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BIDIMENSIONAL SAND PILE AND ICE PILE MODELS

ENRICA DUCHI, ROBERTO MANTACI, HA DUONG PHAN, DOMINIQUE ROSSIN

Abstract. In this paper we define an extension of the Sand Pile Model SPM and more
generally of the Ice Pile Model IPM by adding a further dimension to the system. By drawing
a parallel between these unidimensional and bidimensional models we will find some common
feautures and some differences. We will show that, like for SPM(n), not all plane partitions
are accessible in BSPM(n) starting from the initial state. However, it appears to be much
more difficult to characterize the partitions that are accessible in BSPM(n): we will be
able to give some necessary but not sufficient conditions for a partition to be accessible. On
the other hand, we will show how several properties of the Ice Pile Model in one dimension
can be generalized when one adds a second dimension.

1. Introduction

In this paper we introduce the Bidimensional Sand Pile Model BSPM, that is, a general-
ization of the Sand Pile Model SPM with the addition of a further dimension. The SPM and
some related models have been studied in many different domains. They were considered in
the context of integer lattices by Brylawski [3]. From the point of view of physics, Bak, Tang,
and Wiesenfeld used them in order to illustrate the important notion of self organisation
criticality [2]. Moreover, Anderson et al. [1], Spencer [9], and Goles and Kiwi [5] studied
them from a combinatorial point of view.

SPM(n) is a discrete dynamical system describing pilings of n granular objects distributed
on an array of columns. More precisely, each state of the system can be described by using a
ℓ-tuple s = (s1, s2, . . . sℓ), where si 6= 0 is the number of grains in the column i. The system
is initially in the state N = (n), that is, all the grains are in the first column. At each step,
the system evolves according to the following rule:

(1) (s1, s2, . . . , si, si+1, . . . , sℓ) → (s1, s2, . . . , si − 1, si+1 + 1, . . . , sℓ) if si − si+1 >= 2

Because of the evolution rule, we deduce that each state s = (s1, s2, . . . sℓ) of the system

satisfies si ≥ si+1, for all i and
∑ℓ

i=1 si = n, where n is the total number of grains, therefore
each state can be coded by a partition of the integer n. A partition is said to be accessible in
SPM if it can be obtained by a sequence of applications of rule (1) (also called em transitions)
starting from the state N . We denote by SPM(n) the system whose set of configurations is
the set of all accessible partitions equiped with the rule of evolution (1). We will omit the
integer n and simply write SPM when such notation can be used without ambiguity.

Goles and Kiwi introduced this model in [5] and proved that SPM(n) has a unique fixed
point, i.e. a configuration in which no grain can fall under the rule (1). Moreover, they
showed that the order induced by SPM(n) on accessible partitions is a suborder of the
LB(n) order, introduced by Brylawski in [3]. This is the dominance order on all partitions of
n, defined as follows: let a = (a1, a2, . . . , ak) and b = (b1, b2, . . . , bt) be two partitions, then
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a ≥ b ⇐⇒

j
∑

i=1

ai ≥

j
∑

i=1

bj , ∀j = 1, . . . , max(k, t).

Let us consider the rule:

(2) (s1, . . . , p + 1, p, p, . . . p
︸ ︷︷ ︸

k

, p − 1 . . . sℓ) → (s1, . . . , p, p, p, . . . , p
︸ ︷︷ ︸

k

, p, . . . sℓ) for any k.

Goles and Kiwi showed that the order LB(n) coincides with the order defined as follows on
the set of all partitions : a ≥ b ⇐⇒ b can be obtained from a by a sequence of applications
of rule (1) or (2) starting from the state N . In particular, rule (1) and rule (2) allow to reach
all partitions of n from N and the LB(n) order is a lattice.

Later, Goles, Morvan, and Phan [6] considered a generalisation of SPM(n): the Ice Pile
Model (IPM). More precisely, for any positive integer k, they defined IPMk(n), obtained by
conserving rule (1) and modifying rule (2) as follows:

(3)
(s1, . . . , p + 1, p, p, . . . p

︸ ︷︷ ︸

k′

, p − 1 . . . sℓ) → (s1, . . . , p, p, . . . , p
︸ ︷︷ ︸

k′

, . . . sℓ) for all k′ < k.

These authors proved that the orders induced by IPMk(n) on the set of all partitions of
n that accessible from the initial configuration N are suborders of the lattice LB(n), and
that they form an increasing sequence of lattices whose min is SPM(n) and whose max is
LB(n). Indeed, IPM1(n) ⊆ IPM2(n) ⊆ . . . ⊆ IPMn−1(n), where IPM1(n) and IPMn−1(n)
correspond to SPM(n) and LB(n) respectively.
Goles, Morvan, and Phan also gave necessary and sufficient conditions for a partition to be
accessible by IPMk(n) as well as an explicit formula for the unique fixed point of IPMk(n).
Corteel and Gouyou-Beauchamps [4] also studied IPMk and computed asymptotic bounds
for the number of accassible configurations in IPMk(n) by using the theory of partitions and
of q-equations. Latapy, Mantaci, Morvan, and Phan [8] extended SPM(n) to SPM(∞), a
natural extension of SPM(n) when one starts with an infinite number of grains. By using
two different approaches they gave recursive formulae for |SPM(n)|.

In this paper we define an extension of SPM(n) and more generally of IPMk(n) by adding
a further dimension: the Bidimensional Ice Pile Model (BIPM). In order to do it, we place
the grains on the vertices of a bidimensional cartesian integer grid and we extend the previous
rules so that grains can fall or slide to the east and to the south, and in such a way that the
configurations obtained are coded by plane partitions.

Definition 1. A plane partition of n is a matrix a of integers ai,j that are nonincreasing
from left to right and from top to bottom, and such that their summation is equal to n:

ai,j ≥ ai+1,j , ai,j ≥ ai,j+1, for all i, j and
∑

i,j

ai,j = n.

Definition 2. BIPMk(n) is the dynamical system such that:
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(a) The system is initially in the configuration:

N =







n 0 . . . 0
0 0 . . . 0
...

...
0 0 . . . 0







.

(b) At each step, one grain can fall or slide to the east or to the south of its cell by
applying locally one of the following rules to a submatrix of the matrix representing
the configuration:

– East transition:

(4)
ai−1,j+1

ai,j ai,j+1

ai+1,j

−→
ai−1,j+1

ai,j − 1 ai,j+1 + 1
ai+1,j

if







ai,j − ai,j+1 ≥ 2
ai−1,j+1 − ai,j+1 ≥ 1
ai,j − ai+1,j ≥ 1

– South transition:

(5)

ai,j ai,j+1

ai+1,j−1 ai+1,j
−→

ai,j − 1 ai,j+1

ai+1,j−1 ai+1,j + 1
if







ai,j − ai+1,j ≥ 2
ai,j − ai,j+1 ≥ 1
ai+1,j−1 − ai+1,j ≥ 1

– Slidek

(6)

k′

︷ ︸︸ ︷

p + 1 p p . . . p p

p p p . . . p p
...

...

p p p . . . p p

p p p . . . p p − 1







k′′ −→

k′

︷ ︸︸ ︷

p p p . . . p p

p p p . . . p p
...

...

p p p . . . p p

p p p . . . p p







k′′ with k′ + k′′ < k,

where k′ and k′′ is respectively the number of columns and of rows of the subma-
trix.

Observe that, because the rules preserve the property that the rows and columns in the
matrix are non increasing, a newly obtained configuration is still a plane partition. Observe
also that a given configuration may be obtained applying different sequences of rules to the
initial configuration N .

Notice that for k = 1 the applicable rules of the corresponding model BIPM1(n) consist
of East transitions and of South transitions only. We also observe that BIPM1(n) and
BIPMn−1(n) represent a natural extension for SPM(n) and for LB(n) respectively, when
one adds a further dimension. For this reason, we decide to rename BIPM1(n) by BSPM(n)
and BIPMn−1(n) by BLB(n).
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By drawing a parallel between these unidimensional and bidimensional models we will
find some common features and some differences. We will show that, like for SPM(n), not
all plane partitions are accessible in BSPM(n) starting from N (see the example in Fig.
1). However, it appears to be much more difficult to characterize the partitions that are
accessible in BSPM than it is in SPM : we will give some necessary but not sufficient
conditions for a partition to be accessible.







2 1 1 1
1 1 0 0
1 0 0 0
1 0 0 0







Figure 1. A non accessible configuration of BSPM with n = 9.

We will also show that, like for SPM(n), the order induced by the rules of BSPM(n)
on the set of all accessible configurations is graded, that is, if a and b are two elements of
BSPM(n), and Γ and Γ′ are two maximal chains having a as maximum and b as minimum,
then |Γ| = |Γ′|. In other words, if b is accessible from a then all sequences of transitions
that allow to obtain b from a all have the same length. The number of steps needed in
order to reach a given configuration from N is equal to a quantity that we call the energy of
the configuration and for which we give an explicit formula in Section 2. Moreover, we will
see that all plane partitions are accessible in BLB(n), as it is the case in the corresponding
unidimensional model LB(n). We will also find that, unlike IPMk(n), the order induced by
BIPMk(n) is not a lattice. In particular, this is the case for k = 1, as we will see by showing
that the system BSPM(n) may have more than one fixed point.

2. Definitions and general results on the ordered structure of BIPMk(n)

Definition 3. A partial order P is a pair (S,≤P ), where S is a set and ≤P is a binary
relation on S such that ≤P is reflexive, antisymmetric, and transitive.

Definition 4. Let P = (S,≤P ) and P ′ = (S ′,≤P ′) be two partial orders. Then P ′ is a
suborder of P if S ′ ⊆ S and ∀x, y ∈ S ′ x ≤P ′ y if and only if x ≤P y.

Definition 5. The relation ≤BIPMk(n) is the relation defined as follows: for any pair (a, b)
of accessible configurations of BIPMk(n), a ≤BIPMk(n) b ⇐⇒ b is obtained from a by a
sequence of applications of the rules of BIPMk(n).

Proposition 1. The relation ≤BIPMk(n) defines an order on the set of all accessible config-
urations in BIPMk(n).

Proof. It is immediate from the previous definition that ≤BIPMk(n) is reflexive and transitive.
Furthermore, since BIPMk(n) transitions are oriented (they move grains towards east and
south but not towards the west and north), then ≤BIPMk(n) is also antisymmetric. �
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Figure 2. An example of evolution in BSPM with n = 5.

While SPM(n) is a suborder of LB(n) we have that BSPM(n) is not a suborder of
BLB(n). Here is a counterexample: let

a =

(
3 2 1
2 1 0

)

and

b =

(
2 2 2
2 1 0

)

we have that a and b are accessible in BLB(n) and in BSPM(n). Moreover we have that b

is obtained from a by applying the slide rule of BLB(n). But b can not obtained from a by
BSPM rules. Then BSPM is not a suborder of BLB . Figure 2 shows the structure of the
order obtained by applying the rules of BSPM and starting with n = 5.

Let P = (S,≤P ) be a finite partial order. For any x, y ∈ S, an element z ∈ S is said to
be an upper bound or a lower bound of x, y, respectively, when x, y ≤P z or x, y ≥P z. Let
us denote by sup(x, y) and inf(x, y), respectively, the smallest upper bound and the greatest
lower bound of x and y if they exist.

Definition 6. Let P = (S,≤P ) be a partial order. Then P is a lattice if for any x, y ∈ P ,
sup(x, y) and inf(x, y) exist.

In particular this implies that a lattice has a unique absolute minimum and hence, if the
order associated with the configuration space of the system is a lattice, then the system has
a unique fixed point (i.e. is converging).

Remark. BSPM(n) is not a lattice, the example of Figure 2 shows it.
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Moreover, we can also show that BSPM(n) does not have a local lattice structure, in the
sense that not any interval is a lattice. Here there is a counterexemple: let

a =

(
3 2
1 0

)

; b =

(
3 1
2 0

)

; c =

(
2 2
2 0

)

; d =

(
3 1
1 1

)

.

We have that c and d are both obtained from both a and b using BSPM rules. Moreover

the partition e =

(
2 1
2 1

)

is obtained from c and from d. Then a and b do not have a

infimum in the interval [(6), e].

3. Energy and Accessibility of configurations

Definition 7. Let a be a plane partition, then its energy E(a) is defined as follows:

E(a) =
∑

i,j

ai,j(i + j − 1)

Notice that each time we apply an east or a south transition to a partition a, the energy
E(a) increases by one. Let us verify this statement in the case of an east transition: suppose
we apply rule (4) to a cell (i, j) of a, then in the summation expressing the energy, the terms
ai,j(i + j − 1) + ai,j+1(i + j) are replaced by (ai,j − 1)(i + j − 1) + (ai,j+1 + 1)(i + j), which
shows that the energy increases by one. This implies that the order induced by rules (4) and
(5) of the BSPM(n) model is graded, that is, a configuration a is always reached from the
configuration N by applying the same number of these rules. Such number is the difference
E(a) − E(N) = E(a) − n. On the other hand, the energy may increase by more than one
unit when one applies the slide rule.

Definition 8. A partition is said to be accessible with respect to a set of rules Σ (or Σ-
accessible) if it can be obtained from N = (n) by applying a sequence of rules of Σ.

Proposition 2. All plane partitions of n are accessible in BLB(n).

Proof. Let a be a plane partition such that a 6= N = (n). We want to show that there exists
a partition a′ whose energy is strictly smaller than that of a and such that a′ ≤BLB(n) a. By
iterating this process, we will eventually obtain the unique partition having minimal energy,
that is, N . Let us say the value contained in the cell (1, 1) of a is p. Then we have the
following cases:

i. The cell (1, 2) contains the value p. Then consider the largest rectangle whose top
left corner is (1, 1) and whose cells all contain the value p. If this rectangle only
contains the cells (1, 1) and (1, 2) then a′ is obtained by a reverse application of the
East transition moving one grain from (1, 2) to (1, 1). If this rectangle contains more
than two cells then a′ is obtained by a reverse application of the slide rule.

ii. The cell (1, 2) contains the value q 6= p and q 6= 0. Let r be the value contained in
the cell (1, 3). Here we distinguish two cases: r 6= q, then a′ is obtained by a reverse
application of the east transition moving one grain from (1, 2) to (1, 1); r = q, then
apply the same argument as in case i. to the rectangle having the top left corner in
(1, 2).
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iii. The cell (1, 2) contains the value q = 0. In this case we can apply symmetric argu-
ments than than those in case i. and case ii. by focusing on the the cell (2, 1) instead
of the cell (1, 2).

In each of these cases we move grains toward west or north, then the energy decreases. �

The same result is not true for BSPM(n). We give now a necessary condition for a plane
partition to be accessible in BSPM .

Proposition 3. Each partition containing the square matrix
q q

q q
(with q > 0) as submatrix

is non accessible in BSPM(n).

Proof. Let us take a plane partition a of n containing at least one square
q q

q q
. We want to

show that, by applying backwards the rules of BSPM(n), we can not revert to the starting
configuration having all n grains in the cell (1, 1). We consider the first time that one of such

rules modifies the value of one of the cells of the square
q q

q q
. There are two possibilities:

• a reverse East or South transition moves a grain from a cell adjacent to the square
to a cell within the square.

• a reverse East or South transition moves a grain from a cell within the square.

In either cases, it is easy to check that at least two cells within the square would not respect
the decreasing condition over the rows and columns. �

Therefore, a partition needs to “avoid the pattern”
q q

q q
in order to be accessible in

BSPM(n). We want to show that this is the unique forbidden pattern.

Definition 9. Let M be a rectangular matrix whose entries depend on a set of parameters
q1, . . . , qk. We say that M is a forbidden pattern with respect to a set of rules Σ if, regardless
of the choice of the values for the parameters q1, . . . , qk, no Σ-accessible configuration contains
M as submatrix.

Theorem 1. The pattern
q q

q q
is the unique forbidden pattern for BSPM-accessible con-

figurations.

Proof. First, it is straightforward to see that any pattern with only one row (respectively,
one column) is not forbidden. Indeed, it is possible to create such a pattern on the second
row (respectively, column) of a plane partition having a sufficiently large number of grains
distributed on the first row (respectively, column).

Let us show now that no other pattern of size 2 by 2 is forbidden. If
q r

s t
is any pattern

different from
q q

q q
, then q > t. We show that the plane partition

q r

s t
can be obtained

from another plane partition having smaller energy. There are two cases: either q > r or

r > t. In the first case,
q r

s t
can be obtained from

q r + 1
s t − 1

, in the second case, it can be
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obtained from
q + 1 r − 1

s t
. By iterating this process we can construct a sequence of plane

partitions whose energy strictly decreases, this implies that this process eventually allows to

obtain the initial configuration N = (n) and therefore
q r

s t
cannot be forbidden.

Suppose now that there exist other forbidden patterns having more than two rows or more

than two columns and that do not contain the pattern
q q

q q
and let S be the set of such

forbidden patterns having minimal area.
If S is not empty, then there must exist a pattern M ∈ S such that no grain in M can be

moved by a reverse BSPM-transition. Otherwise, the same energy argument used in the
case of patterns of size 2 by 2 would show that it would be possible to obtain the initial
configuration by applying a sequence of reverse BSPM-transitions to any element of S.

Let M be such a pattern and let a be a plane partition containing M as a submatrix:

M = (ai,j)r≤i≤s,u≤j≤v.

As first step, we prove that all integers in the first row of M are distinct.
Let us consider the two columns v and v − 1 of a and let ar,v = q1.
If ar+1,v were smaller than q1, then one could move a grain (by using an inverse transition)

from ar,v to ar−1,v. Hence ar+1,v must be equal to q1.

Because M can not contain
q1 q1

q1 q1
, then ar,v−1 must be greater than q1, let us denote it

by q2.
Now if ar+2,v < q1, one could move a grain from ar+1,v to ar,v. Hence ar+2,v must be equal

to q1.

Because M does not contain
q1 q1

q1 q1
, then ar+1,v−1 must be greater than q1. Furthermore,

if it were smaller than q2, then one could move a grain from ar,v−1 to ar−1,v−1. Hence, ar+1,v−1

must be equal to q2 and therefore ar,v−2 must be greater than q2, or M would contain the

square
q2 q2

q2 q2
.

By iterating this process, we obtain the desired step, that is, that all the entries of the
first row of M are distinct. Therefore, if the pattern M is included in a partition of a
sufficiently large integer n it is possible to bring into the first row of the submatrix M an
arbitrary number of grains coming from cells of the partition located east of M , using reverse
BSPM-transitions.

All the patterns obtained this way must be forbidden. Otherwise, if it existed an accessible
plane partition containing one of them, then it would be possible to obtain an accessible
partition containing M . This shows that all patterns having the same shape as M and
satisfying:

• the first row contains totally arbitrary values,
• all other rows are equal to those of M

are forbidden. This implies that the pattern M ′ obtained from M by removing the first row
would be forbidden as well, which contradicts the minimality of the area of M . �
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The avoidance of the pattern
q q

q q
, however, does not completely characterize accessible

partitions in BSPM(n). For instance, a partition such as the one showed in Figure 3 is non

accessible, even if it does not contain the square
q q

q q
.





a1,1 . . . q q q . . .

a2,1 . . . 0 0 0 . . .

. . . . . . . . . . . . . . . . . .



with q > 0.

Figure 3. A non accessible configuration in BSPM .

In other terms, an accessible configuration cannot contain three adjacent cells on the first
row having the same value and having three empty cells just to the south of them (the same

remark can be transposed to the columns, of course). We would like to note that
q q q

0 0 0
is not a forbidden pattern, in the sense that accessible configurations do not need to avoid
it when it is placed at a different location. For example the following partition is accessible
in BSPM(18):





5 4 3
2 2 2
0 0 0



 .

We have determined several other of these submatrices that cannot be found at specific
locations of an accessible configuration, e.g.:







a1,1 . . . q q q . . .

a2,1 . . . q − 1 q − 1 q − 1 . . .

a3,1 . . . 0 0 0 . . .
... . . .

...
...

... . . .







with q > 1.

However, the avoidance of these submatrices at their respective forbidden locations does
not completely characterize the accessible partition of BSPM(n) either. For instance, the
following plane partition:







2 1 1 0
1 1 0 0
1 0 0 0
1 0 0 0







is not accessible in BSPM(9) even if it does not contain any of the mentioned submatrices.

4. Fixed points in BSPM

In this section we study the configurations of BSPM(n) to which no transition rule can
be applied.
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Definition 10. A partition a is said to be stable with respect to a set of rules Σ if none of
the rules of Σ can be applied to a.

Definition 11. A partition is said to be a fixed point with respect to a set of rules Σ if it is
accessible and stable with respect to the rules of Σ.

Definition 12. A stable partition a is said to be smooth if ai,j−ai,j+1 ≤ 1 and ai,j−ai+1,j ≤ 1
for all i, j.

A smooth partition is obviously a fixed point but there are also non-smooth fixed points
in BSPM(n). In Figure 4 there is an example of non smooth fixed point in BSPM(n):





7 6 1 1
6 6 1 0
3 3 1 0





Figure 4. A non smooth fixed point of BSPM with n = 35.

Definition 13. For a positive integer ℓ, we will call ℓ-th diagonal of a matrix (or of the
corresponding partition) the set of all cells having indices (i, j) with i + j − 1 = ℓ.

Remark. The energy of a plane partition a is defined in such a way that the integers on
the ℓ-th diagonal contribute to the sum E(a) with a weight ℓ.

Notation. For a positive integer ℓ, let S(ℓ) =
∑ℓ

i=1 i = ℓ(ℓ+1)
2

and T (ℓ) =
∑ℓ

i=1 i(ℓ− i+1) =
∑ℓ

j=1

∑j

i=1 i = ℓ(ℓ+1)(ℓ+2)
6

. Then for each n ∈ N there exists a unique triple (k, m, q) of non
negative integers such that:

n = T (k) + S(m) + q with 0 ≤ S(m) <

k+1∑

i=1

i =
(k + 1)(k + 2)

2
and 0 ≤ q < m + 1.

Example 1. If n = 103, the unique decomposition is 103 = T (7)+S(5)+4 where T (7) = 84
and S(5) = 15.

Definition 14. Let n be an integer and let n = T (k) + S(m) + q. A pyramidal partition of
n is a partition obtained by taking the following steps (see Figure 5) in this order:

• Main staircase. For ℓ = 1, 2, . . . , k, fill all the cells of the ℓ-th diagonal of the
partition with value k − ℓ + 1. That is, the cell (i, j) contains k − i− j + 2 grains for
i + j ≤ k + 1.

• Additional triangle. If m 6= 0, then choose any of the cells of the (k − m + 2)-th
diagonal (these cells contain the value m − 1). Let us denote (i0, j0) the coordinates
of this cell. Take the sub-partition having this cell as top-left angle. Then add 1 to
each cell of the first m diagonals of this sub-partition, that is, to all cells (i, j) with
i0 ≤ i ≤ i0 + m − 1 and j0 ≤ j ≤ j0 + m − 1.
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• Additional row or column. If q 6= 0, then take one of the two cells (i1, j1) or
(i2, j2) on the (k− q +2)-th diagonal and having either j1 = j0 −1 or i2 = i0 −1 (one
of these cells may not exist if i0 = 1 or j0 = 1). Then add 1 to the values in the first
q cells that are either south of (i1, j1) or east of (i2, j2), respectively, depending on
whether the cell you choose is (i1, j1) or (i2, j2). (The explicit values of the indices of
this cell can be computed as follows : since i1 + j1 − 1 = k − q + 2, with j1 = j0 − 1,
and i2 + j2 − 1 = k − q + 2, with i2 = i0 − 1, then (i1, j1) = (k − j0 − q + 4, j0 − 1) or
(i2, j2) = (i0 − 1, k − i0 − q + 4)).

7 6 5 4 3 2 1
6 5 4 3 2 1
5 4 3 2 1
4 3 2 1
3 2 1
2 1
1
main staircase . . .

→

7 6 5 4 3 2 1

6 5 5 4 3 2 1
5 4 4 3 2 1
4 3 3 2 1
3 2 2 1
2 1 1
1

. . . with the additional triangle . . .

→

7 6 5 4 3 2 1

6 5 5 4 3 2 1
5 4 4 3 2 1

4 4 3 2 1
3 3 2 1
2 2 1
1 1

with the additional column

Figure 5. A pyramidal partition of n = 103, where n = T (k) + S(m) + q

with k = 7, m = 5, and q = 4.

Remark. By construction, pyramidal partitions are smooth fixed points.

Proposition 4. The number of pyramidal partitions of n = T (k) + S(m) + q is given by:






2(k − m) + 2 if m, q > 0

k − m + 2 if m > 0 and q = 0

1 if m = 0

Proof. If m > 0 and q > 0, there are (k−m+2) choices for the position of the top-left angle
of the additional triangle on the (k − m + 2)-th diagonal. For (k − m) of such choices, it is
possible to obtain two pyramidal partitions (one having an additional row, and one having
an additional column), but for the two extremal cells of the diagonal, only one pyramidal
partition can be obtained (in one case, one can only add the additional column and in the
other case, one can only add the additional row).
If m > 0 and q = 0, then a pyramidal partition is determined only by the choice of the
position of the additional triangle.
If m = 0 then the only pyramidal partition is the staircase.

�

Proposition 5. Every pyramidal partition of n is accessible in BIPMk(n) for all k.

Proof. Observe that we just need to prove it for BIPM1(n), i.e. for BSPM(n). Let p be a
pyramidal partition of n = T (k) + S(m) + q. Then we have the following cases:

• The partition p consists of the main staircase only. That is, m = 0. We want
to show that p is accessible:

11



i. Start with placing the T (k) grains in the cell (1, 1).
ii. By applying BSPM ’s East transitions, construct the partition :

(

T (k) − k(k−1)
2

k − 1 k − 2 . . . 2 1 0
0 0 0 . . . 0 0 0

)

This is possible because
(

T (k) − k(k−1)
2

k − 1 k − 2 . . . 2 1 0
)

is an accessible configuration of SPM(n).
iii. For j = 2, . . . , k, construct the j−th row as follows: move one grain from the cell

(1, 1) to the south until it reaches the cell (j, 1). Then move it to the east as far
as possible. Repeat the previous operation until the cells (j, 1), (j, 2), . . . , (j, k−
j + 1) contain the values k − j + 1, k − j, . . . , 1.

• The partition p consists of the main staircase and of the additional triangle.

That is, m 6= 0 and q = 0. Let i be the row index of the cell of the (k − m + 2)-
th diagonal where the vertex of the additional triangle lays. In other terms, the
cell containing the vertex of the additional triangle is (i, k − m + 3 − i). Start by
constructing the main staircase as described in the previous case. At the end of this
step, the cell (1, 1) will contain the value k +S(m) and all the others will contain the
values of the main staircase. To construct the ℓ-th row of the additional triangle, for
ℓ = 1, 2, . . . , m − 1, do as follows:

– Let one grain fall from the cell (1, 1) to the east until it reaches the cell (1, k −
m + 3 − i − 1) (note that this cell is on the column immediately preceding
the one containing the vertex of the additional triangle), then move it to the
south until it reaches the cell (i + ℓ − 1, k − m + 3 − i − 1). Then move it
to the east as far as possible. Repeat the previous operation until the cells
(i+ ℓ− 1, k−m+3− i), (i+ ℓ− 1, k−m+4− i), . . . , (i+ ℓ− 1, k +2− i− ℓ+1)
contain the values m − ℓ + 1, m − ℓ, . . . , 1.

• The partition p consists of the main staircase, of the additional triangle,

and of the additional row or column. That is, m 6= 0 and q 6= 0. Start by
constructing the main staircase and the additional triangle as in the previous cases.
Let us suppose the additional row starts at the cell (i − 1, m − q + i + 1). Let one
grain fall from the cell (1, 1) to the east until it reaches the cell (1, m − q + i + 1),
then move it to the south until it reaches the cell (i − 1, m − q + i + 1). Then
move it to the east as far as it can. Repeat the previous operation until the cells
(i − 1, m − q + i + 1), (i − 1, m − q + i + 2), . . . (i − 1, m + i) contain the values
q, q − 1, . . . , 1. The construction is analoguous if an additional column needs to be
added instead of an additional row.

It is easy to verify that all the described moves are permitted under the set of rules of
BSPM .

�

5. Pyramidal Partitions and Energy

We want to show that pyramidal partitions of n correspond to the smooth fixed points of
BSPM(n) having minimal energy.

12



Proposition 6. The energy of pyramidal partitions of n = T (k) + S(m) + q is given by:

k(k + 1)2(k + 2)

12
+

(3k − m + 4)(m + 1)m

6
+

(2k + 3 − q)q

2
.

Proof. The contribution of the main staircase is:

k∑

i=1

i(k − i + 1)2 =
k(k + 1)2(k + 2)

12
.

If p > 0, the contribution of the additional triangle is:
m∑

i=1

i(k − m + i + 1) =
(3k − m + 4)(m + 1)m

6
.

Finally if q > 0, the contribution of the additional column or row is:
q

∑

i=1

(k − q + i + 1) =
(2k + 3 − q)q

2
.

�

Notation. Let us denote by di(a) the sum of the entries in the i-th diagonal of a matrix a.

Lemma 1. Let a be a smooth partition of n = T (k) + S(m) + q and let p be a pyramidal
partition of n. We have the following for all s:

s∑

j=1

dj(p) ≥

s∑

j=1

dj(a).

Proof. We give a proof by recurrence on the integer s.

• For s = 1, since the cell (1, 1) of p contains k, we must show that a1,1 ≤ k. Let us
suppose we have a value at least equal to k + 1 in this cell. This means that the two
cells on the second diagonal contain a value greater than or equal to k, otherwise a

would not be smooth. For the same reason the cells of the third diagonal of a contain
a value at least equal to k − 1 and so on. But then the sum of the values of the
partition would be at least

∑k+1
i=1 i(k − i + 2) = T (k + 1). But T (k + 1) > n, since k

is the largest number such that T (k) ≤ n, which is a contradiction.
• For s 6= 1, let us suppose that

i∑

j=1

dj(p) ≥

i∑

j=1

dj(a)

for i = 1, . . . s − 1. Then we want to prove that

(7)

s∑

j=1

dj(p) ≥

s∑

j=1

dj(a).

Let us suppose (7) is not true, that is, we have:

(8)
s∑

j=1

dj(p) <

s∑

j=1

dj(a),

13



therefore, since by the recurrence hypothesis
∑s−1

j=1 dj(p) ≥
∑s−1

j=1 dj(a), we have nec-

essarily ds(p) < ds(a). Consequently, there exist some entries on the s-th diagonal of
a that are larger than the corresponding entries of p.

This is the argument we are going to use in the proof in order to obtain a contra-
diction.

We distinguish two cases:
(a) The s-th diagonal of the pyramidal partition p is entirely in the main staircase

(see Figure 6).
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q−1
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q
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q−1
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s−th diagonal

Figure 6. Case in which the s-th diagonal is entirely in the main staircase of p.

Recall that the entries of the s-th diagonal of p are all equal to k − s + 1. Let
us call t the integer k − s + 1, in order to simplify notations in the remainder of
the proof. The s-th diagonal of a contains then values that are larger than t.
The proof of this lemma is particularly technical and computational. Therefore,
for sake of clarity, we have decided to provide first a complete proof in the
simple case where only one entry of the s-th diagonal of a is larger than the
corresponding entry of p and it contains the value t + 1. We will then provide
the proof in the general case.
Let us then suppose we are in the simplest case: equation (8) holds with only
one term ai0,j0 of ds(a) such that ai0,j0 > t and in particular ai0,j0 = t + 1. Let
us denote by a′ the smooth partition having the entries in the first s diagonals
equal to those of the partition a and whose rows and columns “decrease as fast
as possible” (that is, by one unit) in the remaining diagonals. More precisely,
the values of the cells of a′ that are south of the s-th diagonal are defined as
follows (see Figure 7,(b)):

∗ The cells (i, j) with i ≥ i0 and j ≥ j0 form a perfect staircase of height
t + 1 whose highest point is placed in (i0, j0);

∗ If i < i0 and j > s + 1 − i, then a′
i,j = a′

i,j−1 − 1;
∗ if j < j0 and i > s + 1 − j, then a′

i,j = a′
i−1,j − 1;
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Figure 7. The pyramidal partition p on the left and the partition a′ on the right.

Let us denote by |a| and |a′| respectively the sum of all the elements of a and
a′. Then we have |a′| ≤ |a| = n, because a is smooth and therefore the rows and
the columns of a′ decrease at least as fast as those of a.
Figure 7,(b) illustrates that we can write |a′| as:

|a′| =
∑s

j=1 dj(a
′) + T (t + 1) − (t + 1) + (s − 1)S(t − 1)

=
∑s

j=1 dj(a) + T (t) + S(t) + (s − 1)S(t − 1),

where the term T (t+1) comes from the triangular region with a thicker border in
the figure and the term (s−1)S(t) comes from the remaining rows and columns.
The term −(t+1) is a correcting term that is necessary because the contribution
of the cell (i0, j0) is included both in

∑s

j=1 dj(a
′) and in T (t + 1). Similarly, we

can compute |p| as (see Figure 7, (a)):

|p| =
s∑

j=1

dj(p) + T (t) − t + S(m) + q + (s − 1)S(t − 1),

where t > m, because we are supposing that the s-th diagonal is entirely in
the main staircase. Since S(t) > S(m) + q and

∑s

j=1 dj(a) >
∑s

j=1 dj(p) then

|a| ≥ |a′| > |p| and we get a contradiction, since |a| = |p| = n.

Let us now give the proof in the case where more than one cell of the s-th
diagonal contains a value greater than t.
Suppose there are u cells containing the values t− ji, with ji ≥ 0 for i = 1, . . . , u
and v cells containing the values t + li, with li ≥ 1 for i = 1, . . . , v. Since we
are supposing that ds(a) > ds(p), at least one cell contains a value larger than t

and, for the same reason, we have
∑v

i=1 li −
∑u

i=1 ji > 0.
We construct again a new smooth partition a′, having the entries in the first s

diagonals equal to those of the partition a and whose cells placed south of the
s-th diagonal contain values that we are going to define next.
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Let (i0, j0) be the southmost cell on the s-th diagonal such that ai0,j0 > pi0,j0 = t,
and suppose this cell contains the value t + l1, then the values of the cells of a′

that are south of the s-th diagonal are defined as follows:
∗ The cells (i, j) with i ≥ i0 and j ≥ j0 form a perfect staircase of height

t + l1 whose highest point is placed in (i0, j0);
∗ If i < i0 and j > s + 1 − i, then a′

i,j = a′
i,j−1 − 1;

∗ if j < j0 and i > s + 1 − j, then a′
i,j = a′

i−1,j − 1.
Like in the simple case, we have |a′| ≤ |a| = n, because a is smooth and therefore
the rows and the columns of a′ decrease at least as fast as those of a.
Recall that

|p| =
s∑

j=1

dj(p) + T (t) − t + S(m) + q + (s − 1)S(t − 1)

=

s∑

j=1

dj(p) + T (t − 1) + S(t − 1) + S(m) + q + sS(t − 1)

=
s∑

j=1

dj(p) + T (t − 1) + S(m) + q + sS(t − 1).

Note that S(t + li) > S(t) + lit and S(t − ji) ≥ S(t) − jit for all t > 0, for all
li > 0 and for all ji ≥ 0. We will use this fact when we now compute |a′| and we
compare it to |p|.

|a′| =
s∑

j=1

dj(a) + T (t + l1) − (t + l1) +
v∑

i=2

S(t + li − 1) +
u∑

i=1

S(t − ji − 1)

=

s∑

j=1

dj(a) + T (t + l1 − 1) + S(t + l1 − 1) +

v∑

i=2

S(t + li − 1) +

u∑

i=1

S(t − ji − 1)

=
s∑

j=1

dj(a) + T (t + l1 − 1) +
v∑

i=1

S(t + li − 1) +
u∑

i=1

S(t − ji − 1)

≥
s∑

j=1

dj(a) + T (t + l1 − 1) +
v∑

i=1

[S(t − 1) + li(t − 1)] +
u∑

i=1

[S(t − 1) − ji(t − 1)]

=

s∑

j=1

dj(a) + T (t + l1 − 1) + sS(t − 1) + (t − 1)(

v∑

i=1

li −

u∑

i=1

ji).

Now we use the fact that
∑v

i=1 li −
∑u

i=1 ji > 0, as well as the fact that when
l1 > 0, one has T (t+ l1−1) ≥ T (t−1)+S(t−1) and the fact that, by recurrence
hypothesis,

∑s

j=1 dj(a) >
∑s

j=1 dj(p).
16



|a′| >

s∑

j=1

dj(p) + T (t − 1) + sS(t − 1) + S(t − 1) + (t − 1)

≥
s∑

j=1

dj(p) + T (t − 1) + sS(t − 1) + S(m) + q = |p|,

the last inequality being justified by the fact that S(t−1) ≥ S(m) and t−1 ≥ q.
We have then that |a| ≥ |a′| > |p|, which is a contradiction.

(b) The s-th diagonal of the pyramidal partition p is not entirely in the main staircase
(see Figure 8). In this case we have to distinguish between cells of the main
staircase that are equal to t and those that are equal to t + 1 but otherwise we
can apply the same arguments as before.

�
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Figure 8. Case in which the s-th diagonal is not entirely in the main staircase
of p.

Proposition 7. Let a be a plane partition and let us denote by ℓ its last non zero diagonal.
Then its energy E(a) =

∑

k,t ak,t(k + t − 1) can be rewritten as

ℓ

ℓ∑

j=1

dj(a) −
ℓ−1∑

i=1

i∑

j=1

dj(a) = ℓn −
ℓ−1∑

i=1

i∑

j=1

dj(a)
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Proof. We have that

∑

k,t

ak,t(k + t − 1) =
ℓ∑

j=1

jdj(a)

=

ℓ∑

i=1

ℓ∑

j=i

dj(a)

=

ℓ∑

i=1

(

ℓ∑

j=1

dj(a) −

i−1∑

j=1

dj(a))

= ℓ(

ℓ∑

j=1

dj(a)) −

ℓ∑

i=1

i−1∑

j=1

dj(a)

= ℓn −
ℓ∑

i=1

i−1∑

j=1

dj(a).

It is straightforward to verify that the ranges of the indices i and j in these sums can be
modified to make them equal to those of the claim of the proposition without modifying the
values of the sums themselves.

�

Proposition 8. Let a be a smooth partition of n and let p be a pyramidal partition of n. If
∑i

j=1 dj(p) =
∑i

j=1 dj(a) for each i, then a is a pyramidal partition.

Proof. For simplicity we prove the result for the simplest case where p consists of the main
staircase only. The other cases can be proved by using the same arguments.

Since d1(a) = d1(p) then a1,1 = p1,1. Moreover d2(a) = d2(p), that is

a1,2 + a2,1 = p1,2 + p2,1 = 2(p1,1 − 1).

Let us suppose now that a1,2 > p1,2, then from the previous equation we must have that
a2,1 < p2,1 = p1,1 − 1, but this is impossible since a1,1 = p1,1 and a is smooth. Therefore

a1,2 = a2,1 = p1,1 − 1.

By iterating the same argument on the remaining diagonals we obtain that a = p.
�

Proposition 9. In the set of all accessible smooth partitions, pyramidal partitions have
minimal energy.

Proof. Let p be a pyramidal partition of n, by construction p is smooth. We want to show
that it has minimal energy among all smooth partitions, that is, E(p) ≤ E(a) for all smooth

partition a. From Proposition 7, we have that E(p) = ℓn −
∑ℓ−1

i=1

∑i

j=1 dj(p). Then from
Lemma 1 we have the result.

�

Proposition 10. A smooth partition having minimal energy among all smooth partitions is
pyramidal.

18



Proof. Let a be a smooth partition of n with minimal energy among all smooth partitions.
In Proposition 9 we proved that pyramidal partitions all have minimal energy. Therefore for
any pyramidal partition p one has E(p) = E(a). Using Proposition 7 this means that:

(9) nℓ −

ℓ−1∑

i=1

i∑

j=1

dj(p) = nℓ′ −

ℓ′−1∑

i=1

i∑

j=1

dj(a),

where ℓ and ℓ′ denote the last non zero diagonal of p and a respectively. Note that ℓ′ ≥ ℓ,

otherwise, if ℓ′ < ℓ then
∑ℓ′

j=1 dj(a) = n, while
∑ℓ′

j=1 dj(p) < n which contradicts Lemma 1.

Identity (9) can be rewritten as

(10) n(ℓ′ − ℓ) +
ℓ−1∑

i=1

(
i∑

j=1

dj(p) −
i∑

j=1

dj(a)) −
ℓ′−1∑

i=ℓ

i∑

j=1

dj(a) = 0

Observe that n(ℓ′ − ℓ) −
∑ℓ′−1

i=ℓ

∑i

j=1 dj(a) >= 0 because for all i, the term
∑i

j=1 dj(a)

is smaller than or equal to n and the sum
∑ℓ′−1

i=ℓ (
∑i

j=1 dj(a)) has (ℓ′ − ℓ) terms. From

Lemma 1 we have that the remaining term
∑ℓ−1

i=1(
∑i

j=1 dj(p) −
∑i

j=1 dj(a)) of the left-hand

side of equation (10) is also non negative. Therefore both terms n(ℓ′− ℓ)−
∑ℓ′−1

i=ℓ

∑i

j=1 dj(p)

and
∑ℓ−1

i=1(
∑i

j=1 dj(p) −
∑i

j=1 dj(a)) must be equal to 0.

However,
∑ℓ−1

i=1(
∑i

j=1 dj(p) −
∑i

j=1 dj(a)) = 0 implies

i∑

j=1

dj(p) −

i∑

j=1

dj(a) = 0 for all i

because, by Lemma 1, all terms
∑i

j=1 dj(p) −
∑i

j=1 dj(a) are greater than or equal to 0.

We deduce that
∑i

j=1 dj(p) =
∑i

j=1 dj(a) for all i and consequently that ℓ = ℓ′. By using
Proposition 8, this implies that a is pyramidal. �

From these two propositions we can deduce the following therorem.

Theorem 2. The set of smooth partitions with minimal energy is the set of pyramidal
partitions.

6. Longest and shortest maximal chains in BLB(n)

Our goal in this section is to determine the minimal and the maximal number of transitions
of BLB(n) that allow to reach a fixed point of BLB(n) starting from the initial configuration.

Definition 15. Let P = (S,≤P ) a partially ordered set and let x1, x2, . . . , xm be elements of
S. We say that x1, x2, . . . , xm form a chain if x1 ≤P x2 ≤P . . . ≤P xm. The integer m− 1 is
called the length of the chain.

Definition 16. We say a chain Γ is maximal if Γ cannot be included as sub-chain in any
other chain.
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Remark. Note that if a chain Γ = x1, x2, . . . , xm is a maximal chain of BIPMk(n), then x1

is the initial configuration N = (n) and xm is a fixed point of BIPMk(n).

The length of the shortest and of the longest maximal chain in BIPMn−1(n) = BLB(n)
are in fact the minimal and the maximal number of applications of BLB(n) rules that allow
to reach a fixed point of BLB(n) starting from the initial configuration.

Remark. We recall that all plane partitions are accessible in BLB(n). Furthermore, it is
easy to see that a plane partition a = (ai,j) having a1,1 > 1 cannot be a fixed point. Con-
sequently, the fixed points of BLB(n) are precisely the plane partitions whose parts are all
equal to 1.

Definition 17. We define two special fixed points of BLB(n) as follows. Let PR be the plane
partition defined by PR(1, j) = 1 for 1 ≤ j ≤ n and let PC be the plane partition defined by
PC(i, 1) = 1 for 1 ≤ i ≤ n. The fixed point PR is obviously represented by a one-row matrix,
while PC is represented by a one-column matrix.

Note that, if n ≤ 3, the longest and the shortest maximal chains in BLB(n) have the same
length and this length is n − 1. The next proposition considers the cases where n ≥ 4.

Proposition 11. For n ≥ 4, the shortest maximal chains in BLB(n) have length 2n−5 and
more precisely:

• If P is any fixed point of BLB(n) with P 6= PR and P 6= PC, then it is possible to
construct a maximal chain of length 2n − 5 ending with P .

• If P = PR or P = PC, then the shortest maximal chain ending with P has lenght
2n − 4.

Proof. We first prove that at least 2n − 5 transitions are necessary to obtain a fixed point
P from the initial configuration. We will count how many transitions are needed to move a
grain form the cell (1, 1), where it is initally placed, to an empty cell (i, j) 6= (1, 1).

Let us observe that one (East or South) transition is needed to move one grain from the
cell (1, 1) to the cell (1, 2) or to the cell (2, 1).

Let (i, j) be a cell not in {(1, 1), (1, 2), (2, 1)}. While the cell (1, 1) contains more than 2
grains, one needs at least two transitions to move one grain from this cell to the cell (i, j).
It is clear indeed that one transition would not be sufficient to move a grain from the cell
(1, 1) to the cell (i, j).

At the end of this process, when all cells except one have been filled and there are only
2 grains left in the cell (1, 1), then it is only possible to apply one Slide transition, thus
obtaining a fixed point.

So, in total, one needs at least one transition to bring one grain to each of the cells
(1, 2), (2, 1) and the last cell to be filled, and two transitions for each of the n− 4 remaining
cells, i.e., 3 + 2(n − 4) = 2n − 5 transitions.

We shall construct now a sequence of 2n−5 transitions allowing to obtain P from N = (n).
Let us consider first the case where P is a fixed point different from PR and PC . Let r be the
number of rows of P and for 1 ≤ i ≤ r, denote by ji the largest integer such that P (i, ji) = 1.

The first transition (an East transition) transfers one grain from the cell (1, 1) to the cell
(1, 2) and the second one (a South transition) transfers one grain from the cell (1, 1) to the
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cell (2, 1). The last transition of the sequence is a Slide transition, moving one grain from
the cell (1, 1) to the cell (r, jr). The remaining 2n − 8 transitions are described as follows.

For any of the cells (1, j), with 2 < j ≤ ji, we move a grain from cell (1, 1) to cell (1, j)
by applying two transitions : an East transition moving the grain from (1, 1) to (1, 2), then
a Slide transition moving the grain from (1, 2) to (1, j).

For any other cell (i, j), we first move a grain from cell (1, 1) to the cell (2, 1) using a
South transition, then we move it from (2, 1) to (i, j) using a Slide transition.

The total number of transitions in the sequence is clearly 2n − 5.
It is easy to see that a shortest maximal chain ending with PR orPC has length 2n−4. �

The following proposition deals with the length of longest maximal chains in BLB(n)
and proves that their lenght is the same as the length of longest maximal chains in LB(n).
Longest maximal chains in LB(n) were studied by Greene and Kleitman in their paper [7].
We refer the reader to this article for more details on longest maximal chains in LB(n).

Proposition 12. Longest maximal chains in BLB(n) have the same length as longest max-
imal chains in LB(n).

Proof. We will show first that the length of any longest maximal chain in BLB(n) is smaller
than or equal to the length of a longest maximal chain in LB(n). Then we will show that
there exists a fixed point P such that the longest maximal chain ending with P has the same
length as a longest maximal chain of LB(n).

Let us first consider the following map ϕ from BLB(n) to LB(n): for each plane partition
a, define ϕ(a) as the partition obtained from a by sorting the parts of a in decreasing order.
The map ϕ is clearly surjective. Now, let a → b be a transition in BLB(n). It is clear that
ϕ(b) is smaller than ϕ(a) by the dominance order in LB(n), so ϕ(b) can be obtained from
ϕ(a) by a transition in LB (see [3]). This implies that every chain in BLB(n) can be mapped
onto a chain of LB(n) having at least the same length. Therefore the length of a longest
maximal chain in BLB(n) is smaller than or equal to the length of a longest maximal chain
in LB(n).

On the other hand, if we consider only plane partitions having one row, the evolution of
the system in BLB(n) is analoguous to the one in LB(n). So the length of a longest maximal
chain ending with PL is equal to the length of any longest maximal chain in LB(n).

�
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