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Abstract: This work is dedicated to the study of control/fault diagnosis interactions

for structured bilinear systems using a graph-theoretic approach. According to the fact

that constant control inputs make possible the representation of a bilinear system by a

linear one, some propositions provide the sufficient conditions for active- (Bilinear

Fundamental Problem of Residual Generation) in this particular case. These conditions

are easy to check because they are based on the comparison of expressions and on finding

paths in a digraph.
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1. INTRODUCTION

Fault detection and isolation () problem has re-

ceived considerable attention in the two last decades

(Chen and Patton, 1999; Frank, 1996; Gertler, 1998).

Detection and isolation of incipient faults is important

for safety critical systems where a malfunction can

cause human and material damages.

Bilinear systems () are amongst the simplest non-

linear systems and therefore are particularly adapted

to analysis compared to more complicated nonlinear

systems. They can be used to represent a wide range of

physical, chemical, biological and social systems, as

well as manufacturing processes which cannot be sat-

isfactorily controlled under the linearity assumption.

The properties and behavior of bilinear systems have

been investigated and a number of useful results have

been derived.

Up to now, the problem of residual generation for 

is mainly treated using algebraic or geometric tools

(Yang and Saif, 1995; Hammouri et al., 2001). One of

the most important results about  of  is given in

(Hammouri et al., 2001). Using a geometric approach,

the authors provide necessary and sufficient conditions

for the solvability of the so-called Bilinear Funda-

mental Problem of Residual Generation (). This

problem extends the Fundamental Problem of Resid-

ual Generation () defined and solved for linear

systems in (Massoumnia et al., 1989). The solvability

conditions of such a problem for nonlinear systems,

which are affine in the control inputs and in the fail-

ure modes, have been also given in (Hammouri et

al., 1999; De Persis and Isidori, 2001).

Many studies on structured systems are related to the

graph-theoretic approach. Until now, this approach is

mainly dedicated to linear systems. (Dion et al., 2003)

reviews the most significant results in this area. From

these works, it results that the graph-theoretic ap-

proach provides simple and elegant solutions and so is

very well suited to analyze large scale or/and uncertain

systems. The quality of the results obtained for linear

systems by using a graphic approach has motivated us

to apply the latter to the problem of residual genera-

tion for structured bilinear systems ().

The main contribution of this note is the study of the

so-called "active"-. This problem, as we define

it more precisely later, is related to the existence of



particular control inputs which make the  solv-

able. Indeed, reducing the  problem to the usual

 is quite restrictive, since the control input can

be used to achieve the detection and the isolation of

faults. Effectively, in practice, many  strategies use

inputs, or more generally, some specific functioning

modes to detect and to isolate the faults occurring on

the system.

In this context, it seems interesting to study the input

influence on the solvability of the . More pre-

cisely, we study two kinds of control inputs. Firstly,

we search to solve the active- considering all

control inputs as generic constant. Next, we set to zero

some inputs considering the others constant.

All the results provided in this paper are based on the

graph-theoretic approach. The solvability conditions

for residual generation problem are related to compar-

ison of expressions and to computation of paths in a

digraph. This makes our approach very well suited to

study large scale and/or uncertain systems.

The paper is organized as follows: after section 2,

which is devoted to the active- formulation, a

digraph representation of structured bilinear systems

is defined in section 3. Some sufficient conditions for

the solvability of active-, are enounced in section

4. Finally, some concluding remarks are made.

2. PROBLEM STATEMENT

We consider  of the form:

ΣΛ :























ẋ(t) = A0x(t) +

m
∑

ℓ=1

uℓ(t)Aℓx(t) + E f1(t) + Hw(t)

y(t) = Cx(t)

(1)

where x(t) ∈ Rn, u(t) ∈ Rm, f1(t) ∈ R, w(t) ∈ Rd and

y(t) ∈ Rp are respectively the state, the input, the fault,

the disturbance and the output vectors. In this study,

we treat the case of system with only one fault f1.

However, if the system is corrupted by several faults,

the study can also be made to each fault considering

other faults as disturbances.

Aℓ, for ℓ = 0, . . . ,m, C, E and H represent matrices

of appropriate dimensions, which elements are either

fixed to zero or assumed free nonzero parameters.

We can parameterize these nonzero entries by real

(nonzero) parameters λi, i = 1, . . . , h forming a pa-

rameter vector Λ = (λ1, . . . , λh)T ∈ Rh. If all the non-

zeros parameters λi are fixed, we obtain an admissible

realization of structured system ΣΛ. Theoretic proper-

ties of each realization can be studied according to the

values of λi. We say that a property is true generically

if it is true for almost all the realizations of structured

system ΣΛ. Here, "for almost all the realizations" is to

be understood as "for all parameter values (Λ ∈ Rh)

except for those in some proper algebraic variety in

the parameter space". The proper algebraic variety

for which the property is not true is the zero set of

some nontrivial polynomial with real coefficients in

the system parameters λ1, λ2, . . . , λh or equivalently it

is an algebraic variety which has Lebesgue measure

zero.

Usually, the fault diagnosis problem and the con-

trol problem are separated but there exist some con-

trol/diagnosis interactions studies as those concerning

 (Fault Tolerant Control). In this note we make a

complementary study of these interactions. Our aim is

to provide sufficient conditions for the generic solv-

ability of the following problem.

Consider  ΣΛ, we define the active- as the

problem of finding filter of the form:
{

ż(t) = φ(z(t), y(t)) + ϕ(z(t), y(t))u(t)

δ(t) = h(z(t), y(t))
(2)

with z(t) ∈ Rr and δ(t) ∈ R, such that it generically

exists an input u(t) so that

• if f1(t) = 0 then δ(t) → 0 for all initial condi-

tions.

• else, δ(t) , 0 for all initial conditions

That is to say, δ(t) is insensitive to w(t).

The "classical"  is to find a filter (2) such that

δ(t) enables the detection of f1(t) for any admissible

inputs u(t). It is well-known that in bilinear systems,

the fault detection is affected by the control input.

In fact, a specific control value can make possible

the detection of a fault, which is not detectable for

all other values of u(t). In another way, a specific

control value can make impossible the detection of

a fault, which is detectable for all other values of

u(t). Like many structural properties, we think that

the interactions between control and fault diagnosis

can be more easily handled using a graph-theoretic

approach defined in the next section.

3. GRAPHICAL REPRESENTATION OF

STRUCTURED BILINEAR SYSTEMS

The graph, directly obtained from the system struc-

ture, is interesting for several reasons. In particular,

the graph-based results, given by weak burden calcu-

lation, are intuitive and are easily applicable to large

scale systems.

3.1 Digraph definition for 

The digraph associated to bilinear system ΣΛ is noted

G(ΣΛ) and is constituted by a vertex setV and an edge

set E : G(ΣΛ) = (V,E). The vertices are associated to

the variables of ΣΛ and the directed edges represent

links between these variables. To differentiate vari-

ables from their corresponding vertices, the latter are

written in bold fonts.

The vertex set is V = X ∪ Y ∪W ∪ {f1} where X =

{x1, . . . , xn} is the set of state vertices, Y = {y1, . . . , yp}

is the set of output vertices, W = {w1, . . . ,wd} is the



set of disturbance vertices and f1 is the fault vertex.

The edge set is E =

m
⋃

ℓ=0

Aℓ-edges∪C-edges∪E-edges∪

H-edges where Aℓ-edges = {(xi, xj)|Aℓ( j, i) , 0}

for ℓ = 0, . . . ,m, C-edges = {(xi, yj)|C( j, i) , 0},

E-edges = {(f1, xj)|E( j) , 0} and H-edges =

{(wi, xj)|H( j, i) , 0}. (vi, vj) denotes a directed edge

from begin vertex vi ∈ V to end vertex vj ∈ V.

We take the following notation : Ā0-edges =

A0-edges ∪ C-edges ∪ E-edges ∪ H-edges and for

ℓ = 1, . . . ,m, Āℓ-edges = Aℓ-edges. To each edge

e ∈ Āℓ-edges is associated an unique indice uℓ and

we indicate uℓ over each edge e in the digraph rep-

resentation. If an edge e1 ∈ Āℓ1
-edges and an edge

e2 ∈ Āℓ2
-edges have the same begin and end vertices,

only one edge is represented and the information over

the edge will be uℓ1
, uℓ2

with ℓ1 < ℓ2.

Example 1. Consider  defined by:

A0 =









































0 0 0 0 0

0 0 0 0 0

0 0 0 λ1 0

λ2 λ3 0 0 0

0 0 λ4 0 0









































, A1 =









































0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 λ5 0 0 0

0 0 0 λ6 0









































, A2 =









































0 0 0 0 0

0 0 0 0 0

λ7 0 0 0 0

0 0 0 0 0

0 0 0 0 0









































, E =









































0

λ8

0

0

0









































, H =









































λ9

0

0

0

0









































and C =
(

0 0 0 0 λ10

)

.

This model is associated to digraph 1.

We can see that the graph is easily obtained from the

system structure.

3.2 Notations and definitions

• P = vr0

ui1
−−−→ vr1

. . . vrk−1

uik
−−−→ vrk

denotes a

path P, which contains vertices vr0
, . . . , vrk

and where

(vrj
, vrj+1

) ∈ Āi j+1
-edges for j = 0, . . . , k − 1. vr0

and

vrk
are respectively the begin vertex and the end vertex

of P. We associate to P an unique indice noted σ(P)

and defined by the ordered monomial ui1 · ui2 · . . . · uik .

A path P is uniquely characterized by its indice and

the vertices it covers. P is an Y-topped path if its end

vertex vrk
∈ Y.

• Some paths are disjoint if they have no common

vertices.

• A set of kl disjoint paths from V0 ∈ V to V1 ∈ V

is called a linking of dimension kl from V0 to V1. A

linking i composed of paths Pi1 , Pi2 , . . . , Pik is denoted

 1w1f
1x
2x 4x 5x

3x
1y

u0u0 u0,u1 u1 u0u2u0 u0u01w1f
1x
2x 4x 5x

3x
1y

u0u0 u0,u1 u1 u0u2u0 u0u0
Figure 1. Digraph 1 associated to Example 1

mi =

k
⋃

j=1

Pi j
. A linking from V0 to V1 is maximum

when kl is maximum. We denote by ρ(V0,V1) the

maximum number of disjoint paths from V0 to V1.

In example 1, ρ(W ∪ {f1},Y) = 1.

• The set of all maximum linkings m j1 ,m j2 , . . . ,m jq

from V0 to V1 is denoted byM(V0,V1) =

q
⋃

ℓ=1

m jℓ .

4. ACTIVE-BFPRG

The active- is a quite vast problem because of

the influence of the control input on the solution.

Practically, it is tedious to solve this problem whatever

the control, this is why in this paper we focus only on

the simplest cases.

4.1 Case of constant input

In a first time, we consider that each control input

is defined constant (u(t) = u), this restriction can be

justified by the fact that control inputs are constant in

the steady state. In this case, structured bilinear system

ΣΛ is equivalent to structured linear system Σ1
Λ

with

system parameters depending on the control value.

Σ1
Λ :

{

ẋ(t) = Ã0x(t) + E f1(t) + Hw(t)

y(t) = Cx(t)
(3)

where Ã0 = A0 +

m
∑

ℓ=1

uℓAℓ.

The  solvability can then be studied using the

geometrical conditions given by (Hammouri et al.,

2001). This approach requires the determination ofR∗,

the minimal (C,A)-invariant subspace containing H,

and T ∗, the minimal (C,A)-unobservability subspace

containing H. The problem is solvable if E < T ∗. This

study does not take part of the control input influence

on fault detection as shown by example 2.

Example 2. Consider  defined by :

A0 =































0 0 0 0

0 0 0 0

λ1 0 0 0

0 λ2 0 0































, A1 =































0 0 0 0

0 0 0 0

0 λ3 0 0

0 0 0 0































, H =































0

λ4

0

0































, E =































λ5

0

0

0































and C =

(

0 0 λ6 0

0 0 0 λ7

)

.

This system is represented by digraph 2.

 1f1w
1x
2x

3x 1y
4x 2yu0u0u0 u0u1u0 u01f1w

1x
2x

3x 1y
4x 2yu0u0u0 u0u1u0 u0

Figure 2. Digraph 2 associated to Example 2



For this example, it can be shown that

R∗ = span





























































0

λ4

0

0































,































0

0

λ3λ4

0































,































0

0

0

λ2λ4





























































and T ∗ = R4.

Then, since E ∈ T ∗, the  has no solution.

If we consider that the control input is generically

constant (u1(t) = u1), the system matrices become:

Ã0 =































0 0 0 0

0 0 0 0

λ1 λ3u1 0 0

0 λ2 0 0































, H =































0

λ4

0

0































, E =































λ5

0

0

0































and C =

(

0 0 λ6 0

0 0 0 λ7

)

.

In this case, the  is solvable using the geometrical

conditions (Hammouri et al., 2001). Indeed, R∗ =

span





























































0

λ4

0

0































,































0

0

λ3λ4u1

λ2λ4





























































and T ∗ = span





























































0

1

0

0































,































0

0

λ3λ4u1

λ2λ4





























































.

Since E < T ∗, the  is solvable.

In a practical point of view, the following filter makes

possible the detection of fault f1:

{

˙̂x(t) = Ax(t) + K(y(t) −Cx̂(t))

δ(t) = Q(y(t) −Cx̂(t))
(4)

with matrices K and Q chosen such that QC(sI −

A + KC)−1H = 0 and QC(sI − A + KC)−1E , 0.

For the example, we have K =































k11 k12

k21 k22

k31 k32

k41 k42































and Q =

(

q1 q2

)

under the constraints q2 = −
q1λ3u1λ6

λ2λ7
, k11 =

−
k12λ2λ7

λ3u1λ6
and k32 =

λ3(k42λ2λ7−k31λ2λ6+k41λ3λ6)

λ2
2
λ7

(subject to

stability constraints).

Consequently, it appears for this example that the

active- has a solution whereas the "classical"

 is not solvable. The following proposition which

is based on the results of (Commault et al., 2002) gives

a sufficient condition to the active- solvability.

This condition is necessary and sufficient in the case

of control inputs as generic constants.

Proposition 1 :

Consider  ΣΛ. In the case where all the control

input components are constant,  ΣΛ is equivalent

to structured linear system Σ1
Λ

. The active- is

then solvable if :

ρ(W ∪ {f1},Y) = ρ(W,Y) + 1 (5)

If the condition of proposition 1 is not satisfied then

there are two possibilities for detecting fault f1. The

first one consists in increasing the value of ρ(W ∪

{f1},Y) (by addition of particular sensors to the sys-

tem) and the second one consists in decreasing the

value of ρ(W,Y) (using the influence of the control).

We are interested in the second case.

The parameters of the obtained linear system are de-

pendent of the control. In fact, setting some control

components to zero results in edges removal in the
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u0u0u0
u0u0u2u0u1u2

1w2w
1x2x 4x 1y5x 2y1f 3x

u0u0u0
u0u0u2u0u1u2

Figure 3. Digraph 3 associated to Example 3

digraph representation and then, the fault detection

may be possible.

Example 3. Consider the system represented by di-

graph 3.

For this example, in the case where control inputs

are considered to be generically constant, we have

ρ(W,Y) = 2 and ρ(W∪{f1},Y) = 2 , ρ(W,Y)+1. We

can then conclude that the detection of fault f1 with

u1(t) = u1(generic) is impossible. But, if we consider

the system with u1(t) = 0, then we obtain ρ(W,Y) = 1

and ρ(W ∪ {f1},Y) = 2 = ρ(W,Y) + 1. Condition of

proposition 1 is satisfied and so it is possible to detect

fault f1. The next part is dedicated to the formulation

of this particular case in general contest.

4.2 Case of some cancelled inputs

Our objective hereafter is to characterize which con-

trol inputs have to be set to zero or not in order to

detect f1. At this aim let us denote by T = {i | ui , 0}

the set of control inputs not fixed to zero. In this case,

structured linear system Σ1
Λ

is equivalent to a second

structured linear system Σ1
Λ

(T ) given by :

Σ1
Λ(T ) :

{

ẋ(t) = Â0(T )x(t) + E f1(t) + Hw(t)

y(t) = Cx(t)
(6)

where Â0(T ) = A0 +
∑

i∈T

uiAi.

The digraph associated to system Σ1
Λ

(T ) is now

defined by G(Σ1
Λ

(T )) = (V,E(T )) with E(T ) =

Ā0-edges
⋃

i∈T

Āi-edges.

We denote by ρu(V0,V1,T ) the maximum number of

disjoint paths from V0 to V1 assuming all the control

inputs generically constant except for u j with j < T

such that u j = 0. From the results of (Commault et

al., 2002), the following proposition is given.

Proposition 2 :

Consider  ΣΛ. In the case where all the control

input components are constant,  ΣΛ is equivalent

to structured linear system Σ1
Λ

. The active- is

then solvable if :

∃T such that ρu(W ∪ {f1},Y,T ) > ρu(W,Y,T ) (7)

Since proposition 2 can be generally verified for dif-

ferent subsets T , it is interesting to set a procedure in



order to obtain all subsets T which enable the fault

detection.

4.3 Characterization of all solutions

If we consider that ρ(W ∪ {f1},Y) = ρ(W,Y), we

can deduce that linkings belonging to M(W,Y) of

cardinality l1 belong necessarily toM(W ∪ {f1},Y) of

cardinality l2 then M(W,Y) ⊆ M(W ∪ {f1},Y) and

l2 ≥ l1. Let us assume thatM(W,Y) = m1 ∪ . . . ∪ml1

andM(W∪{f1},Y) = m1∪. . .∪ml1∪. . .∪ml2 . Linkings

mi for i = 1, . . . , l1 do not contain any path from f1 to

Y. By the way, linkingsmi for i = l1+1, . . . , l2 contain

necessarily a path from f1 to Y.

If l2 = l1, we can conclude that there is no path from

f1 to Y and consequently, fault f1 cannot be detected

without adding a new sensor.

Considering now a maximum linking containing a

path from f1, the proposed approach consists in com-

paring this linking with all other maximum linkings

(with no path from f1). This comparison needs some

new definitions.

• Three operations ⊙, ⊕ and ⊘ on set U = {u0, . . . , um}

are defined. ⊙ and ⊕ are commutative and associative.

• To path P = vr0

ui1
−−−→ vr1

. . . vrk−1

uik
−−−→ vrk

, we

associate the expression ψ(P) = ui1 ⊙ ui2 ⊙ . . . ⊙ uik .

• Considering u
1 = u, the following relations are used

in order to simplify expressions.

· u
k1 ⊙ u

k2 = u
k1+k2 with k1 ≥ 1 and k2 ≥ 1.

· (u
k1

i1
⊙ ψ1) ⊘ (u

k3

i1
⊙ ψ2) =



























(u
k1−k3

i1
⊙ ψ1) ⊘ ψ2 if k1 > k3.

ψ1 ⊘ (u
k3−k1

i1
⊙ ψ2) if k1 < k3.

ψ1 ⊘ ψ2 if k1 = k3.

• The complement operation on expression ψ is

denoted by ψ with the following properties :

u1 ⊙ u2 ⊙ . . . ⊙ uk = ū1 ⊕ ū2 ⊕ . . . ⊕ ūk and

u1 ⊕ u2 ⊕ . . . ⊕ uk = ū1 ⊙ ū2 ⊙ . . . ⊙ ūk.

• To each maximum linking mi ∈ M(V0,V1), we

associate the expression ψ(mi) =
⊙

P j∈mi

ψ(P j). The

latter enables to know which control inputs appear in

the maximum linking mi. The interest is that we can

deduce which control inputs could be set to zero in

order to decrease the size of mi.

• Function cp(mi,mℓ) makes the comparison between

linkings mi and mℓ. It is defined such that:

If ψ1 ⊘ ψ2 is the expression of ψ(mi) ⊘ ψ(mℓ) after all

simplifications then cp(mi,mℓ) = ψ1.

• P f (ℓ) denotes the path from f1 belonging to mℓ.

ψ(P f (ℓ)) enables to know which control inputs appear

in the path from f1 to Y. The interest is that we can

deduce which control inputs could be different from

zero in order to keep path P f (ℓ) in mℓ.

More precisely, we will be able to find which control

inputs have to be equal to zero and which control

inputs have to be different from zero in order to obtain

all the possible solutions by computing the set S as

below.

N(ℓ) indicates the control inputs belonging to ψ(mi)

for i = 1, . . . , l1 and not to ψ(mℓ). The complement of

N(ℓ) correspond to the control inputs which can be set

to zero without deleting the link between f1 and Y.

Furthermore, D(ℓ) indicates which control inputs have

to be different from zero in order to keep the path from

f1 in the linking mℓ.

From a computational point of view, N(ℓ) and D(ℓ)

can be determined by mean of the following algo-

rithm.

For ℓ = l1 + 1 to l2
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

N(ℓ) =

l1
⊕

i=1

cp(ψ(mi), ψ(mℓ))

D(ℓ) = ψ(P f (ℓ))

End

where maximum linkings mi do not contain any path

from f1 and maximum linkingsmℓ contain a path from

f1.

According to the general form of N̄(ℓ) which is (ū
l1
k1
⊙

ū
l2
k2
⊙ . . . ⊙ ū

ls
ks

) ⊕ (ū
l11

k11
⊙ . . . ⊙ ū

lt
kt

) ⊕ . . ., we create the

set S(ℓ) = {{ūk1
, ūk2

, . . . , ūks
}, {ūk11

, ūk12
, . . .}, . . .}.

Finally, if D(ℓ) is on the form u
d1
c1
⊙ u

d2
c2
⊙ . . . ⊙

u
dv
cv

, we modify set S(ℓ) by adding uc1
, uc2

, . . . , ucv

to all elements of S(ℓ) in order to obtain S(ℓ) =

{{ūk1
, ūk2

, . . . , ūks
, uc1

, uc2
, . . . , ucv

}, . . .}.

Each element of S(ℓ) is composed of elements ūd and

ue. Elements ūd give control inputs having to be set to

zero and ue gives control inputs having to be different

from zero.

From a practical point of view, it is important to re-

move some elements of S(ℓ) according to the follow-

ing rules :

• if an element sg of S(ℓ) contains ū0 then S(ℓ) =

S(ℓ)\{sg}, since u0 is generically different from

zero because it depends on the system parame-

ters.

• if an element sh of S(ℓ) contains ūi and ui then

S(ℓ) = S(ℓ)\{sh}, since control inputs cannot be

set to zero and different from zero at the same

time.

Proposition 3

Consider  ΣΛ. In the case where all the control

input components are constant,  ΣΛ is equivalent

to structured linear system Σ1
Λ

. The active- is

then solvable if :

S =

l2
⋃

ℓ=l1+1

S(ℓ) , ∅ (8)

Moreover, all the solutions are given by set S. Let

s1 = {ūi, . . . , uj, . . .} be an element of S. If ūi ∈ s1

then ui have to be set to zero. If uj ∈ s1 then u j have to

be different from zero. If uk < s1 and ūk < s1 then uk

can be indifferently set to zero or different from zero.
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Figure 4. Particular digraph for  solvability

Example 3.

In example 3, there are 4 paths from W ∪ {f1} to Y.

P1 = w1
u0
−−−→ x1

u2
−−−→ x4

u0
−−−→ y1, ψ(P1) = u

2
0
⊙ u2.

P2 = w2
u0
−−−→ x2

u1
−−−→ x5

u0
−−−→ y2, ψ(P2) = u

2
0
⊙ u1.

P3 = w2
u0
−−−→ x2

u0
−−−→ x4

u0
−−−→ y1, ψ(P3) = u

3
0
.

P4 = f1
u0
−−−→ x3

u2
−−−→ x5

u0
−−−→ y2, ψ(P4) = u

2
0
⊙ u2.

Then, there are 3 maximum linkings from W ∪ {f1} to

Y and 1 maximum linking from W to Y.

M(W∪{f1},Y) = {P1, P2}∪{P1, P4}∪{P3, P4} = m1∪

m2 ∪m3.(l2 = 3)

M(W,Y) = m1.(l1 = 1)

ψ(m1) = ψ(P1) ⊙ ψ(P2) = u
4
0
⊙ u1 ⊙ u2.

ψ(m2) = ψ(P1) ⊙ ψ(P4) = u
4
0
⊙ u

2
2
.

ψ(m3) = ψ(P3) ⊙ ψ(P4) = u
5
0
⊙ u2.

Now, the method consists in compare m2 and m3 with

m1 by the computation of S.

N(2) = cp(m1,m2) = u1, N̄(2) = ū1, D(2) = ψ(P4) =

u
2
0
⊙ u2 and then S(2) = {ū1, u0, u2}.

N(3) = cp(m1,m3) = u1, N̄(2) = ū1, D(3) = ψ(P4) =

u
2
0
⊙ u2 and then S(3) = {ū1, u0, u2}.

S = {ū1, u0, u2}. We conclude that the active- is

solvable if u1 = 0 and u2 = constant , 0 (since u0 is

generically different from zero).

4.4 Remark

There also exists the case of particular constant inputs

(but not equal to zero) making the fault detection

possible. For example, from the system represented in

figure 4, we can write a relation on the form ÿ1(t) =

α1 f1(t)+α2w1(t)+α3u1(t)w1(t)+α4u̇1(t)x1(t) (with αi

depending on the system parameters) and then if u1(t)

is equal to the appropriate constant (u1(t) = −α2

α3
) we

obtain ÿ1(t) = α1 f1(t).

We see that a very particular value for the control

input makes the fault detectable but this particular

value can only be obtained from the knowledge of the

parameters.

Consequently, this case is not in adequation with the

fact that we consider structured systems, which means

that we do not know the parameters value.

5. CONCLUSION

In this paper, we propose a new analysis tool to check

the solvability of the  considering the control

input influence. For this purpose, sufficient conditions

to the existence of input values making the so-called

active- solvable have been provided on the basis

of graph-theoretic approach.

All the conditions we have enounced in this paper do

not depend on the parameters of the system and have

an intuitive interpretation. Moreover, they are very

easy to check by means of well-known combinator-

ial techniques and simply by hand for small systems.

From a computational point of view, note that our

approach is particularly suited for large-scale systems

and is free from numerical difficulties. Indeed, the pro-

posed algorithm and conditions can be easily imple-

mented because they require simple computations on

expressions and are based on finding paths in graphs.

Furthermore, the graphical approach makes easy the

visualization of the system structure.

In fact, we have seen that among the possibilities to

make fault detectable, there are the control inputs in-

fluence and the sensor placement. In further work, we

will investigate the sensor placement to fulfill the fault

detection of the system when this present study do not

give any solution.
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