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Abstract. We present a thermomechanical model describing hydrogen storage by

use of metal hydrides. The problem is considered as a phase transition phenomenon.

The model is recovered by continuum mechanics laws, using a generalization of the

principle of virtual power accounting for microscopic movements related to the

phase transition. The resulting nonlinear PDE system is investigated from the point

of view of existence, uniqueness, and regularity of solutions.

Key Words. Nonlinear PDE system, Hydrogen storage, Existence and uniqueness,

Microscopic movements, Dissipative phase transition.

1. Introduction

This paper deals with hydrogen storage, which is nowadays a challenging subject in

energetic and industrial applications (see, e.g., [11], [15], and [18]). Traditionally, it has

been stored and transported mainly as a compressed gas. Recently, an alternative tech-

∗ This work has been partially supported by IMATI-CNR, Pavia (Italy).
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nique has been developed, exploiting the possibility of many metals to absorb hydrogen.

This latter solution seems to present some advantages in terms of safety, global yield,

and long-time storage. Our research develops in the direction of providing a predic-

tive theory describing the storage of hydrogen by use of metal hydrides (i.e., the metal

which has absorbed hydrogen). We deal with this problem considering both modeling

and analytical aspects. This represents, in some sense, a theoretical starting point to be

developed in the future, performing numerical and experimental investigations, towards

applications.

As we are more interested in the mechanical and analytical aspects, we do not enter

the physical details of the description of the phenomenon. However, for the sake of

clarity, we recall some basic features of this phenomenon (see [15]). Some metals are

able to absorb hydrogen atoms and combine with them to form solid solutions. For the

sake of simplicity we assume that there are two solid solutions, the α-phase and the

β-phase. The presence of one phase with respect to the other depends on the pressure

of the hydrogen. It has been experimentally proved that there exists a nondecreasing

relation between the pressure of hydrogen (or more exactly between the logarithm of the

pressure) and the hydrogen capacity (i.e., the density of the hydrogen atoms with respect

to the density of the metal atoms). Moreover, it is shown that this relation is strongly

influenced by temperature. To provide a good mechanical model to be analytically treated

from the point of view of existence, uniqueness, and regularity of solutions, it turns out

to be useful to exploit the theory of phase transitions. This corresponds to introducing an

internal parameter χ , representing, for instance, the concentration of the α-phase with

respect to the β-phase. We make the macroscopic approximation that the two phases

may coexist at each point so that χ is prescribed to take values in [0, 1]. More precisely,

if χ = 1 we have the α-phase, if χ = 0 we have the β-phase, and if χ ∈ (0, 1) both

phases are present with suitable proportions. The state variables of the model are the

absolute temperature θ , the hydrogen pressure p, the phase parameter χ , and its gradient

∇χ accounting for local interactions between the different phases. Hence, we introduce

the hydrogen density ρH and the total density ρ (in what follows we take ρ = 1). Thus,

letting cH be the capacity of the hydrogen, we have that cH = ρH(ρ − ρH)−1, i.e.,

ρH = ρ
cH

1 + cH

=
1

τ
,

where τ is the hydrogen’s specific volume. Then we introduce a suitable potential in terms

of which we describe the equilibrium of our thermomechanical system, at each instant

t of its evolution (see [13]). Constitutive relations for the involved thermomechanical

quantities are chosen in such a way that the principles of thermodynamics are satisfied.

We deal with the enthalpy functional G(θ, p, χ, ∇χ), which can be introduced using

the Legendre–Fenchel transformation of the free energy �(θ, τ, χ, ∇χ), with respect

to the specific volume τ . By thermodynamical and duality arguments it follows that the

free energy is concave with respect to θ , while we assume that it is convex with respect to

τ , χ , and ∇χ . Thus, as � is assumed to be convex with respect to τ and −p = ∂�/∂τ ,

we can introduce the dual function �∗ of � as follows:

�∗(θ, −p, χ, ∇χ) = sup
τ

{−pτ − �(θ, τ, χ, ∇χ)},

so that letting τ = ∂�∗/∂(−p) = −∂�∗/∂p and assuming sufficient regularity for the
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functionals we get

�∗(θ, −p, χ, ∇χ) = −pτ − �(θ, τ, χ, ∇χ).

Finally, the enthalpy G(p) is defined by G(p) := −�∗(−p), so that it results that

G(θ, p, χ, ∇χ) = �(θ, τ, χ, ∇χ) + pτ. (1.1)

In particular, we recover that G is concave with respect to p and θ , while it is convex

with respect to χ and ∇χ .

Remark 1.1. The fact that the enthalpy is concave with respect to the temperature

follows from (1.1) once it is observed that the free energy is concave with respect to θ ,

which comes by duality arguments. This property turns out to be essential to ensure the

thermodynamical consistence of the model (see [13] for more details).

Then we make precise the constitutive relations holding for the entropy s, the specific

volume τ , and the internal energy e (see (1.1)). We have

s = −
∂G

∂θ
, (1.2)

τ =
∂G

∂p
, (1.3)

e = G − pτ + θs. (1.4)

Now we recall the fundamental balance laws of continuum mechanics, written in a

smooth boundary domain � ⊂ Rn during a finite time interval [0, T ]. They are: the

energy balance, the momentum balance, and the mass balance. In the following we use

the symbol ft for the time derivative of the function f . The energy balance equation, in

the case when macroscopic deformations are described by −τt (see the hydrogen mass

balance written below), reads as follows:

et + div q = r + Bχt + H · ∇χt − pτt in �, (1.5)

where, in particular, B and H stands for new interior forces responsible for the phase

transition, χt and ∇χt are related to microscopic velocities, r is an exterior heat source,

and the vector q stands for the heat flux. In particular, we observe that the right-hand

side of (1.5) accounts for heat sources induced by mechanical and exterior actions. The

presence of microscopic mechanically induced heat sources in (1.5) is justified by a

generalization of the principle of virtual power in which interior microscopic forces and

motions are also considered, as they are responsible for the phase transition (see [12]).

Finally (1.5) is complemented with a boundary condition, e.g., we assume that no heat

flux occurs through the boundary Ŵ := ∂�,

−q · n = 0,

where n stands for the normal unit vector on Ŵ.

Here and in the remainder of the work we assume small perturbations. Hence,

assuming that the mass of the hydrogen which is not in the solid solutions remains

constant, the hydrogen mass balance is

(ρH)t + div v = 0 in �, (1.6)
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where v is the hydrogen mass flux. Then we combine (1.6) with the following boundary

condition:

−v · n + γ p = 0 on Ŵ, γ > 0,

i.e., we assume that the hydrogen flux through the boundary is proportional to the differ-

ence between the exterior and the interior pressure (here the exterior pressure is chosen

equal to 0).

Finally, by the principle of virtual power written for microscopic movements, we

recover an equilibrium equation for the interior forces, which formally corresponds to

the balance of the momentum seen as a microscopic equilibrium equation. We have, in

the absence of exterior volume and surface forces,

B − div H = 0 in �

combined with

H · n = 0 on Ŵ.

Hence, to describe the thermomechanical evolution of the system, we assume that

there exists a pseudo-potential of dissipation � depending on χt and ∇θ (see [16], [12],

and [14]). We recall that � is a convex, non-negative function such that ϕ(0) = 0. By the

above properties, it turns out that its subdifferential ∂� is a maximal monotone operator

with 0 ∈ ∂�(0). In particular, it follows that

∂�(χt , ∇θ) · (χt , ∇θ) ≥ 0. (1.7)

Now we are in the position to make precise constitutive relations for B and H, given in

terms of G and �. We introduce useful notation: nd is used for nondissipative contribu-

tions and d for dissipative ones. We have (see also (1.1))

B = Bnd + Bd =
∂G

∂χ
+

∂�

∂χt

(1.8)

and

H = Hnd =
∂G

∂∇χ
. (1.9)

Finally, we prescribe the Fourier heat flux law

q = −k0∇θ, (1.10)

where k0 > 0, which by a suitable choice of � can be expressed by use of the pseudo-

potential of dissipation � as follows:

q = −θ
∂�

∂∇θ
. (1.11)

Then, simplifying the model, we set

v = −λ∇ p, (1.12)
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for λ > 0 (take, e.g., λ = 1). Now we point out that by use of the chain rule in (1.5) and

the above constitutive relations (1.2)–(1.4), (1.8)–(1.12), we can equivalently rewrite the

energy balance (1.5) in terms of s and due to (1.7) eventually infer that

θ
(

st + div
q

θ
−

r

θ

)
= ∂�(χt , ∇θ) · (χt , ∇θ) ≥ 0. (1.13)

Note that, as θ > 0, (1.13) yields the Clausius–Duhem inequality, ensuring thermody-

namical consistency.

Now, we make precise the enthalpy functional G and the pseudo-potential of dissi-

pation �. We set

G(θ, p, χ, τ ) = a log p − bχ(log p − log p0) − cpθ log θ +
ν

2
|∇χ |2 + I[0,1](χ),

where cp > 0, ν > 0, I[0,1](χ) := 0 if χ ∈ [0, 1], and I[0,1] := +∞, otherwise.

In accordance with physical experience, we let a > 0 and a − b > 0 (take, e.g.,

a = 1 = −b). Hence, experiments show that for θ sufficiently large the Van’t Hoff law

holds (see [15]), i.e.,

log p0 = c1

1

θ
− c2, (1.14)

where c1, c2 < 0 are known constants. However, as we have already pointed out, the

enthalpy G has to be concave with respect to the temperature, on the whole temperature

interval. Thus, we extend the above relation setting

log p0 = h(θ),

where h is a sufficiently smooth function with, e.g.,

h(θ) = c1θ
−1 − c2 for θ sufficiently large, say θ ≥ θc,

h(θ) = c3 for θ < θc. (1.15)

In particular, we could take c3 = h(θc) and, if θc is sufficiently small, it results that

c3 < 0. Moreover, the value θc has to be chosen in such a way that

∂2G

∂θ2
= bχh′′(θ) −

cp

θ
< 0. (1.16)

Indeed, (1.16) ensures that G is concave with respect to temperature, which is necessary

to get the thermodynamical consistency of the model. As will be clear in what follows,

(1.16) is in direct relation with some assumption on h concerning the analytical solvability

of the resulting heat equation.

Concerning the pseudo-potential �, we let

� =
µ

2
|χt |

2 +
k0

2θ
|∇θ |2.

Finally, the small perturbations assumption allows us to neglect higher-order dissi-

pative terms in the energy balance. Thus, substituting in the balance equations consti-

tutive relations (1.2)–(1.4), (1.8), (1.9), (1.11), and (1.12), specified in terms of G and
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� (see also (1.10)), the resulting PDE system is written in Q := � × (0, T ) as follows

(see (1.15)):

(−bh′′(θ)θχ + cp)θt − k0�θ = bθχt h
′(θ), (1.17)

µχt − ν�χ + ∂ I[0,1](χ) ∋ b(−h(θ) + log p), (1.18)

(
p

a − bχ

)

t

− �p = 0. (1.19)

Then (1.17)–(1.19) are combined with initial conditions

θ(0) = θ0, χ(0) = χ0, p(0) = p0, (1.20)

and boundary assumptions (∂n is the normal derivative operator on the boundary)

k0∂nθ = 0, (1.21)

ν∂nχ = 0, (1.22)

λ∂n p + γ p = 0. (1.23)

As far as we know, the above analytical formulation of the problem of hydrogen storage

is new and there are no related results in the literature. Moreover, the solvability of the

resulting PDEs system, written as a phase-field problem, turns out to be an interest-

ing subject also from the analytical point of view. Indeed, the system (1.17)–(1.19) and

(1.20)–(1.23) is highly nonlinear and, to solve it (in some suitable weak sense we specify

later) requires analytical tools which are not trivial. This is mainly due to the coupling

of higher-order nonlinear contributions involving the unknowns, a maximal monotone

graph for the phase parameter, and a logarithm term involving the pressure. More pre-

cisely, in the parabolic equation (1.17) the specific heat is a nonlinear function: to ensure

coerciveness, we need to prescribe a suitable assumption on the function h. In particular,

the nonlinear character of the specific heat gives rise to some difficulties in the proof of

the uniqueness result (see, e.g., [9] for a similar problem in a different framework). For

the sake of completeness, we point out that if p is known (and sufficiently regular) the

system (1.17)–(1.18) is a phase-field system with nonlinear heat capacity. Some related

analytical results can be found for a model for shape memory alloys or binary phase tran-

sitions with nonlinear uniformly bounded latent heat in the free energy (see, e.g., [10],

[6], [9], and references therein). However, the presence of the nonlinear term log p and

the coupling between (1.18) and (1.19), as far as we know, is new. Hence, dealing with

the equation governing the evolution of the pressure, we have to combine the regularity

of the function χ and the pressure p, mainly to control the nonlinear evolution term.

Finally, it is worth observing that the pressure has a major role in the evolution of the

phase through the presence of its logarithm as a source in the corresponding evolution

inclusion (see (1.18)). The logarithm is easily controlled for high values of the pressure,

whenever we are able to control p, but it degenerates as p ց 0. Thus, our proof exploits

some ad hoc estimates for (1.19) to control this nonlinearity in the phase equation as the

pressure goes to zero. However, as will be clear in what follows, the regularity we can

obtain on p is not sufficient to solve (1.19), even if it is written in a variational formula-

tion. We restrict ourselves to studying a weaker formulation of the problem integrating
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(1.19) with respect to time and we are able to prove a global existence result. Then, con-

sidering a two-dimensional setting, we are allowed to exploit some Gagliardo–Nirenberg

inequalities (holding in the two-dimensional case). This provides sufficient regularity on

p and allows us to solve directly the abstract version of (1.19). In this case we are also

able to prove a regularity result, holding in the case when the initial data are sufficiently

smooth. Thus, by the uniqueness theorem, the two-dimensional problem turns out to be

well-posed. Regarding the well-posedness of the three-dimensional system (where some

weaker version of (1.19) is considered), we are able to prove a uniqueness result only

for solutions which are smoother than those for which we can state the existence. The

problem of finding, in the three-dimensional system, the existence of solutions with the

regularity required to prove uniqueness is still an open problem.

Here is the outline of the paper. In the next section we introduce the variational

formulation of the n-problem and state the main existence result holding for n ≤ 3

(Theorem 2.1). Then, improving the regularity of solutions, Theorem 2.2 shows a stronger

existence result in the case when n ≤ 2. Finally, Theorem 2.3 states the uniqueness

of sufficiently regular solutions. In particular, Theorems 2.2 and 2.3 lead to the well-

posedness of the two-dimensional problem.

2. Analytical Formulation and Main Results

In this section we introduce the abstract problem we deal with and state the main existence

and uniqueness results of this paper. We render the physical constants to 1 (or −1) as

specified in the Introduction (i.e., a = −b = cp = λ = k0 = ν = µ = γ = 1). For the

sake of clarity, before proceeding, we introduce some useful notation. Let

V →֒ H →֒ V ′ (2.1)

be a Hilbert triplet with

H := L2(�), V := H 1(�).

As usual, H is identified with its dual space H ′ and 〈·, ·〉 stands for the duality pairing

between V ′ and V . We denote the norm both in Banach space X and in X3 by the same

symbol ‖·‖X . Hence, we introduce the following abstract operators:

A : V → V ′, 〈Av, u〉 =

∫

�

∇v · ∇u, u, v ∈ V (2.2)

B : V → V ′, 〈Bv, u〉 =

∫

�

∇v · ∇u +

∫

Ŵ

vu, u, v ∈ V . (2.3)

Then, to simplify notation, we set

W := { f ∈ H 2(�) : ∂n f = 0 on Ŵ}.

We rewrite (1.17)–(1.19), combined with (1.20) and (1.21)–(1.23), in the abstract set-

ting of the triplet (V, H, V ′). Note, in particular, that the resulting duality pairings in

mathematics correspond to the variational formulation of the balance laws in continuum
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mechanics (see [12]). Thus, the system is rewritten, in V ′ and a.e. in (0, T ), as follows:

(h′′(θ)θχ + 1)θt + Aθ = −θχt h
′(θ), (2.4)

χt + Aχ + ξ = h(θ) − y, (2.5)

ξ ∈ ∂ IV ′,V (χ) (2.6)
(

p

1 + χ

)

t

+ Bp = 0, (2.7)

y = log p, (2.8)

where, actually, relation (2.8) is intended to hold a.e. in Q. By ∂ IV ′,V in (2.6) we denote

the subdifferential operator V → V ′ of the indicator function of the convex

[0, 1]V := {v ∈ V, v ∈ [0, 1] a.e. in �}. (2.9)

More precisely, we have (see (2.9))

ξ ∈ ∂ IV ′,V (χ) if and only if χ ∈ [0, 1]V ,

〈ξ, v − χ〉 ≤ 0, ∀v ∈ [0, 1]V . (2.10)

Remark 2.1. In the following we will show that (2.4)–(2.5) are solved in H . In partic-

ular, concerning the abstract subdifferential operator in (2.5), we will prove that ξ ∈ H

a.e. in (0, T ). Thus, we may infer that actually ξ ∈ ∂ I[0,1]H
(χ) a.e. in (0, T ) ([0, 1]H :=

{v ∈ H : v ∈ [0, 1] a.e. in �}) from which one can deduce that ξ ∈ ∂ I[0,1](χ) a.e. in Q

(see [1]).

In spite of the regularity we can obtain for the solutions to (2.4)–(2.5) (see Re-

mark 2.1), dealing with (2.7) it seems very difficult to find a solution in the variational

setting we have introduced above. Thus, at a first instance, we restrict ourselves to con-

sidering the equation obtained integrating with respect to time (2.7) and to looking for a

corresponding solution p̃ := 1 ∗ p, where

(1 ∗ p)(t) =

∫ t

0

p(s) ds. (2.11)

Remark 2.2. We point out that solving with respect to 1 ∗ p the integrated version

of (2.7) corresponds to applying the so-called Baiocchi transformation [3] (see also

the Stefan problem, where the so-called freezing index, i.e., 1 ∗ θ , is introduced as an

unknown in place of the temperature).

Thus, the new equation is (see also (1.20))

1

1 + χ
p̃t + B p̃ =

p0

1 + χ0

, p̃(0) = 0,

or analogously

p

1 + χ
+ 1 ∗ Bp =

p0

1 + χ0

. (2.12)
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Now, we make precise the assumptions on the data of the problem. We prescribe

θ0 ∈ V, (2.13)

χ0 ∈ [0, 1] ∩ V, (2.14)

p0 ∈ L2(�), log p0 ∈ L1(�). (2.15)

Note that (2.15) yields p0 > 0 a.e. in �. Hence, we ask for a suitable regularity of the

thermal expansion coefficient h(θ), in agreement with the assumptions leading to the

physical consistence of the model (see (1.16)). We require

h ∈ W 2,∞(R) ∩ C2(R), (2.16)

‖h‖W 2,∞(R) + |h′(ζ )ζ | ≤ ch, |h′′(ζ )ζ | ≤ c′
h, ∀ζ ∈ R, (2.17)

for some positive constants ch , c′
h . In addition, let cs > 0 such that (recall that χ ∈ [0, 1]

and (2.17))

1 + χh′′(ζ )ζ ≥ 1 − |ζh′′(ζ )| ≥ 1 − c′
h ≥ cs > 0, ∀ζ ∈ R. (2.18)

Then the following theorem is proved.

Theorem 2.1. Let (2.13)–(2.15) and (2.16)–(2.18) hold and fix T > 0, � ⊂ RN , with

N ≤ 3. Then there exist (θ, χ, ξ, p, y) with

θ ∈ H 1(0, T ; H) ∩ L∞(0, T ; V ) ∩ L2(0, T ; W ), (2.19)

χ ∈ H 1(0, T ; H) ∩ L∞(0, T ; V ) ∩ L2(0, T ; W ) ∩ L∞(Q), (2.20)

ξ ∈ L2(0, T ; H), (2.21)

p ∈ L2(0, T ; H), 1 ∗ p ∈ L∞(0, T ; V ) ∩ L2(0, T ; H 2(�)), (2.22)

y ∈ L2(0, T ; V ), (2.23)

fulfilling initial conditions (1.20) and, a.e. in (0, T ),

(1 + h′′(θ)θχ)θt + Aθ = −θχt h
′(θ) in H, (2.24)

χt + Aχ + ξ = h(θ) − y in H, (2.25)

ξ ∈ ∂ I[0,1](χ) a.e. in �, (2.26)

p

1 + χ
+ 1 ∗ Bp =

p0

1 + χ0

in H, (2.27)

y = log p a.e. in �. (2.28)

The proof of Theorem 2.1 is carried out in Section 3 by using a fixed point argument.

Now, observe that the regularities of the solutions specified by (2.19)–(2.23) are not

sufficient to solve the original problem, where (2.7) is considered in place of its integrated

version (2.27), even if it is written in the duality between V ′ and V . Moreover, we are not

9



able to prove the uniqueness of such solutions, mainly due to the weak regularity obtained

on p. However, some further regularity results can be obtained for lower-dimensional

systems. Thus, as a first step, we investigate the system (2.24)–(2.26), (2.28), and (2.7) in

the two-dimensional case. Indeed, for � ⊂ R2 some Gagliardo–Nirenberg inequalities

may help us improve the regularity of p (see (2.22)). As a consequence, we are able to

deal with (2.7) (at least in V ′) and, secondly, to prove uniqueness of the solution for the

resulting complete PDE system.

Theorem 2.2. Let (2.13)–(2.15) and (2.16)–(2.18) hold and fix T > 0, � ⊂ RN , with

N ≤ 2. Then there exist (θ, χ, ξ, p, y) solving (2.24)–(2.26), (2.28), (2.7), and (1.20),

fulfilling the regularity prescribed by (2.19)–(2.23). In addition, it holds that

p ∈ L∞(0, T ; H) ∩ L2(0, T ; V ), (2.29)

ut ∈ L2(0, T ; V ′), (2.30)

where u = p/(1 + χ). Moreover, if

p−1
0 ∈ H, p0 ∈ V, log p0 ∈ H (2.31)

χ0 ∈ W, (2.32)

then the following improved regularities are obtained:

p ∈ H 1(0, T ; H) ∩ L∞(0, T ; V ), (2.33)

u−1 ∈ L∞(0, T ; H) ∩ L2(0, T ; V ), (2.34)

χ ∈ W 1,∞(0, T ; H) ∩ H 1(0, T ; V ). (2.35)

The proof of Theorem 2.2 is exploited in Section 4 performing some suitable a priori

estimates on the solutions of the problem whose existence is stated by Theorem 2.1.

Finally, we aim to establish a uniqueness result for the original problem (2.24)–

(2.26), (2.28), (2.7), combined with (1.20), at least for sufficiently regular solutions. In

particular, for N ≤ 2 we will show the uniqueness of the solutions whose existence is

stated by Theorem 2.2 (see Remark 2.3). The proof is presented in Section 5 by the use

of a contradiction argument and some contraction estimates.

Theorem 2.3. Assume that (2.16)–(2.18) hold, T > 0, and � ⊂ RN with N ≤ 3. Let

(θ1, χ1, ξ1, p1, y1) and (θ2, χ2, ξ2, p2, y2) be two solutions of (2.24)–(2.26), (2.28), and

(2.7), combined with (1.20). Let one of the following conditions be satisfied:

(A1) N ≤ 2 and (θi , χi , pi , ξi , yi ), i = 1, 2, satisfy (2.19)–(2.23) and (2.30),

(2.33)–(2.35);

(A2) N = 3 and (θi , χi , pi , ξi , yi ), i = 1, 2, satisfy (2.19)–(2.23), (2.30), (2.33)–

(2.35), and, in addition,

p−1 ∈ L4(0, T ; L6(�)). (2.36)

Then

θ1 = θ2, χ1 = χ2, p1 = p2,
(2.37)

ξ1 = ξ2, y1 = y2 a.e. in Q.
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Remark 2.3. Theorems 2.2 and 2.3 provide a well-posedness result for the two-dimen-

sional problem, at least when initial data are sufficiently regular. Indeed, by Theorem 2.2,

assuming that the initial data satisfy (2.31)–(2.32), there exist solutions fulfilling in

particular the regularity specified by (2.33)–(2.35). Thus, in this case, (A1) is satisfied,

which leads to the uniqueness of the solution.

3. Proof of Theorem 2.1

This section is devoted to the proof of the existence result stated by Theorem 2.1. We

apply the Schauder fixed-point theorem to a suitable operator we are going to introduce.

To this aim, let

X = {(χ, θ) ∈ L2(0, T ; V ) × L2(0, T ; H), χ ∈ [0, 1] a.e. in Q,

‖χ‖L2(0,T ;V ) + ‖θ‖L2(0,T ;H) ≤ R}, (3.1)

where R > 0 is chosen sufficiently large (also with respect to the initial data). Hence,

take an arbitrary couple of functions (χ̂ , θ̂ ) ∈ X and substitute χ̂ in (2.27) instead of χ .

By (3.1) it follows that

1 ≤ 1 + χ̂ ≤ 2 or analogously
1

2
≤

1

1 + χ̂
≤ 1. (3.2)

Fairly standard results for parabolic evolution equations (see [2]) show that there exists

a unique solution

p = T1(χ̂) = p̃t ,

solving the resulting equation. Indeed, (2.27) can be regarded as a parabolic equation

with respect to the variable p̃ = 1 ∗ p (see also (2.11), (2.12), and (3.2)) with the right-

hand side (a.e. positive) in L∞(0, T ; H) and initial condition p̃(0) = 0. We now proceed

by establishing some a priori estimates on the solution p of (2.27), where χ̂ is considered

in place of χ .

First estimate. Test (2.27) by p and integrate over (0, t). Recalling that (3.2) holds,

using Young’s inequality, and integrating by parts in time, we write (see (2.3), (2.14),

and (2.15))

1
2
‖p‖2

L2(0,t;H) + 1
2
‖1 ∗ ∇ p(t)‖2

H + 1
2
‖1 ∗ p(t)‖L2(Ŵ)

≤

∫ t

0

∫

�

p0

1 + χ0

p ≤ 1
4
‖p‖2

L2(0,t;H) + c

∫ T

0

∥∥∥∥
p0

1 + χ0

∥∥∥∥
2

H

≤ c + 1
4
‖p‖2

L2(0,t;H) . (3.3)

Consequently, we get

‖p‖L2(0,T ;H) + ‖1 ∗ p‖L∞(0,T ;V ) ≤ c. (3.4)
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Note that, from now on, for the sake of simplicity we denote by the same symbol c possibly

different positive constants. Hence, by (3.2), (3.4), and (2.14)–(2.15) a comparison in

(2.27) leads to

‖1 ∗ Bp‖L2(0,T ;H) ≤ c,

and owing to (3.3)–(3.4)

‖1 ∗ p‖L2(0,T ;H 2(�)) ≤ c. (3.5)

Second estimate. To simplify notation we introduce the new variable

u :=
p

1 + χ
. (3.6)

Hence, we rewite (2.27) in terms of u,

u + 1 ∗ B(u(1 + χ)) =
p0

1 + χ0

, (3.7)

and take χ̂ in place of χ in (3.6) and (3.7). Before proceeding, we point out that by (3.4),

the definition of u, and the regularity of χ̂ (see (3.1)) we have

‖u‖L2(0,T ;H) + ‖1 ∗ u(1 + χ̂)‖L∞(0,T ;V ) ≤ c. (3.8)

Now, we formally proceed differentiating (3.7) with respect to time:

ut + Bu(1 + χ̂) = 0. (3.9)

Then we test (3.9) by

H(u) := 1 if u ≥ 0 and H(u) := 0 if u < 0.

We recall that the Heaviside graph H(·) = ∂ j (·) can be seen as the subdifferential

of the positive part function j (·) = (·)+, which is defined by ( f )+ := f if f ≥ 0

and ( f )+ := 0 otherwise. The procedure we are exploiting is formal and the rigorous

computation can be performed by use of the Moreau–Yosida approximation Hε = ∂ jε
of the graph H , jε being the corresponding regularization of the positive part function

j . In particular, we let Hε(u) = 1 if u ≥ ε, Hε(u) = 0 if u < 0, and Hε(u) = ε−1u if

0 ≤ u < ε. Integrating by parts in time and recalling that p0(1 + χ0)
−1 > 0 a.e. in �,

we infer that
∫ t

0

∫

�

ut Hε(u) =

∫

�

jε(u(t)) −

∫

�

p0

1 + χ0

. (3.10)

Then we have
∫ t

0

〈B(u(1 + χ̂)), Hε(u)〉 =

∫ t

0

∫

�

H ′
ε(u)∇u(1 + χ̂)∇u +

∫ t

0

∫

Ŵ

u(1 + χ̂)Hε(u)

=

∫ t

0

∫

�∩{0≤u≤ε}

ε−1∇(u(1 + χ̂))∇u

+

∫ t

0

∫

Ŵ

u(1 + χ̂)Hε(u). (3.11)
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To handle the right-hand side of (3.11) we proceed as follows:

∫ t

0

∫

�∩{0≤u≤ε}

ε−1∇(u(1 + χ̂))∇u

=

∫ t

0

∫

�∩{0≤u≤ε}

ε−1(1 + χ̂)−1|∇(u(1 + χ̂))|2

−

∫ t

0

∫

�∩{0≤u≤ε}

ε−1(1 + χ̂)−1∇(u(1 + χ̂))u∇χ̂ . (3.12)

Thus, by (3.10)–(3.12), using Young’s inequality, and letting ε < 1, we have

∫

�

jε(u(t)) +

∫ t

0

∫

�∩{0≤u≤ε}

ε−1(1 + χ̂)−1|∇(u(1 + χ̂))|2

+

∫ t

0

∫

Ŵ

u(1 + χ̂)Hε(u)

≤

∫

�

p0

1 + χ0

+

∫ t

0

∫

�∩{0≤u≤ε}

ε−1(1 + χ̂)−1∇(u(1 + χ̂))u∇χ̂

≤ c +
1

2ε

∫ t

0

∫

�∩{0≤u≤ε}

(1 + χ̂)−1|∇(u(1 + χ̂))|2

+ c

∫ t

0

∫

�∩{0≤u≤ε}

(1 + χ̂)−1|∇χ̂ |2

≤ c(R) +
1

2ε

∫ t

0

∫

�∩{0≤u≤ε}

(1 + χ̂)−1|∇(u(1 + χ̂))|2. (3.13)

Note that the last inequalities are justified as we are integrating over {0 ≤ u ≤ ε} and

recalling the definition of X . Now, passing to the limit as ε ց 0, we deduce

∫

�

(u)+(t) ≤ c(R), (3.14)

for a.e. t . Here and in what follows by c(R)we denote possibly different positive constants

depending on R.

Third estimate. We still deal with (3.9) and formally test by −u−1. After integrating

over (0, t), we get

−

∫ t

0

∫

�

ut u
−1 = −

∫ t

0

∫

�

d

dt
(log u)

= −

∫

�

log u(t) +

∫

�

log u(0)

=

∫

�

(log u)−(t) −

∫

�

(log u)+(t) +

∫

�

log u(0), (3.15)
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where (log u)− and (log u)+ denote the negative and positive parts of the function log u,

respectively. Observe that well-known properties of the logarithm function and (3.14)

yield

∥∥(log u)+
∥∥

L∞(0,T ;L1(�))
≤ c(R). (3.16)

In addition, (2.14)–(2.15) imply (see (3.6)) log u(0) = log p0 − log(1 + χ0) ∈ L1(�).

Hence, we have

∫ t

0

〈Bu(1 + χ̂), −u−1〉

=

∫ t

0

∫

�

u−2|∇u|2(1 + χ̂) +

∫ t

0

∫

�

u−1∇u∇χ̂ −

∫ t

0

∫

Ŵ

u(1 + χ̂)u−1

=

∫ t

0

∫

�

(1 + χ̂)|∇ log u|2 +

∫ t

0

∫

�

∇ log u∇χ̂ −

∫ t

0

∫

Ŵ

(1 + χ̂). (3.17)

Note that the last integral in (3.17) is bounded as χ̂ ∈ X . Now, combining (3.15)–(3.17),

using (3.2), and applying Young’s inequality we have

∥∥(log u)−(t)
∥∥

L1(�)
+ 1

2
‖∇ log u‖2

L2(0,t;H) ≤ c
(
1 + ‖χ̂‖2

L2(0,t;V )

)
≤ c(R). (3.18)

Remark 3.1. We briefly detail the procedure to make the above estimate rigorous. Let

n ∈ N and αn(·) be defined by

αn(x) := −x−1 if x ≥
1

n
,

(3.19)

αn(x) := −n if x ≤
1

n
.

Then introduce a primitive function α̂n defined by

α̂n(u) =

∫ u

1

αn(x) dx, (3.20)

so that it results that

α̂n(u) = − log u if u ≥
1

n
,

(3.21)

α̂n(u) = 1 + log n − nu if u ≤
1

n
.

Hence, we test (3.9) by αn(u) and integrate over (0, t). Integrating by parts in time we

have

∫

�

α̂n(u(t)) +

∫ t

0

∫

�

∇(u(1 + χ̂)) · ∇αn(u)

+

∫ t

0

∫

Ŵ

u(1 + χ̂)αn(u) −

∫

�

α̂n(u0) = 0. (3.22)
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First, we observe that as u0 > 0 a.e. in � (see (2.15) and (2.14)) we may deduce

∣∣∣∣
∫

�

α̂n(u0)

∣∣∣∣ ≤ c. (3.23)

Then we have
∫ t

0

∫

�

∇(u(1 + χ̂)) · ∇αn(u) =

∫ t

0

∫

�∩{u≥n−1}

∇(u(1 + χ̂)) · ∇(u−1), (3.24)

where the integral on the right-hand side of (3.24) can be treated as in (3.17). Hence, we

have (see (3.22))

∫ t

0

∫

Ŵ

u(1 + χ̂)αn(u) = −

∫ t

0

∫

�∩{u≥n−1}

(1 + χ̂)

−

∫ t

0

∫

�∩{0≤u≤n−1}

nu(1 + χ̂)

−

∫ t

0

∫

�∩{u≤0}

nu(1 + χ̂). (3.25)

The last integral on the right-hand side is non-negative, while it is easy to check that

−

∫ t

0

∫

�∩{0≤u≤n−1}

nu(1 + χ̂) ≥ −

∫ t

0

∫

�∩{0≤u≤n−1}

(1 + χ̂). (3.26)

Moving
∫ t

0

∫
�∩{u≥0}

(1 + χ̂) on the right-hand side of (3.22) it turns out to be uniformly

bounded. We point out that the last integral in (3.25) is non-negative. Eventually, from

(3.22), we can obtain

∫

�

α̂n(u(t)) +
1

2

∫ t

0

∫

�∩{u≥n−1}

|∇ log u|2 ≤ c(R). (3.27)

Hence, we point out that (3.14) implies that

−

∫

�∩{u≥1}

α̂n(u(t)) ≤ c, (3.28)

so that this term can be controlled if it is moved to the right-hand side. To pass to the

limit as n → +∞ in (3.27), rewritten as

∫

�∩{u≤1}

α̂n(u(t)) +
1

2

∫ t

0

∫

�∩{u≥n−1}

|∇ log u|2 ≤ c(R), (3.29)

we apply the monotone convergence theorem and finally get

∫

�

α̂(u(t)) +
1

2

∫ t

0

∫

�∩{u≥0}

|∇ log u|2 ≤ c(R), (3.30)

where α̂(u) = (log u)− if u > 0 and α̂(u) = +∞ otherwise. In particular, (3.30) implies

that (3.18) holds and u > 0 a.e.
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As a consequence of (3.16), (3.18), and exploiting the Poincaré–Wirtinger inequality,

we eventually deduce

‖log u‖L∞(0,T ;L1(�))∩L2(0,T ;V ) ≤ c(R). (3.31)

Finally, owing to (3.6) and (3.1), by (3.31), standard arguments show

‖log p‖L∞(0,T ;L1(�))∩L2(0,T ;V ) ≤ c(R). (3.32)

Now, in (2.25) fix θ̂ instead of θ and let y = log p with p = T1(χ̂). Then, by (2.17)

and (3.32), the right-hand side of the resulting equation is in L∞(Q) + L2(0, T ; V ).

Thus, the theory of evolution equations associated with the maximal monotone operators

ensures that there exists a unique corresponding solution (see [8])

χ = T2(θ̂ , p),

fulfilling the Cauchy condition specified by (1.20) (see (2.14)). We now proceed by

exploiting some formal a priori estimates on χ .

Fourth a priori estimate. Test (2.25) by χt and integrate over (0, t). After integrating by

parts in time and exploiting the Young inequality, we get (see (3.32) and (2.14), (2.16),

(2.17))

‖χt‖
2
L2(0,t;H) + 1

2
‖∇χ(t)‖2

H − 1
2
‖∇χ0‖

2
H

≤ 1
2
‖χt‖

2
L2(0,t;H) + c(‖h(θ̂)‖2

L2(0,t;H) + ‖y‖2
L2(0,t;H)). (3.33)

The above estimate is formal. Indeed, we should proceed by introducing the Moreau–

Yosida approximation of ∂ I[0,1], performing the rigorous estimates, and then passing to

the limit. However, for the sake of simplicity, we omit the detail and refer, e.g., to [5] for

rigorous computations. In particular, we have exploited the chain rule and the fact that

ξ ∈ ∂ I[0,1](χ) to (formally) get

∫ t

0

∫

�

ξχt =

∫

�

I[0,1](χ(t)) −

∫

�

I[0,1](χ0) =

∫

�

I[0,1](χ(t)) ≥ 0.

Thus, combining (2.17) and (3.32) with (3.33), we finally get

‖χt‖L2(0,T ;H) + ‖χ‖L∞(0,T ;V ) ≤ c(R). (3.34)

Fifth a priori estimate. We proceed by formally testing (2.25) (where θ̂ and p are fixed)

by Aχ and integrate over (0, t). By monotonicity of the subdifferential operator ∂ I[0,1]

we have
∫ t

0

∫

�

ξAχ ≥ 0.

Thus, integrating by parts in time and proceeding as in (3.33), applying Young’s inequal-

ity (see also (3.34)), we easily deduce

‖Aχ‖L2(0,T ;H) ≤ c(R), (3.35)
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which leads to (see (3.34))

‖χ‖L2(0,T ;W ) ≤ c(R). (3.36)

By a comparison in (2.25), (3.34) and (3.36) yield

x ‖ξ‖L2(0,T ;H) ≤ c(R). (3.37)

Finally, we deal with (2.24) where χ = T2(θ̂ , p) is fixed (with p = T1(χ̂)) and θ̂ is

considered in the nonlinear coefficients of θt and χt , i.e., we consider the equation

(1 + θ̂h′′(θ̂)χ)θt + Aθ = −θ̂h′(θ̂)χt . (3.38)

Then, owing to (2.18), by the theory of evolution parabolic equations (see, e.g., [2]) there

exists a unique

θ = T3(χ, θ̂),

solving (3.38) with the associated Cauchy condition expressed by (1.20).

Sixth a priori estimate. Test (3.38) by θt and integrate over (0, t). Owing to (2.18) and

the fact that χ ∈ [0, 1], we get

cs‖θt‖
2
L2(0,t;H) ≤

∫ t

0

∫

�

(1 + h′′(θ̂)θ̂χ)θ2
t . (3.39)

Hence, (2.17) implies

∣∣∣∣
∫ t

0

∫

�

h′(θ̂)θ̂χtθt

∣∣∣∣ ≤ ch‖χt‖L2(0,t;H)‖θt‖L2(0,t;H). (3.40)

Thus, applying Young’s inequality and integrating by parts in time (see (2.13)), by (3.34)

it follows that

cs

2
‖θt‖

2
L2(0,t;H) + 1

2
‖∇θ(t)‖2

H ≤ c(R), (3.41)

and consequently

‖θ‖H 1(0,T ;H)∩L∞(0,T ;V ) ≤ c(R). (3.42)

Finally, by a comparison in the equation and due to (2.17), (3.34), and (3.42) it is a

standard matter to infer that

‖θ‖L2(0,T ;W ) ≤ c(R). (3.43)

Now, (3.34) and (3.42) lead to

‖χ‖L2(0,t;V ) + ‖θ‖L2(0,t;H) ≤ t1/2(‖χ‖L∞(0,T ;V ) + ‖θ‖L∞(0,T ;H)) ≤ t1/2c̃(R),

where c̃(R) does not depend on t ∈ (0, T ). Thus, letting t̂ be sufficiently small, we can

infer that

‖θ‖L2(0,̂t;H) + ‖χ‖L2(0,̂t;V ) ≤ R, (3.44)
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so that the operator

T (χ̂ , θ̂ ) := (χ, θ),

for χ = T2(θ̂ , p), p = T1(χ̂), and θ = T3(χ, θ̂),

is well defined from X into itself, at least in the interval (0, t̂). However, as the estimates

we have performed on the solutions do not depend on t̂ , the argument can be extended to

the whole time interval. Thus, for the sake of simplicity, we directly refer to the interval

(0, T ).

For the sake of clarity, we summarize the estimates we have previously obtained:

‖θ‖H 1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) ≤ c, (3.45)

‖χ‖H 1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W )∩L∞(Q) ≤ c, (3.46)

‖ξ‖L2(0,T ;H) ≤ c, (3.47)

‖log p‖L∞(0,T ;L1(�))∩L2(0,T ;V ) ≤ c, (3.48)

‖p‖L2(0,T ;H) + ‖1 ∗ p‖L∞(0,T ;V )∩L2(0,T ;H 2(�)) ≤ c. (3.49)

Remark 3.2. Observe that as log p is bounded in L2(0, T ; H)∩ L2(0, T ; V ) it follows

that p > 0 a.e. in Q. Thus, by (3.14) and the fact that χ ∈ [0, 1] a.e., it follows in addition

that

‖p‖L∞(0,T ;L1(�)) ≤ c. (3.50)

In particular, (3.45) and (3.46) imply that T turns out to be a compact operator in X

endowed with the natural norm induced by L2(0, T ; V )× L2(0, T ; H). Thus, in order to

achieve the Schauder theorem we need to prove that T is continuous from X into itself.

To this aim, we consider a sequence (χ̂n, θ̂n) strongly converging in X to some (χ̂ , θ̂ ),

i.e.,

χ̂n → χ̂ in L2(0, T ; V ), (3.51)

θ̂n → θ̂ in L2(0, T ; H). (3.52)

Then denote by pn = T1(χ̂n), χn = T2(θ̂n, pn), yn = log pn , ξn ∈ ∂ I[0,1](χn), and

θn = T3(χn, θ̂n) the corresponding solutions to (2.24)–(2.28), where χ̂n and θ̂n are fixed

as in the above argument. Our aim is to pass to the limit as n → +∞ and eventually

obtain

χn → χ in L2(0, T ; V ), (3.53)

θn → θ in L2(0, T ; H), (3.54)

with

χ = T2(θ̂ , p), θ = T3(χ, θ̂), p = T1(χ̂). (3.55)
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We first observe that (3.45)–(3.50) hold for the above sequences with constants c chosen

independently of n. Thus, (3.45)–(3.50) written for (θn, χn, pn, ξn, yn) and well-known

weak and weak star convergence results imply that, at least for some suitable subse-

quences, there hold

θn

∗
⇀ θ in H 1(0, T ; H) ∩ L∞(0, T ; V ) ∩ L2(0, T ; W ), (3.56)

χn

∗
⇀ χ in H 1(0, T ; H) ∩ L∞(0, T ; V ) ∩ L2(0, T ; W ) ∩ L∞(Q), (3.57)

ξn ⇀ ξ in L2(0, T ; H), (3.58)

yn ⇀ y in L2(0, T ; V ), (3.59)

pn

∗
⇀ p in L2(0, T ; H), (3.60)

1 ∗ pn

∗
⇀ 1 ∗ p in L∞(0, T ; V ) ∩ L2(0, T ; H 2(�)). (3.61)

Hence, we aim to show that (3.53)–(3.54) and (3.55) hold for θ and χ introduced by

(3.56) and (3.57). Strong compactness results give, at least for some subsequences,

θn → θ in L∞(0, T ; H) ∩ L2(0, T ; V ), (3.62)

χn → χ in L∞(0, T ; H) ∩ L2(0, T ; V ), (3.63)

1 ∗ pn → 1 ∗ p in L∞(0, T ; H) ∩ L2(0, T ; V ). (3.64)

Owing to (3.56)–(3.64) we can pass to the limit in (2.24)–(2.28), now written for the

index n. We first consider the limit of (2.24). Dealing with nonlinear coefficients

ϕn,1 = h′′(θ̂n)θ̂nχn, ϕn,2 = h′(θ̂n)θ̂n,

we observe that due to (2.16), (3.52), and (3.63), ϕn,1 and ϕn,2 converge almost every-

where to h′′(θ̂)θ̂χ and h′(θ̂)θ̂ , respectively. Moreover, they are uniformly bounded (see

(2.17) and (3.46)). Eventually, by the Lebesgue theorem, we have

h′′(θ̂n)θ̂nχn → h′′(θ̂)θ̂χ and h′(θ̂n)θ̂n → h′(θ̂)θ̂ , (3.65)

in Lq(Q) for any q < +∞. Now, owing to (3.65) and (3.56)–(3.57) we can pass to

the limit weakly in H in the equation written for n. We briefly detail the passage to the

limit on the right-hand side. By (2.17) and (3.46) we get that h′(θ̂n)θ̂nχnt is bounded in

L2(0, T ; H). Then, by (3.65) and (3.57), we may identify the limit as

θ̂nh′(θ̂n)χnt ⇀ θ̂h′(θ̂)χt in L2(0, T ; H).

We analogously proceed to conclude that h′′(θ̂n)θ̂nχnθnt converges weakly in L2(0, T ; H)

to h′′(θ̂)θ̂χθt (see (3.65) and (3.56)). Thus, by uniqueness of the solution to the limit

equation, once θ̂ and χ are fixed, we can identify θ = T3(χ, θ̂), so that (3.54) follows by

(3.62) (see also (3.55)). In addition, we may infer that the above convergences actually

hold for the whole sequence.

Now, we consider (2.27) written for n, with χ̂n fixed, and pass to the limit. Arguing

as above, it is now a standard matter to prove that (1 + χ̂n)
−1 converges to (1 + χ̂)−1

strongly in Lq(Q) for any q < +∞ (see (3.51)). Then, as pn(1 + χ̂n)
−1 is bounded in
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L2(0, T ; H) (see (3.49)) and due to (3.60), we may identify its weak limit as

pn

1 + χ̂n

⇀
p

1 + χ̂
in L2(0, T ; H).

Finally, (3.61) allows us to pass to the limit in the convolution product. We observe that, as

in the previous case, by uniqueness of the solution for the limit equation, once χ̂ is fixed,

we eventually entail p = T1(χ̂) (see (3.55)) and deduce that the above convergences

actually hold for the whole sequence.

By (3.52), (2.16), and (3.57)–(3.59) we can easily pass to the limit in (2.25). It

remains to verify that (2.26) and (2.28) hold. Exploiting the monotonicity arguments,

we can identify ξ ∈ ∂ I[0,1](χ) by simply combining (3.58) with the strong convergence

(3.63). Concerning the limit of yn = log pn , we recall that

log un = yn − log(1 + χ̂n) =: ζn.

By (3.51) and the strong convergence of (1 + χ̂n)
−1 to (1 + χ̂)−1 in Lq(Q), for any

q < +∞, we may infer that

log(1 + χ̂n) ⇀ log(1 + χ̂) in L2(0, T ; V ). (3.66)

Then (3.66) and (3.59) lead to

ζn ⇀ ζ := y − log(1 + χ̂) in L2(0, T ; V ). (3.67)

Now we proceed using semicontinuity arguments, as log(·) is a monotone graph. We

aim to show that

lim sup
n→+∞

∫ t

0

∫

�

unζn ≤

∫ t

0

∫

�

uζ,

to identify ζ = log u (see [4]), from which it would follow that y = log p, as (see (3.67))

y − log(1 + χ̂) = ζ = log u = log p − log(1 + χ̂).

Using (3.7) and exploiting (3.64) (from which we recover a strong convergence for

1 ∗ Bpn in L2(0, T ; V ′)) and (3.67), we have

lim
n→+∞

∫ t

0

∫

�

unζn = lim
n→+∞

∫ t

0

∫

�

p0

1 + χ0

ζn −

∫ t

0

〈1 ∗ Bpn, ζn〉

=

∫ t

0

∫

�

p0

1 + χ0

ζ −

∫ t

0

〈1 ∗ Bp, ζ 〉 =

∫ t

0

∫

�

uζ. (3.68)

Thus, the above arguments imply that χ can be identified with T2(θ̂ , p). Then (3.53)

and (3.55) follow from (3.63), which concludes the proof of the Theorem 2.1.

4. Proof of Theorem 2.2

In this section we present some further regularity results on the solutions to our problem,

which hold in the two-dimensional case. Thus, to prove Theorem 2.2 we perform some
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further a priori estimates on the solutions of (2.24)–(2.28). Before proceeding, we recall

the following Gagliardo–Nirenberg inequalities (surely holding in the two-dimensional

case, see [17]):

‖v‖2
L4(�) ≤ c ‖v‖H ‖∇v‖H , ∀v ∈ V, (4.1)

‖∇v‖2
L4(�) ≤ c ‖v‖H 2(�) ‖v‖L∞(�) , ∀v ∈ H 2(�). (4.2)

Seventh a priori estimate. Let us deal with (3.9) and test it by u. After integrating over

(0, t) and using the Hölder inequality, we get (see (3.2), now holding for χ )

1
2
‖u(t)‖2

H + ‖∇u‖2
L2(0,t;H) + ‖u‖2

L2(0,T ;L2(Ŵ))

≤ 1
2
‖u(t)‖2

H +

∫ t

0

∫

�

(1 + χ)|∇u|2 +

∫ t

0

∫

Ŵ

u2(1 + χ)

≤ 1
2
‖u(0)‖2

H +

∫ t

0

∫

�

|u||∇χ ||∇u|

≤ 1
2
‖u(0)‖2

H +

∫ t

0

‖u‖L4(�) ‖∇χ‖L4(�) ‖∇u‖H . (4.3)

To handle the right-hand side of (4.3), we use the Young inequality and the Gagliardo–

Nirenberg inequalities (4.1)–(4.2). We have

∫ t

0

‖u‖L4(�) ‖∇χ‖L4(�) ‖∇u‖H

≤ 1
4
‖∇u‖2

L2(0,t;H) + c

∫ t

0

‖u‖2
L4(�)

‖∇χ‖2
L4(�)

≤ 1
4
‖∇u‖2

L2(0,t;H) + c

∫ t

0

‖u‖H ‖∇u‖H ‖χ‖W ‖χ‖L∞(�)

≤ 1
2
‖∇u‖2

L2(0,t;H) + c

∫ t

0

‖χ‖2
W ‖u‖2

H , (4.4)

where the last constant c depends in particular on ‖χ‖L∞(�) ≤ 1. Hence, after observing

that ‖χ‖2
W is bounded in L1(0, T ) (see (3.46)), we combine (4.4) with (4.3) and make

use of the Gronwall lemma to conclude (see [8])

‖u‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c. (4.5)

Now we discuss the regularity of p = u(1 + χ), which can be deduce by use of

(4.5) and (3.46). Owing to (4.1)–(4.2) and the Hölder inequality we have

∫ t

0

‖∇(u(1 + χ))‖2
H

≤

∫ t

0

‖∇u‖2
H ‖1 + χ‖2

L∞(�) +

∫ t

0

‖u‖2
L4(�)

‖∇χ‖2
L4(�)
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≤ c ‖∇u‖2
L2(0,t;H) + c ‖χ‖L∞(Q)

∫ t

0

‖u‖H ‖∇u‖H ‖χ‖W

≤ c
(
‖∇u‖2

L2(0,T ;H) + ‖u‖L∞(0,T ;H) ‖∇u‖L2(0,T ;H) ‖χ‖L2(0,T ;W )

)
≤ c. (4.6)

Thus, we can easily infer that

‖p‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c. (4.7)

We point out that by (4.7) we can now solve (2.7) in the duality between V ′ and V (see

Remark 3.2), after obtaining by comparison in (3.9) (see (3.6) and (4.7))

‖ut‖L2(0,T ;V ′) =

∥∥∥∥
(

p

1 + χ

)

t

∥∥∥∥
L2(0,T ;V ′)

≤ c, (4.8)

which concludes the first part of the Theorem 2.2.

Now, we proceed to prove (2.34)–(2.35) by assuming (2.31) and (2.32) as further

regularities on the initial data.

Eighth a priori estimate. Test (3.9) by −u−3 and integrate over (0, t) (this is a formal

estimate, for a rigorous justification proceed as in Remark 3.1). Observe that by (2.31)

and (2.14) we deduce u−1(0) ∈ H . We first have

−

∫ t

0

∫

�

ut u
−3 = 1

2

∫ t

0

∫

�

d

dt
(u−2) = 1

2

∥∥u−1(t)
∥∥2

H
− 1

2

∥∥u−1(0)
∥∥2

H
. (4.9)

Then, by definition of B, we write

∫ t

0

〈B(u(1 + χ)), u−3〉

= 3

∫ t

0

∫

�

(1 + χ)|∇u|2u−4 −

∫ t

0

∫

Ŵ

u−2(1 + χ)

+ 3

∫ t

0

∫

�

u−3∇u∇χ. (4.10)

Then the third integral on the right-hand side of (4.10) is estimated as follows (see

(4.1)–(4.2))

3

∫ t

0

∫

�

|u−3∇u∇χ |

≤ c

∫ t

0

‖∇χ‖L4(�)

∥∥∇(u−1)
∥∥

H

∥∥u−1
∥∥

L4(�)

≤ 3
4

∥∥∇(u−1)
∥∥2

L2(0,t;H)
+ c

∫ t

0

‖χ‖W

∥∥u−1
∥∥

H

∥∥∇(u−1)
∥∥

H

≤ 3
2

∥∥∇(u−1)
∥∥2

L2(0,t;H)
+ c

∫ t

0

‖χ‖2
W

∥∥u−1
∥∥2

H
. (4.11)
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As the trace operator is compact V → L2(Ŵ), we may deduce that, for any σ > 0, there

exists Cσ > 0 such that

‖v|Ŵ‖
2
L2(Ŵ) ≤ σ ‖v‖2

V + Cσ ‖v‖2
H , v ∈ V .

Thus, we can control the boundary integral in (4.10) as follows:

∣∣∣∣
∫ t

0

∫

Ŵ

u−2(1 + χ)

∣∣∣∣ ≤ 2

∫ t

0

∥∥u−1
∥∥2

L2(Ŵ)

≤ σ
∥∥∇u−1

∥∥2

L2(0,t;H)
+ Cσ

∥∥u−1
∥∥2

L2(0,t;H)
. (4.12)

Combining (4.9)–(4.12), for a sufficiently small σ , we have

∥∥u−1(t)
∥∥2

H
+

∥∥∇(u−1)
∥∥2

L2(0,t;H)
≤ c

(
1 +

∫ t

0

(
1 + ‖χ‖2

W

) ∥∥u−1
∥∥2

H

)
. (4.13)

Due to (3.46) we have that ‖χ‖2
W is bounded in L1(0, T ). Thus, the Gronwall lemma

applied to (4.13) yields

∥∥u−1
∥∥

L∞(0,T ;H)∩L2(0,T ;V )
≤ c. (4.14)

Ninth a priori estimate. We explicitly write (2.7) as follows:

pt

1 + χ
−

pχt

(1 + χ)2
+ Bp = 0, (4.15)

and formally test by pt . After integrating over (0, t), we can write, by Sobolev’s embed-

dings,

1
2
‖pt‖

2
L2(0,t;H) + 1

2
‖∇ p(t)‖2

H + 1
2
‖p(t)‖2

L2(Ŵ)

≤ c ‖p0‖
2
V + c

∫ t

0

‖p‖L4(�) ‖χt‖L4(�) ‖pt‖H

≤ c + 1
8
‖pt‖

2
L2(0,t;H) + c

∫ t

0

‖p‖H ‖∇ p‖H ‖χt‖H ‖∇χt‖H

≤ c + 1
8
‖pt‖

2
L2(0,t;H) + 1

4
‖∇χt‖

2
L2(0,t;H) + c

∫ t

0

‖p‖2
H ‖∇ p‖2

H ‖χt‖
2
H , (4.16)

where ‖p‖2
H ‖∇ p‖2

H is bounded in L1(0, T ) since (4.7) holds.

Tenth a priori estimate. Let us differentiate (2.25) with respect to time, and then test it

by χt . Note that by a comparison, (2.31) and (2.32) imply χt (0) ∈ H . After integrating

over (0, t) and exploiting the monotonicity of the subdifferential operator, we get

1
2
‖χt (t)‖

2
H + ‖∇χt‖

2
L2(0,t;H)

≤ 1
2
‖χt (0)‖2

H + ch

∫ t

0

‖θt‖H ‖χt‖H +

∫ t

0

‖pt‖H

∥∥p−1
∥∥

L4(�)
‖χt‖L4(�)
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≤ c
(
1 + ‖θt‖

2
L2(0,t;H) + ‖χt‖

2
L2(0,t;H)

)
+ 1

8
‖pt‖

2
L2(0,t;H)

+ c

∫ t

0

∥∥u−1
∥∥2

L4(�)

∥∥(1 + χ)−1
∥∥2

L∞(�)
‖χt‖H ‖∇χt‖H

≤ c + 1
8
‖pt‖

2
L2(0,t;H) + 1

2
‖∇χt‖

2
L2(0,t;H)

+ c

∫ t

0

∥∥u−1
∥∥2

H

∥∥∇u−1
∥∥2

H
‖χt‖

2
H , (4.17)

where by (4.14) we have
∥∥u−1

∥∥2

H

∥∥∇u−1
∥∥2

H
∈ L1(0, T ). Thus, combining (4.17) with

(4.16), the Gronwall lemma ensures that

‖p‖H 1(0,T ;H)∩L∞(0,T ;V ) + ‖χt‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c, (4.18)

which concludes the proof of Theorem 2.2.

5. Proof of Theorem 2.3

In this section we prove the uniqueness result stated by Theorem 2.3 which holds for

sufficiently regular solutions (see (A1) and (A2)). In particular, by (A1), we get the

uniqueness of the solution for the two-dimensional problem, whose existence is estab-

lished by Theorem 2.2, at least once (2.31)–(2.32) are assumed. For the sake of simplicity,

when this is possible, we prefer to treat by the same estimates the two different situa-

tions, corresponding to the sets of assumptions (A1) or (A2). We detail some estimates

which need to be performed using different tools depending on whether (A1) or (A2) is

assumed.

We first introduce

[θ ] = θ1 − θ2, [χ ] = χ1 − χ2, [ξ ] = ξ1 − ξ2

(5.1)

[u] = u1 − u2, [p] = p1 − p2,

where (θi , χi , ξi , pi , yi ) are solutions of our problem fulfilling the hypotheses of Theorem

2.3. Then we make use of the two trivial identities

a1b1 − a2b2 = [ab] = [a]b2 + a1[b] = [a]b1 + a2[b], (5.2)

so that, without loss of generality, in what follows, we rewrite (5.2) and subsequent

computations omitting the subscripts, i.e.,

[ab] = a[b] + [a]b. (5.3)

Then, for N ≤ 3, we recall the Sobolev embedding H 1(�) →֒ L6(�) and the Gagliardo–

Nirenberg inequality, holding, at least, for N = 3,

‖v‖2
L3(�) ≤ c ‖v‖H ‖∇v‖H . (5.4)
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We first consider (2.7) written for (p1, χ1) and (p2, χ2), take the difference, and

integrate with respect to time. Then test the resulting equation by [p] and integrate once

more over (0, t). We get

1
2
‖[p]‖2

L2(0,t;H) + 1
2
‖1 ∗ ∇ [p] (t)‖2

H + 1
2
‖1 ∗ [p] (t)‖2

L2(Ŵ)

≤ −

∫ t

0

∫

�

p

[
1

1 + χ

]
[p]. (5.5)

We recall that by (A1) (or (A2)), the norm ‖p‖L∞(0,T ;V ) is bounded by the data of the

problem. Thus, due to (5.4) and using the mean value theorem, we handle the right-hand

side of (5.5) as follows:

∣∣∣∣
∫ t

0

∫

�

p

[
1

1 + χ

]
[p]

∣∣∣∣

≤ c

∫ t

0

‖p‖L6(�) ‖[χ]‖L3(�) ‖[p]‖H

∥∥∥∥
1

(1 + χ)2

∥∥∥∥
L∞(�)

≤ 1
4
‖[p]‖2

L2(0,t;H) + c

∫ t

0

‖p‖2
V ‖[χ ]‖H ‖∇ [χ ]‖H

≤ 1
4
‖[p]‖2

L2(0,t;H) + 1
4
‖∇ [χ ]‖2

L2(0,t;H) + c

∫ t

0

‖[χ ]‖2
H . (5.6)

Now we take the difference of (2.25) written for (θ1, χ1, ξ1, y1) and (θ2, χ2, ξ2, y2), test

it by [χ ], and integrate over (0, t). We first observe that, by the monotonicity of the

subdifferential operator, we have

∫ t

0

∫

�

[ξ ] [χ ] ≥ 0. (5.7)

Thus, it results that

1
2
‖[χ ] (t)‖2

H + ‖∇ [χ ]‖2
L2(0,t;H)

≤

∫ t

0

∫

�

|[h(θ)]| |[χ ]| +

∫ t

0

∫

�

|[log p]| |[χ ]|. (5.8)

We handle the first integral on the right-hand side of (5.8) by using the Young inequality

and exploiting (2.16)–(2.17),

∫ t

0

∫

�

|[h(θ)]| |[χ ]| ≤ σ ‖[θ ]‖2
L2(0,t;H) + c ‖[χ ]‖2

L2(0,t;H) , (5.9)

and the possible different constants σ will be fixed later. Hence, we treat the second

integral using different tools for N ≤ 2 or N = 3, i.e., in the case when we assume (A1)

or (A2). We first consider the two-dimensional case, i.e., we let (A1) hold. Applying

the Gagliardo–Nirenberg inequalities, in R2, and exploiting the mean value theorem
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yields

∫ t

0

∫

�

|[log p]| |[χ ]|

≤ c

∫ t

0

∥∥p−1
∥∥

L4 ‖[p]‖H ‖[χ ]‖L4

≤ σ ‖[p]‖2
L2(0,T ;H) + c

∫ t

0

‖u−1‖2
L4(�)

‖[χ ]‖H ‖∇ [χ ]‖H

≤ σ ‖[p]‖2
L2(0,t;H) + σ ‖∇ [χ ]‖2

L2(0,t;H)

+ c

∫ t

0

∫

�

∥∥u−1
∥∥2

H

∥∥∇u−1
∥∥2

H
‖[χ ]‖2

H , (5.10)

where
∥∥u−1

∥∥2

H

∥∥∇u−1
∥∥2

H
is bounded in L1(0, T ). In the case N = 3, we have to assume

some further regularity on the solution, i.e., let (A2) (and in particular (2.36)) hold. Then,

exploiting (5.4), we have

∫ t

0

∫

�

|[log p]| |[χ ]| ≤

∫ t

0

∥∥p−1
∥∥

L6 ‖[p]‖H ‖[χ ]‖L3

≤ σ ‖[p]‖2
L2(0,T ;H) + c

∫ t

0

∥∥p−1
∥∥2

L6(�)
‖[χ ]‖H ‖∇ [χ ]‖H

≤ σ ‖[p]‖2
L2(0,t;H) + σ ‖∇ [χ ]‖2

L2(0,t;H)

+ c

∫ t

0

∫

�

∥∥p−1
∥∥4

L6(�)
‖[χ ]‖2

H , (5.11)

and now (2.36) yields
∥∥p−1

∥∥4

L6(�)
bounded in L1(0, T ). Finally, we have to deal with

the difference of θ ’s. We consider (2.24), rewritten for the sake of simplicity as follows:

(
θ + χ(θh′(θ) − h(θ))

)
t
+ Aθ + h(θ)χt = 0. (5.12)

Hence, we take the difference of (5.12), written for the two solutions (θ1, χ1) and (θ2, χ2),

and integrate with respect to time:

[θ ] +
[
χ(θh′(θ) − h(θ))

]
+ 1 ∗ A [θ ] + 1 ∗ [h(θ)χt ] = 0.

After some integration by parts in time and by the use of (5.3), we finally get

[θ ] +
[
(θh′(θ) − h(θ))

]
χ + 1 ∗ A [θ ]

= −(θh′(θ) − h(θ)) [χ ] − h(θ) [χ ] + 1 ∗ h′(θ)θt [χ ] − 1 ∗ [h(θ)] χt

= −θh′(θ) [χ ] + 1 ∗ h′(θ)θt [χ ] − 1 ∗ [h(θ)] χt . (5.13)

Then we test (5.13) by [θ ] and integrate over (0, t). Note that, in our notation, we can

write

(θh′(θ) − h(θ))′ = θh′′(θ) and
[
(θh′(θ) − h(θ))

]
χ = θh′′(θ) [θ ] χ.
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Thus, we can infer, after integrating by parts in time,

cs ‖[θ ]‖2
L2(0,t;H) + 1

2
‖∇ [θ ] (t)‖2

H ≤

3∑

j=1

Ij (t), (5.14)

where the integrals Ij will be handled in a moment. We first consider (see (2.17))

|I1(t)| ≤

∫ t

0

∫

�

|θh′(θ)[χ ][θ ]|

≤ c

∫ t

0

‖[χ ]‖H ‖[θ ]‖H ≤ σ ‖[θ ]‖2
L2(0,t;H) + cσ‖[χ ]‖2

L2(0,t;H), (5.15)

where σ will be fixed later. Then we estimate the second integral as follows:

|I2(t)| ≤

∫

�

|1 ∗ h′(θ)θt [χ ]| |1 ∗ [θ ]| +

∫ t

0

∫

�

|h′(θ)θt [χ ]| |1 ∗ [θ ]|

≤ ‖1 ∗ [θ ]‖L4(�)

∫ t

0

∥∥h′(θ)θt

∥∥
H

‖[χ ]‖L4(�)

+

∫ t

0

‖1 ∗ [θ ]‖L4(�)

∥∥h′(θ)θt

∥∥
H

‖[χ ]‖L4(�)

≤ σ ‖1 ∗ [θ ] (t)‖2
V + c

(∫ t

0

‖θt‖
2
H

)
‖[χ ]‖2

L2(0,t;V ) . (5.16)

Finally, we have

|I3(t)| ≤

∫

�

|1 ∗ [θ ]| |1 ∗ [h(θ)] χt | +

∫ t

0

∫

�

|1 ∗ [θ ]| |[h(θ)] χt |

≤ σ ‖1 ∗ [θ ]‖2
L∞(0,t;V ) + c

(∫ t

0

‖χt‖
2
V

)
‖[θ ]‖2

L2(0,t;H) . (5.17)

Now, we combine (5.5), (5.6) and (5.8)–(5.10), with sufficient small σ ’s. After

observing that ‖θt‖
2
H and ‖χt‖

2
V belong to L1(0, T ) (see (2.19) and (2.35)), we can find

t̂ such that

max

{
c1

∫ t̂+τ

τ

‖θt‖
2
H , c2

∫ t̂+τ

τ

‖χt‖
2
V

}
≤ min

{
cs

2
,

1

8

}
,

for any τ ∈ [0, T − t̂]. Thus, we finally get

cs

2
‖[θ ]‖2

L2(0,t;H) + 1
2
‖1 ∗ [θ ] (t)‖2

V

+ 1
4
‖[p]‖2

L2(0,t;H) + 1
2
‖1 ∗ ∇ [p]‖2

H + 1
2
‖[χ ] (t)‖2

H + 1
8
‖∇ [χ ]‖2

L2(0,t;H)

≤ c

∫ t

0

(
1 + ‖p‖4

V +
∥∥u−1

∥∥2

H

∥∥∇u−1
∥∥2

H

)
‖[χ ]‖2

H

+ 1
4
‖1 ∗ [θ ]‖2

L∞(0,t;V ) , (5.18)
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if (A1) holds, or

cs

2
‖[θ ]‖2

L2(0,t;H) + 1
8
‖1 ∗ [θ ] (t)‖2

V

+ 1
4
‖[p]‖2

L2(0,t;H) + 1
2
‖1 ∗ ∇ [p]‖2

H + 1
2
‖[χ ] (t)‖2

H + 1
8
‖∇ [χ ]‖2

L2(0,t;H)

≤ c

∫ t

0

(
1 + ‖p‖4

V +
∥∥p−1

∥∥4

L6(�)

)
‖[χ ]‖2

H + 1
4
‖1 ∗ [θ ]‖2

L∞(0,t;V ) (5.19)

if (A2) is verified. Then, in both cases, a generalized version of the Gronwall lemma (see

[2]) ensures that

‖[θ ]‖L2(0,t;H) + ‖1 ∗ [θ ]‖L∞(0,t;V ) + ‖1 ∗ [p]‖L∞(0,t;V )

+ ‖[χ ]‖L∞(0,t;H)∩L2(0,t;V ) + ‖[p]‖L2(0,T ;H) ≤ 0, (5.20)

for any t ∈ (0, τ ). Finally, we can repeat the same estimates in the interval (τ, τ + t̂)

and so on. Thus, iterating the above procedure (see [7]) we are allowed to extend (5.20)

on the whole interval (0, T ), which concludes the proof of the uniqueness result stated

by Theorem 2.3.
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Anal., 24 (1995), 1565–1579.

11. P. Dantzer, Properties of intermetallic compounds suitable for hydrogen storage applications, Materials

Sci. Engrg., 329–331 (2002), 313–320.
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