
HAL Id: hal-00159436
https://hal.science/hal-00159436

Submitted on 3 Jul 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LISA: a linear structured system analysis program
Sinuhé Martinez-Martinez, Theodor Mader, Taha Boukhobza, Frédéric

Hamelin

To cite this version:
Sinuhé Martinez-Martinez, Theodor Mader, Taha Boukhobza, Frédéric Hamelin. LISA: a linear struc-
tured system analysis program. 3rd IFAC Symposium on System, Structure and Control, SSSC’07,
Oct 2007, Foz do Iguaçu, Brazil. pp.CDROM. �hal-00159436�

https://hal.science/hal-00159436
https://hal.archives-ouvertes.fr


LISA: A LINEAR STRUCTURED SYSTEM ANALYSIS
PROGRAM

S. Martinez-Martinez, T. Mader, T. Boukhobza, and
F. Hamelin

Research Center in Automatic Control (CRAN - CNRS UMR
7039), Nancy University, BP 239, 54506 Vandœuvre Cedex,

Nancy, France, Phone: 33 383 684 464, Fax: 33 383 684 462,
email: sinuhe.martinez@cran.uhp-nancy.fr

Abstract: In this paper, the so-called software LISA is presented. LISA is a flexible and
portable software, which has been developed to analyse structural properties of large
scale linear and bilinear structured systems. More precisely, LISA contains programmed
algorithms, which allow us to apply recent results in the analysis of structured systems.

Keywords: Structured systems, graph theory, observability, isolability.

1. INTRODUCTION

Structured systems have received much attention since
the beginning of the 70’s. Based on the work of
(Lin 1974), where graphic conditions for the struc-
tural controllability are given, (Reinschke 1988) and
(Murota 1987) propose theoretic algorithms for study-
ing the structural properties of multi-input linear sys-
tems, like controllability, observability. The main re-
sults concerning graph theoretic approach are summa-
rized in (Dion et al. 2003).

Recently, some algorithms have been proposed for the
analysis of structured linear systems. In (Hovelaque
et al. 1996), for example, the primal-dual algorithm
is proposed to derive the infinite structure of a struc-
tured system. Later, the authors have implemented
the algorithm to analyse the solvability of disturbance
decoupling problem (Hovelaque et al. 1997).

In this context, (Blanke and Lorentzen 2006) present
a Matlab toolbox called SaTool, in which are imple-
mented some results concerning structural analysis
theory like reachability, controllability and fault de-
tectability. SaTool uses mainly the bipartite graph to
represent structured systems.

In this article, a new tool for the analysis of structured
linear and bilinear systems is presented. This tool
is based on the representation of structured systems
by directed graphs (or digraphs). In fact, it is pos-
sible to transform graphic conditions given in terms
of digraphs into flow graph conditions. Implemen-
tation of flow graphs is relatively easy and mainly
efficient (lower computational burden) because there
already exist many optimized algorithms useful to
analyse structured system properties. The first version
of LISA program deals with some new results con-
cerning generic unknown input and state observability
and fault isolability of structured linear systems and
observability of structured bilinear systems. In order
to deal with such complex problems, basic tools have
been developed, these basic tools can be used to solve
many other structural proprieties as the optimization
of sensor placement for observability and FDI, the so-
called autonomy for the networked systems, etc.

The paper is organized as follows: in section 2, struc-
tured linear and bilinear systems are presented, as
well as their graphical representation. In section 3,
the LISA program is presented, different useful algo-
rithms are summarized and explained. An estimation
of their complexity orders is given. Finally, in section
4, we give the conclusion of the paper.



2. STRUCTURED LINEAR AND BILINEAR
SYSTEMS

Before presenting LISA program, an introduction to
structured systems and their graphical representation
is exposed in the following section. In many problems,
the matrices which characterize the system have a
number of fixed zero entries determined by the physi-
cal laws, while the reminded entries are not precisely
known. To study these systems, the idea is that we
keep the zero/non-zero structure in the state space
matrices. Thus, we consider models where the fixed
zeros are conserved and while the non-zero entries are
replaced by free parameters. These kind of models are
called structured models. In such a models, theoretic
properties can be studied according to the values of the
free parameters. We say that a property is true generi-
cally if it is valid for almost all parameter values of the
structured system (Van der Woude 1999). Moreover,
the study of such systems requires a low computa-
tional burden which allows one to deal with large scale
systems. Many studies on structured systems are re-
lated to the graph-theoretic approach to analyse some
system properties such as controllability, observability
or the solvability of several classical problems as dis-
turbance rejection, input-output decoupling and so on.
It results from these works that the graphic approach
provides simple and elegant solutions. This is why we
develop a software, which allows us to analyse such
systems.

2.1 Structured linear systems

Let us consider structured linear system noted(Σl
Λ
):

(Σl
Λ) :

{

ẋ(t) = Ax(t) + Bu(t) + E1w(t) + F1f(t)
y(t) = Cx(t) + Du(t) + E2w(t) + F2f(t)

(1)

wherex(t) ∈ R
n, u(t) ∈ R

m, w(t) ∈ R
r, f(t) ∈ R

q

andy(t) ∈ R
p are respectively the state, control input,

disturbance, fault and the measured output vector.
A,B,C,D,E1, E2, F1 andF2 are constant structured
matrices of appropriate dimensions and each of their
elements is either fixed to zero or a free non-zero
parameter.

A structured linear system(Σl
Λ
) can be represented

through digraphG(Σl
Λ
). The later is constituted by

a vertex setV and an edge setE i.e. G(Σl
Λ
) =

(V, E). The total number of vertices is denoted byN

and the total number of edges byM . The vertices
are associated to the stateX , controlled inputU ,
disturbanceW, measured outputY and faultF of
(Σl

Λ
) and the edges represent links between these

variables. More precisely,V = X ∪ U ∪W ∪ F ∪ Y,
whereX = {x1, . . . ,xn} is the set of state vertices,
U = {u1, . . . ,um} is the set of control input vertices,
W = {w1, . . . ,wr} is the set of disturbance vertices,
F = {f1, . . . , fq} is the set of fault vertices andY =
{y1, . . . ,yp} is the set of measured output vertices.

Hence,V consists ofn + m + r + q + p vertices.
The edge set isE = A-edges∪ B-edges∪ C-edges∪
D-edges∪E1-edges∪E2-edges∪F1-edges∪F2-edges,
where
A-edges= {(xj,xi) | A(i, j) 6= 0},
B-edges= {(uj,xi) | B(i, j) 6= 0},
C-edges= {(xj,yi) | C(i, j) 6= 0},
D-edges= {(uj,yi) | D(i, j) 6= 0},
E1-edges= {(wj,xi) | E1(i, j) 6= 0},
E2-edges= {(wj,yi) | E2(i, j) 6= 0},
F1-edges= {(fj,xi) | F1(i, j) 6= 0},
F2-edges= {(fj,yi) | F2(i, j) 6= 0}.
HereMλ(i, j) is the (i, j)th element of matrixMλ

and(v1,v2) denotes a directed edge from vertexv1 ∈
V to vertexv2 ∈ V.

We denote a pathP as a sequence of vertices
vr0 , . . . ,vri , where (vrj ,vrj+1

) ∈ E for j =
0, . . . , i − 1. A group of paths are called edge disjoint
if they have no common edge and vertex disjoint if
they have no common vertex. A set of disjoint paths is
called a linking.

Example 1.In Figure 1 is represented the digraph
associated to the following structured linear system:

A =











λ1 0 0 λ2 0 0 0

0 0 λ3 λ4 λ5 0 0

0 0 0 0 0 λ6 0

0 0 0 0 λ7 0 λ8

0 0 0 0 0 0 λ9

0 0 0 0 λ10 0 0

0 0 0 0 0 0 0











, B =











0

0

0

0

0

λ11

0











,

F1 =











0

0

0

0

0

0

λ12











andC =

(

λ13 0 0 0 0 0 0

0 λ14 0 0 0 0 0

0 0 λ15 0 0 0 0

)

.

Fig. 1. Digraph for example 1

2.2 Structured bilinear systems

In this part, we consider structured bilinear system
(Σb

Λ
) of the form:


















ẋ(t) = A0x(t) +

m
∑

i=1

ui(t)Aix(t)

+Bu(t) + E1w(t) + F1f(t)

y(t) = C0x(t) +Du(t) + E2w(t) + F2f(t)

(2)

State variables and matrices are defined as in the linear
case.Ai is a valid matrix fori = 0, . . . ,m. In addition,
the digraph associated to(Σb

Λ
) is notedG(Σb

Λ
) and is

constituted by a vertex setV and an edge setE i.e.



G(Σb
Λ
) = (V, E). Vertex set is defined identically as

in the linear case. Edge set isE =

m
⋃

l=0

Al-edges∪

B-edges∪C-edges∪D-edges∪E1-edges∪E2-edges∪
F1-edges∪ F2-edges. Note that, we indicate the num-
ber i under eachAi-edge in order to preserve the
information about the belonging of the edges in the
digraph representation. With this aim, we define the
following vertex subsetX ′ = {x′

k,i} where0 ≤ i ≤ n

and 1 ≤ k ≤ m and the edge setsA′

k-edges =
{(xj ,x

′

k,i)|Ak(i, j) 6= 0)}.

Example 2.In Figure 2 is represented the digraph
associated to the following structured bilinear system:

A0 =







λ1 λ2 λ3 0 0

λ4 0 λ5 0 0

0 0 λ6 0 0

0 0 0 0 λ7

0 0 0 λ8 0







, A1 =







0 λ9 0 0 0

0 0 0 0 0

0 0 λ10 0 0

0 0 0 0 0

0 0 λ11 λ12 0







,

A2 =







0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 λ13

0 λ14 0 0 0







andC =

(

λ15 0 0 0 0

0 0 0 λ16 0

)

.

Fig. 2. Digraph for example 2

According to the graphic representation of structured
linear systems by means of digraphs, we will present
in the next section the different tools and functions,
which are programmed in LISA.

3. LISA PROGRAM

LISA was developed in C++, a high level program-
ming language, in order to reduce the computational
burden. For the graphical user interface (gui), the li-
brary QT 4.0 was chosen. All these features make
for LISA a flexible and portable program, which is
suitable for Windows as well as Linux environment.

Roughly speaking, the program is divided into two
parts: the user interface and the storages and calcula-
tion classes (Graph, StateRecorder, MatrixExporter).
For the purpose of this paper, we will concentrate in
only two classes:Graph andMatrixExporter. A very
practical group of functions is programmed inMatrix-
Exporterclass. This class allows the user to export the
graph into a state space representation, which can be
read and used by Maple (version 10) and Mupad.

Most of the algorithms programmed in LISA are based
on a flow graph approach. Digraph representation is

suitable for the visual interpretation of some theo-
retical conditions, which have to be verified by the
system to ensure its observability, controllability, etc.
However, it is important to note that, from a com-
putational point of view, flow graph representation is
more suitable than digraph representation. In LISA,
a translation algorithm is used to convert digraphs
into flow graphs and/or bipartite graphs.FlowGraph
class contains different routines useful to these trans-
formations. Namely, several algorithms are dedicated
to find the maximum flow, to solve the minimum cost
- maximum flow problem and to find essential vertices
in a flow graph.

In this part, we detail some of the most important al-
gorithms programmed in LISA. For this presentation,
algorithms are divided into two main classes: basic
graph properties (disjoint paths, essential vertices, etc)
and structured system properties (input and state ob-
servability and fault isolability). The complexity order
of every algorithm is provided in function of the total
number of verticesN and the total number of edges
M .

3.1 User interface

In the user interfaceuiMainWindow, all the "visual
effect" functions are programmed. The user must first
choose if he works with a linear or bilinear system.
Then, the user can create the digraph using the mouse
to place vertices, edges and to choose the kind of
vertices (state, output, input, fault or disturbance ver-
tices). In the main window, several tools make possi-
ble copy, removing, and transformation of the existing
vertices. The user can manipulate its graph very easily.
Moreover, the digraph can be saved, printed into many
formats. Finally, the structured matrices of the digraph
can be extracted using Maple or Mupad formats.

3.2 Algorithms for basic graph properties

• Finding successors of a vertex subset:
This algorithm returns the successor (predecessor)
vertices of a given vertex subset. Note that, if di-
rected edge(v1,v2) belongs toE then, v1 is a
predecessor ofv2 and v2 is a successor ofv1.
The algorithm used to accomplish this task is di-
rectly derived from the Boost Library (Boost C++
Libraries 2005).

• Finding predecessors of a vertex subset:
Finding predecessors in a graph is equivalent to
determine successors in the reversed graph.
According to the documentation, the complexity of
the used algorithm isO(M).

• Finding the maximum number of disjoint
paths between two vertex subsets:
This algorithm returns the maximal number of dis-
joint paths between two selected vertex subsets or



equivalently the size of the maximal linking be-
tween these vertex subsets. To cope with this prob-
lem, the digraph has to be transformed into a flow
graph. This idea is inspired by the next two theo-
rems (Bang-Jensen 2002):
⊲ Menger’s theorem : the maximum number of

edge disjoint paths in a graph is equal to the size
of the minimum edge cut in that graph, and

⊲ max flow min cut theorem : the size of the min-
imum edge cut is equal to the value of the maxi-
mum flow in a network, where all edges have unit
capacity.

A direct consequence of the latter theorems is that
the maximum flow is equal to the maximum num-
ber of edges disjoint paths in a graph. However,
in our case, vertex disjoint paths instead of edge
disjoint paths are searched. Therefore, we transform
the digraph into a flow graph in order to convert
the vertex disjoint problem into an edge disjoint
problem. Transformation of the original digraph
G(·) carries out into two steps: vertex splitting and
residual network procedure. Both steps are done by
routines in theFlowGraphclass. Once the transfor-
mation is made, an algorithm to solve the minimum
cost - maximum flow problem is implemented. This
consists essentially in the Ford Fulkerson algorithm
(Bang-Jensen 2002) with a shortest path search at
each step. When all the paths are tested, the algo-
rithm stops and the maximum flow is given. There
can be a maximum ofO(N) disjoint paths and so
path searches. The complexity order of each search
is O(N

√
M). Hence the overall complexity order

is O(N2
√

M).

• essential vertices between two vertex
subsets:
The set of essential vertices between two
vertex subsetsV1 (source) andV2 (sink), noted
Vess(V1, V2), corresponds by definition to vertices
present in all maximumV1-V2 linkings. The used
algorithm is based on the fact that a removal
of an essential vertex causes a reduction in the
number of disjoint paths. To determine the essential
vertices in a digraph, each vertex is removed and
the maximum flow between source and sink is
calculated. If the new flow is smaller than the
original flow, then the removed vertex is essential.
The algorithm requiresO(N) flow calculations.
As we have seen, the complexity order of every
flow calculation isO(N2

√
M). Then, the overall

complexity order isO(N3
√

M).

• Input and output minimum separators be-
tween two vertex subsets:
This algorithm returns input and output separators.
A separator is a vertex subset, which contains at
least one vertex in every path of a linking. We call
minimum separators betweenV1 andV2 any sepa-
rator having smallest size. According to Menger’s
Theorem, the latter is equal to the number of dis-

joint paths betweenV1 and V2. There exist two
uniquely determined minimum separators between
V1 andV2, called input and output separators.
- the minimum input separator is the set of the end

vertices of all directV1-Vess(V1, V2) paths,
- the minimum output separator is the set of the

begin vertices of all directVess(V1, V2)-V2 paths.
As it is highlighted in (Boukhobza et

al. 2006, Dion et al. 2003, Van der Woude 1999),
these sets play an important role in the analysis of
observability property and in the optimization of
sensor location for observability and FDI. To find
these separators, the maximal set of disjoint paths is
firstly calculated. Next, the set of essential vertices
is determined. Hence, to find the input (output)
separator, it is sufficient to take the essential vertex
closer to the source (sink) subset in each disjoint
path. Essential vertices are found inO(N3

√
M).

Finding the vertices on each path, which are
also essential vertices, is done inO(N log2(N)),
hence the overall asymptotic complexity order is
O(N3

√
M).

• maximal matching between two vertex sub-
sets:
The algorithm determines the size of the maxi-
mal matching between two selected vertex subsets
(source and sink). A matching is a set of disjoint
edges in a bipartite graph. For this algorithm, the
equivalence between the maximum flow and the
maximal matching in a bipartite graph is considered
(Murota 1987). To this aim, an algorithm dedicated
to the construction of a bipartite flow graph from
a directed graph is used. Once the bipartite flow
graph is built, the maximum flow algorithm is run
over this bipartite flow graph. The conversion of
digraph into bipartite flow graph has a complexity
equal toO(M + N) for linear case andO(M +
MN) for bilinear case. The complexity order of the
computation of the maximum flow isO(N2

√
M),

the overall complexity order isO(N2
√

M).

In the program’s main window, to select the vertex
subsets, which are arguments of the different pre-

sented functions, the user must use the command
depending on whether the vertex subset is an input (in
green) or an output (in red) to the algorithm. Accord-
ing to the used algorithm, the selection of one or two
vertex subsets is necessary.

3.3 Algorithms for properties of structured system

Generic properties of structured systems related to
control problems are considered in this section. Based
on the works of (Boukhobza et al. 2006), we recall,
in a first time, the graphic conditions for the generic
input and state observability of structured linear sys-
tems. Next, according to the works of (Boukhobza and
Hamelin 2006a), observability of structured bilinear



systems is treated. Finally, FPRG (Fundamental Prob-
lem of Residual Generation) of structured linear sys-
tems is introduced. We will briefly discuss algorithms
for checking these properties.

3.3.1. Generic input and state observability of struc-
tured linear systems In this paragraph, the condi-
tions for the input and state observability of structured
linear systems are given and they are translated to an
algorithm-based language.

Input and state observability of structured linear sys-
tem Σl

Λ
requires the definition of the following sub-

sets:

• X1 is defined as all verticesxi of X such that the
number of disjoint paths from{xi} ∪W ∪ F to
Y is greater than the maximal number of disjoint
edges fromW ∪ F to Y. According to this,
X1 is determined with functiondisjoint paths
presented in section 3.2.

• Xs contains all vertices inX of all output sep-
arators betweenF ∪ W andY calculated with
functionseparatorsandX0 is the vertex subset
defined byX \ (X1 ∪ Xs).

• Ω0 contains all verticesvi of F ∪ W such that
the maximal matching fromvi toX \ (Xs ∪X0)
equals zero. This subset is calculated by means
of themaximal matching function of 3.2.

• Y0 consists in all essential vertices betweenW∪
F ∪ Y andY. Y0 is then determined withessen-
tial vertices function of 3.2.

The different vertex subsets are computed using re-
spectively the commands , , , , and . In
addition, LISA derive the vertex subsetsΩ1 andY1

with commands and respectively.Ω1 is defined
as all vertices inW ∪F \ Ω0 andY1 as all vertices in
Y \ Y0.

According to these definitions, input and state observ-
ability of structured linear systems can be verified
if next three conditions are satisfied (Boukhobza et
al. 2006):

Cond1: each vertex inX ∪ F ∪W is predecessor of
vertex setY.

Cond2: all vertices inX0 andΩ0 are essential for the
linking betweenΩ0 andXs ∪ Y0.

Cond3: the maximal matching in the bipartite graph
X ∪ F ∪W → X ∪ Y is equal ton + q + r.

Command Observablechecks conditionsCond1,
Cond2andCond3as follows:
To verify conditionCond1, algorithmpredecessorsis
used and then all vertices ofX , F andW are searched
in the result list of predecessors ofY0 .

According to the complexity orders associated to the
basic graph functions, it results that the complexity
order on calculatingCond1 is O(M + N log2(N)).

The two main steps for the verification ofCond2 are
recapitulated as follows:

(1) Essential vertices betweenΩ0 andXs ∪ Y0 are
calculated,

(2) If all vertices inXs andΩ0 are in the previously
calculated set, thenCond2 is satisfied.

According to the complexity orders associated to the
basic graph functions, it results that the complexity
order on calculatingCond2 is O(N3

√
M).

To check conditionCond3, it is sufficient to compute
the maximal matching betweenX ∪F∪W andX ∪Y.
That is, the complexity order ofCond3 isO(N2

√
M).

3.3.2. Observability for structured bilinear systems
Graphic conditions for the observability of structured
bilinear systems can be found in (Boukhobza and
Hamelin 2006a). We can summarize these conditions
as follows:

CondA: Each vertex inX is a predecessor of vertex
setY,

CondB: The maximal matching in the bipartite graph
X → X ′ ∪ Y is equal ton.

For conditionCondA, function predecessorsimple-
mented in section 3.2 can be used.

To check conditionCondB, it is sufficient to compute
the maximal matching betweenX andX ′ ∪ Y. Thus,
the complexity order ofCondB is O(NM3/2).

3.3.3. Fault Isolability of structured linear systems
An important property in diagnosis context is the

fault isolability. LISA allows us to verify this property
for the multiple fault case as well as for the single
fault case. Conditions for the FPRG solvability are
treated in detail in (Commault et al. 1999, Commault
et al. 2002).

Only one condition has to be verified for ensuring fault
isolability in a multi-fault context:

Cond.I : a subset of faultsF0, belonging toF set,
is isolable if the number of disjoint paths between
F∪W andY is equal to the number of disjoint paths
betweenF \ (F0 ∪W) andY and the cardinality of
F0.

In the single fault context, the following condition
must be satisfied to ensure the fault isolability:

Cond.II : a subset of faultsF0 belonging toF set,
is isolable if,∀fi, fj included inF0, the number
of disjoint paths between{fi, fj} ∪W ∪ (F \ F0)
andY is greater than the number of disjoint paths
between{fj} ∪W ∪ (F \ F0) andY.

Command Isolability checks conditionCond.I
andCond.II using the functiondisjoint paths pre-
sented in section 3.2. Thus, here also, the overall
complexity order isO(N2

√
M).



Some other options are available as the computation

of isolable fault components using command

4. CONCLUSION

LISA is a program used to display and manipulate
linear/bilinear control systems. The systems are dis-
played in terms of graphs, which can be manipulated
by the user. Important concepts, such as observability,
fault isolability, etc. have been translated into graph
theoretic terms, and were implemented with different
graph algorithms.

Since many problems that needed to be solved here
are rather expensive in terms of time complexity (i.e.
finding disjoint paths), it was crucial to use a pro-
gramming language with little overhead, close to the
machine code level, C++ was chosen to benefit from
a much great flexibility (e.g. classes, templates), with
only little sacrifice of performance. For the graphical
user interface (gui), the library QT 4.0 was chosen,
since it is very flexible, portable and easy to use for
creating graphical user interfaces.

An exhaustive description of the algorithms developed
in LISA was done in this report. Some other properties
can be studied using these graphic algorithms (Dion
et al. 2003, Van der Woude 1999, Van der Woude
and Murota 1995). Hence, LISA program is intended
to expand its capabilities to analyze other structural
properties as controllability, disturbance rejection, etc.
Moreover, some specific properties related to Network
Controlled Systems are currently in development. Al-
gorithms to check the autonomy of distributed FDI
nodes will be soon added as well as algorithms for
sensor placement optimization.

REFERENCES

Bang-Jensen, J. and G. Gutin (2002).DIGRAPHS
Theory, Algorithms and Application, Springer-
Verlag, London, England.

Blanke, M. and T. Lorentzen (2006). ’SaTool - A
software Tool for Structural Analysis of Complex
Automation Systems’, In:6th IFAC SAFEPRO-
CESS’ 2006, Beijing, P. R. China.

Boost C++ Libraries (2005): Version 1.0
’http://www.boost.org’.

Boukhobza T. and F. Hamelin (2007a). ’Observability
analysis for structured bilinear systems: a graph
theoretic approach’,Automatica, provisionally
accepted.

Boukhobza, T., F. Hamelin, and S. Martinez-Martinez
(2006). ’State and input observability analysis
for structured linear systems: a graph theoretic
approach’,Automatica, to appear in 2007.

Commault, C., J.M. Dion, O. Sename, and J.C. Avila
Vilchis (1999). ’Fault detection and isolation:
a graph approach’,Proc. of the 5th European
Control Conference, Karlsruhe, Germany.

Commault, C., J.M. Dion, O Sename, and R.
Motyeian (2002). ’Observed-based fault de-
tection and isolation for structured systems’,
IEEE Transactions on Automatic Control, AC-
47, 2074–2079.

Dion, J.M., C. Commault and J. Van der Woude
(2003). ’Generic properties and control of lin-
ear structured systems: A survey’,Automatica,
vol.39 no.7, 1125–1144.

Hovelaque, V., C. Commault and J.M. Dion (1996).
’Analysis of linear structured systems using a
primal-dual algorithm’,Systems and Control Let-
ters, 27, 73-85.

Hovelaque, V., N. Djidi, C. Commault and J.M. Dion
(1997). ’Decoupling Problem for Structured Sys-
tems Via a Primal Dual Algorithm’,Proc. of the
4th European Control Conference, Brussel, Bel-
gium.

Lin, C. T. (1974). ’Structural controllability’,IEEE
Transactions on Automatic Control, AC-19, no.
3, 201–208.

Murota, K. (1987).Systems Analysis by Graphs and
Matroids, Structural Stability and Controllabil-
ity, Springer-Verlag, New York, U.S.A.

Reinschke, K. J. (1988).Multivariable Control.
A Graph-Theoretic Approach., Springer-Verlag,
New York, U.S.A.

Shields, R. W. and J. B. Pearson (1976). ’Struc-
tural controllability of multi-input linear sys-
tems’,IEEE Transactions on Automatic Control,
AC-21, no.2, 203–212.

Van der Woude, J. W. (1999). ’The generic number
of invariant zeros of a structured linear system’,
SIAM J. Control Optim., vol.38, no.1, 1–21.

Van der Woude, J. W. and K. Murota (1995). ’Dis-
turbance decoupling with pole placement for
structured systems: A graph-theoretic approach’,
SIAM Journal on Matrix Analysis and Applica-
tions, vol.16, no.3, 922–942.


