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RADIAL DUNKL PROCESSES : EXISTENCE AND

UNIQUENESS, HITTING TIME, BETA PROCESSES AND

RANDOM MATRICES

NIZAR DEMNI1

Abstract. We begin with the study of some properties of the radial Dunkl
process associated to a reduced root system R. It is shown that this diffusion
is the unique strong solution for all t ≥ 0 of a SDE with singular drift. Then,
we study T0, the first hitting time of the positive Weyl chamber : we prove, via
stochastic calculus, a result already obtained by Chybiryakov on the finiteness
of T0. The second and new part deals with the law of T0 for which we compute
the tail distribution, as well as some insight via stochastic calculus on how root
systems are connected with eigenvalues of standard matrix-valued processes.
This gives rise to the so-called β-processes. The ultraspherical β-Jacobi case
still involves a reduced root system while the general case is closely connected
to a non reduced one. This process lives in a convex bounded domain known
as principal Weyl alcove and the strong uniqueness result remains valid. The
last part deals with the first hitting time of the alcove’s boundary and the semi
group density which enables us to answer some open questions.

1. Preliminaries

We begin by pointing out some facts on root systems and radial Dunkl processes.
We refer to [38] for the Dunkl theory, to both [7] and [27] for a background on
root systems and [11], [21] for facts on radial Dunkl processes. Let (V, <, >) be a
finite real Euclidean space of dimension m. A reduced root system R is a finite set
of non zero vectors spanning V such that :

1 R ∩ Rα = {α,−α} for all α ∈ R.

2 σα(R) = R

where σα is the reflection with respect to the hyperplane Hα orthogonal to α :

σα(x) = x − 2
< α, x >

< α, α >
α, x ∈ V

A simple system ∆ is a basis of V which induces a total ordering in R. A root α is
positive if it is a positive linear combination of elements of ∆. The set of positive
roots is called a positive subsystem and is denoted by R+. Note that the choice of
∆ is not unique and that R+ is uniquely determined by ∆. The reflection group
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W is the one generated by all the reflections σα for α ∈ R. Recall that W is finite
and the only reflections are of the form σα for α ∈ R. Given a root system R with
associated positive subsytem R+, let C be the positive Weyl chamber defined by :

C := {x ∈ V < α, x >> 0 ∀α ∈ R+} = {x ∈ V < α, x >> 0 ∀α ∈ ∆}
and C its closure. One of the most important properties is that the convex cone
C is a fundamental domain, that is each λ ∈ V is conjugate to one and only one
µ ∈ C.
The radial Dunkl process is defined as the C-valued continuous paths Markov
process whose generator is given by :

L u(x) =
1

2
∆u(x) +

∑

α∈R+

k(α)
< α,∇u(x) >

< α, x >

with boundary conditions ∇u(x) · α = 0 for all x ∈ Hα, α ∈ R+, k(α) ≥ 0 is the
multiplicity function (invariant under the action of W ), and u ∈ C2

c (C). When
k(α) = 1 for all α ∈ R, we recover the BM constrained to stay in C, studied by
Grabiner ([23]). The semi-group density of X is given by :

(1) pk
t (x, y) =

1

cktγ+m/2
e−(|x|2+|y|2)/2tDW

k (x, y)
∏

α∈R+

< α, y >2k(α)

for x, y ∈ C, where γ =
∑

α∈R+
k(α),

DW
k (x, y) :=

∑

w∈W

Dk

(

x√
t
,
wy√

t

)

where Dk denotes the Dunkl kernel and ck is given by the Macdonald-Mehta inte-
gral ([38]). Indeed, as Dk(0, y) = 1 ([38]), one gets

tγ+m/2ck = |W |
∫

C

e−|y|2/2t
∏

α∈R+

< α, y >2k(α) dy =

∫

Rm

e−|y|2/2t
∏

α∈R+

| < α, y > |2k(α)dy

since R
m = ∪w∈WwC. DW

k (x, y) is known as the generalized Bessel function (up
to the constant |W |). This process is obtained by projecting the Dunkl process
valued in R

m (which has right-continuous and left-limits paths, see [21]) on C. The
latter was already introduced by Rösler ([38],[39]) and then studied by Gallardo
and Yor ([21],[22]) and Chybiryakov ([11]).

To illustrate all these facts and motivate the reader as well, we will provide
some well known examples. We start with the rank one case (m = 1) for which
R = B1 = {±1}. Hence k(α) := k0 ≥ 0 and X is a Bessel process ([37]) of index
ν = k0 − 1/2. When k0 > 0, it is the unique strong solution of :

dXt = dBt +
k0

Xt
dt, t ≥ 0, X0 = x > 0.
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where B is a standard BM. Another well known multivariate example is described
by the Am−1-type root system defined as :

Am−1 = {±(ei − ej) 1 ≤ i < j ≤ m},
with positive and simple systems given by :

R+ = {ei − ej , 1 ≤ i < j ≤ m} ∆ = {ei − ei+1, 1 ≤ i ≤ m}
where (ei)1≤i≤m is the standard basis of R

m. V is the hyperplane of R
m consisting

of vectors that coordinates sum to zero. Without loss of generality, one can take
R

m instead of V so that C = {x ∈ R
m, x1 > · · · > xm}. Besides, there is only one

orbit and k(α) := k1 ≥ 0. Thus, the corresponding radial Dunkl process satisfies :

(2) dX i
t = dνi

t + k1

∑

j 6=i

dt

X i
t − Xj

t

1 ≤ i ≤ m, t < τ

with X1
0 > · · · > Xm

0 , where (νi)i are independent Brownian motions and τ is
the first collision time . For strictly positive k1, this process was deeply studied
by Cépa and Lépingle ([8], [9], [10]): it behaves as m-interacting particles on the
real line with electrostatic repulsions proportional to the inverse of the distance
separating them. Moreover, when k1 = 1, 1/2 respectively, this process evolves like
eigenvalues process of Hermitian (Dyson model) and symmetric Brownian motions
([20], [23]). It was shown in [8] that this SDE has a unique strong solution for all
t ≥ 0 and k1 > 0. When reading the proof in [8], one hopes to extend this result
for any root system since materials used there are not typical for the Am−1-type.
This was the original motivation of this work. Our first result claims that

dXt = dBt −∇Φ(Xt)dt, X0 ∈ C

where Φ(x) = −∑α∈R+
k(α) ln(< α, x >), k > 0 , has a unique strong solution for

all t ≥ 0. At the same time and independently, Chybiryakov and Schapira provide
two other proofs: both authors used well posed martingale problems associated
respectively with the R

m-valued Dunkl and the radial Heckman-Opdam processes
as well as geometric arguments ([11], [41]). The curious reader will wonder what
happens if k(α) = 0 for some α? The answer is that the same result holds up to the
first hitting time of ∂C, say T0 ([11] p. 37). Next, we are mainly interested in the
tail distribution of T0. Before proceeding, we reprove via stochastic calculus that
T0 < ∞ if k(α) < 1/2 for at least one α ∈ R+ (see [11] for the original proof using
local martingales). More precisely, for such an α, we prove that almost surely,
< α, Xt >≤ Yt for all t ≥ 0, where Y is a Bessel process of dimension strictly less
than 2. At this level, other proofs exist for the above results. To our knowledge,
the contents of the remainder of the paper are new. In [11], the author derived
absolute-continuity relations which allow us to write the tail distribution of T0

when starting from x ∈ C. A W -invariant analytic x-dependent integral, which
value at 0 is given by a Selberg integral, is involved. As far as we know, though
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DW
k (x, y) arises as hypergeometric functions for particular root systems (see the

end of [2]), forward computations are sophisticated and hard. More precisely, we
think that it is possible to use the integral formula given in Corollary 2 in [28]
with the integration range 0 < X1

t < · · · < Xm
t < 1, known as the Macdonald’s

conjecture, then perform limit and sums operations. The matrix cases for which
the Jack parameter equals to = 1, 2 are more handable with the use of properties
of zonal polynomials and Schur functions. However, we think that the approach
adopted here is more elegant since on one hand, it disgards the special values of
the multiplicity function and on the other hand, does not need long hard formulas.
It only relies on some properties picked from Dunkl theory. More precisely, it will
be shown that the x-dependent integral is an eigenfunction of some operator which
involves the generator L and the so-called Euler operator E1. For some particular
root systems, this eigenfunction is identified with some hypergeometric series. A
surprising fact is that the eigenoperator can be expressed in terms of a Schrödinger
operator H and its minimal eigenvalue Emin (minimal energy) (see [38] page 18):

L − E1 := L −
m
∑

i=1

xi∂i = −e|x|
2/4(H − Emin)e−|x|2/4

Moreover, (Xt)t≥0 specializes for some values of k to eigenvalues processes of self-
adjoint matrix processes such as symmetric and Hermitian Brownian motions,
Wishart and Laguerre and matrix Jacobi processes. In those cases, computations
can be performed using the action of orthogonal and unitary groups. Indeed, Jack
polynomials fit zonal polynomials and Schur functions when the Jack parameter
equals to 1, 2 respectively (see [34]). The two first ones are identified as Am−1-type
radial Dunkl processes while Wishart and Laguerre processes are related to the
Bm root system. The latter goes beyond the radial Dunkl setting: the reduced
root system Cm in a particular case (ultraspheric) is involved and more generally,
the non reduced system BCm. This connection was deeply investigated in [3]
while identifying special functions associated with root systems with multivariate
hypergeometric series. Among them appear multivariate Gauss hypergeometric
series and Jacobi polynomials ([32]) and these are eigenfunctions of the β-Jacobi
generator. The state space is the so-called principal Weyl alcove which is now a
bounded convex domain and fundamental for the action of the affine Weyl group.
Hence, the process evolves like particles in an interval. Then, we extend the
strong uniqueness Theorem to the Jacobi context. In the remaining part, we
derive some properties: we briefly visit the Brownian motion in the principal Weyl
alcove which corresponds to multiplicities all equal to 1. Then, an analogous result
on the finiteness of the first hitting time of alcoves walls is obtained using similar
computations as those for T0. Finally, we derive the semi group density and discuss
some open questions left in [16].
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2. Radial Dunkl Process : Existence and Uniqueness of a strong

solution

Theorem 1. Let R be a reduced root system. Let:

Φ(x) = −
∑

α∈R+

k(α) ln(< α, x >) :=
∑

α∈R+

k(α)θ(< α, x >), x ∈ C

where k(α) > 0 for all α ∈ R+. Then the SDE

(3) dXt = dBt −∇Φ(Xt)dt, X0 ∈ C

where X is an adapted continuous process valued in C and B is a Brownian motion
in R

m, has a unique strong solution.

Proof: From Theorem 2. 2 in [9], we deduce that :

(4) dXt = dBt −∇Φ(Xt)dt + n(Xt)dLt, X0 ∈ C

where n(x) is a (unitary) inward normal vector to C at x , L is the boundary
process defined by:

dLt = 1{Xt∈∂C}dLt,

has a unique strong solution for all t ≥ 0. Moreover :

E

[∫ T

0

1{Xt∈∂C}dt

]

= 0(5)

E

[
∫ T

0

|∇Φ(Xt)|dt

]

< ∞(6)

for all T > 0. Thus, it remains to prove that the boundary process vanishes. To
proceed, we need two Lemmas.

Remark. Both Lemmas below discard the reducedness of R. In fact, this assump-
tion figures in the definition of the Dunkl process and originates from analytic
purposes like the commutativity of Dunkl operators ([18]).

Lemma 1. Set dGt := n(Xt)dLt. Then, ∀α ∈ R+,

1{<Xt,α>=0} < dGt, α >= 0

Proof : The proof is roughly a generalization of the one in [8] for R = Am−1 . In
order to convince the reader, we provide an outline. Using the occupation density
formula, we may write (< α, X >≥ 0) :

∫ ∞

0

La
t (< α, X >)θ

′

(a)da =< α, α >

∫ t

0

θ
′

(< α, Xs >)ds

where La
t (< α, X >) is the local time of the real continuous semimartingale <

α, X >. On the other hand, the following inequaliy holds (instead of (2.5) in [8])
5



for all a ∈ C:

< ∇Φ(x), x − a > =
∑

α∈R+

k(α)θ
′

(< α, x >) < α, x − a >

(1)

≥
∑

α∈R+

k(α)[bαθ
′

(< α, x >) − cα < α, x − a > −dα]

≥ min
α∈R+

(bαk(α))
∑

α∈R+

θ
′

(< α, x >) − |x − a|
∑

α∈R+

k(α)cα|α| −
∑

α∈R+

k(α)dα

:= A
∑

α∈R+

θ
′

(< α, x >) − B|x − a| − C

by Cauchy-Schwarz inequality, where in (1), we used eq. (2.1) in [8] : let g be
a convex C1-function on an open convex set D ⊂ R

m, then ∀a ∈ D, there exist
b, c, d > 0 such that for all x ∈ D :

< ∇g(x), x − a >≥ b|∇g(x)| − c|x − a| − d

Note also that A > 0 since bαk(α) > 0 for all α ∈ R+. Then, the continuity of X,
(6) and the inequality above yield :

∫ t

0

θ
′

(< α, Xs >)ds < ∞

which implies that :
∫ ∞

0

La
t (< α, X >)θ

′

(a)da < ∞

Thus, L0
t (< α, X >) = 0 since the function a 7→ θ

′

(a) is not integrable at 0. The
next step consists in using Tanaka formula to compute dZt :=< α, Xt > −(<
α, Xt >)+ for α ∈ ∆ :

dZt = 1{<α,Xt>=0} < α, dBt > −1{<α,Xt>=0} < α,∇Φ(Xt) > dt+1{<α,Xt>=0} < α, dGt >

It is obvious that the second term vanishes. The first vanishes too since it is a
continuous local martingale with null bracket (occupation density formula). As
Xt ∈ C, then dZt = 0 a.s. which gives the result. �

Lemma 2. Let x ∈ ∂C. Then < n(x), α > 6= 0 for some α ∈ ∆ such that
< x, α >= 0.

Proof : Let us assume that < n(x), α >= 0 for all α ∈ ∆ such that < x, α >=
0. Then, our assumption implies that < x, α >> 0 for all α ∈ ∆ such that
< n(x), α > 6= 0. If < n(x), α >< 0 for these simple roots, then x − n(x) ∈ C. By
the virtue of the definition of the inward normal n(x) to C at x, i. e,

(7) < x − a, n(x) >≤ 0, ∀a ∈ C,
6



it follows that n(x) is the null vector which is not possible. Otherwise, choosing :

0 < ǫ < min
α/<n(x),α>>0

< x, α >

< n(x), α >

we claim that a := x − ǫn(x) ∈ ∂C. Arguing as before, we are done. �

Now we proceed to end the proof of the Theorem. Note first that ∂C = ∪α∈∆Hα

so that :

1{Xt∈∂C}dLt ≤
∑

α∈∆

1{<Xt,α>=0}dLt.

If Xt ∈ Hα for one and only one α ∈ ∆. Then, n(Xt) = α/||α|| and Lemma 1
gives

1{<Xt,α>=0} < dGt, α >= 1{<Xt,α>=0}||α||dLt = 0

Hence, the boundary process vanishes. More generally, we can use the inequality
above and write

0 ≤ Lt ≤
∑

α∈∆

∫ t

0

1{<Xs,α>=0}1{<n(Xs),α> 6=0}dLs

=
∑

α∈∆

∫ t

0

1{<n(Xs),α> 6=0}
1

< n(Xs), α >
1{<Xs,α>=0} < dGs, α >= 0

by Lemma 1. �

Remark. When m = 1, (Xt)t≥0 is a Bessel process of dimension δ = 2k0 + 1 and
k0 > 0 ⇔ δ > 1. It is well known that the local time vanishes (see Ch. XI in [37])
which fits our result.

3. Finiteness of the first hitting time of the Weyl chamber

Let T0 := inf{t > 0, Xt ∈ ∂C} be the first hitting time of the Weyl chamber.
It was shown in [11] (see p. 30) that T0 = ∞ almost surely if k(α) ≥ 1/2 for all
α ∈ R+. In [9], where R = Am−1 and T0 = inf{t > 0, X i

t = Xj
t for some (i, j)},

authors showed that T0 < ∞ a.s. if and only if 0 < k1 < 1/2. More generally, the
following holds (see [11] p. 75 for the original proof) :

Proposition 1. Let α0 ∈ ∆ and Tα0 := inf{t > 0, < α0, Xt >= 0} such that
T0 = infα0∈∆ Tα0. If 0 < k(α0) < 1/2, then (< α0, Xt >)t≥0 hits almost surely 0.
In particular, T0 < Tα0 < ∞ a. s.

Proof : assume k(α) > 0 for all α ∈ R and let α0 ∈ ∆. Our scheme is roughly
the same as that used in [9], thus we shall show that the process < α0, X > is
almost surely less than or equal to a Bessel process with dimension 2k(α0) + 1.
The result follows from the fact that 2k(α0) + 1 < 2 when k(α) < 1/2. For this,
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we use the SDE (3). For all t ≥ 0,

d < α0, Xt > = ||α0||dγt +
∑

α∈R+

k(α)
< α, α0 >

< α, Xt >
dt

= ||α0||dγt + k0
||α0||2

< α0, Xt >
dt +

∑

α∈R+\α0

k(α)
< α, α0 >

< α, Xt >
dt

where k0 is the value of k(α0) corresponding to the conjugacy class of α0. Set

R = ∪p
j=1R

j

where Rj, 1 ≤ j ≤ p denote the conjugacy classes of R under the W -action, then

R+ = ∪p
i=1R

j
+

so that:

d < α0, Xt >= ||α0||dγt + k0
||α0||2

< α0, Xt >
dt +

p
∑

j=1

kj

∑

α∈Rj
+\α0

< α, α0 >

< α, Xt >
dt

For a conjugacy class Rj and α ∈ Rj , if < α, α0 >= a(α) > 0 then, it is easy to
check that < σ0(α), α0 >= −a(α) where σ0 is the reflection with respect to the
orthogonal hyperplane Hα0 defined by :

σ0(x) = x − 2
< x, α0 >

< α0, α0 >
α0

Note that σ0(α) belongs to the same conjugacy class of α and that σ0(α) ∈ R+ for
α ∈ R+ \ α0. Indeed, σ0(R+ \ α0) = R+ \ α0 for all α0 ∈ ∆ (see Proposition 1. 4
in [27]). Hence,

d < α0, Xt >= ||α0||dγt+k0
||α0||2

< α0, Xt >
dt−

p
∑

j=1

kj

∑

α∈Rj
+\α0

a(α)>0

a(α) < α − σ0(α), Xt >

< α, Xt > < σ0(α), Xt >
dt

Furthermore,

α − σ0(α) = 2
< α, α0 >

< α0, α0 >
α0 ⇒ < α − σ0(α), Xt >= 2a(α)

< α0, Xt >

||α0||2
Consequently, one gets :

d < α0, Xt >= ||α0||dγt + k0
||α0||2

< α0, Xt >
dt + Ft dt

where Ft < 0 on {Tα0 = ∞}. Using the comparison Theorem in [29] (Proposition
2. 18. p. 293 and Exercice 2. 19. p. 294), one claims that < α0, Xt >≤ Y x

||α0||2t

for all t ≥ 0 on {Tα0 = ∞}, where Y x is a Bessel process defined on the same
probability space with respect to the same Brownian motion, of dimension 2k0 +1

8



and starting at Y0 = x ≥< α0, X0 >> 0. This is not possible since a Bessel
process of dimension < 2 hits 0 a. s. ([37] Chap. XI) �

Remark. If we remove the assumption k(α) > 0 for all α ∈ R, then the SDE (3)
can be solved up to time T0 when starting from x ∈ C (see [11]).

4. The law of T0

Here, we focus on the tail distribution of T0 deduced from absolute continuity
relations derived in ([11]). Recall that (see [11]) the index of X is defined by
l(α) := k(α) − 1/2. The last result asserts that if −1/2 < l(α) < 0 for some
α ∈ ∆, then T0 < ∞ almost surely. Besides, if l(α) ≥ 0 for all α ∈ ∆ then
T0 = ∞ almost surely. Taking into account these statements, two major parts
are considered: l(α) ≥ 0 for all α ∈ R so that the process with index −l hits 0
almost surely, and l(α) < 0 for at least one α. The tail distribution involves a
W -invariant x-dependent integral. Our line of thinking relies on showing that it is
an eigenfunction of an appropriate differential operator. Then, using uniqueness
results for some differential equations, the tail distribution is written in Am−1 and
Bm cases by means of multivariate hypergeometric functions. In the last case,
we recover known results from matrix theory for Wishart and Laguerre processes.
However, we find it better to postpone this in the next section where links with
eigenvalues of matrix-valued processes are detailed.

4.1. A first formula. Let us denote by P l
x the law of (Xt)t≥0 starting from x ∈ C.

Let El
x be the corresponding expectation. Recall that ([11], Proposition 2.15.c), if

l(α) ≥ 0 ∀α ∈ R+, then:

P−l
x (T0 > t) = El

x











∏

α∈R+

< α, Xt >

< α, x >





−2l(α)






=
∏

α∈R+

< α, x >2l(α) e−|x|2/2t

cktγ+m/2

∫

C

e−|y|2/2tDW
k (

x√
t
,

y√
t
)
∏

α∈R+

< α, y > dy

=
∏

α∈R+

< α, x >2l(α) e−|x|2/2t

cktγ
′

∫

C

e−|y|2/2DW
k (

x√
t
, y)

∏

α∈R+

< α, y > dy

:=
∏

α∈R+

< α, x >2l(α) e−|x|2/2t

cktγ
′

g

(

x√
t

)

where γ =
∑

α∈R+
k(α) and γ′ = γ − |R+|/2.

Though DW
k is given by hypergeometric functions in the special cases Am−1 and

Bm (see the end of [2]), the Jack polynomials defining them prevent us from making
computations. However, this may be possible when these polynomials fit, for some
values of k, Zonal polynomials and Schur functions (see [34] for definitions). Our
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main result does not make these restrictions and uses some properties of the Dunkl
kernel Dk:

Theorem 2. Let Ti be the i-th difference Dunkl operator and ∆k =
∑m

i=1 T 2
i the

Dunkl Laplacian ([38]). Define :

J x
k := −∆x

k +
m
∑

i=1

xi∂
x
i := −∆x

k + Ex
1

where Ex
1 :=

∑m
i=1 xi∂

x
i is the Euler operator and the superscript indicates the

derivative action. Then

J x
k

[

e−|y|2/2DW
k (x, y)

]

= Ey
1

[

e−|y|2/2DW
k (x, y)

]

Proof : Recall that if f is W -invariant then T x
i f = ∂x

i f and that T x
i Dk(x, y) =

yiDk(x, y) (see [38]). Then, on one hand :

∆x
kD

W
k (x, y) =

∑

w∈W

m
∑

i=1

(wy)iT
x
i Dk(x, wy) =

∑

w∈W

m
∑

i=1

(wy)2
i Dk(x, wy)

=
m
∑

i=1

y2
i

∑

w∈W

Dk(x, wy) := p2(y)DW
k (x, y)

On the other hand :

Ex
1 DW

k (x, y) =
∑

w∈W

m
∑

i=1

xiT
x
i Dk(x, wy) =

∑

w∈W

m
∑

i=1

(xi)(wy)iDk(x, wy)

=
∑

w∈W

< x, wy > Dk(x, wy) =
∑

w∈W

< w−1x, y > Dk(x, wy)

= Ey
1D

W
k (x, y)

where the last equality follows from Dk(x, wy) = Dk(w
−1x, y) since Dk(wx, wy) =

Dk(x, y) for all w ∈ W . The result follows from an easy computation.

Corollary 1. g is an eigenfunction of −Jk corresponding to the eigenvalue m +
|R+|.

10



Proof : Theorem 1 and an integration by parts give :

−J x
k g(x) = −

∫

C

Ey
1

[

e−|y|2/2DW
k (x, y)

]

∏

α∈R+

< α, y > dy

= −
m
∑

i=1

∫

C

yi

∏

α∈R+

< α, y > ∂y
i

[

e−|y|2/2DW
k (x, y)

]

dy

=
m
∑

i=1

∫

C

e−|y|2/2DW
k (x, y)∂i



yi

∏

α∈R+

< α, y >



 dy

=

∫

C

e−|y|2/2DW
k (x, y)

∏

α∈R+

< α, y >
m
∑

i=1



1 +
∑

α∈R+

αiyi

< α, y >



 dy

and the proof ends by summing over i. �

• The Am−1 case : as mentioned in the introduction, the Am−1-type root
system is characterized by :

R = {±(ei − ej), 1 ≤ i < j ≤ m} R+ = {ei − ej, 1 ≤ i < j ≤ m}
∆ = {ei − ei+1, 1 ≤ i ≤ m} C = {y ∈ R

m, y1 > y2 > · · · > ym}
W = Sm is the permutations group and there is one conjugacy class so
that k = k1 > 0 ⇒ γ = k1m(m − 1)/2. Moreover, the generalized Bessel
function 2 is given by ([2] p. 212-214, [12]):

1

|W |D
W
k (x, y) = 0F

(1/k1)
0 (x, y) :=

∞
∑

p=0

∑

τ

J
(1/k1)
τ (x)J

(1/k1)
τ (y)

J
(1/k1)
τ (1)p!

where τ = (τ1, . . . , τm) is a partition of weight |τ | = p and length m, J
(1/k1)
τ

is the Jack polynomial of Jack parameter 1/k1
3, (see [2], [34]). Hence,

letting V to be the Vandermonde function :

P−l
x (T0 > t) = V (x)2k0−1 |W |e−|x|2/2t

cktk0m(m−1)/2

∫

C

e−|y|2/2
0F

(1/k0)
0 (

x√
t
, y)V (y)dy

Besides, Jk writes on W -invariant functions

−J x
k = Dx

0 − Ex
1 :=

m
∑

i=1

∂2,x
i + 2k1

∑

i6=j

1

xi − xj

∂i −
m
∑

i=1

xi∂
x
i

2Authors use the change of variable x 7→
√

2x, y 7→
√

2y to fit the hypergeometric function
obtained when deriving the generating function for Hermite polynomials. This in turn will modify
the eigenoperator by a multiplying constant (see p. 183).

3With the same notations in [2], k1 = 2/α. This can be seen either from the eigenoperator
below or from the orthogonality weight function involved in the semi group density.
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Finally, since g is W -invariant, then

(Dx
0 − Ex

1 ) g(x) = m
m + 1

2
g(x),

g(0) =

∫

C

e−|y|2/2V (y)dy =
1

m!

∫

Rm

e−|y|2/2|V (y)|dy

Let us recall that the Gauss hypergeometric function

2F
(1/k1)
1 (e, b, c, z) =

∞
∑

p=0

∑

τ

(e)τ (b)τ

(c)τ

J
(1/k1)
τ (z)

p!

is the unique symmetric eigenfunction that equals to 1 at 0 of (see [3] p.
585)

(8)
m
∑

i=1

zi(1−zi)∂
2,z
i +2k1

∑

i6=j

zi(1 − zi)

zi − zj

∂z
i +

m
∑

i=1

[c − k1(m − 1) − (e + b + 1 − k1(m − 1)) zi] ∂
z
i

associated to the eigenvalue meb. Letting z = (1/2)(1 − x/
√

b), e = (m +
1)/2 and

c = k1(m − 1) +
1

2
[e + b + 1 − k1(m − 1)] =

b

2
+

k1

2
(m − 1) +

m + 3

4

the resulting function is an eigenfunction of

m
∑

i=1

(1 − x2
i

b
)∂2,x

i + 2k1

∑

i6=j

(1 − x2
i /b)

xi − xj
∂x

i −
m
∑

i=1

(b +
m + 3

2
− k1(m − 1))

xi

b
∂x

i

and Dx
0 − Ex

1 is the limiting operator as b tends to infinity. Hence,

Proposition 2. For k1 ≥ 1/2,

g(x) = g(0)C(m, k1) lim
b→∞

2F
(1/k1)
1

[

m + 1, b,
b

2
+

k1

2
(m − 1) +

m + 3

2
,
1

2

(

1 − x√
b

)]

where

C(m, k1)
−1 = lim

b→∞
2F

(1/k1)
1

(

m + 1, b,
b

2
+

k1

2
(m − 1) +

m + 3

2
,
1

2

)

• The Bm case : This root system is defined by

R = {±ei,±ei ± ej , 1 ≤ i < j ≤ m} R+ = {ei, 1 ≤ i ≤ m, ei ± ej , 1 ≤ i < j ≤ m}
∆ = {ei − ei+1, 1 ≤ i ≤ m, em} C = {y ∈ R

m, y1 > y2 > · · · > ym > 0}
The Weyl group is generated by transpositions and ” change sign” reflec-
tions (xi 7→ −xi) and there are two conjugacy classes so that k = (k0, k1) ⇒

12



γ = mk0 + m(m − 1)k1. The generalized Bessel function4 is given by ([2]
p. 214) :

1

|W |D
W
k (x, y) = 0F

(1/k1)
1 (k0 + (m − 1)k1 +

1

2
,
x2

2t
,
y2

2t
)

where

0F
(1/k1)
1 (c, x, y) =

∞
∑

p=0

∑

τ

(c)τ
J

(k1)
τ (x)J

(1/k1)
τ (y)

J
(1/k1)
τ (1)p!

and (c)τ :=
∏m

i=1(c−k1(i−1))τi
is the generalized Pochammer symbol (see

[2]). Then, one has :

g(x) = |W |
∫

C

e−|y|2/2
0F

(1/k1)
1 (k0 + (m − 1)k1 +

1

2
,
x2

2
,
y2

2
)

m
∏

i=1

(yi)V (y2)dy

The eigenoperator writes on W -invariant functions:

−J x
k =

m
∑

i=1

∂2,x
i + 2k0

m
∑

i=1

1

xi
∂x

i + 2k1

∑

i6=j

[

1

xi − xj
+

1

xi + xj

]

∂x
i − Ex

1

−J x
k g(x) = m(m + 1)g(x), g(0) =

1

2mm!

∫

Rm

e−|y|2
m
∏

i=1

|yi||V (y2)|dy.

A change of variable xi =
√

2yi shows that u(y) := g(
√

2y) satisfies

−J̃ y
k u(y) = m

(m + 1)

2
u(y), g(0) = u(0)

−J̃ y
k =

m
∑

i=1

yi∂
2,y
i + 2k1

∑

i6=j

yi

yi − yj

∂y
i +

(

k0 +
1

2

) m
∑

i=1

∂y
i − Ey

1 .

which implies that :

u(y) = u(0)1F
(1/k1)
1 (

m + 1

2
, k0 + (m − 1)k1 +

1

2
, y)

where

1F
(1/k1)
1 (b, c, z) =

∞
∑

p=0

∑

τ

(b)τ

(c)τ

J
(1/k1)
τ (z)

p!

This can be seen from the differential equation (8) and using ([2]):

lim
e→∞

2F
(1/k1)
1 (e, b, c,

z

e
) = 1F

(1/k1)
1 (b, c, z)

4there is an erroneous sign in one of the arguments in [2]. Moreover, to recover this expression
in the Bm case from that given in [2], one should make substitutions a = k0−1/2, k1 = 1/α, q =
1 + (m − 1)k1. We point to the reader that this is different from the one used in [12] p. 121.
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Finally

g

(

x√
t

)

= g(0)1F
(1/k1)
1 (

m + 1

2
, k0 + (m − 1)k1 +

1

2
,
x2

2t
)

Hence, the tail distribution is given by :

Proposition 3. For k0, k1 ≥ 1/2,

P−l
x (T0 > t) = Ck

m
∏

i=1

(

x2
i

2t

)k0−1/2(

V

(

x2

2t

))2k1−1

e−|x|2/2t
1F

(1/k1)
1 (

m + 1

2
, k0+(m−1)k1+

1

2
,
x2

2t
)

Remark. 1/Adopting the notations used in [2], one has :

−J̃ y
k = Dy

1 + (a + 1)Ey
0 − Ey

1 (R = Bm, y = x2),

Besides, Theorem 2 was derived there differently for both Am−1 and Bm

cases when proving a generating function Theorem for generalized Hermite
and Laguerre polynomials (page 183 and 192, see also [12]).

4.2. A second formula. In [11] (see Proposition 2.15.b), the author derived an-
other absolute-continuity relation from which we deduce that if l(α) < 0 for at
least one α ∈ R+, then

P l
x(T0 > t) = E0

x





∏

α∈R+

(

< α, Xt >

< α, x >

)l(α)

exp



−1

2

∑

α,γ∈R+

∫ t

0

< α, γ > l(α)l(γ)

< α, Xs >< γ, Xs >
ds









= Er
x





∏

α∈R+

(

< α, Xt >

< α, x >

)l(α)−r(α)

exp



−1

2

∑

α,γ∈R+

∫ t

0

< α, γ > l(α, γ)

< α, Xs >< γ, Xs >
ds









where the last equality follows from part (c) of the same Proposition, l(α, γ) =
l(α)l(γ) − r(α)r(γ) and

r(α) =

{

l(α) if l(α) ≥ 0
−l(α) if l(α) < 0

Then l(α, γ) = 0 if l(α)l(γ) ≥ 0 and l(α, γ) = −2r(α)r(γ) else. As a result,

P l
x(T0 > t) = Er

x









∏

α∈R+

l(α)<0

(

< α, x >

< α, Xt >

)2r(α)

exp









∑

α,γ∈R+

l(α)l(γ)<0

∫ t

0

< α, γ > r(α)r(γ)

< α, Xs >< γ, Xs >
ds

















Next, note that the exponential functional equals 1 for both root systems Am−1

and Bm. For the first, it is obvious since R consists of one orbit so that {α, γ ∈
R+, l(α)l(γ) < 0} is empty. This gives the same expression already considered in
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the previous subsection. For the second, writing R+ = {ei, 1 ≤ i ≤ m} ∪ {ej ±
ek, 1 ≤ j < k ≤ m} so that < ei, ej ± ek >= δij ± δik gives

S =

m
∑

i=1

∑

i<k

1

X i
t

[

1

X i
t − Xk

t

+
1

X i
t + Xk

t

]

+

m
∑

i=1

∑

k<i

1

X i
t

[ −1

Xk
t − X i

t

+
1

Xk
t + X i

t

]

=

m
∑

i=1

∑

i<k

2

(X i
t)

2 − (Xk
t )2

−
m
∑

i=1

∑

k<i

2

(Xk
t )2 − (X i

t)
2

= 0

where S stands for the sum between brackets. The reader can also check that
this holds for Cm and Dm root systems (see the end of the paper for definitions).
However, we restrict ourselves to the Bm -case since, for particular values of the
multiplicity function, we will recover a known result from matrix theory (see next
section). Let us investigate the case k0 < 1/2, k1 ≥ 1/2 for which l0 < 0, l1 ≥ 0.
One writes :

g(x) =

∫

C

e−|y|2/2DW
k (x, y)

m
∏

i=1

(yi)V
2k1(y2)dy

The machinery used before still applies and gives :

−Jkg = 2m[1 + k1(m − 1)]g

Thus

Proposition 4. In the Bm case and for k0 < 1/2, k1 ≥ 1/2, one has:

P l
x(T0 > t) = Ck

m
∏

i=1

(

x2
i

2t

)k0−1/2

e−|x|2/2t
1F

(1/k1)
1 (1+k1(m−1), k0+(m−1)k1+

1

2
,
x2

2t
)

In the remaining case k0 ≥ 1/2, k1 < 1/2, the tail distribution writes :

g(x) =

∫

C

e−|y|2/2DW
k (x, y)

m
∏

i=1

(yi)
2k0V (y2)dy

Thus

−Jkg = m[2k0 + m]g

so that

Proposition 5. For k0 ≥ 1/2, k1 < 1/2,

P l
x(T0 > t) = CkV

(

x2

2t

)2k1−1

e−|x|2/2t
1F

(1/k1)
1 (k0 +

m

2
, k0 + (m − 1)k1 +

1

2
,
x2

2t
)
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5. β-processes and random matrices

In the sequel, we will see how eigenvalues of some classical matrix-valued pro-
cesses and radial Dunkl processes are interelated using SDE. This connection was
already checked by physicists throughout eigenvalues probability densities and
Fokker-Planck equations for parameter-dependent random matrices ([12]). As we
mentioned in the introduction, the Am−1-type is connected to symmetric and Her-
mitian Brownain motions. Set k := β/2, β > 0, then such a process will be called
β-Dyson, referring to the Dyson model when β = 2. This parameter is called the
Dyson index. Henceforth, we will adopt new notation for the eigenvalues process,
we wil write λ instead of X.

5.1. The Bm-type: β-Laguerre processes. The Bm system turns out to be
related to eigenvalues of Wishart and Laguerre processes which satisfy the following
stochastic differential system (see [5],[13]):

dλi(t) = 2
√

λi(t) dνi(t) + β

[

δ +
∑

k 6=i

λi(t) + λk(t)

λi(t) − λk(t)

]

dt 1 ≤ i ≤ m.

for β = 1, 2 and δ ≥ m + 1, m respectively, where (νi)i are independent Brownian
motions and λ1(0) > · · · > λm(0). Recall that the process remains strictly positive
if it is initially strictly positive. This suggests to define the β-Laguerre process as
the solution, when it exists, of :

dλi(t) = 2
√

λi(t) dνi(t)+β

[

δ +
∑

k 6=i

λi(t) + λk(t)

λi(t) − λk(t)

]

dt 1 ≤ i ≤ m, t < τ∧R0,

where R0 = inf{t, λm(t) = 0}, β, δ > 0 and with λ1(0) > · · · > λm(0) > 0. It is
very easy to see that :

dDt := d

(

m
∏

i=1

λi(t)

)

= 2Dt

√

√

√

√

m
∑

i=1

1

λi(t)
dB̃t + β(δ − m + 1)Dt

m
∑

i=1

1

λi(t)
dt

for all t < τ ∧R0 where B̃ is a standard Brownian motion. It follows that ∀ r ∈ R:

d(ln(Dt)) = 2

√

√

√

√

m
∑

i=1

1

λi(t)
dB̃t + [β(δ − m) + β − 2]

m
∑

i=1

1

λi(t)
dt

d(det(Dt)
r) = Mt + r[β(δ − m + 1) + 2r − 2]Dr

t

m
∑

i=1

1

λi(t)
dt

where Mt = 2rDr
t

√
∑m

i=1 1/λi(t)dB̃t. From these two SDE, we can argue as in
the Wishart and Laguerre cases that R0 > τ a.s. when δ ≥ m − 1 + 2/β (choose
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2r = 2 − β(δ − m + 1) < 0 when δ > m− 1 + 2/β then use McKean’s argument).
Set ri :=

√
λi, then, for t < τ ∧ R0:

dri(t) = dνi(t) +
1

2ri(t)

[

βδ − 1 + β
∑

j 6=i

r2
i + r2

j

r2
i − r2

j

]

dt

= dνi(t) +
β(δ − m + 1) − 1

2ri(t)
dt +

β

2

∑

j 6=i

[

1

ri(t) − rj(t)
+

1

ri(t) + rj(t)

]

dt

= dνi(t) +
k0

ri(t)
dt + k1

∑

j 6=i

[

1

ri(t) − rj(t)
+

1

ri(t) + rj(t)

]

dt

with 2k0 = β(δ −m + 1) − 1, 2k1 = β. Consequently, the process r = (r1, . . . , rm)
defined for all t < τ ∧ R0 is a Bm-radial Dunkl process. Using Theorem 1, one
claim that the SDE above has a unique strong solution for all t ≥ 0 and all β, δ
such that k0, k1 > 0. This strengthen results from matrix theory : in the Wishart
setting (β = 1), the strong uniqueness holds for δ > m and in the Laguerre case
(β = 2), it holds for δ > m−1/2. Besides, the generalized Bessel function is given
by ([2])5 :

1

|W |
∑

w∈W

Dk(x, wy) = 0F
(2/β)
1 (

βδ

2
,
x2

2
,
y2

2
) :=

∞
∑

p=0

∑

τ

(

βδ

2

)

τ

J
(2/β)
τ (x2/2)J

(2/β)
τ (y2/2)

J
(2/β)
τ (1m)p!

so that (1) writes

(9) pk0,k1
t (x, y) =

|W |
cktγ+m/2

e−(|x|2+|y|2)/2t
0F

(2/β)
1 (

βδ

2
,
x2

2t
,
y2

2t
)

m
∏

i=1

(yi)
2k0V 2k1(y2)dy

where V stands for the Vandermonde function. Using the variable change y 7→ √
y,

the semi-group density of the β-Laguerre process writes :

qk0,k1
t (x, y) =

Ck0,k1

tγ+2k1+m/2
e−(

∑m
i=1(xi+yi)/2t)

0F
(2/β)
1 (

βδ

2
,

x

2t
,

y

2t
)

m
∏

i=1

(yi)
k0−1/2V 2k1(y)dy

For x = 0 and t = 1, we recover the same p.d.f. given in [17] for β-Laguerre
ensemble.

Remarks. 1/ Recall that for all α ∈ R, we set l(α) = k(α) − 1/2. Hence, in the
Bm-case, l0 = k0−1/2, l1 = k1−1/2. For −l, all corresponding parameters will be
primed. For instance, −l0 = k′

0 − 1/2, −l1 = k′
1 − 1/2. Let us consider a Wishart

process of dimension δ′ such that m − 1 ≤ δ′ < m + 1 ([5]), k′
1 = 1/2 (β ′ = 1) and

k′
0 = (δ′−m)/2 ⇒ −l1 = 0, −l0 = (δ′−m−1)/2 < 0. Set δ′ = m+1−2ν, 0 < ν <

5With the same notations used in [2], one has βa′/2 = k0, a = k0 − 1/2, β = 2/α ⇒ a + q =
βδ/2.
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1/2, then, l1 = 0, l1 = ν ⇒ k1 = 1/2 (β = 1) and k0 = ν + 1/2 (δ = m + 1 + 2ν).
Results of 4.1 writes:

P−l
x (T0 > t) = Ck

m
∏

i=1

(

x2
i

2t

)ν

e−|x|2/2t
1F

(2)
1 (

m + 1

2
,
δ

2
,
x2

2t
)

which fits the expression already derived in [15]. When k′
0 = k′

1 = 0 (−l0 = −l1 =
−1/2), then k0 = k1 = 1(β = 2, δ = m + 1/2) and the Jack polynomials fits the
Schur functions (see [34]). In that case, the following representation holds ([24])

1F
(1)
1 (a, b, z) =

det(zm−j
i 1F1(a − j + 1, b − j + 1, zi)1≤i,j≤m

V (z)

where 1F1 denotes the univariate hypergeometric function. Hence, the tail distri-
bution writes :

P−l
x (T0 > t) = Ck det

[

(

x2
i

2t

)m−j+1/2

e−x2
i /2t

1F1(
m + 1

2
− j + 1, m − j +

3

2
,
x2

i

2t
)

]

1≤i,j,≤m

The corresponding process is the Brownian motion in the Weyl chamber of B-type.
For Laguerre processes ([13]) of dimension δ such that m−1/2 ≤ δ < m, one should
apply results derived in section 4.2. Take k′

1 = 1 (β ′ = 2) and k′
0 = δ′−m+1/2 ⇒

l1 = 1/2, l0 = δ′ − m := −ν with 0 < ν < 1/2. Thus r1 = 1/2, r0 = ν ⇒ k1 =
1 (β = 2) and k0 = ν + 1/2 (δ = m + ν) so that :

P l
x(T0 > t) = Ck

m
∏

i=1

(

x2
i

2t

)ν

e−|x|2/2t
1F

(1)
1 (m, δ,

x2

2t
)

2/Recall that when β = 2, 0F
(1)
1 has a determinantal representation (see [24])

yielding to König and O’Connell result on the V -transform of m-independent
squared Bessel processes (BESQs) constrained never to collide (or stay in the
Am−1-type Weyl chamber, see [31]). Similar results holds for Am−1-type root sys-
tem with Brownian motions instead of BESQs. Nevertheless, when k0 = k1 =
1 (β = 2, δ = m + 1/2), a similar interpretation involving m- independent Brown-
ian motions killed when they reaches 0 holds. However, the Vandermonde function
may be replaced by the product over positive roots. In this case, the eigenvalues
process is known as the BM in the Weyl chamber of type Bm (see [23] for further
details and other root systems). Since γ = m2 and from ([24], [13]) :

rF
(1)
s ((m+ai)1≤i≤r, (m+bj)1≤j≤s, x, y) =

det[rFs((ai + 1)1≤i≤r, (bj + 1)1≤j≤s, xlyf)]l,f
V (x)V (y)
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(9) transforms to :

p1,1
t (x, y) = Cm

h(y)

h(x)

e−(|x|2+|y|2)/2t

tm/2

m
∏

i,j=1

(xiyj

t

)

det

[

0F1

(

1

2
+ 1,

(xiyj)
2

4t2

)]

i,j

= Cm
h(y)

h(x)

e−(|x|2+|y|2)/2t

tm/2
det

[

xiyj

t
0F1

(

3

2
,
(xiyj)

2

4t2

)]

i,j

where h is the product over positive roots. Besides, the following holds (see [6]) :

0F1(
3

2
, z) =

C

2
√

z
sinh(2

√
z).

Thus,

p1,1
t (x, y) = Cm

h(y)

h(x)

1

(2πt)m/2
e−(|x|2+|y|2)/2t det

[

sinh
(xiyj

t

)]

i,j

=
h(y)

h(x)
det [Nt(yj − xi) − Nt(yj + xi)]i,j

where Nt(u) = (1/
√

2πt)e−u2/2t, which fits Grabiner’s result ([23] page 186). This
is in agreement with the generator since ∆h = 0 ([23]) and

L f = ∆f + Γ(log h, f) = ∆f +
m
∑

i=1

∂i(log h)∂if,

where Γ is the so-called ”opérateur du carré du champ” (see [37] Chap. VIII).
Besides, for m = 1, r is a Bessel process of dimension 2δ = 3 and the expression
inside the determinant in the second line is exactly the semi-group of the Brownian
motion killed when it reaches 0 (see [37] p. 87).

5.2. Generalized Bessel function in the Dm case. In the classification of root
systems, the Am−1 and Bm are known to be ”irreducible” and both of them cor-
respond to some matrix processes. Another one, yet with no underlying matrices,
is the Dm root system defined by (see [27] p. 42)

R = {±ei ± ej, 1 ≤ i < j ≤ m}, R+ = {ei ± ej , 1 ≤ i < j ≤ m}
There is one conjugacy class so that k(α) = k1. Grabiner’s result reads for the
Brownian motion in the Weyl chamber of Dm-type (k1 = 1) :

p1
t (x, y) =

V (y2)

V (x2)

det[Nt(yi − xj) − Nt(yi + xj)] + det[Nt(yi − xj) + Nt(yi + xj)]

2

=
Cm

tγ+m/2
e−(|x|2+|y|2)/2t det [sinh(xiyj/t)] + det [cosh(xiyj/t)]

V (x2/4t2)V (y2)
V 2(y2)
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where γ = m(m − 1). The second term in the sum involves the transition density
of a reflected Brownian motion (|B|, see [37] p. 81). A natural way to interpret
the announced formula is that the Weyl chamber is given by :

C = {x ∈ R
m, x1 > · · · > xm−1 > |xm|},

so that C fits the Bm-Weyl chamber when xm > 0, otherwise, it is its con-
juguate with respect to sem

since this simple reflection acts only on xm and retains
the others. With the help of the determinantal formula used before ([24], [13]),

0F1(
3
2
, z) = C sinh(2

√
z)/

√
z and 0F1(1/2, z) = cosh(2

√
z) ([6]), one writes:

p1
t (x, y) =

e−(|x|2+|y|2)/2t

cktγ+m/2

[

m
∏

i=1

(xiyi

2t

)

0F
(1)
1

(

m +
1

2
,
x2

2t
,
y2

2t

)

+ 0F
(1)
1

(

m − 1

2
,
x2

2t
,
y2

2t

)

]

V 2(y2)

With regard to (1) and setting q = 1 + (m − 1)k1, it is natural to prove that :

Proposition 6.

1

|W |
∑

w∈W

Dk(x, wy) =

m
∏

i=1

(xiyi

2

)

0F
(1/k1)
1

(

q +
1

2
,
x2

2
,
y2

2

)

+0F
(1/k1)
1

(

q − 1

2
,
x2

2t
,
y2

2t

)

.

Proof: it relies on the following characterization ([38]): given a reduced root
system R with finite reflection group W , DW

k (x, ·) is the unique W -invariant func-
tion valued 1 at x = 0 satisfying ∆kD

W
k (x, ·) = |x|2DW

k (x, ·). It is easy to see
that the function above is W -invariant since W is the semi-direct product of the
symmetric group Sm and (Z/2Z)m−1 acting by even sign changes. However, it is
not for the finite reflection group associated to the Bm root system due to the term
multiplying the first hypergeometric series. In the Dm case, the Dunkl Laplacian
writes on W -invariant functions :

∆k =
m
∑

i=1

∂2
i + 2k1

∑

i6=j

[

1

yi − yj

+
1

yi + yj

]

∂i

Let :

f(x, y) = 0F
(1/k1)
1

(

q +
1

2
,
x2

2
,
y2

2

)

g(x, y) = 0F
(1/k1)
1

(

q − 1

2
,
x2

2
,
y2

2

)

,

d(x, y) =

m
∏

i=1

(xiyi/2)

considered as functions of the variable y such that the generalized Bessel function
is proportional to df + g and ∆k[df + g] = ∆k(df) + ∆k(g). Recall that:

1

|W |
∑

w∈W

D
(Bm)
k (x, wy) = 0F

(1/k1)
1 (k0 −

1

2
+ q,

x2

2
,
y2

2
)
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Note also that ∆k is a particular case of the Dunkl Laplacian considered for the
Bm root system when k0 = 0. As a result

∆kg(x, y) = ∆
(Bm)
k (k0 = 0)

[

1

|W |
∑

w∈W

D
(Bm)
k (x, wy)

]

=
1

|W | < x, x > g(x, y)

For the remaining term, note that both d and f are W -invariant. Write ∆k =
∑m

i=1 T 2
i , where Ti is the difference Dunkl operator (see [38] p. 5). Then using (see

[38] p. 6), one has the derivation formula Ti(df) = dTi(f) + fTi(d). It gives that

∆k(df) = d∆k(f) + f∆k(d) + 2

m
∑

i=1

(Ti(d))(Ti(f))

Moreover, Ti(d) = ∂i(d) and Ti(f) = ∂i(f) by W -invariance. Next we compute :

∆k(d)(x, y) = 2k1d(x, y)
∑

i6=j

1

yi

[

1

yi − yj
+

1

yi + yj

]

= 4k1d(x, y)
∑

i6=j

1

y2
i − y2

j

= 0

As a result :

∆k(df)(x, y) = [d∆k(f)](x, y) + 2

m
∑

i=1

[(∂i(d))(∂i(f))](x, y)

= [d∆k(f)](x, y) + 2[d

m
∑

i=1

1

yi
(∂i(f))](x, y)

= d(x, y)[∆k + 2
m
∑

i=1

1

yi

∂i]f(x, y) = d(x, y)∆
(Bm)
k (k0 = 1)f(x, y)

When k0 = 1, f fits the generalized Bessel function in the Bm case ⇒ ∆k(df)(x, y) =
(1/|W |) < x, x > df(x, y). Finally :

∆k

[

1

|W |
∑

w∈W

Dk(x, wy)

]

=< x, x >

[

1

|W |
∑

w∈W

Dk(x, wy)

]

�

6. Alcove-valued process

6.1. β-Jacobi processes. Recall that the eigenvalues of the real Jacobi matrix
process of parameters (p, q) (see [16] for facts on this process) satisfy :

dλi(t) = 2
√

(λi(t)(1 − λi(t))dνi(t)+



(p − (p + q)λi(t)) +
∑

j 6=i

λi(t)(1 − λj(t)) + λj(t)(1 − λi(t))

λi(t) − λj(t)



 dt

for 0 < λm(0) < · · · < λ1(0) < 1 and all t < inf{s > 0, λm(s) = 0 orλ1(s) = 1}∧τ .
The β-Jacobi process is defined as a solution, whenever it exists, of the SDE
differring from the one above by a parameter β > 0 in front of the bracket. It
is easy to see that if λ is a β-Jacobi process of parameters (p, q), then 1 − λ is a
β-Jacobi process of parameters (q, p). As mentioned in the introductory part, the
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connection with root systems is not new in its own ([3]) however we prefer giving
some details of this transition. Setting λi = sin2 φi then φi = arcsin

√
λi := s(λi)

and 0 < φm < · · · < φ1 < π/2. The first and second derivatives of s are given by:

s′(λi) =
1

sin 2φi

, s′′(λi) =
2(2 sin2 φi − 1)

sin3 2φi

= −2 cos 2φi

sin3 2φi

Using

sin2 φi − sin2 φj = 2 sin(φi + φj) sin(φi − φj)

sin2 φi cos2 φj + cos2 φi sin
2 φj = sin2(φi + φj) + sin2(φi − φj)

then, Ito’s formula gives:

dφi(t) = dνi(t) + β
(p − (p + q) sin2 φi)

sin 2φi

− cot 2φidt

+
β

2

dt

sin 2φi(t)

∑

j 6=i

sin2(φi(t) + φj(t)) + sin2(φi(t) − φj(t))

sin(φi(t) + φj(t)) sin(φi(t) − φj(t))

Writing sin2 φi = (1 − cos 2φi)/2, then

dφi(t) = dνi(t) + β
(p − q)

2

dt

sin 2φi(t)
+

β(p + q) − 2

2
cot 2φi(t)dt

+
β

2

dt

sin 2φi(t)

∑

j 6=i

sin2(φi(t) + φj(t)) + sin2(φi(t) − φj(t))

sin(φi(t) + φj(t)) sin(φi(t) − φj(t))

where 0 < φm(0) < · · · < φ1(0) < π/2. Moreover,

sin 2φi = [cot(φi + φj) + cot(φi − φj)] sin(φi + φj) sin(φi − φj)

which gives

dφi(t) = dνi(t) + β
(p − q)

2

dt

sin 2φi(t)
+

β(p + q) − 2

2
cot 2φi(t)dt

+
β

2

∑

j 6=i

[1/ sin2(φi(t) + φj(t))] + [1/ sin2(φi(t) − φj(t))]

cot(φi(t) + φj(t)) + cot(φi(t) − φj(t))
dt
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Using 1 + cot2 z = 1/ sin2 z, then

dφi(t) = dνi(t) + β
(p − q)

2

dt

sin 2φi(t)
+

β(p + q) − 2

2
cot 2φi(t)dt

+
β

2

∑

j 6=i

cot2(φi(t) + φj(t)) + cot2(φi(t) + φj(t)) + 2

cot(φi(t) + φj(t)) + cot(φi(t) − φj(t))
dt

= dνi(t) + β
(p − q)

2

dt

sin 2φi(t)
+

β(p + q) − 2

2
cot 2φi(t)dt + β×

∑

i6=j

{

1 − cot(φi(t) + φj(t)) cot(φi(t) − φj(t))

cot(φi(t) + φj(t)) + cot(φi(t) − φj(t))
+

cot(φi(t) + φj(t)) + cot(φi(t) − φj(t))

2

}

dt

Using

− cot(u + v) =
1 − cot(u) cot(v)

cot(u) + cot(v)
.

and
1

sin 2φi
=

2 cos2 φi − cos 2φi

2 sin φi cos φi
= cot φi − cot 2φi

we finally obtain

dφi(t) = dνi(t) +

[

k0 cot φi + k1 cot 2φi(t)dt + k2

∑

i6=j

[cot(φi + φj) + cot(φi − φj)]

]

dt

(10)

where

(11) 2k0 = β(p − q), k1 = β(q − (m − 1)) − 1, 2k2 = β.

Easy computations show that π/2 − φ satisfies (10) with (p, q) intertwined.

6.2. Eigenfunctions and Heckman-Opdam’s functions. Let k2 > 0 and L
be the generator of φ, then the eigenfunctions of L are given by Gauss hyperge-
ometric series: in fact, let A be the generator of (λ1, . . . , λm) (see [16] p. 135 for
β = 1) :

A = 2
m
∑

i=1

λi(1 − λi)∂
2
i + β

m
∑

i=1

[

p − (p + q)λi +
∑

j 6=i

λi(1 − λj) + λj(1 − λi)

λi − λj

]

∂i

= 2
m
∑

i=1

λi(1 − λi)∂
2
i + β

m
∑

i=1

[p − (m − 1) − (p + q − 2(m − 1))λi]∂i + 2β
∑

i6=j

λi(1 − λi)

λi − λj
∂i

From Equation (8) (k2 plays the role of k1), one can see that 2F
(1/k2)
1 (a, b, c; λ) is

the unique symmetric analytic function u such that u(0) = 1 which satisfies

A u(λ) = 2mabu(λ), 2c = βp = 2k0 +k1 +2k2(m−1)+1, 2a+2b+1−2c = k1.
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with ki, 0 ≤ i ≤ 2 cited in (11). Setting sin2 φ := (sin2 φ1, . . . , sin
2 φm), then A

transforms to L . Hence:

L [u(sin2 φ)] = 2mab [u(sin2 φ)]

In the same spirit, one can also interpret L as the “radial part” of the trigonomet-
ric version Dunkl-Cherednik Laplacian (with cot replacing coth, [3],[36]). By radial
part, we mean the restriction on W -invariant functions. Besides, this Laplacian
arises, as for Dunkl and Cherednik-Dunkl ones, from differential-difference first-
order operators. However, this comes beyond the spirit of this work and will not
be done here.

6.3. Existence and uniqueness of a strong solution. The involved root sys-
tem is the non reduced BCm defined by

R = {±ei, ±2ei, 1 ≤ i ≤ m, ±(ei ± ej), 1 ≤ i < j ≤ m}
R+ = {ei, 2ei, 1 ≤ i ≤ m, (ei ± ej), 1 ≤ i < j ≤ m}
∆ = {ei − ei+1, 1 ≤ i ≤ m − 1, em}

When k0 = 0(p = q), it reduces to the reduced Cm system

R = {±ei ± ej , 1 ≤ i < j ≤ m, ±2ei, 1 ≤ i ≤ m}
R+ = {ei ± ej , 1 ≤ i < j ≤ m, 2ei, 1 ≤ i ≤ m}
∆ = {ei − ei+1, 1 ≤ i ≤ m − 1, 2em}

and it is known as the ultraspheric case. The Weyl group action on R
m gives rise

to three orbits so that the multiplicity function is given by k = (k0, k1, k2). Setting

φ̃i := φi/π, then the process is valued in the positive Weyl alcove (see [27]) defined
by :

Ã = {φ̃ ∈ R
m, < α, φ̃ > > 0 ∀α ∈ ∆ < α̃, φ̃ > < 1}

where α̃ = 2e1 is the highest positive root (that is α̃ − α ∈ R+ ∀α ∈ R, see [27]).
The associated affine Weyl group Wa is the semi-direct product of W and the
translation group corresponding to the coroot lattice (Z-span of {2α/||α||2, α ∈
R}). The generator writes in this case:

L g(φ) :=
1

2
∆g(φ)− < ∇g(φ),∇Φ(φ) >, Φ(φ) = −

∑

α∈R+

k(α) log sin(< α, φ >)

Thus, with minor modifications, Theorem 1 states that (10) has a unique strong
solution for all t > 0 subject to k0 > 0, k1 > 0, k2 > 0 ⇔ β > 0, p > q >
(m−1)+1/β. Applying this to π/2−φ, this holds for β > 0, q > p > (m−1)+1/β.
Since the ultraspheric case still involves a root system, then (10) has a unique
strong solution for p∧ q > (m− 1) + 1/β which simplifies to p∧ q > m in the real
case β = 1 and p∧ q > m− 1/2 in the complex one β = 2. Theorem 1 is modified
as follows: ∂Ã = ∪α∈∆Hα ∪ Hα,1 where

Hα,1 = {φ̃, < α̃, φ̃ >= 1} = {φ, π− < α̃, φ >= 0}
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Compared with (4), the convex function x 7→ − ln(< α, x >) should be substituted
by φ 7→ − ln(sin(< α, φ >)) and one has to deal with an additional term in the
expression of the boundary process (Lt)t≥0 : 1{π−<α̃,φ>=0}. Then the occupation
density formula writes:

∫ π/2

0

La
t (π− < α̃, φ >)|θ′

(a)|da =< α̃, α̃ >

∫ t

0

|θ′

(π− < α̃, Xs >)|ds

=< α̃, α̃ >

∫ t

0

|θ′

(< α̃, Xs >)|ds

since cot(π − z) = − cot(z). Hence, the same proof applies and Lemma 1 remains
valid for α̃ ∈ R+. Besides, either it will exist α ∈ ∆ such that < α, x >= 0 and
Lemma 2 applies, or we will need to prove that < n(x), α̃ > 6= 0 if x belongs only
to Hα̃,1. Let us first recall that the highest root is the unique positive root such
that α̃ − α ∈ R+ for all α ∈ R+. Thus it may be written as α̃ =

∑

α∈∆ aαα where
aα ≥ 1. Else, if there exists α0 ∈ ∆ such that aα0 < 1 and since α̃ must be greater
than all simple roots (in particular greater than α0) then

α̃ − α0 = (aα0 − 1)α0 +
∑

α0 6=α∈∆

aαα = cα0α0 +
∑

α0 6=α∈∆

cαα

for some cα ≥ 0. Our claim follows from the fact that ∆ is a basis. Next, it is not
difficult to see from the definition of n(x) and the fact that < α, x >> 0 for all
α ∈ ∆ that n(x) is colinear to −

∑

α∈∆ α. It follows that

< n(x), α̃ >= −c
∑

α∈∆

< α, α̃ >= −c
∑

α∈∆

∑

θ∈∆

aα < α, θ >

If < n(x), α̃ >= 0, then

||
∑

α∈∆

α||2 =
∑

α∈∆

∑

θ∈∆

< α, θ >≤
∑

α∈∆

∑

θ∈∆

aα < α, θ >= 0

which implies that n(x) = 0. �

6.4. Brownian motion in Weyl alcoves. Let

h1(φ) :=
∏

α∈R+

sin(< α, φ >)

Then, h1 is strictly positive on Ã and vanishes for φ ∈ ∂A. One can also show
that (1/2)∆h1 = ch for some strictly negative constant c. Let P h1

t denote the semi
group given by :

P h1
t f(φ) := e−ctPt(h1f)(φ)

h1(φ)
,
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where Pt denotes the semi group of the process consisting of m-independent BMs
in A killed when it first reaches ∂A. The corresponding generator writes :

L h1(f) =
1

h1

[

1

2
∆ − c

]

(h1f) =
1

2
∆ +

m
∑

i=1

(∂i log h1)∂if

which fits our generator for k2 = 1 (β = 2), k1 = 2 (q = m + 1/2), k0 = 1(p =
q + 1 = m + 3/2). In the ultraspheric case, this becomes β = 2, p = q = m + 1/2.
In both cases, these parameters correspond to the process consisting of m BMs
constrained to stay in the BCm and Cm- Weyl alcoves respectively. Note that
p, q are not integers which means that these processes BM can not be realized as
eigenvalues processes of complex matrix Jacobi processes which is also the case for
the BM in the Bm-Weyl chamber since δ = m + 1/2.

6.5. The first hitting time T̃0. We define similarly the first hitting time of
alcove’s walls by T̃0 = inf{t > 0, (φ(t)/π) ∈ ∂Ã} = T̃α̃ ∧ inf{T̃α, α ∈ ∆}, where

T̃α := inf{t > 0, < α, φ(t) >= 0},
T̃α̃ := inf{t > 0, < α̃, φ(t) >= 2φ1 = π},

and φ is the unique strong solution for all t ≥ 0 of 6:

dφ(t) = dν(t) +
∑

α∈R+

k(α) cot(< α, φ(t) >)α dt,
φ(0)

π
∈ Ã,

for the non reduced root system R = BCm with k(α) > 0 for all α and p ∧ q >
(m − 1) + 1/β. Let us focus on T̃α0 for some α0 ∈ ∆. We shall distinguish two
cases :

6.5.1. α0 = ei − ei+1, 1 ≤ i ≤ m − 1. The same scheme described in the proof
of Proposition 1 applies here since the main ingredients used there are the SDE
and the fact that σ0(α) ∈ R+ if α 6= α0. The second assertion follows from
σ0(2ej) = 2σ0(ej) = 2(δijei+1 + δ(i+1)jei + 1{j 6=i,j 6=i+1}ej) ∈ R+. As a result, one
writes for all t ≥ 0:

d < α0, φ(t) >= ||α0||dγt + k2||α0||2 cot < α0, φ(t) > dt +
∑

α∈R+
α6=α0

k(α)a(α) cot < α, φ(t) > dt

where a(α) =< α0, α >.

d < α0, φ(t) >= ||α0||dγt + k2||α0||2 cot(< α0, φ(t) >)dt + Ft

where

Ft =
∑

α∈R+\α0

a(α)>0

k(α)a(α)[cot(< α, φ(t) >) − cot(< σ0(α), φ(t) >)],

6k(2ei) = k1/2 for all 1 ≤ i ≤ m.
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where σ0 = σα0 . This drift is strictly negative on {T̃α0 = ∞} since φ 7→ cot φ is a
decreasing function, < α0, φ(t) >> 0 and since :

< α − σ0(α), φ(t) >= 2
a(α)

||α||2 < α0, φ(t) >> 0.

This implies that Px(∀t ≥ 0, < α0, φ(t) >≤ Zt) = 1 where φ(0) = x and :

dZt = ||α0||dγt + ||α0||2k2 cot(Zt)dt, Z0 =< α0, φ(0) >= x

on the same probability space. Using (10) with β = 1, m = 1, one can easily see

that (Zt)t≥0 = (arcsin
√

J ||α0||2t)t≥0 where J is a one dimensional Jacobi process of
parameters d = 2k2 + 1, d′ = 1 (see [43]) : that is :

dJt = 2
√

Jt(1 − Jt)dγt + (d − (d + 1)Jt)dt, 0 < k2 < 1/2 ⇔ 0 < d < 2.

As J hits 0 almost surely when 0 < d < 2 (use the skew product in [43] and
properties of squared Bessel processes), then so does Z and by the way < α0, φ >
for k2 < 1/2 ⇒ T̃α0 < ∞ a. s.

6.5.2. α0 = em. Compared with the previous case, the difference arises from the
fact that σ0(α) ∈ R+ if α ∈ R+\{em, 2em} and the latter is easily checked since for
α = ei ± ej this amounts to consider the reduced root system Bm, else for α = ei

with i 6= m, σ0(ei) = ei. According to this, one gets :

d < α0, φ(t) >= dφm(t) = dγt + k0 cot(φm(t))dt + k1 cot(2φm) + Ft

where

Ft =
∑

α∈R+\{em,2em}
a(α)>0

k(α)a(α)[cot(< α, φ(t) >) − cot(< σ0(α), φ(t) >)]

where R1
+ = {ei − ej , 1 ≤ i < j ≤ m}. Using once again (10), we shall compare

this process with (arcsin
√

Jt)t≥0 where

dJt = 2
√

Jt(1 − Jt)dγt + (d − (d + d′)Jt)dt, d′ = k1 + 1, d = 2k0 + k1 + 1.

Hence, T̃em
< ∞ a.s. if 0 < 2k0 + k1 < 1/2 ⇔ βp − (β(m − 1) < 2. This agrees

with the case m = 1 for which p < 2 (use the skew product in [43]). Finally, note
that since a(α) = 0 for α ∈ {ei, 2ei, 1 ≤ i ≤ m− 1}, F only involves k2 = β which
is independent from p, q. Keeping in mind that π/2− φ is still a β-Jacobi process
with (p, q) intertwined which has no effect on the strict negativity of F by the

above remark, we conclude that T̃α̃ < ∞ for 0 < βq − β(m − 1) < 2. �
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6.6. Semi-group density. We end this paper by giving the semi group density
of the β-Jacobi process. Before proceeding, we briefly consider two cases for which
we can write down the semi-group density: the univariate case and the complex
Hermitian one (β = 2). Let P r,s

n denote the Jacobi polynomial of degree n defined
by ([1]):

P r,s
n (λ) :=

(r + 1)n

n!
2F1

(

−n, n + r + s + 1, r + 1;
1 − λ

2

)

,

for λ ∈ [−1, 1], r, s > −1, where 2F1 is the univariate Gauss hypergeometric func-
tion. These polynomials are orthogonal with respect to the measure Zr,s(λ)dλ :=
(1 − λ)r(1 + λ)sdλ and the associated inner product in L2([−1, 1]) given by

< f, g >L2([−1,1]):=

∫

[−1,1]

f(λ)g(λ)Zr,s(λ)dλ

Moreover, (P r,s
n )n≥0 form a complete set of this Hilbert space and satisfy

{√
1 − λ2∂2

λ + [(s − r) − (s + r + 2)λ]∂λ

}

P r,s
n (λ) = −n(n + r + s + 1)P r,s

n (λ)

The above eigenoperator defines a diffusion which is related to the one we con-
sidered with m = 1 via the map λ 7→ (1 − λ)/2 and a deterministic time change
(t 7→ t/2). The semi group density w.r.t Lebesgue measure is written (see [44],[14])

pr,s
t (θ, λ) =

∞
∑

n=0

e−2rntP r,s
n (θ)P r,s

n (λ)W r,s(λ)

where rn denotes the eigenvalues above, (P r,s
n )n are orthonormal polynomials, p =

2(r + 1), q = 2(s + 1) and W r,s(λ)dλ is the probability measure corresponding
to the measure Zr,s(λ)dλ. No closed forms seems to be known for this density,
nonetheless an attempt to get a handier expression was tried in [14]. Multivariate
analogs appeared in literature ([3], [28], [32] for instance) and are obtained by
applying the Gram-Schmidt orthogonalization to the symmetric Jack polynomials
w.r.t. measure

Zr,s,β
m (λ)dλ :=

m
∏

i=1

λr
i (1 − λi)

s
∏

1≤i<j≤m

|λi − λj|βdλ1 . . . dλm

We shall denote them7 by P r,s,β
τ for a given partition τ (instead of Gα,β

τ used in
literature) and stress that some of the properties cited above extend to the higher

dimensional case ([32]): an expansion in terms of 2F
(2/β)
1 (−l, b, c, λ) exists for τ =

(lm) with m components all equal to l; (P r,s,β
τ ), where τ is a partition of length

≤ m, form a basis of the Hilbert space L2([0, 1]m, W r,s,β
m (λ)dλ) where W r,s,β

m (λ)dλ
is the normalization Zr,s,β

m (λ)dλ in order to be a probability measure ([32]). The
normalizing constant is given by a McDonald-Selberg integral computed in [28].

7The normalization is different from the one used in both [3] and [32].
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Moreover, (P r,s,β
τ )τ are the unique symmetric polynomial eigenfunctions of the

Laplace Beltrami operator −L (thus defined on [0, 1]m) with β(p − (m − 1)) =
2(r + 1), β(q − (m − 1)) = 2(s + 1), associated with the eigenvalues

(12) 2rβ
n,τ := 2

[

m
∑

i=1

τi(τi − 1 − β(i − 1)) + |τ |(r + s + β(m − 1) + 2)

]

, |τ | = n.

However, with regard to the strong uniqueness for all t ≥ 0 previously derived, we
shall restrict ourselves to p ∧ q > (m− 1) + 1/β. β(q − (m− 1)) > 1 is equivalent
to s > −1/2 and β(p − (m − 1)) > 1 is equivalent to r > −1/2. As a result,
r, s > −1/2.
It is known that the eigenvalues process of the complex Hermitian Jacobi process
(or 2-Jacobi process) is the h-transform (in the Doob sense) for h = V of a process
whose components are real Jacobi processes of parameters 2(p− (m− 1)) = 2(r +
1), 2(q − (m− 1)) = 2(s + 1) constrained to never collide (or to stay in the Am−1-
type Weyl chamber). Here, V denotes as usual the Vandermonde function. More
precisely, V is an eigenfunction of the generator of the one dimensional Jacobi
process of parameters (p, q) (see appendix in [16]), say L, that is

LV = cV = −m(m − 1)

(

2(m − 2)

3
+

p + q

2

)

V

Noting that the parameters r, s are the same both in the univariate and in the
multivariate cases, it follows by Karlin-McGregor formula ([29]) that the semi
group density writes on {0 < λm < · · · < λ1 < 1}

Kr,s,2
t (θ, λ) := e−ctV (λ)

V (θ)
det

(

∞
∑

n=0

e−2n(n+r+s+1)tP r,s
n (θi)P

r,s
n (λj)W

r,s(λj)

)

i,j

= e−ct det

(

∞
∑

n=0

e−2n(n+r+s+1)tP r,s
n (θi)P

r,s
n (λj)

)

i,j

W r,s,2
m (λ)

V (θ)V (λ)

= e−ct

[

∑

σ1∈Sm

ǫ(σ1)
∑

n1,...,nm≥0

e−2
∑m

i=1 ni(ni+r+s+1)t
m
∏

i=1

P r,s
ni

(θi)P
r,s
ni

(λσ1(i))

]

W r,s,2
m (λ)

V (θ)V (λ)

= e−ct

[

∑

σ1,σ2∈Sm

ǫ(σ1)
∑

n1≥···≥nm≥0

e−2
∑m

i=1 nσ2(i)(nσ2(i)+r+s+1)t

m
∏

i=1

P r,s
nσ2(i)

(θi)P
r,s
nσ2(i)

(λσ1(i))

]

W r,s,2
m (λ)

V (θ)V (λ)

Note that, for a given partition (n1 ≥ · · · ≥ nm ≥ 0) and a permutation σ2 ∈ Sm,
one has

m
∑

i=1

nσ2(i)(nσ2(i) + r + s + 1) =

m
∑

i=1

ni(ni + r + s + 1)
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Thus summing first over σ1 with the change of variables σ = σ1σ2, one gets:

Kr,s,2
t (θ, λ) = e−ct

∑

n1≥···≥nm≥0

e−2
∑m

i=1 ni(ni+r+s+1)tdet[P r,s
ni

(θj)]i,j

V (θ)

det[P r,s
ni

(λj)]i,j

V (λ)
W r,s,2

m (λ)

= e−ct
∑

n1>···>nm≥0

e−2
∑m

i=1 ni(ni+r+s+1)tdet[P r,s
ni

(θj)]i,j

V (θ)

det[P r,s
ni

(λj)]i,j

V (λ)
W r,s,2

m (λ)

Set ni = τi + m − i, then τ1 >≥ · · · ≥ τm ≥ 0. Moreover, with regard to (12), one
easily check that

r2
n,τ =

m
∑

i=1

τi(τi + r + s + 1 + 2(m − i))

so that
m
∑

i=1

ni(ni + r + s + 1) = r2
n,τ − c/2

The final result writes

Kr,s,2
t (θ, λ) =

∑

τ1≥...τm≥0

e−2r2
n,τ

det[P r,s
τi+m−i(θj)]i,j

V (θ)

det[P r,s
τi+m−i(λj)]i,j

V (λ)
W r,s,2

m (λ)

=
∑

τ1≥...τm≥0

e−2r2
n,τ P r,s,2

τ (θ)P r,s,2
τ (λ)W r,s,2

m (λ)

where we used the determinantal representation of the Jacobi multivariate poly-
nomials in the complex case8 (see [32]) :

P r,s,2
τ (λ) =

det[P r,s
τi+m−i(λj)]i,j

V (λ)

From these observations, it is natural to claim that :

Proposition 7. The semi group density of the β-Jacobi process is given by

(13) Kr,s,β
t (θ, λ) :=

∞
∑

n=0

∑

|τ |=n

e−rn,τ tP r,s,β
τ (θ)P r,s,β

τ (λ)W r,s
m (λ)1{0<λm<···<λ1<1}

with respect to dλ. As a result, it is positive.

Proof: given a bounded symmetric function f on [0, 1]m, define

Ttf(θ) :=

∫

0<λm<···<λ1<1

f(λ)

∞
∑

n=0

∑

|τ |=n

e−2rβ
n,τ tP r,s,β

τ (θ)P r,s,β
τ (λ)W r,s

m (λ)dλ

for θ = (0 < θ1 < · · · < θm < 1) and T0f = f . The above expression makes sense:
this uses the boundness of f , the exponential term with strictly positive t and
Fubini Theorem. Besides, Tt1 = 1 and ||Tt|| is bounded for all t ≥ 0. The first

8We adopt a different normalization since we consider orthonormal polynomials.
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claim follows easily from the orthogonality of the Jacobi polynomials and P0 = 1

so that the only non zero term is that correponding to n = 0. The second one
is obvious for t = 0 and uses the exponential term when t ≥ ǫ > 0. One also
easily checks that TtTs = Tt+s and that L Ttf(λ) = ∂tTtf(λ) using the dominated
convergence theorem. Now, let us consider the Cauchy problem associated to L :

{

∂uf

∂t
(t, λ) = L uf(t, λ)

uf(0, ·) = f,

where uf ∈ C1,2(R⋆
+ ×S := {0 < λm < · · · < λ1 < 1})∩Cb(R

+ ∩S) with reflecting
boundary condition :

< ∇u(t, λ), n(λ) >= 0, (t, λ) ∈ R
⋆
+ × ∂S

where n(λ) is a unitary inward normal vector at Define ut(f)(λ) := uf(t, λ). It
is shown ([42]) that there is a unique solution to the Cauchy problem with ini-
tial condition. Consequently, (Tt)t≥0 is the semi group of the eigenvalues process

(λ(t))t≥0 with density given by Kr,s,β
t . �

Remark. As the reader can check, the computations performed in the complex
Hermitian case do not restrict to Jacobi polynomials. We only used the determi-
nantal representation in terms of their univariate counterparts. As a result, one
gets similar formulas replacing Jacobi by Hermite and Laguerre polynomials.

Now, we are able to answer some open questions left in [16]. For the real Jacobi
matrix (β = 1), it is known that for p ∧ q ≥ m − 1 and if the eigenvalues are
distinct at time t = 0, then they remain distinct forever. It is then natural to
wonder if this remains valid when starting from non distinct eigenvalues (see [16]
p. 138-139). The Markov property together with the previous result for distinct
eigenvalues are sufficient to claim that this is true provided that the eigenvalues
semi group has a density which is absolutely continuous with respect to Lebesgue
measure on R

m. By virtue of Kr,s,1
t (θ, φ), for p ∧ q > m,

Pλ(0)(∀t ≥ 0, ∀i 6= j, λi(t) 6= λj(t)) = 1, λ1(0) ≥ · · · ≥ λm(0).

We argue in the same way to claim that for p ∧ q ≥ m + 1, the process will never
hit the boundaries (0 and 1 for λ or 0 and π/2 for φ) even if it did at time t = 0.
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