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Abstract

This paper is devoted to the generic observability analysis for structured bilinear systems using a graph-theoretic approach. On the basis
of a digraph representation, we express in graphic terms the necessary and sufficient conditions for the generic observability of structured
bilinear systems. These conditions have an intuitive interpretation and are easy to check by hand for small systems and by means of
well-known combinatorial techniques for large scale systems.
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1 Introduction

The class of bilinear systems (BLS), representing particular
nonlinear systems whose dynamics are jointly linear in the
state and the input variables, was introduced in control theo-
ry in the 1960’s. This kind of systems are simpler and better
understood than most other nonlinear systems. Furthermore,
industrial process control, economics and biology (switched
circuits, mechanical brakes, controlled suspension systems,
immunological systems, population growth, enzyme kine-
tics, . . . ) provide examples of BLS. Finally, the usual li-
nearization of a nonlinear control system near an equilibrium
point can be improved by using a bilinear approximation.
For these reasons, many works deal with BLS.
The observability of BLS was tackled in many works among
which we can cite [7,18]. The necessary and sufficient con-
ditions to achieve this property are now very well known.
These conditions have been established using essentially ge-
ometric or algebraic tools. However, the use of such tools as-
sumes the exact knowledge of the state space matrices char-
acterizing the system’s model. In many modeling problems,
these matrices have a number of fixed zero entries deter-
mined by the physical laws while the remaining entries are
not known precisely. To study the properties of these systems
in spite of the poor knowledge we have on them, the idea
is that we only keep the zero/non-zero entries in the state
space matrices. Thus, we consider models where the fixed
zeros are conserved while the non-zero entries are replaced
by free parameters. There is a huge amount of interesting
works in the literature using this kind of models called struc-
tured models. These models are useful to describe the class
of systems having the same structure and they capture most
of the structural available information from physical laws.
Moreover, their study requires a low computational bur-
den which allows one to deal with large scale systems. Be-

cause of these features, we think that structured systems are
adapted to study a property like the observability and sub-
sequently this paper deals with this kind of systems.
Many results on structured systems are related to the graph-
theoretic approach. This approach is mainly dedicated to
linear systems for which many structural properties such
as controllability, observability, solvability of several classi-
cal control problems including disturbance rejection, input-
output decoupling, fault detection and isolation are stu-
died. Survey paper [6] reviews the most significant results
in this area. From these studies, it follows that the graph-
theoretic approach provides simple and elegant solutions
and so is very well-suited to analyse large scale or/and un-
certain systems. Unfortunately, not so many works based
on graph-theoretic methods deal with nonlinear systems.
Among them, [9,10] give conditions to the input-output de-
coupling and linearization of a nonlinear system, [15] gives
sufficient conditions to fulfill the observability of bilinear
systems and recently, [2] provides sufficient conditions for
the uniform observability of some nonlinear systems.
In this context, this paper is dedicated to the analysis of the
observability for structured bilinear systems (SBLS). More
precisely, for such class of systems, we give simple neces-
sary and sufficient conditions to achieve the observability of
the whole or of a given part of the state. These conditions,
which are equivalent to the well-known observability crite-
ria [7,14,18] are easier to check from a computational point
of view.
The paper is organised as follows: after section 2, which is
devoted to the problem formulation, a digraph representa-
tion of SBLS is defined in section 3. The main results are
given in section 4 and are illustrated with an example in
section 5. Finally, some concluding remarks are made.
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2 Problem statement

In this paper, we consider SBLS in the form:

(ΣΛ) :



























ẋ(t) = A0x(t) +
m
∑

i=1

ui(t)Aix(t) + Bu(t)

y(t) = Cx(t)

(1)

where x(t) = (x1(t), . . . , xn(t))T ∈ R
n, u(t) =

(u1(t), . . . , um(t))T ∈ Rm and y(t) =
(

y1(t), . . . , yp(t)
)T
∈ Rp

are respectively the state, the input and the output vectors.
For i = 0, . . . ,m, Ai ∈ R

n×n, B ∈ Rn×m and C ∈ Rp×n are ma-
trices which elements are either fixed to zero or assumed free
non-zero parameters. We can parameterize these nonzero
entries by scalar real (nonzero) parameters λi, i = 1, . . . , h
forming a parameter vector Λ = (λ1, λ2, . . . , λh)T ∈ Rh. If
all the parameters λi are fixed, we obtain an admissible re-
alization of structured system (ΣΛ). Theoretic properties of
each realization can be studied according to the values of λi.
We say that a property is true generically [5] if it is true for
almost all the realizations of structured system (ΣΛ). Here,
“ for almost all the realizations ” is to be understood [6, 17]
as “ for all parameter values (Λ ∈ Rh) except for those in
some proper algebraic variety in the parameter space ”. The
proper algebraic variety for which the property is not true
is the zero set of some nontrivial polynomial with real co-
efficients in the h system parameters, which can be written
down explicitly. Recall that a proper algebraic variety is an
algebraic variety which has Lebesgue measure zero.

Many studies deal with the observability of bilinear sys-
tems using generally either geometric tools or linear time-
varying system theory [4]. In these studies, the notions of
u-indistinguishability, u-observability and u-unobservability
subspaces are defined to characterize the ability of state re-
construction using the knowledge of the input and the out-
put. In this respect, observability definition of BLS is given
in [18]. We extend this definition to SBLS:

Definition 1 Structured bilinear system (ΣΛ) is generically
observable if, for almost all the realisations of (ΣΛ), there
exists an input u(t) such that any pair of initial states x0(0)
and x1(0) are distinguishable by observation of the corres-
ponding outputs y0(t) and y1(t) for t ≥ 0.

Directly, from results provided in [18], the generic obser-
vability of SBLS (ΣΛ) is necessary and sufficient to ensure,
for almost all the realizations of (ΣΛ), the existence of an
observer which provides an asymptotic estimate of the state.
Moreover, Theorem 1 of [7] states that for piecewise constant
or continuous controls, a BLS is observable iff there exists an
input u(t) for which it is u-observable. The proof is based on
the construction of an universal input ū, which distinguishes
all initial states x1(0) from x0(0) = 0 by concatenating at
most n + 1 constant inputs: ū = u0 ◦ u1 ◦ . . . ◦ un. At the kth

stage in the construction, the set of states indistinguishable
from x(0) = 0 is reduced in dimension by well chosen input
value uk. This leads to the following observability criterion
for BLS. This criterion is based on the observability matrix
rank conditions proposed in [7] for BLS.

Theorem 2 For piecewise continuous input signals u(t),
structured bilinear system (ΣΛ) is generically observable iff

T1: g_rank
(

O(C, A0, A1, . . . , Am)
)

= n, where

O(C, A0, A1, . . . , Am) = col (C,CA0,CA1, . . . ,CAm,

CA2
0,CA0A1, . . . . . . ,CA0Am, CA1A0, . . . ,CAn−1

m

)

is the observability matrix of system (ΣΛ) and where
g_rank(M) denotes the generic rank of matrix M [12].

The aim of this paper is to provide graphic conditions equiv-
alent to the one of Theorem 2. It turns out that these graphic
conditions are easier to check and so more adapted to tackle
large scale or uncertain systems. Indeed, the computation
of g_rank

(

O(C, A0, A1, . . . , Am)
)

is quite difficult particularly
for large scale systems.

3 Graph representation of structured bilinear systems

This section is devoted, in a first stage, to the definition of
a digraph which represents SBLS (ΣΛ). Next, some useful
notations and definitions are given.

3.1 Digraph definition for structured bilinear system

Not so many works use the graph-theoretic approach to study
nonlinear systems. The digraph we use in this paper is quite
close to the one presented in [10]. The main differences are
due to the fact that we adapt our representation to the con-
text of observability analysis and to the fact that we deal
with structured systems.
The digraph we associate to (ΣΛ) is noted G(ΣΛ) and is con-
stituted by a vertex set V and an edge set E i.e. G(ΣΛ) =
(V,E). The vertices are associated to the state and the output
components of (ΣΛ) and the directed edges represent links
between these variables.
More precisely,V = X∪Y, where X = {x1, . . . , xn} is the set
of state vertices, Y =

{

y1, . . . , yp

}

is the set of output vertices.
For sake of clarity, the state and the output vertices are writ-

ten in bold fonts. The edge set is E =
m
⋃

l=0

Al-edges∪C-edges,

where, for l = 0, . . . , m, Al-edges =
{

(xj, xi) | Al(i, j) , 0
}

and C-edges =
{

(xj, yi) | C(i, j) , 0
}

.
Here M(i, j) is the (i, j)th element of matrix M and (v1, v2)
denotes a directed edge from vertex v1 ∈ V to vertex v2 ∈ V.
Note that number i is indicated under each Ai-edge in order
to preserve the information about the belonging of the edges
in the digraph representation. Moreover, for i ∈ {0, . . . , m},
to each edge e ∈ Ai-edges we associate index i. Note that
we associate several indexes to an edge e if it belongs to
several subsets Ai-edges. The following example illustrates
the proposed digraph representation.

Example 3 In Figure 1, we represent the digraph associated
to the SBLS defined by:
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A0 =

































































λ1 λ2 λ3 0 0

λ4 0 λ5 0 0

0 0 λ6 0 0

0 0 0 0 λ7

0 0 0 λ8 0

































































, A1 =

































































0 λ9 0 0 0

0 0 0 0 0

0 0 λ10 0 0

0 0 0 0 0

0 0 λ11 λ12 0

































































,

A2 =

































































0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 λ13

0 λ14 0 0 0

































































and C =



















λ15 0 0 0 0

0 0 0 λ16 0



















.

 

y1
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x1
x4
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x3
00,1 00 00,1 0,212

0,1
y1
y2

x1
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x2
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x3
00,1 00 00,1 0,212

0,1
Figure 1. Digraph for the study of observability for Example 3

As we can see, comparatively with the digraph presented
in [10], the input vertices are removed since we study the
state observability. Moreover, due to this removal, the edges,
which start in [10] from the input vertices, start in our di-
graph from state vertices and constitute the Ai-edges. Fi-
nally, as we are interested in structured systems, each edge
represents a free parameter which has no numerical value.
Thus, it is not necessary to indicate it on each edge of the
digraph as in [10].

3.2 Definitions and notations

We present hereafter briefly some definitions concerning
particular tools, we use in the paper. For the classical def-
initions related to the digraphs, the readers are referred
to [1, 6, 10, 12, 13].
• A path P is an Y-topped path if its end vertex is an ele-
ment of Y.
• Two edges e1 = (v1, v

′
1
) and e2 = (v2, v

′
2
), elements of E,

are v-disjoint if v1 , v2 and v′
1
, v′

2
. Note that e1 and e2

can be v-disjoint even if v′
1
= v2 or v1 = v′

2
. k edges are v-

disjoint if they are mutually v-disjoint.
• Consider k edges e1 = (v1, v

′
1
), e2 = (v2, v

′
2
), . . . , ek =

(vk, v
′
k
). We define for i = 1, . . . , k, Ii as the set of integers

j such that v′
j
= v′

i
i.e. Ii

de f
=
{

1 ≤ j ≤ k | v′
j
= v′

i

}

. e1, e2, . . . ,
ek are A-disjoint if C1 and C2 are satisfied, where:

C1: edges e1, e2, . . . , ek have distinct begin vertices.

C2: for i = 1, . . . , k,
(

Ii = {i}
)

or
(

there exist r dis-
tinct integers i1, i2, . . . , ir such that e j1 ∈ Ai1 -edges, e j2 ∈
Ai2 -edges, . . . , e jr ∈ Air -edges, where j1, j2, . . . , jr are all

the elements of Ii

)

.
Roughly speaking, k edges are A-disjoint if their begin ver-
tices are all distinct and if all the edges which have the same
end vertex can be associated to distinct indexes i.

To illustrate the latter definition, note that in Example 3,
e1 = (x2, x1) and e2 = (x1, x1) are A-disjoint as well as
e1 = (x2, x1) and e3 = (x3, x1). So, e1, e2 and e3 are mutually
A-disjoint but they are not A-disjoint even if condition C1 is
satisfied. Indeed, these three edges have the same end vertex
i.e. I1 = I2 = I3 = {1, 2, 3} and there do not exist three dis-
tinct integers i1, i2 and i3 such that e1 ∈ Ai1 -edges, e2 ∈ Ai2 -
edges and e3 ∈ Ai3 -edges. Thus, C2 is not satisfied. Oth-
erwise, edges e1 = (x2, x5), e2 = (x3, x5) and e3 = (x4, x5)
are A-disjoint. Indeed, as they have distinct begin edges, C1
is satisfied. Moreover, even if I1 = I2 = I3 = {1, 2, 3}, as
e1 ∈ A2-edges, e2 ∈ A1-edges and e3 ∈ A0-edges, C2 is sat-
isfied too.

4 Main results

We give hereafter a graphical criterion to characterize the
generic-observability of system (ΣΛ).

Proposition 4 Structured bilinear system (ΣΛ) is generi-
cally observable iff in its associated digraph G(ΣΛ)
i. every state vertex is the begin vertex of an Y-topped path;
ii. there exist n A-disjoint edges in G(ΣΛ).

Proof:
Necessity:
• Assume that Condition (i.) is not satisfied i.e. ∃ xj from
which there does not exist an Y-topped path. Then, we can
state that, ∀k > 0, ∀i1, i2, . . . , ik elements of {0, 1, . . . , m},
the jth column of CAi1 Ai2 . . . Aik is equal to zero. Thus, con-
dition T1 of Theorem 2 cannot be satisfied and the system
is not generically observable.
• If structured bilinear system (ΣΛ) is generically ob-

servable i.e. g_rank
(

O(C, A0, A1, . . . , Am)
)

= n then

Im
(

CT , AT
0 CT , AT

1 CT , . . . , AT
mCT , (AT

0 )2CT ,

AT
0 AT

1 CT , . . . , AT
0 AT

mCT , AT
1 AT

0 CT , . . . (AT
m)n−1CT

)

= Rn.

Yet, since ∀M ∈ Rn×p, Im(AT
i

M) ⊆ Im(AT
i

), we have that

Im
(

CT , AT
0 CT , AT

1 CT , . . . , AT
mCT , (AT

0 )2CT , . . . , AT
0 AT

mCT ,

AT
1 AT

0 CT , . . . (AT
m)n−1CT

)

⊆ Im
(

CT , AT
0 , . . . , A

T
m

)

⊆ Rn
.

Thus, necessarily g_rank
(

O(C, A0, A1, . . . , Am)
)

= n

implies that Im
(

CT , AT
0 , A

T
1 , . . . , A

T
m

)

= R
n and so

g_rank
(

CT , AT
0 , A

T
1 . . . , A

T
m

)

= n which is equivalent to

g_rank
(

col (C, A0, A1, . . . , Am)
)

= n.
On the other hand, we can prove (Appendix A) using the
results of [12, 13, 16], that:
Statement 1: The maximal number of A-disjoint edges in

G(ΣΛ) is equal to g_rank
(

col (C, A0, A1, . . . , Am)
)

.
Thus, immediately, the generic-observability of SBLS (ΣΛ)
implies that condition (ii.) is satisfied.
Sufficiency:
At first, let us recall some facts on linear systems. Consider
a structured linear system,

ΣL,Λ :



















ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

3



It is well known that the system is observable iff

g_rank

















C

sI − A

















= n, ∀s ∈ C. Otherwise, the PBH test [8]

states that (ΣL,Λ) is unobservable iff there exists generically
a vector q , 0 such that Aq = s0q, s0 ∈ C and Cq = 0.

On the one hand, if g_rank

















C

sI − A

















= n, ∀s ∈ C \ {0},

then the unobservability of (ΣL,Λ) implies necessarily that
there exists generically a vector q , 0 such that Aq = 0 and
Cq = 0.
On the other hand, Lemma 14.1 of [13] states that, if in the
digraph associated to (ΣL,Λ), every state vertex is a begin

vertex of an Y-topped path, then g_rank

















C

sI − A

















= n,

∀s ∈ C \ {0}.

Assume now that conditions of Proposition 4 are satisfied.
On the one hand, using Lemma 14.1 of [13], as all the
parameters of matrices A0,. . . , Am are assumed to be free,
we can state that condition (i.) of Proposition 4 implies
that, for almost all input values ū = (ū1, . . . , ūm)T , we have

g_rank
(

col
(

C, sI − (A0 + ū1A1 + . . . + ūmAm)
)

)

= n, ∀s , 0 .

On the other hand, if SBLS (ΣΛ) is generically unobserv-
able, then for all input constant values, ū = (ū1, . . . , ūm)T ,
linear systems defined by matrices (C, Ā) are also un-

observable, where Ā = A0 +

m
∑

i=1

ūiAi. This is due

to the fact that for all input constant values, ū,
Im(O(C, Ā) ⊆ Im(O(C, A0, A1, . . . , Am)).
Therefore, If (ΣΛ) is unobservable, using the previous set-
tings, we have that for each matrix Ā, there exists a nonzero
vector q such that Āq = 0 and Cq = 0. Since this statement
is true for almost all the input values ū = (ū1, . . . , ūm)T , we
have that for almost n(m + 1)-uple values of input noted
ū j = (ū j

1, . . . , ū
j
m)T , j = 1, . . . , n(m+1), we can find nonzero

vectors q j such that the following system is satisfied:



























Cq j = 0

A0q j +

m
∑

i=1

ū
j

i
Aiq j = 0

j = 1, . . . , n(m + 1) (2)

Obviously, there cannot exist more than n independent
vectors q j. Let us note q1,. . . , qn the vectors such that
span(q1, q2, . . . , qn(m+1)) ⊆ span(q1, q2, . . . , qn) (we can
renumber the vectors if necessary). All the vectors q j,
j = n+1, . . . , n(m+1) are linear combinations of q1,. . . , qn.
Therefore, system (2) contains the following n(m + 1) + n
equations



























Cqk = 0 k = 1, . . . , n
n
∑

k=1

m
∑

i=0

a
j

i,k
(ū)Aiqk = 0 j = 1, . . . , n(m + 1)

(3)

where a
j

i,k
(ū) are linear functions of ū j, j = 1, . . . , n(m + 1).

Since system (2) is satisfied for almost all the input values,

we can generically find ū j, j = 1, . . . , n(m + 1) such that

det

















































a1
0,1(ū) a1

0,2(ū) . . . a1
m,n(ū)

a2
0,1(ū) a2

0,2(ū) . . . a2
m,n(ū)

...
...

...
...

a
n(m+1)
0,1 (ū) a

n(m+1)
0,2 (ū) . . . a

n(m+1)
m,n (ū)

















































, 0. In this case,

the only solution of system (3) is



















Cqk = 0

A0qk = A1qk = . . . = Amqk = 0
k = 1, . . . , n (4)

Obviously, if (ΣΛ) is unobservable then at least one vec-
tor qk, k = 1, . . . , n is nonzero. Consequently, SBLS (ΣΛ)
is unobservable only if there exists at least a nonzero vec-
tor q such that Cq = 0 and A0q = A1q = . . . = Amq = 0.
However, if condition (ii.) of Proposition 4 is satisfied, then

g_rank
(

col (C, A0, A1, . . . , Am)
)

= n and so there does not
exist a vector q , 0 such that Cq = 0 and A0q = A1q = . . . =
Amq = 0. Hence, for almost all the realizations of SBLS
(ΣΛ), conditions of Proposition 4 are sufficient to ensure the
observability. △

In the case of system described in Example 3, Figure 2 rep-
resents 5 A-disjoint edges extracted from digraph of Figure
1. Since all the state vertices are begin vertices of Y-topped
paths, this system is generically observable.

 

y1
y2

x1
x4

x2
x5

x3
1 0

0
y1
y2

x1
x4

x2
x5

x3
1 0

0
Figure 2. A set of 5 A-disjoint edges for example 3

As in [12] (Theorem 14.1) for the linear case, we can give
simpler graphic conditions based on bipartite graphs:

Corollary 5 Structured bilinear system (ΣΛ) is generically
observable iff in its associated digraph G(ΣΛ)
i. every state vertex is the begin vertex of an Y-topped path;
ii. g_rank

(

col(C, A0, A1, . . . , Am)
)

= n or equivalently, the
maximal matching of the bipartite graph associated to ma-
trix col(C, A0, A1, . . . , Am) is equal to n.

The main advantage of the previous corollary is its computa-
tional aspect. Indeed, the first condition can be checked using
depth search algorithms. These algorithms have a complex-
ity order O(M ·N) where M is the number of edges in the di-
graph and N = n+p the number of vertices. For our digraphs,
in the worst case M = (m+1) ·n2+n · p. Thus, the complex-
ity of these algorithms, in our case, is O(m · n3), (assuming
without loss of generality that p ≤ n). To check the second
condition of Corollary 5, we define the bipartite graph re-
lated to matrix col(C, A0, A1, . . . , Am) [12]. Then, we use the
Bipmatch method [11], which allows to compute the cardi-
nal of maximal matching into a bipartite graph. The com-
plexity order of algorithms using this method is O(M ·N0.5),
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where, M = (m+1) ·n2+n · p and N = n+ p+ (m+1) ·n. So,
for checking the second condition of Corollary 5 we can use
algorithms which have complexity order O(m3/2 · n5/2). The
proposed solution has an acceptable computational burden
and so is very well suited to large scale systems.
The previous result can be seen as a generalization of the re-
sults concerning linear structured systems recalled in [6,12]:

Proposition 6 A structured linear system (ΣL,Λ) :


















ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
is generically observable iff in its as-

sociated graph G(ΣL,Λ)
i. every state vertex is the begin vertex of an Y-topped path;
ii. the maximal matching of the bipartite graph associated
to matrix col(C, A) is equal to n.

The first condition of both Corollary 5 and Proposition 6 is
exactly the same. Moreover, since for a linear system, there
is no matrices Ai, i = 1, . . . , m, the second condition of
Proposition 4 is equivalent to the second one of Corollary 5
in the linear case. Thus, in the linear case, Proposition 4 is
equivalent to the one presented in [12] or to the one based
on paths and cycles [6].

5 Example

In this section, we illustrate the results presented above with
an example. This example is intentionally not very compli-
cated. Nevertheless, it is clear that the observability criteria
presented in Proposition 4 and Corollary 5 are very well-
adapted to more complex or large-scale systems using com-
binatorial programming techniques.
Consider the SBLS represented in the digraph of Figure
3. This system has 19 state components. The matrix rep-
resentation of this system is not given because of lack of
place. Nevertheless, it can be easily deduced from the di-
graph. Our aim is to show the simplicity of the proposed
method on a relatively large example. The proposed condi-
tions can be checked easily by hand whereas the rank test
of the observability matrix is quite difficult to do by hand.
In fact, this system is observable as each state vertex is a be-
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000 01
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0
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000,1 0 1

0
00

0
Figure 3. Illustrative example

gin vertex of an Y-topped paths and there exist 19 A-disjoint
edges as it is displayed in Figure 4.
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x6
x5

x8x10
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Figure 4. A set of 19 A-disjoint edges for the illustrative example

6 Conclusion

In this paper, we propose a new analysis tool to study the
observability of structured bilinear systems. Using a new
graph representation of this class of nonlinear systems, ne-
cessary and sufficient conditions for generic observability
are given and expressed in graphic terms. These intrinsic
conditions need few information about the system and are
easy to check by means of combinatorial techniques or sim-
ply by hand for small systems. From a computational point
of view, our approach is particularly suited for large-scale
systems since it is free from numerical difficulties. Indeed,
the proposed conditions can be easily implemented because
they require simple computations based on finding edges in
digraphs and on integer comparisons. Furthermore, the use
of a graph-theoretic approach makes it easy to visualize the
system structure. This may be very helpful for the optimi-
sation of sensor placement to achieve the observability of
the system. Indeed, starting from the above results, we can
study, as in [3] for linear systems, the sensor location prob-
lem in order to achieve the generic observability.
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Appendix A: Proof of Statement 1

We prove hereafter that the maximal number of A-disjoint
edges ending with vertices of Y ∪X is equal to g_rank(M),
where M = col (C, A0, A1, . . . , Am).
To compute g_rank(M), let us define bipartite
graph BM = (V+;V−;EM) associated to matrix

M and where V+
de f
= {x+

1
, x+

2
, . . . , x+n }, V

− de f
=

{y−
1
, y−

2
, . . . , y−p } ∪ {x

−
0,1
, x−

0,2
, . . . , x−

0,n
, x−

1,1
, x−

1,2
, . . . , x−m,n}

and EM = CM-edges ∪















m
⋃

k=0

AM
k -edges















, with

CM-edges
de f
=
{

(x+
i
, y−

j
) | C( j, i) , 0

}

and for k = 0, . . . , m,

AM
k
− edges

de f
= {(x+

ℓ
, x−

k,i
) | Ak(i, ℓ) , 0}.

Note that CM-edges are the same than C-edges in G(ΣΛ).
From the results on the generic rank matrices [13], since all
the parameters of matrices A0,. . . , Am and C are assumed
to be free, we have that g_rank(M) is equal to the maximal
number of disjoint edges in BM, which is called the maxi-
mum matching in BM.
If, for i = 1, . . . , n, vertices x−

0,i
, x−

1,i
, . . . , x−

m,i
are joined

to form an unique vertex xi and if x+
i

and y−
i

are noted
respectively xi and yi, the number of disjoint edges in BM
becomes the number of A-disjoint edges in G(ΣΛ). Indeed,
k edges are disjoint in BM iff their corresponding edges
in the original graph satisfy condition C1 (to have distinct
begin vertices in BM) and condition C2 (to have distinct
end vertices in BM).
Therefore, g_rank(M) is equal to the maximal number of A-

disjoint edges ending with vertices in G(ΣΛ) and Statement
1 is proved. △
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