substituting the states
by the corresponding variables and then putting a node a on top. A Presburger formula is
transformed by first replacing the free |q| with |xq|, q ∈ Q, and again putting a node a on
top, whereas conjunctions and disjunctions are transformed by recursively proceeding to the
involved conjuncts and disjuncts, respectively. By induction on the depth of terms t, t1, . . . , tm
and pre-conditions p, we prove for every q ∈ Q and a ∈ Σ:

(1) t |=A q iff t : xq;
(2) ti |=A qi for i = 1, . . . ,m, with q1 . . . qm |= p iff a〈t1 . . . tm〉 : [p]a

The first claim then proves the correctness of the construction. The only non-trivial point in
the proof of the claim is the inductive step for assertion (2). The remaining details can be
found in the appendix. ⊓⊔

6 Complexity

In this section we study the complexity of decision problems related to Presburger automata
and Presburger fixpoint formulas. The complexity of testing satisfiability of arbitrary Pres-
burger formulas is prohibitively high, since the problem is hard for non-deterministic double
exponential time [6]. As we are interested to study the interplay between regular expressions,
Presburger formulas and tree automata, we assume for our complexity considerations that
all Presburger formulas are given as quantifier-free formulas (possibly with modulo predi-
cates and subtraction). Coefficients, like c in cx, are in binary notation, except in theorem 4,
which is a special case that can be dealt with efficiently. Recall also from Lemma 1 that any
quantifier-free Presburger formula can be transformed into equation normal form. The DNF
transformation might yield an exponential number of disjuncts. However, each disjunct can
only contain a linear number of atoms. Further, the normalization does not increase the size
of the occurring numbers.

First, we consider the non-emptiness problem for Presburger automata, i.e., given a PTA
A it has to be checked whether A accepts at least one tree. It is already pspace-hard to
decide whether a given set of regular expressions has a non-empty intersection or whether
the complement of a single regular expression is non-empty[24]. Hence, the non-emptiness
problem for PTA is pspace-hard. Surprisingly, it can also be solved in pspace. For that,
the following observation about the representation of Parikh images of finite word automata
turns out to be useful. It follows with a pumping argument, by observing that every path in
the automaton can be decomposed into a union of simple cycles and one simple path.

Lemma 2. Assume A is a (non-deterministic) finite word automaton with n states and input
alphabet of size k. Then the Parikh image of L(A) is a union of linear sets {σ0 +

∑m
i=1 xi ·σi |

xi ≥ 0} where each component of each vector σj ∈ N
k is at most n.

In particular, if the size of the alphabet is k, then the number m of occurring vectors is at
most nk.

Using Lemma 2, we obtain:

Theorem 3. The non-emptiness problem for (non-deterministic) Presburger tree automata
is complete for pspace.

Proof. It remains to prove the upper bound. For that, let A = (Q,Σ, δ, T ) be a PTA. Let n

denote the size of A.
We call a state q of A reachable, if there is a tree t such that t |=A q. We have to check

whether there is a reachable state in T . The set R of reachable states can be computed in a
standard fashion as follows. First, the set R consists of all states q such that for some single-
node tree t, we have t |= q. Then, given a set R of reachable states, we obtain a (possibly



larger) set R′ of reachable states q by checking whether there is a string w over R and a
symbol a, such that w |= δ(q, a). This process stops after at most |Q| iterations. Hence, to
get the desired upper bound, it suffices to show the following claim.

Claim. Given a PTA A = (Q,Σ, δ, T ), R ⊆ Q, q ∈ Q, a ∈ Σ, it can be checked in space
polynomial in |A|, whether there is a string w ∈ R∗ such that w |= δ(q, a).

The proof of the claim proceeds in two steps. First, we show that the length of the shortest
word satisfying δ(q, a) has length at most 2p(n), p a suitably defined polynomial not depending
on A. Second, we show that checking whether there exists some w ∈ R∗ of length at most
2p(n) with w |= δ(q, a) can be checked in polynomial space.

The precondition δ(q, a) can be written in disjunctive normal form. Each disjunct is a
conjunction of regular expressions r1, . . . , rk, negated regular expressions ¬r′1, . . . ,¬r′l, and
m ≤ n Presburger equations of the form (ti = ci)i over variables |q|, q ∈ Q, and possibly
other, free variables (at most 5n).

The formula δ(q, a) has a model if and only if one of this disjuncts has a model.
Since the regular expressions all occur in A, the sum of their sizes is less than n. Let

A1, . . . , Ak and A′
1, . . . , A

′
l be the corresponding non-deterministic automata. Then the min-

imal deterministic automaton A′ for their product has at most 2n states. By Lemma 2, the

Parikh image of L(A′) is a union of linear sets {σ0+

h
∑

i=1

xiσi | xi ∈ N}, where h < 2n·|Q| ≤ 2n2

and the entries of the vectors σ0, σi are smaller than 2n. Hence, a word fulfills δ(q, a) if and
only if its Parikh image τ is in one of these linear sets and additionally fulfills the Presburger
equations. This can be expressed by adding, for each q ∈ Q, the equation

|q| = σ0(q) +

h
∑

i=1

xi · σi(q).

Together we have M = m + |Q| ≤ 2n equations with at most N = 6n + 2n2

variables and
coefficients of values bounded by a = 2n. By a result of Papadimitriou [18] such a system has
a solution with numbers bounded by

N · (M · a + 1)2M+4 = (6n + 2n2

) · (2n2n + 1)4n+4 = 2O(n2)

This proves the first step, for some polynomial p(n) = O(n2).
It remains to describe the algorithm which checks whether a string w of size 2p(n) over Q

exists such that w |= δ(q, a). The algorithm is non-deterministic. It simply guesses w symbol
by symbol. For each regular expression r in δ(q, a), it computes the set of states that can
be reached by the corresponding automaton Ar when reading w. Further, for each q′ ∈ Q it
counts how often q′ occurs in w. All this can be done in polynomial space without actually
storing w. A counter keeps track of the length of w. In the end, it can be checked whether
w |= δ(q, a). By Savitch’s theorem this non-deterministic polynomial space algorithm can be
turned into a deterministic one still using polynomial space. ⊓⊔

Since our PTA are deterministic and thus complementable by exchanging the sets of accepting
and non-accepting states, we obtain as an immediate consequence:

Corollary 1. The containment problem for deterministic Presburger automata is complete
for pspace. ⊓⊔

There is a special type of PTA with a tractable non-emptiness test which might be relevant
for many practical cases. Its complexity is the same as that for traditional tree automata which
have a single regular expression as precondition.



Theorem 4. The non-emptiness problem can be solved in polynomial time for PTA, in which
every precondition is of the form

∨k
i=1(ri ∧ fi), with regular expressions ri and Presburger

formulas fi in equation normal form with only one equation and coefficients represented in
unary.

The proof can be found in the appendix.
Allowing coefficients in binary notation makes this problem less tractable.

Theorem 5. The non-emptiness problem for PTA as in Theorem 4 but with coefficients
represented in binary is np-complete.

A proof sketch is given in the appendix.
Now we turn to the related problem of deciding satisfiability for Presburger fixpoint for-

mulas. Here, an exptime lower bound is given by the same problem for fixpoint formulas
without Presburger subformulas. The lower bound is achieved already by formulas with only
one occurrence of µ (a similar result holds for model-checking µ-calculus against pushdown
graphs, [25]). Testing whether such formulas are satisfiable by some tree is complete for exp-

time. Again, it turns out that adding Presburger formulas does not increase the complexity,
i.e., we get the following result.

Theorem 6. Satisfiability for Presburger fixpoint formula is exptime-complete.

The proof follows a similar line as the one for Theorem 3. It is given in the appendix.

Next we show that membership for deterministic PTA as well as for fixpoint expressions
can be solved efficiently. This means that properties expressed by deterministic PTA are
indeed of practical use:

Theorem 7. Given a tree t and a deterministic PTA A, it can be checked in time O(|t| · |A|))
whether t ∈ L(A).

Proof. Since the PTA is supposed to be deterministic, it suffices to compute bottom-up the
state reached by each node of t. Since all Parikh vectors have entries at most |t|, every
Presburger formula and thus, every precondition on a node with k children can be evaluated
in time O(k · |A|), which yields the claim. ⊓⊔

Theorem 8. Given a tree t and a fixpoint formula φ, it can be checked in time O(|t| · |φ|2))
whether t |= φ.

Proof. We compute bottom-up the set of formulas satisfied by each subtree. For each node
we have to simulate the NFA corresponding to regular expressions r, by keeping the set of
reachable states of the NFA. For Presburger constraints we just need to count how many
children satisfy a given subformula. ⊓⊔

7 The Query Language

Fixpoint expressions allow to express properties of (document) trees. Let us now show how
an expressive querying language can be obtained which still allows for efficient algorithms to
collect all matches in a tree.

In the example shown in Figure 7 we might ask for all items containing “Bartoli”. A
second query could ask for item containing “Bartoli” and having at least three reviews. In
our fixpoint Presburger logic we can easily express that a tree contains a node satisfying a
given property, without knowing at which depth this node occurs. For instance, the formula
φ1 = ∗〈 Bartoli 〉 describes all elements containing “Bartoli”. Note that in order to take



properties of text contents into account, it (conceptually) suffices to consider each text char-
acter as a separate element node. We are not interested in the class of all these documents t,
however, but for each such t in the sub-documents which satisfying the specific φ1. Documents
containing elements with the property φ1 are described by the expression: µ x.(∗〈 x 〉 ∨ φ1).

<music> ...

<classical> ...

<opera>

<title> The Salieri Album </title>

<composer> Bartoli </composer>

<review> ... </review>

<review> ... </review>

<review> ... </review>

</opera>

<opera>

<title> The No. 1 Opera Album </title>

<composer> Puccini ; Verdi </composer>

<performer> Bartoli ; Pavarotti </name> </performer>

<review> ... </review>

</opera> ...

</classical> ...

</music>

<dvd> ...

<music dvd>

<opera>

<title> Rossini - La Cenerentola </title>

<performer> Bartoli </performer>

<review> ... </review>

<review> ... </review>

</opera> ...

</music dvd>

</dvd>

Figure 1 Part of an example document containing information about items sold by a store.

In order to indicate the sub-expression corresponding to the requested sub-documents, we
introduce an extra marker “•”. Thus, we specify the query as ψ1 = µx.(∗〈 x 〉 ∨ (• ∧ φ1)).
Accordingly for the second query, we describe the set of all elements containing at least three
reviews by: φ2 = ∗〈|review| ≥ 3〉. The query expression then can be formulated as:

ψ2 = µx.(∗〈 x 〉 ∨ (• ∧ φ1 ∧ φ2))

In order to obtain a query language, we therefore formally extend the language of Presburger
fixpoint expressions by one extra case:

φ ::= . . . | • | . . .

Accordingly, we add new axioms ⊢ t : • for all trees t. A match s of a formula ϕ containing
a subformula • is a proof for t : ϕ containing the fact s : •. We want to construct an algorithm
to determine for a fixed query expression ϕ, all matches inside a document tree t. We first
observe that we can determine in linear time for every subtree s of t the set of all subformulas
ψ′ of ϕ such that ⊢ s : ψ′. For that, we could construct, e.g., the deterministic PTA A for ϕ

as considered in the last section. In order to deal with the special symbol • occurring in ϕ, we
extend the notion of closure of states by adding the formula •. The rest of the construction
we leave unchanged. Let then S(s) denote the unique state with s |=A S(s). By construction,



ψ′ ∈ cl(S(s)) iff ⊢ s : ψ′. Moreover, all these sets can be determined by a single run of A over
the tree t, i.e., in linear time.

It remains to determine for every subtree (occurrence) s the subset R(s) ⊆ cl(S(s)) con-
taining all those ψ′ which may occur in some proof of t : ϕ. Then s is a match iff • ∈ R(s).
The subsets R(s) are determined in a second topdown pass over the tree t. For a closed set
of subformulas B, we introduce the auxiliary function coreB which takes a subformula ψ′ of
ϕ and returns the set of all subformulas in B which potentially contribute to any proof of ψ′.
So, coreB(ψ′) = {ψ′} ∪ core

′(ψ′) where core
′
B(•) = core

′
B(⊤) = ∅ and:

core
′
B(µx.ψ′) = coreB(ψ′)

core
′
B(x) = coreB(ψ′) if µx.ψ′ ∈ B

core
′
B(ψ1 ∧ ψ2) = core(ψ1)B ∪ coreB(ψ2)

core
′
B(ψ1 ∨ ψ2) =

{

core(ψi) if ψ3−i 6∈ B

core(ψ1) ∪ core(ψ2) otherwise
core

′
B(a〈F 〉) = ∅

core
′
B(∗〈F 〉) = ∅

Moreover, we set: coreB(R) =
⋃

ψ∈R coreB(ψ) for R ⊆ B.
The second pass over t starts at the root of t. There, we have: R(t) = coreB(ϕ) for

B = cl(S(t)). Now assume we have already computed the set R(s) for the occurrence s of
a subtree a〈s1 . . . sk〉. Let R′ = R(s) ∩ Ψ denote the set of subformulas in R(s) of the form
a〈F 〉 or ∗〈F 〉. Then R(si) =

⋃

ψ′∈R′ Rψ′(i) where Rψ′(i) equals the set of subformulas for
the i-th child of s which may occur at si in a proof of s : ψ′. If ψ′ = a〈f〉 or ψ′ = ∗〈f〉 for
a Presburger formula f , then we must compute the assignment to the global variables of f .
In fact, all valid sub-formulas at all child trees si contribute to this assignment. Therefore,
we simply have: Rψ′(si) = S(si) for all i. On the other hand, if ψ′ = a〈r〉 or ψ′ = ∗〈r〉 for a
regular expression r, then Rψ′(si) = coreBi

(Ri) where Bi = cl(S(si)) and

Ri = {ψi | ∃ψ1 . . . ψk ∈ L(r) : ∀ j : ψj ∈ S(sj)}

The set Ri denotes all subformulas provable for si which may contribute to the validation of
r. From these, we take all the formulas a〈F 〉 or ∗〈F 〉 in S(si) which may contribute to a proof
of these. According to this definition, the sets Rψ′(si), i = 1, . . . , k can jointly be computed
by a left-to-right followed by a right-to-left pass of a finite (string) automaton for r over the
children of s. The case of negated regular expressions is treated analogously. Summarizing we
conclude:

Theorem 9. The set of matches of a fixpoint query ϕ in an input tree t can be computed in
time linear in |t|. If ϕ is part of the input, the joint query complexity is O(|ϕ|2 · |t|). ⊓⊔

8 Conclusion

We have enhanced a simple fixpoint logic for unranked trees with Presburger constraints. For
the basic decision problems such as satifiability, membership and containment the resulting
logic turned out to have comparable complexities as the fixpoint logic without Presburger
constraints. Therfore, our logic is a promising candidate for a smooth enhancement of classical
Schema and querying languages for XML documents.

It remains a challenging engineering problem to obtain an implementation of the new
logic which behaves well on practical examples. Also, we would like to know more about the
complexity of the satisfiability problem for other restrictions on the transition function of a
PTA or the fixpoint formula to obtain further useful classes with efficient algorithms.

Since the class of tree languages defined by deterministic PTAs is a strict superclass of
the regular tree languages, we would also like to see other characterizations of this class.
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A Appendix

A.1 Proof of Theorem 1 in Section 3.

A flow for A is a triple (f, s, t), where s, t are states of A and f maps triples (p, a, q) with
q ∈ δ(p, a) to natural numbers. We write:

inf (q) =
∑

p ∈ Q, a ∈ Σ

q ∈ δ(p, a)

f(p, a, q) and outf (p) =
∑

q ∈ Q, a ∈ Σ

q ∈ δ(p, a)

f(p, a, q)

A flow (f, s, t) is consistent if, for each p ∈ Q, at least one of the following holds.

– inf (p) = outf (p),
– p = s and inf (p) = outf (p) − 1, or
– p = t and inf (p) = outf (p) + 1.

A state p occurs in (f, s, t) if p ∈ {s, t} or inf (p) > 0. A flow is connected, if the undi-
rected graph G which has the occurring states as vertices and edge set {{p, q} | f(p, a, q) >

0, for some a ∈ Σ} is connected.

Claim 1. A Parikh vector σ is in the Parikh image of L(A) if and only if there is a consistent
and connected flow (f, s, t), such that

(a) s = q0, t ∈ F , and

(b) for each a ∈ Σ, σ(|a|) =
∑

q∈δ(p,a)

f(p, a, q).

Let w be a string which is accepted by A and let σ(w) be its Parikh image. Let (f, s, t) be
induced by an accepting run of A on w: f(p, a, q) is the number of times A goes from state p

to state q while reading symbol a, s = q0 and t is the accepting state in which the run ends.
It is straightforward that (f, s, t) is consistent, connected and fulfills (a) and (b).

For the opposite conclusion let (f, s, t) be a consistent and connected flow fulfilling (a)
and (b). Let G be the multigraph induced by f as follows. The vertices of G are s, t and all p

with inf (p) > 0. The number of edges from p to q is
∑

a∈Σ

f(p, a, q). As (f, s, t) is connected, G

is connected as well. From consistency it follows that G is Eulerian, hence there is a path from
s to t which traverses each edge exactly once. Obviously, using (a), such a path corresponds
to an accepting run of A on a string w with σ(w) = σ. This finishes the proof of claim 1.

Claim 2. For each NFA A, an existential Presburger formula ψA with the following properties
can be constructed in linear time in |A|:

– ψA has free variables x(p,a,q), where p, q ∈ Q, a ∈ Σ, q ∈ δ(p, a), and
– for every assignment ρ of natural numbers to these variables, ρ |= ψA if and only if there

are s, t ∈ Q such that
• s = q0, t ∈ F , and
• (fρ, s, t) is a connected and consistent flow for A, where fρ(p, a, q) = ρ(x(p,a,q)) when-

ever q ∈ δ(p, a).

The formula ψA uses variables zp for each p. The intended meaning is that zp = 1 if
p = t ∈ F , otherwise zp = 0 (this avoids a quadratic blow-up). It contains the subformulas
∑

p∈F

zp = 1,
∑

p/∈F

zp = 0, as conjuncts. It is now straightforward to define another conjunct

which checks that ρ together with the zp corresponds to a consistent flow.
It only remains to be checked that the graph G is connected. It is easy to see that this is

the case if and only we can label each node of Q by a natural number such that the following
holds.



– s gets 0,
– each node of G besides s gets a number > 0,
– each node of G has a neighbour in G with a smaller number.

We can construct an existential Presburger formula of linear size with new variables up, for
each p ∈ Q, which expresses these properties. Furthermore, it is straightforward that (f, s, t)
is connected if and only if this formula holds. We take this formula as another conjunct of
ψA. This completes the proof of claim 2.

The formula ϕA is now easily obtained as

∃(xp,a,q)q∈δ(p,a) ψA ∧
∧

a∈Σ

σ(|a|) =
∑

p,q

xp,a,q,

where the quantification is over all variables xp,a,q with q ∈ δ(p, a). ⊓⊔

A.2 Remaining Proof of Theorem 2 in Section 5.

Assume ti |=A qi for i = 1, . . . ,m, and α = q1 . . . qm |= p. By induction on the structure
of p, we verify that for every a ∈ Σ, a〈t1 . . . tm〉 : [p]a where, by inductive hypothesis, we
may assume that ti : xqi

for i = 1, . . . ,m. Now, if p equals a regular expression r, then
by assumption, q1 . . . qm ∈ L(r). By definition, [p]a = a〈r{q 7→ xq | q ∈ Q}〉. Therefore,
xq1

. . . xqm
∈ L(r{q 7→ xq | q ∈ Q}) and hence a〈t1 . . . tm〉 : [p]a. If p equals a Presburger

formula f , then the Parikh image of q1 . . . qm satisfies f . Let ρ denote the mapping defined
by ρ(|xq|) = #{i | ti : xq}. Since the automaton A is deterministic, ti : q is provable
for exactly one state q. Therefore, the number of occurrences of q in the sequence q1 . . . qm

precisely equals ρ(|xq|). We conclude that t1 . . . tm |= f{|q| 7→ |xq| | q ∈ Q} and therefore
also a〈t1 . . . tm〉 : [p]a. The cases p ≡ p1 ∧ p2 and p ≡ p1 ∨ p2 are completely standard. For
the converse direction assume a〈t1 . . . tm〉 : [p]a for some a ∈ Σ. By inductive hypothesis for
ti, we already know that there are (unique) states qi such that ti |=A qi and therefore also
ti : xqi

, i = 1, . . . ,m. It remains to verify that q1 . . . qm |= p. Again we perform an induction
on the structure of p. Consider, e.g., the case where p equals a Presburger formula f . Then
[p]a ≡ a〈f{|q| 7→ |xq| | q ∈ Q}〉. Since by assumption, a〈t1 . . . tm〉 : [p]a, ρ |= f{|q| 7→ |xq| |
q ∈ Q} for ρ(|xq|)#{i | ti : xq}, q ∈ Q. Since A is deterministic, ρ(|xq|) equals the number of
occurrences of q in the sequence q1 . . . qm. Therefore, q1 . . . qm |= f .

To the equation system SA, we then apply Gaussian elimination. Thus, we take any
equation xq = φq where φq possibly contains free occurrences of xq and replace it with
xq = µxq.φq. Then we replace all free occurrences of xq in all other right-hand sides φq′ , q′ 6= q,
with the new fixpoint formula µxq.φq. The resulting system still is equivalent to the original
one but does no longer contain free occurrences of xq in right-hand sides. This we iteratively
perform for every state q′. Eventually, we arrive for each q ∈ Q at an equation xq = φ̄q where
φ̄q is a closed fixpoint expression which denotes the set {t ∈ TΣ | t |=A q}. Thus, the desired
expression φ can be chosen as:

φ ≡
∨

q∈F

φ̄q

This completes the proof. ⊓⊔

A.3 Proof sketch of Theorem 4 in Section 6.

Given such a PTA the general inductive strategy as in the proof of Theorem 3 can be used to
compute the set of reachable states. It remains to show that we can check in polynomial time
whether there is an i and a string w ∈ R∗ with w |= ri ∧ fi, where R is the set of states which
are already known as reachable. We can do this by constructing a one-counter automaton



C (with integer counter) which accepts exactly all strings w with w |= ri ∧ fi. In order to
construct C we first bring fi into a form

a0 +
∑

a∈R

ca|a| +
m

∑

i=1

bizi = 0,

where each ca, bi is an integer (in unary notation) and each zi is existentially quantified. C

reads w and and checks whether it fulfils ri. Simultaneously, it maintains in its counter the

number a0 +
∑

a∈R

ca|a|, where each |a| is the number of a’s seen so far. If it reads a then it

adds ca to the counter. At the end of the computation it adds an arbitrary multiple of bi to
the counter, for each i. It accepts with counter zero.

Testing whether L(C) 6= ∅ can then be done in polynomial time.

A.4 Proof sketch of Theorem 5 in Section 6.

Upper bound: We can check whether there is a string w |= r ∧ f as follows. The Parikh image
of L(r) is the union of linear sets with coefficients of polynomial size (in the size of r). By
guessing a linear set, verifying that it is contained in the Parikh image of L(r) and then
substituting the variables |a| in f by linear linear representation we get a single equation with
a solution of polynomila length [18].
Lower bound: There is a reduction from Exactly 1-in-3 SAT. Given a positive 3-SAT
formula ϕ with n clauses, we construct a regular expression as follows. For each variable x

of ϕ, let m(x) = i1 · · · ik be the string of numbers ij such that x occurs in Cij
. Let r be the

concatenation of all the m(x) in any order. Now, ϕ has an assignment which picks exactly
one literal from each clause, if and only if L(r) contains a string in which each letter from

{1, . . . , n} occurs exactly once. This can be checked by the equation

n
∑

i=1

4i|i| =

n
∑

i=1

4i. ⊓⊔

A.5 Proof of Theorem 6 in Section 6.

As already mentioned the lower bound follows from the lower bound for fixpoint formulas
without Presburger formulas. The proof may proceed along the same lines as the proof of
exptime-hardness in [21], i.e., we consider an alternating linear space-bounded Turing ma-
chine M . W.l.o.g., we may assume that M uses precisely n tape cells, that existential and
universal states strictly alternate and the initial state is existential, that all universal states
have precisely two successor configurations, and that no transitions are possible in accept-
ing states. Then one configuration (q, a1 . . . ai−1#ai . . . an) (q a state of M , aj tape symbols
and # marking the position of the head) can be represented as a segment in a unary tree:
a1〈. . . ai−1〈q〈ai〈. . . an〈. . .〉 . . .〉〉〉 . . .〉. These segments then can be composed to represent al-
ternating computation trees of M . Thus, it suffices to construct in polynomial time, a fixpoint
expression φM such that t |= φM if and only if t represents an accepting computation of M

on a given input w = w1 . . . wn. Indeed, such a formula can be constructed as:

φM ≡ initw ∧
(

µx. acc ∨
(

correct∃ ∧ ∗n+1〈acc ∨
(

correct∀ ∧ ∗n+1〈x, x〉
)

〉
))

where initw ≡ q0〈w1〈. . . wn〈⊤〉 . . .〉〉 (q0 the initial state of M) is a closed fixpoint formula
describing the initial configuration of M ; acc describes the set of all trees
a1〈. . . ai−1〈q〈ai〈. . . an〈〉 . . .〉〉〉 . . .〉 where q is an accepting state; correct∃ describes the set of
all trees starting with two configurations connected by an existential transition of M ; and
finally, correct∀ describes the set of all trees starting with three configurations connected by
a universal transition of M . Each of these formulas can be written down in polynomial time.



Interestingly enough, neither of the formulas init, acc, correct∃ or correct∀ contain fixpoints.
Thus, satisfiability even for formulas with just one occurrence of µ is hard for exptime.

It remains to prove the exponential upper bound. The general idea is related to the proof
of Theorem 3. Let ϕ be a Presburger fixpoint formula. Let Ψ denote the set of its subformulas
of the types a〈F 〉 and ∗〈F 〉 and Φ the set of all subformulas.

We call a subset B ⊆ Ψ obtainable if there is a tree t such that, for each ψ ∈ Ψ , ⊢ t : ψ if
and only if ψ ∈ B. In this case, we call t a witness for B and denote t by t(B).

We compute in an inductive fashion the set of all obtainable sets B ⊆ Ψ . First, we compute
the set X0 of sets that are obtainable by some one-node tree t. Given Xi, we let Xi+1 be
the set of sets that are in Xi or are obtainable by a tree consisting of a root the subtrees of
which are witnesses for the sets in Xi. As this process is monotonic it ends after at most 2|Ψ |

iterations, i.e., an exponential number of steps.
It therefore suffices to prove that each step takes no more than exponential time as well.

Let X denote a set of obtainable subsets of Ψ . We show that, given a fixpoint formula φ of
size n together with a test for membership in X, and a set B ⊆ Ψ , it can be checked in space
polynomial in n, whether B is obtainable by a tree with subtrees which are witnesses for sets
in X.

Of course, B is only obtainable if there is some symbol a such that all formulas in B

are either of the form a〈F 〉 or ∗〈F 〉. Accordingly we must check whether there is a string
w = B1 · · ·Bh over the alphabet X such that the tree t = a〈t(B1) · · · t(Bh)〉 makes all formulas
in B true and all others false. Let H denote the mapping which takes an assignment σ : X → N

and computes an assignment τ : Φ → N by

τ(φ′) =
∑

φ′∈cl(B′),B′∈X

σ(B′)

Then t satisfies the formula a〈r〉, r a regular expression, iff w ∈ L(r̄) where r̄ is obtained from
r by replacing every formula φ′ with the disjunction of all B′ ∈ X, φ′ ∈ cl(B′). Likewise for
a〈¬r〉. Moreover, t satisfies the formula a〈f〉, f a Presburger formula, iff H(π(w)) satisfies f .

As in the proof of Theorem 3, we claim that if such a string w exists which simultaneously
verifies the formulas a〈F 〉 ∈ B or ∗〈F 〉 ∈ B and falsifies all other such formulas potentially
occurring as pre-conditions of a node label a or ∗, then there exists one such witness string
w′ whose length is bounded by 2p(n) for some polynomial p.

We first show how the statement of the theorem follows from this claim. Recall that
for Theorem 3, the string w of bounded length consisted of individual states of the PTA
(polynomially many) whereas now we use sets of subformulas as letters of which there might
be exponentially many. We successively guess subsets B′ ⊆ Ψ which are in X (this can
be done by means of the oracle for X). For each such B′, we simulate the evaluations of the
nondeterministic automata corresponding to the regular expressions r occuring in a〈F 〉 ∈ Ψ or
∗〈F 〉 ∈ Ψ . During this evaluation, we maintain an occurrence vector τ indexed by subformulas
φ′ of ϕ. Whenever a set B′ is processed, we increment in τ the values of all φ′ contained in
the closure cl(B′). Since each letter B′ may have incremented each entry of τ at most by
1, the assignment τ can always be represented in polynomial space. Once we have guessed
a sequence of length at most 2p(n) verifying the formulas a〈F 〉 ∈ B and ∗〈F 〉 ∈ B that are
based on regular expressions, we verify that τ satisfies the formula

(
∧

a〈f〉∈B∨∗〈f〉∈B

f) ∧ (
∧

a〈f〉6∈B∧∗〈f〉6∈B

¬f)

The latter can be done even in polynomial time. Since this algorithm uses only extra space
polynomial in n, it can be executed in deterministic exponential time — which we wanted to
prove.



It remains to prove the existence of a witness string of length at most 2p(n). Let F de-
note a Boolean combination of regular expressions over sub-formulas of ϕ and quantifier-free
Presburger formulas with free variables of the form |φ′|, φ′ a subformula of ϕ whose size is
bounded by n (the size of the fixpoint formula ϕ). As in Theorem 3 we start by constructing
an automaton A for the regular expressions occurring in F . This automaton has an input
alphabet of size at most 2n and at most 2n states. Therefore by Lemma 2, the Parikh image
of the accepted language is a finite union π(L(A)) = L1∪. . .∪Lm of linear sets Lr of the form:

{σ0 +
∑h

i=1 xi · σi | xi ≥ 0} where the entries of each σj are bounded by 2n — whereas the
number h ≤ 2n·2n

might be doubly exponentially large. Recall however, that for additional
satisfiability of the Presburger formulas contained in F , we are not interested in the Parikh
image of the words accepted by A itself but in the image of the Parikh image under H. By
definition, H(π(L(A))) = H(L1)∪· · ·∪H(Lm). Moreover, for L = {σ0+

∑h
i=1 xi ·σi | xi ≥ 0},

the set H(L) is given by H(L) = {τ0 +
∑h

i=1 xi · τi | xi ≥ 0} where τj = H(σj), j = 0, . . . , h.
This implies that each component in a vector τj is obtained by the sum of at most 2n entries
of σj . Therefore, all entries of the τj are bounded by 2n · 2n = 22n. Moreover, the vectors τj

now only have at most n entries. Accordingly, only (22n)n = 22n2

of the τj can be distinct
and therefore necessary to describe H(L). Thus, now we may proceed along the same lines
as in the proof of Theorem 3. A linear set contained in the Parikh image of w thus gives
rise to a linear set containing H(π(w)) which in turn gives rise to at most n extra equa-

tions in 22n2

variables with coefficients bounded by 22n. These are to be added to the linear
many equations obtained from the Presburger formulas which, after removal of inequalities
and (mod d) equivalences may have a linear number of variables. Thus once again applying
Papadimitriou’s estimation, we obtain that the entries of τ = H(π(w)) of a witness w are

bounded by 2O(n2). Recall that by construction, ⊤ is contained in cl(B′) for every subset
B′ ⊆ Ψ . Therefore, H(π(w))(⊤) precisely equals the length of w. Thus, the upper bound on
the entries of τ proves the desired upper bound on the length of a shortest witness. This
completes the proof. ⊓⊔


