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Abstract. We propose abstract regular model checking as a new generic tech-
nique for verification of parametric and infinite-state systems. The technique
combines the two approaches of regular model checking and verification by ab-
straction. We propose a general framework of the method as well as several con-
crete ways of abstracting automata or transducers, which we use for modelling
systems and encoding sets of their configurations as usual in regular model check-
ing. The abstraction is based on collapsing states of automata (or transducers) and
its precision is being incrementally adjusted by analysing spurious counterexam-
ples. We illustrate the technique on verification of a wide range of systems includ-
ing a novel application of automata-based techniques to an example of systems
with dynamic linked data structures.

1 Introduction

Model checking is nowadays widely accepted as a powerful technique for the verifica-
tion of finite-state systems. However, many real-life systems, especially software sys-
tems, exhibit various aspects requiring one to reason about infinite-state models (data
manipulation, dynamic creation of objects and threads, etc.). Several approaches ex-
tending model checking to be able to deal with them have recently been proposed. One
of them is regular model checking [22, 30, 12]—a generic, automata-based approach
allowing for a uniform modelling and verification of various kinds of infinite-state sys-
tems such as pushdown systems, (lossy) FIFO-channel systems, systems with counters,
parameterised and dynamic networks of processes, etc.

In regular model checking, configurations of systems are encoded as words over a
finite alphabet and transitions are modelled as finite state transducers mapping config-
urations to configurations. Finite automata can then be naturally used to represent and
manipulate (potentially infinite) sets of configurations, and reachability analysis can
be performed by computing transitive closures of transducers [21, 15, 3, 9] or images
of automata by iteration of transducers [12, 28]—depending on whether dealing with
reachability relations or reachability sets is preferred. To facilitate termination of the
computation, which is in general not guaranteed as the problem being solved is unde-
cidable, various acceleration methods are usually used.

A crucial problem to be faced in regular model checking is the state space explosion
in automata (transducer) representations of the sets of configurations (or reachability
relations) being examined. One of the sources of this problem is related to the nature
of the current regular model checking techniques. Typically, these techniques try to
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calculate the exact reachability sets (or relations) independently of the property being
verified. However, it would often be enough to only compute an overapproximation of
the reachability set (or relation) sufficiently precise to verify the given property. Indeed,
this is the way large (or infinite) state spaces are being successfully handled outside the
domain of regular model checking using the so-called abstract-check-refine paradigm
[20, 26, 14,16] implemented, e.g., in tools for software model checking like Slam [6],
Magic [13], or Blast [19]. All these tools use the method of predicate abstraction, where
a finite set of boolean predicates is used to abstract a concrete system C into an abstract
one A by considering equivalent the configurations of C that satisfy the same predicates.
If a property is verified in A, it is guaranteed to hold in C too. If a counterexample is
found in A, one can check if it is also a counterexample for C. If not, this spurious
counterexample can be used to refine the abstraction such that the new abstract system
A’ no longer admits the spurious counterexample. In this way, one can construct finer
and finer abstractions until a sufficient precision is achieved and the property is verified,
or a real counterexample is found.

In this work, we propose a new approach to regular model checking based on the
abstract-check-refine paradigm. Instead of precise acceleration techniques, we use ab-
stract fixpoint computations in some finite domain of automata. The abstract fixpoint
computations always terminate and provide overapproximations of the reachability sets
(relations). To achieve this, we define techniques that systematically map any automa-
ton M to an automaton M’ from some finite domain such that M recognises a superset
of the language of M. For the case that the computed overapproximation is too coarse
and a spurious counterexample is detected, we provide effective principles allowing the
abstraction to be refined such that the new abstract computation does not encounter the
same counterexample.

We propose two techniques for abstracting automata. They take into account the
structure of the automata and are based on collapsing their states according to some
equivalence relation. The first one is inspired by predicate abstraction. However, notice
that contrary to classical predicate abstraction, we associate predicates with states of
automata representing sets of configurations rather than with the configurations them-
selves. An abstraction is defined by a set of regular predicate languages Lp. We consider
a state q of an automaton M to “satisfy” a predicate language Lp if the intersection of Lp
with the language L(M, q) accepted from the state q is not empty. Then, two states are
equivalent if they satisfy the same predicates. The second abstraction technique is then
based on considering two automata states equivalent if their languages of words up to
a certain fixed length are equal. For both of these two abstraction methods, we provide
effective refinement techniques allowing us to discard spurious counterexamples.

We also introduce several natural alternatives to the basic approaches based on back-
ward and/or trace languages of states of automata. For them, it is not always possible to
guarantee the exclusion of a spurious counterexample, but according to our experience,
they still provide good practical results.

All of our techniques can be applied to dealing with reachability sets (obtained by
iterating length-preserving or even general transducers) as well as length-preserving
reachability relations.

We have implemented the different abstraction and refinement schemas in a proto-
type tool and tested them on a number of examples of various types of systems including
parametric networks of processes, pushdown systems, counter automata, systems with
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Fig. 1. A transducer modelling a simple token passing, initial, bad and reachable configurations

queues, and—for the first time in the context of regular model checking—an example
of dynamic linked data structures. The experiments show that our techniques are quite
powerful in all the considered cases and that they are complementary—different tech-
niques turn out to be the most successful in different scenarios. The results are very
promising and compare favourably with other existing tools.

Related Work. In addition to what is mentioned above, many other results have
been obtained for symbolic model checking of various kinds of infinite state systems,
such as pushdown systems [10, 17], systems with counters [5, 18] or queues [4, 2, 11].
These works do not consider abstraction. For parameterised networks of processes, sev-
eral methods using abstractions have been proposed [7,24]. Contrary to our approach,
these methods do not provide the possibility of refinement of the abstraction. Moreover,
they are specialised for parameterised networks whereas our technique is generic.

2 Finite Automata and Transducers

We first provide a simple example that we use to demonstrate the way systems are
modelled in (abstract) regular model checking and later to illustrate the verification
techniques we propose. Then, we formalise the basic notions of finite automata and
transducers and briefly comment on their use in verification by regular model checking.
As a running example, we consider the transducer T in Fig. 1. It models a simple
parameterised system implementing a token passing algorithm. The system consists of
a parametric number of processes arranged in an array. Each process either has (T) or
does not have (N) the token. Each process can pass the token to its third right neighbour.
The transducer includes the identity relation too. In the initial configurations described
by the automaton Init, the second process has the token, and the number of processes
is divisible by three. We want to show that it is not possible to reach any configuration
where the last process has the token. This set is described by the automaton Bad.
Formally, a finite automaton is a 5-tuple M = (Q, Z, 8, qo, F ) where Q is a finite set
of states, 2 a finite alphabet, d C Q x X x Q a set of transitions, ¢y € Q an initial state
and F C Q a set of final states. The transition relation —C Q x Z* x Q of M is defined as
the smallest relation satisfying: (1) Vg € Q : q = q, (2) if (g,a,q9’) € &, theng 2 ¢ and
(Q)ifq g and g’ 2 q”, then g = ”. Given a finite automaton M and an equivalence
relation ~ on its states, M/ ~ denotes the quotient automaton defined in the usual way.
The language recognised by M from a state q € Q is defined by L(M,q) = {w|3q €
F:q - q'}. The language L(M) is equal to L(M,go). A set L C =* is regular iff there
exists a finite automaton M such that L = L(M). We also define the backward language



T(M,q) = {w | go % q} and the forward/backward languages of words up to a cer-
tain length: L<"(M,q) = {w € L(M,q) | [w| < n} and similarly T <"(M,q). We define
the forward/backward trace languages of states T(M,q) = {w e Z* | Iw € Z* :ww' €
L(M,q)} and similarly ?(M,q). Finally, we define accordingly forward/backward trace
languages T="(M,q) and ?S“(M,q) of traces up to a certain length.

Let X be a finite alphabet and 3 = ZU {€}. A finite transducer over X is a 5-tuple
T=(Q,% x Z¢,0,00,F) where Q is a finite set of states, d C Q x % x Xz x Q a set of
transitions, qo € Q an initial state and F C Q a set of final states. A finite transducer is
called a length-preserving transducer if its transitions do not contain €. The transition

relation —C Q x * x Z* x Q is defined as the smallest relation satisfying: (1) qi q

for every q € Q, (2) if (g,a,b,q’) € 9, then g ab, q and (3) if g =5 ¢f and ¢ ab, q”,

thenq yab, g”. Then, by abuse of notation, we identify a transducer T with the relation

{(w,u) | 39" € F : qo o, q'}. Foraset L C 2* and a relation R C X* x X*, we denote
R(L)theset{weZ*| 3w’ eL: (W' ,w) e R}. Letid C Z* x Z* be the identity relation and
o the composition of relations. We define recursively the relations © = id, T+ = 1ot
and T* = U ;' Below, we suppose id C T meaning that T C T+ for all i > 0.

The properties we want to check are primarily reachability properties. Given a sys-
tem with a transition relation modelled as a transducer 1, a regular set of initial con-
figurations given by an automaton Init, and a set of “bad” configurations given by an
automaton Bad, we want to check t*(L(Init)) NL(Bad) = 0. We transform more com-
plicated properties into reachability by composing the appropriate property automaton
with the system being checked. In this way, even liveness properties may be handled if
the transition relation is instrumented to allow for loop detection as briefly mentioned
later. For our running example, t*(L(Init)) is shown in Fig. 1(d), and the property of
interest clearly holds. Notice, however, that in general, T (L(Init)) is neither guaranteed
to be regular nor computable. In the following, the verification task is to find a regular
overapproximation L O t*(L(Init)) such that LNL(Bad) = 0.

3 Abstract Regular Model Checking

In this section, we describe the general approach of abstract regular model checking
and propose a common framework for automata abstraction based on collapsing states
of the automata. This framework is then instantiated in several concrete ways in the
following two sections. We concentrate on the use of abstract regular model checking
for dealing with reachability sets. However, the techniques we propose may be applied
to dealing with reachability relations too—though in the context of length-preserving
transducers only. (Indeed, length-preserving transducers over an alphabet X can be seen
as finite-state automata over > x 2.) We illustrate the applicability of the method to
dealing with reachability relations by one of the experiments presented in Section 6.

3.1 The Basic Framework of Automata Abstraction

Let 2 be a finite alphabet and Mk the set of all finite automata over . By an automata
abstraction function a, we understand a function that maps every automaton M over
to an automaton a(M) whose language is an overapproximation of the one of M, i.e.
for some Ay C My, a : My — Ay such that YM € M : L(M) C L(a(M)). We call a
finitary iff its range As is finite.
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Fig. 2. A spurious counterexample in an abstract regular fixpoint computation

Working conveniently on the level of automata, we introduce the abstract transition
function 1, for a transition relation expressed as a transducer T over 2 and an automata
abstraction function o as follows: For each automaton M € My, 14(M) = a(i(M))
where (M) is the minimal deterministic automaton of T(L(M)). Now, we may itera-
tively compute the sequence (t},(M))i>o. Since we suppose id C T, it is clear that if a
is finitary, there exists k > 0 such that (M) = t&(M). The definition of a implies
L(t§(M)) 2 T*(L(M)). This means that in a finite number of steps, we can compute an
overapproximation of the reachability set T*(L(M)).

3.2 Refining Automata Abstractions

We call an automata abstraction function a’ a refinement of a iff YM € Mz : L(a’(M)) C
L(a(M)). Moreover, we call o’ a true refinement iff it yields a smaller overapproxima-
tion in at least one case—formally, iff 3M € M5 : L(a’(M)) C L(a(M)).

A need to refine a arises when a situation depicted in Fig. 2 happens. Suppose we
are checking whether no configuration from the set described by some automaton Bad
is reachable from some given set of initial configurations described by an automaton
Mo. We suppose L(Mo) NL(Bad) = 0—otherwise the property being checked is broken
already by the initial configurations. Let M = a(Mo) and for eachi > 0, M; =T(M* ;)
and M = a(Mj) =1q(M{* ;). Thereexistkand I (0 <k <) suchthat: (1) Vi:0 <i<I:
L(Mj)NL(Bad) =0. (2) L(M)NL(Bad) =L(X) # 0. (3) If we define X as the minimal
deterministic automaton accepting T=1(L(Xi+1)) NL(M®) for all i such that 0 <i <,
then Vi:k <i<1:L(Xi)NL(M;) # 0and L(Xx) NL(Mg) = 0 despite L(Xk) # 0. Next,
we see that either k = 0 or L(Xk—1) = 0, and it is clear that we have encountered a
spurious counterexample.

Note that when no | can be found such that L(M;) NL(Bad) # 0, the computation
eventually reaches a fixpoint, and the property is proved to hold. On the other hand, if
L(Xo) NL(Mo) # 0, we have proved that the property is broken.

The spurious counterexample may be eliminated by refining o to o such that for any
automaton M whose language is disjoint with L(Xy), the language of its a’-abstraction
will not intersect L(X) either. Then, the same faulty reachability computation (i.e. the
same sequence of M; and M) may not be repeated because we exclude the abstraction
of My to M{. Moreover, the reachability of the bad configurations is in general excluded
unless there is another reason for it than overapproximating by subsets of L(Xy).

A slightly weaker way of eliminating the spurious counterexample consists in refin-
ing a to a’ such that at least the language of the abstraction of My does not intersect



with L(X). In such a case, it is not excluded that some subset of L(Xy) will again be

used for an overapproximation somewhere, but we still exclude a repetition of exactly

the same faulty computation. The obtained refinement can be coarser, which may lead
to more refinements and a slower computation. On the other hand, the computation
may terminate sooner due to quickly jumping to the fixpoint and use less memory due
to working with less structured sets of configurations of the systems being verified—
the abstraction is prevented from becoming unnecessarily precise in this case. For the

latter reason, as illustrated later, one may sometimes successfully use even some more

heuristic approaches that guarantee that the spurious counterexample will only eventu-

ally be excluded (i.e. after a certain number of refinements) or that do not guarantee the
exclusion at all.

An obvious danger of using a heuristic approach that does not guarantee an ex-
clusion of spurious counterexamples is that the computation may easily start looping.
Notice, however, that even when we refine automata abstractions such that spurious
counterexamples are always excluded, and the computation does not loop, we do not
guarantee that it will eventually stop—we may keep refining forever. Indeed, the verifi-
cation problem we are solving is undecidable in general.

3.3 Abstracting Automata by Collapsing Their States

In the following two sections, we discuss several concrete automata abstraction func-
tions. They are based on automata state equivalence schemas that define for each au-
tomaton from M an equivalence relation on its states. An automaton is then abstracted
by collapsing all its states related by this equivalence. We suppose such an equivalence
to reflect the fact that the future and/or history of the states to be collapsed is close
enough, and the difference may be abstracted away.

Formally, an automata state equivalence schema E assigns an automata state equiv-
alence ~C Q x Q to each finite automaton M = (Q, %, 8,, F) over Z. We define the
automata abstraction function oy based on E such that VM € Ms : ag(M) = M/ ~5;.
We call E finitary iff ag is finitary. We refine og by refining E such that more states are
distinguished in at least some automata.

The automata state equivalence schemas presented below are then all based on one
of the following two basic principles: (1) comparing states wrt. the intersections of
their forward/backward languages with some predicate languages (represented by the
appropriate predicate automata) and (2) comparing states wrt. their forward/backward
behaviours up to a certain bounded length.

4 Automata State Equivalences Based on Predicate L anguages

The two automata state equivalence schemas we introduce in this section—F, based
on forward languages of states and B, based on backward languages—are both defined
wrt. a finite set of predicate automata #. They compare two states of a given automaton
according to the intersections of their forward/backward languages with the languages
of the predicates. Below, we first introduce the basic principles of the schemas and then
add some implementation and optimisation notes.

4.1 The F, Automata State Equivalence Schema

The automata state equivalence schemaF,, defines two states of a given automaton to be
equivalent when their languages have a nonempty intersection with the same predicates
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Fig. 3. An example using abstraction based on predicate languages

of #. Formally, for an automaton M = (Q, X, 9,qo,F ), F, defines the state equivalence
as the equivalence ~§; such that Vq1,02 € Q : g1 ~jy g2 < (VP € 2 : L(P)NL(M,q1) #
0< L(P)NL(M,q2) # 0).

Clearly, as  is finite and there is only a finite number of subsets of ® representing
the predicates with which a given state has a nonempty intersection, IF, is finitary.

For our example from Fig. 1, if we take as 2 the automata of the languages of the
states of Bad, we obtain the automaton in Fig. 3(a) as the abstraction of Init from Fig.
1(c). This is because all states of Init except the final one become equivalent. Then,
the intersection of T(a(Init)) with the bad configurations—shown in Fig. 3(c)—is not
empty, and we have to refine the abstraction.

The I, schema may be refined by adding new predicates into the current set of pred-
icates 2. In particular, we can extend ® by automata corresponding to the languages of
all the states in Xx from Fig. 2. Theorem 1 proved in the full paper shows that this
prevents abstractions of languages disjoint with L(X), such as—but not only—L(My),
from intersecting with L(Xx). Thus, as already mentioned, a repetition of the same faulty
computation is excluded, and the set of bad configurations will not be reached unless
there is another reason for this than overapproximating by subsets of L(X).

Theorem 1. Let us have any two finite automata M = (QM,Z,SM,qg",FM) and X =
(Qx,Z, 6x,qf§, Fx) and a finite set of predicate automata # such that Vgx € Qx : 3P €
P :L(X,qx) = L(P). Then, if L(M)NL(X) =0, L(ar, (M)) NL(X) = 0 too.

In our example, we refine the abstraction by extending » with the automata rep-
resenting the languages of the states of Xo from Fig. 3(d). Fig. 3(e) then indicates for
each state g of Init, the predicates corresponding to the states of Bad and Xo whose



languages have a non-empty intersection with the language of g. The first two states of
Init are equivalent and are collapsed to obtain the automaton from Fig. 3(f), which is a

fixpoint showing that the property is verified. Notice that it is an overapproximation of
the set of reachable configurations from Fig. 1(d).

The price of refining F, by adding predicates for all the states in Xx may seem
prohibitive, but fortunately this is not the case in practice. As described in Sect. 4.3, we
do not have to treat all the new predicates separately. We exploit the fact that they come
from one original automaton and share large parts of their structure. In fact, we can work
just with the original automaton and each of its states may be considered an initial state
of some predicate. This way, adding the original automaton as the only predicate and
adding predicates for all of its states becomes roughly equal. Moreover, the refinement
may be weakened by taking into account just some states of Xy as discussed in Sect. 4.3.

4.2 The B, Automata State Equivalence Schema

The B, automata state equivalence schema is an alternative of IF, based on backward
languages of states rather than forward. For an automaton M = (Q, X, 8, qo, F ), it defines
the state equivalence as the equivalence <7, such that vVg1,0q2 € Q: g1 ~§; g2 < (VP €
2 :L(P)NT (M,q1) £0< L(P)N L (M,q2) # 0).

Clearly, B, is finitary for the same reason as IF,. It may also be refined by extending
P by automata corresponding to the languages of all the states in Xx from Fig. 2. As
stated in Theorem 2, the effect is the same as for .

Theorem 2. Let us have any two finite automata M = (QM,Z,SM,qg",FM) and X =
(Qx,Z, 6x,qf§, Fx) and a finite set of predicate automata # such that Vax € Qx : 3P €

P <f(X,qx) =L(P). Then, if L(M)NL(X) =0, L(ag, (M))NL(X) = 0 too.

4.3 Implementing and Optimising Collapsing Based on F, /B,

The abstraction of an automaton M wrt. the automata state equivalence schema IF, may
be implemented by first labelling states of M by the states of predicate automata in
¢ with whose languages they have a non-empty intersection and then collapsing the
states of M that are labelled by the initial states of the same predicates. (Provided the
sets of states of the predicate automata are disjoint.) The labelling can be done in a
way similar to constructing a backward synchronous product of M with the particular
predicate automata: (1) VP € » VqE € Fp Vq¥ € Fy: g¥ is labelled by gE, and (2)
VP € 2 Vq7,d5 € Qp Y, 9 € Qum: if gY is labelled by g, and there exists a € =
such that ' 2 g3’ and qf 5 g5, then qy" is labelled with 7. The abstraction of an
automaton M wrt. the B, schema may be implemented analogously.

If the above construction is used, it is then clear that when refining F, /B, , we can
just add Xy into 2 and modify the construction such that in the collapsing phase, we
simply take into account all the labels by states of Xk and do not ignore the (anyway
constructed) labels other than qy¥.

Moreover, we can try to optimise the refinement of E,/B, by replacing X in 2
by its important tail/head part defined wrt. M as the subautomaton of Xy based on
the states of Xy that appear in at least one of the labels of My wrt. Fyix1/Boux)
respectively. As stated in Theorem 3 (proved in the full paper), the effect of such a



refinement corresponds to the weaker way of refining automata abstraction functions
described in Section 3.2. This is due to the strong link of the important tail/head part of
Xk to Mg wrt. which it is computed. A repetition of the same faulty computation is then
excluded, but the obtained abstraction is coarser, which may sometimes speed up the
computation as we have already discussed.

Theorem 3. Let M and X be any finite automata over ZandY = (Qv,Z, dy, qg, Fy) the
important tail/head part of X wrt. F,/B, and M. If 2’ is such that Vgy € Qy 3P € 2’ :
L(Y,qv)/ L (Y,qv) =L(P) and L(M)NL(X) =0, L(ag,,/z, (M))NL(X) =0.

A further possible heuristic to optimise the refinement of I, /B, is trying to find just
one or two key states of the important tail/head part of Xy such that if their languages
are considered in addition to 2, L(M) will not intersect L(X).

We close the section by noting that in the initial set of predicates 2 of F,/B,,
we may use, e.g., the automata describing the set of bad configurations and/or the set of
initial configurations. Further, we may also use the domains or ranges of the transducers
encoding the particular transitions in the systems being examined (whose union forms
the one-step transition relation T which we iterate). The meaning of the latter predicates
is similar to using guards or actions of transitions in predicate abstraction [8].

5 Automata State Equivalences Based on Finite-L ength Languages

We now present the possibility of defining automata state equivalence schemas based on
comparing automata states wrt. a certain bounded part of their languages. It is a simple,
yet (according to our practical experience) often quite efficient approach. As a basic
representative of this kind of schemas, we first present a schema F; based on forward
languages of words of a limited length. Then, we discuss its possible alternatives.

The FL automata state equivalence schema defines two states of an automaton to
be equal if their languages of words of length up to a certain bound n are identical.
Formally, for an automaton M = (Q, Z,8,qo, F ), FL defines the state equivalence as the
equivalence ~}, such that Vqi1,q2 € Q : g1 ~y g2 < L="(M,q1) = L="(M, q2).

L is clearly finitary. It may be refined by incrementally increasing the bound n on
the length of the words considered. This way, as we work with minimal deterministic
automata, we may achieve the weaker type of refinement described in Section 3.2. Such
an effect is achieved when n is increased to be equal or bigger than the number of states
in My from Fig. 2 minus one. In a minimal deterministic automaton, this guarantees that
all states are distinguishable wrt. ~,, and My will not be collapsed at all.

In Fig. 4, we apply F% to the example from Fig. 1. We choose n = 2. In this case, the
abstraction of the Init automaton is Init itself. Fig. 4(a) indicates the states of T(Init) that
have the same languages of words up to size 2 and are therefore equivalent. Collapsing
them yields the automaton shown in Fig. 4(b) (after determinisation and minimisation),
which is a fixpoint. Notice that it is a different overapproximation of the set of reachable
configurations than the one obtained using [, . If we choose n = 1, we obtain a similar
result, but we need one refinement step of the above described kind.

Let us, however, note that according to our practical experience, the increment of
n by |Qwm| — 1 may often be too big. Alternatively, one may use its fraction (e.g., one
half), increase n by the number of states in Xy (or its fraction), or increase n just by one.
In such cases, an immediate exclusion of the faulty run is not guaranteed, but clearly,
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Fig.4. An example using abstraction based on languages of words up to length n (for n= 2)

such a computation will be eventually excluded because n will sooner or later reach the
necessary value. The impact of working with abstractions refined in a coarser way is
then like in the case of using F, /B, .

Regarding the initial value of n, one may use, e.g., the number of states in the
automaton describing the set of initial configurations or the set of bad configurations,
their fraction, or again just one.

As a natural alternative to dealing with forward languages of words of a limited
length, we may also think of backward languages of words of a limited length and for-
ward or backward languages of traces with a limited length. The automata equivalence
schemas BE, F[, and B} based on them can be formally defined analogously to .

Clearly, all these schemas are finitary. Moreover, we can refine them in a similar
way as FL. For FT and B, however, no guarantee of excluding a spurious counterex-
ample may be provided. Using F]1, e.g., we can never distinguish the last three states
of the automaton in Fig. 4(b)—they all have the same trace languages. Thus, we cannot
remember that the token cannot get to the last process. Nevertheless, despite this, our
practical experience shows the schemas based on traces are quite successful in practice.

6 Experiments

We have implemented the ideas proposed in the paper in a prototype tool written in YAP
Prolog using the FSA library [29]. To demonstrate that abstract regular model checking
is applicable to verification of a broad variety of systems, we tried to apply the tool to a
number of different verification tasks.

6.1 The Types of Systems Verified

Parameterised networks of processes We considered several slightly idealised mu-

tual exclusion algorithms for an arbitrary number of processes (namely the Bakery,

Burns, Dijkstra, and Szymanski algorithms in versions similar to [23]). In most of these

systems, particular processes are finite-state. We encode global configurations of such
systems by words whose length corresponds to the number of participating processes,

and each letter represents the local state of some process. In the case of the Bakery

algorithm where each process contains an unbounded ticket value, this value is not rep-

resented directly, but encoded in the ordering of the processes in the word.

We verified the mutual exclusion property of the algorithms, and for the Bakery al-
gorithm, we verified that some process will always eventually get to the critical section
(communal liveness) as well as that each individual process will always eventually get
there (individual liveness) under suitable fairness assumptions. For checking liveness,



we manually composed the appropriate Biichi automata with the system being verified.
Loop detection was allowed by working with pairs of configurations consisting of a
remembered potential beginning of a loop (fixed at a certain point of time) and the cur-
rent configuration being further modified. Checking that a loop is closed then consisted
in checking that a pair of the same configurations was reached. To encode the pairs of
configurations using finite automata, we interleaved their corresponding letters.

Push-down Systems We considered a simple system of recursive procedures—the
plotter example from [17]. We verified a safety part of the original property of interest
describing the correct order of plotter instructions to be issued. In this case, we use
words to encode the contents of the stack.

Systems with Queues We experimented with a model of the Alternating Bit Proto-
col (ABP) for which we checked correctness of the delivery order of the messages. A
word encoding a configuration of the protocol contained two letters representing inter-
nal states of the communicating processes. Moreover, it contained the contents of the
two lossy communication channels with a letter corresponding to each message. Let
us note that in this case, as well as in the above and below case, general (non-length-
preserving) transducers were used to encode transitions of the systems.

Petri Nets, Systems with Counters We examined a general Petri net with inhibitor
arcs, which can be considered an example of a system with unbounded counters too.
In particular, we modelled a Readers/Writers system extended with a possibility of dy-
namic creation/deletion of processes, for which we verified mutual exclusion between
readers and writers and between multiple writers. We considered a correct version of the
system as well as a faulty one, in which we omitted one of the Petri net arcs. Markings
of places in the Petri net were encoded in unary and the particular values were put in
parallel. (Using this encoding, a marking of a net with places p and g, two tokens in p,
and four in g would be encoded as q|g|pg|pg.) In some other examples of systems with
counters (such as the Bakery algorithm for two processes with unbounded counters),
we also successfully used a binary encoding of the counters like in NDDs [30].

Dynamic Linked Data Structures We considered verification of a procedure for re-
versing lists shown in Fig. 5. As according to our knowledge, it is for the first time that
regular model checking has been applied to such a task, let us now spend a bit more
time with this experiment.

When abstracting the memory manipulated by 1: x:=0
tk_le procedure, we focus on the cases where in_the 2: while (list — next) {
first n memory cells (w_e take tl_we blgge_st n possible) 3 y = list — next;
there are at most two linked lists linking consecu- 4: list — next :=x
tive cells, the first list in a descending way and the 5 x = list; list :=y:
second one in an ascending way. We represent con- 6
figurations of the procedure as words over the fol- 7
lowing alphabet: list items are represented by sym-
bols i, left/right pointers by </>, pointer variables  Fig.5. Reversing a linear list
are represented by their names (list is shortened to
1), and o is used to represent the memory outside the list. Moreover, we use symbols
iv (resp. ov) to denote that v points to i (resp. outside the list). We use | to separate the

)

: list — next :=x;



ascending and descending lists. Pointer variables pointing to null are not present in the

configuration representations. A typical abstraction of the memory may then look like
i <i<i]il >iox where the first list contains three items, the second one two, list
points to the beginning of the second list, x points outside the two lists, and y points to

null. Provided such an abstraction is used for the memory contents (prefixed with the
current control line), it is not difficult to associate transducers to each command of the
procedure. For example, the transducer corresponding to the command list — next := x

at line 4 transforms a typical configuration 4 i <_ix | il > iy > _i 0 to the configuration
5i<ix <il | iy > i o (the successor of the item pointed to by I is not anymore the one

pointed to by y, but the one pointed to by x). Then, the transducer T corresponding to

the whole procedure is the union of the transducers of all the commands.

If the memory contents does not fit the above described form, we abstract it to a sin-
gle word with the “don’t know” meaning. However, when we start from a configuration
likelil >i>ioorli<i<ilo,the verification shows that such a situation does not
happen. Via a symmetry argument exploiting the fact that the procedure never refers to
concrete addresses, the results of the verification may then easily be generalised to lists
with items stored at arbitrary memory locations.

By computing an abstraction of the reachability set t*(Init), we checked that the
procedure outputs a list. Moreover, by computing an overapproximation of the reacha-
bility relation T* of the system, we checked that the output list is a reversion of the input
one (modulo the fact that we consider a finite number of different items). To speed up
the computation, the reachability relation was restricted to the initial configurations, i.e.
to idpit o T,

6.2 A Summary of the Results

Our method has been quite successful in all the described experiments. The best results
(corresponding to a certain automata state equivalence used, its initialisation, and the
way of refinement) for the particular examples obtained from our prototype tool were
mostly under 1 sec. on an Intel Pentium 4 processor at 1.7 GHz. The only exceptions
were checking individual liveness in the Bakery example where we needed about 9
sec., the Readers/Writers example where we needed about 6 sec., and the example of
reversing lists where on the level of working with the reachability relation, we needed
about 22 sec. (A more detailed description of the results may be found in the full paper.)
Taking into account that the tool used was an early prototype written in Prolog, the
results are very encouraging. For example, on the same computer, the Uppsala Regular
Model Checker [3] in version 0.10 took from about 8 to 11 seconds when applied to the
Burns, Szymanski, and Dijkstra examples over whose comparable encoding we needed
in the most successful scenarios from 0.06 to 0.73 sec.

The results we obtained from our experiments also showed that apart from cases
where the approaches based on languages of words/traces up to a bounded length and
the ones based on intersections with predicate languages are roughly equal, there are
really cases where either the former or the latter approach is clearly faster. The latter
approach is faster, e.g., in the Dijkstra and Readers/Writers examples whereas the for-
mer, e.g., in the cases of reversing lists or checking the individual liveness in the Bakery
example. This experimentally justifies our interest in both of the techniques.

Let us note that for some of the classes of systems we considered, there exist various
special purpose verification approaches, and the appropriate verification problems are



sometimes even decidable (as, e.g., for push-down systems [10, 17, 27] or lossy channel
systems [4, 2, 1]). However, we wanted to show that our approach is generic and can be
uniformly applied to all these systems. Moreover, in the future, with a new version of
our tool, we would like to compare the performance of abstract regular model checking
with the specialised approaches on large systems. We believe that while we can hardly
outperform these algorithms in general, in some cases of systems with complex state
spaces, our approach could turn out to be quite competitive due to not working with the
exact representation of the state spaces, but their potentially much simpler approxima-
tions in which many details not important for the property being checked are ignored.

7 Conclusions

We have proposed a new technique for verification of parameterised and infinite-state
systems. The technique called abstract regular model checking combines the approach

of regular model checking with the abstract-check-refine paradigm. We have described
the general framework of the method as well as several concrete strategies for abstract-

ing automata or transducers, which are used in the framework for representing reacha-

bility sets and relations, by collapsing their states. As we have illustrated on a number

of experiments we did, including a novel application of automata-based techniques to

verification of systems with dynamic linked structures, the technique is very broadly
applicable. Moreover, compared to the other techniques of regular model checking, it is

also quite efficient due to working with approximations of reachability sets or relations
with precision found iteratively by eliminating spurious counterexamples and sufficient
just to verify the property of interest.

In the future, we plan to implement the techniques we proposed in the paper in a
more efficient way and test them on larger examples. An interesting theoretical ques-
tion is then whether some guarantees of termination can be obtained at least for some
classes of systems. Further, the way of dealing with liveness properties within abstract
regular model checking can be put on a more systematic basis allowing for a better
automation. Similarly, we would like to extend our results on verifying systems with
linear (linearisable) dynamic linked data structures and see how automata-based ver-
ification techniques compare with static analysis techniques like shape analysis [25].
Finally, we believe that there is a wide space for generalising the method to working
with non-regular reachability sets and/or systems with non-linear (tree-like or in general
graph-like) structure of states. The latter generalisation is primarily motivated by our in-
terest in verifying multithreaded programs with recursive procedures and/or programs
with dynamically allocated memory structures that cannot be easily linearised.
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