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Neural computation analysis of alumina–titania 
wear resistance coating

Sofiane Guessasma a,*, Mokhtar Bounazef b, Philippe Nardin c
a LERMPS, Université de Technologie de Belfort-Montbéliard (UTBM), Site de Sévenans, 90 010 Belfort Cedex, France

b Hydrology and Materials Laboratory, Sidi Bel Abbe’s University, Algeria
c
FEMTO ST, UMR CNRS 6174- CREST, Parc Tech., Belfort, France

Pin-on-disc tests were performed on alumina–13 wt.% titania coatings obtained under several APS conditions. Friction coeffi-cient

data were analysed using artificial neural network. This permitted to predict parameter ranges for which good wear resistance is
possible when varying each of the process parameters individually with respect to a reference condition. In this case, results sug-gest
that large parameter ranges did not permit to obtain a significant friction coefficient variation which was mainly between 0.51 and
0.61. In addition, injection parameters and total plasma gas flow rate were the control factors.
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1. Introduction

Thermal spraying is a technique of coating manu-

facturing implementing a wide variety of processes and

materials. The atmospheric plasma spraying (APS) is

one of these processes based on the creation of a plasma

jet to melt a feedstock powder. Powder particles are in-

jected with the aid of a carrier gas and gain their velocity

and temperature by thermal and momentum transfers

from the plasma jet. At the surface of the substrate, such

particles flatten and solidify rapidly forming a stacking

of lamellas. Coating microstructure is then characterized

by a heterogeneous phase configuration with porosity

content due to the voids left by the stacking process.

Microcracks appear also in the microstructure as a con-

sequence of stress accommodation due to high spray

temperature and a large difference in thermal expansion

coefficients between substrate and coating. This is

mainly the case of ceramic coatings deposited on metal-

lic substrates.

Plasma sprayed alumina–titania ceramic is one of the

materials largely used in APS process. It is known for its

wear, corrosion and erosion resistance applications.

The control of the ceramic in-service properties and

especially the wear behaviour is sensitive to the large

number of the processing parameters and their inter-

dependencies [1]. Such control is obviously complex to

establish and most models consider a fewer number of

control factors having direct correlations with the pro-

cessing parameters. In this paper, wear resistance of alu-

mina–titania coatings is analysed by varying APS

process parameters. These were selected based on their

main effects on particle velocity and temperature before

substrate impingement and thermal stresses through

spray temperature increase. Analysis based on artificial

neural network [2] was conducted in order to predict

the coupled effects between arc current and other pro-

cess parameters. Laser profilometry was used to assess
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the wear track profiles and improve the knowledge of

the wear mechanisms and its relationship with the

microstructure thermally sprayed coatings.

2. Experimental procedure

2.1. Coating fabrication

Alumina–13 wt.% titania ceramic powder (METCO

130) was thermally sprayed onto metallic coupons

(B25 mm · 10 mm) under atmospheric plasma spraying

conditions. The elongated shape of the powder particles

facilitates the heat transfer from the plasma jet required

to melt the particles (Fig. 1a). However, this morphol-

ogy is not the best one for the injection of such particles

in the plasma jet because of the lower ‘‘flowability’’.

Five process parameters were varied, namely arc cur-

rent (I), hydrogen fraction (H/A), total plasma gas flow

rate (H + A), carrier gas flow rate (CG) and injector

diameter (ID). The three first parameters are known

to influence significantly the plasma jet properties

(enthalpy, velocity, etc.) and the last ones influence par-

ticle trajectories in the plasma jet. The other process

parameters were fixed to reference values as shown in

Table 1. The microstructure of alumina–titania coatings

presents common features to ceramic coatings processed

using thermal spraying (Fig. 1b). These features are

porosities, splat configuration and microcracks which

form due to the low thermal expansion coefficient of

the ceramic material which accommodate the stresses

in the coatings.

Wear tests were performed using a pin-on-disc (POD)

arrangement (Fig. 2) on a CSEM1 tribometer (single

point contact). The coated sample was slided against a

6 mm ball made of WC/Co under an applied load of

5 N. The sliding contact was maintained at 8 mm from

the sample centre. The sample was rotated at 394 rpm

corresponding to a linear speed of 0.33 m s�1. The slid-

ing distance was approximately 1000 m. Wear test

parameters are shown also in Table 1.

2.2. Artificial neural network concept

Experimental data were analysed using artificial neu-

ral network methodology [2,3]. Such concept is a robust

statistical technique which learns from experimental

data by training process and relates between inputs

and output of a given problem [4]. In this study, the

inputs were the arc current, hydrogen fraction, total

plasma gas flow rate, carrier gas flow rate and injector

diameter. The output is the friction coefficient. Neurons

act as mathematical processing units and permit to

transform the input values and transmit them to the out-

put in a way that the predicted response approaches the

experimental one. Each neuron is characterised by an

Fig. 1. (a) Morphology of the alumina–titania powder particles. (b) A

top view of the microstructure of alumina–titania coating revealed

using SEM microscopy.

Table 1

Experimental layout

Value

Spray parameter

Gun Sulzer-Metco F4

Feedstock feed rate 22 g min�1

Spray distance 125 mm

Spray angle 90�

Scanning step 12 mm

Cooling air jets 2

Scanning velocity 16 mm s�1

Pin-on-disk test

Sliding velocity 0.33 m s�1

Applied load 5 N

Sliding distance 1000 m

1 CSEM: Centre Suisse d�Electronique et de Microtechnique SA,

Jaquet Droz 1, 2007 Neuchâtel, Switzerland.
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input, an output and an activation function and these

are related in the following form

OðxiÞ ¼ f ½IðxiÞ� ð1Þ

where O(xi) is the output of neuron xi, f is the transfer or

activation function which transforms nonlinearly the

neuron input I(xi) of neuron xi. In this study, the sig-

moid function was used as a transfer function.

Neurons are connected with means of numbers called

weights. Each neuron receives the weighted sum from

the other neurons, following the relationship

IðxiÞ ¼ wðxi; yjÞOðyjÞ ¼ Oðxi; yÞ; j ¼ 1;N y ð2Þ

where w(xi,yj) represents the weight value between neu-

ron xi and yj from layers x and y, respectively. Ny repre-

sents the number of the neurons in the layer y connected

to neuron xi.

The optimization process of the neural network con-

sists in adjusting the weight values in way to lower the

difference between the predicted and the real responses.

The calculation starts by zeroing the weights and calcu-

lating the quadratic error of the network output

wðxi; yjÞ ¼ 0 8i and j ð3Þ

J t ¼
1

2
ð~r0 �~rtÞ

2
ð4Þ

where rt is the predicted response of the neural network

at the iteration level t, r0 is the true response issued from

the database. k represents the index of the neurons in the

output layer z.

Weights are corrected according to the quick propa-

gation algorithm

Dwðxi; yjÞ
t
¼

rJ yðxi; yjÞ
t

rJ yðxi; yjÞ
t�1

�rJ yðxi; yjÞ
t
� Dwðxi; yjÞ

t�1

ð5Þ

where Dwt is the weight change at the iteration level t.

The max iteration level is 1000 cycles for any run. DJ

represents the error rate.

The number of neurons in the network is a part of the

optimisation process and is selected based on the mini-

mum residual error for each run (Fig. 3). The maximum

neuron number allowed in the structure is calculated

for a weight number lower than 1.5 times the database

size. A database of 16 cases (Table 2) enlarged 10 times

was used to obtain the optimized structure, using the

following equation

ðOk; IkÞnew ¼ ðOk; IkÞoriginal þGAUSSðÞ � ðdOk
; dIk Þ ð6Þ

where (Ok, Ik)original and (Ok, Ik)new are the kth set of

input and output patterns in the original and enlarged

databases. GAUSS() is a random number generator

from a Gaussian distribution of numbers between �1

and 1. The couple ðdOk
; dIk Þ represents the standard

deviation associated to the experimental results.

The database enlargement permits to tune a large

number of weight parameters and is known as a ‘‘jitter

effect’’ in the ANN formalism [5,6]. An optimized

Fig. 2. POD disc arrangement.

I

H/A

H+A

CG

ID

F

Fig. 3. Optimized artificial neural network architecture.
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structure (Fig. 3) related process parameters to friction

coefficient value.

3. Results and discussion

3.1. Surface finishing and wear behaviour

The relationship between roughness of the slided

materials is an important factor which determine the

nature of the wear process. In ceramic materials espe-

cially alumina based materials, the wear can be identi-

fied as a combination of several mechanisms including

tribochemical reaction, plastic flow, plowing and micro-

fracture. The formation of the tribofilm is dependent on

these mechanisms and mainly influenced by the rough-

ness of the part and the counter parts during the plow-

ing process. When sliding the WC/Co ball presenting a

high surface finishing state against none-grounded coat-

ings, it was remarked that negative wear operates (Fig. 4).

This is identified as the deposition of the ball material on

the coating surface as shown in Fig. 4b. Samples which

were ground before performing the wear tests presented

positive wear (Fig. 5). In addition, large roughness

causes significant vibrations of the magnetic sensor in

the POD arrangement which can false the estimation

of the friction coefficient.

3.2. Process parameters and friction coefficient

Experimental friction coefficient values obtained

from POD tests were analysed using the cumulative

normal probability plot [7]. This method permitted to

obtain mean friction coefficient value and related stan-

dard deviation associated to the steady-state regime

(Fig. 6). In this case, scatter around mean values did

not exceed 3% and represented friction coefficient fluc-

tuation during sliding. Predicted friction coefficients

obtained using neural computation exhibited a low

scatter related to experimental values. This was less

than 2.2%. In Table 2, this scatter is expressed as

function of the experimental values as the absolute

difference between the experimental and predicted

responses.

Fig. 7 shows the predicted evolution of friction coef-

ficient with respect to process parameters. These are

expressed in a non-dimensional form, which writes

y ¼
x� xmin

xmax � xmin

ð7Þ

where y is the formatted value relative to parameter va-

lue x, max and min values associated to parameter x are

summarized in Table 3. The xmin and xmax values repre-

sent the process window for which the main influence of

any variable is correctly represented. When the variable

range is scanned in the dimensionless form, the sensitiv-

ity to the friction coefficient is rendered equivalent to

any variable and thus the influences can be measured

properly.

Predicted results are obtained by varying individually

process parameters at the input of the network and

keeping the others to a reference condition. Fig. 7 shows

that friction coefficient decreases with all process para-

meter increase. This suggests that reference condition

is not an optimized thermal spray condition. Friction

coefficient was more sensitive to injection parameters,

namely carrier gas flow rate and injector diameter and

total plasma gas flow rate. Table 3 gives the friction

coefficient relative increase with respect to individual

process parameter variations. The range for each vari-

able was selected larger than the experimental range to

show the predictive way of the neural network. In this

range, the most admitted values in the process window

are represented. This is calculated assuming the follow-

ing relationship

rð%Þ ¼ 100 �
F maxðyÞ � F minðyÞ

F minðyÞ
ð8Þ

where r is the relative variation corresponding to param-

eter efficiency. Fmax and Fmin are maximum and mini-

mum friction coefficient values obtained when varying

process parameter y.

The role of arc current can be explained by an effect

on the available energy for powder particle heating and

acceleration before substrate impingement [8]. An in-

crease of the plasma energy with the increase of arc cur-

rent improves flattening process of particles as their

viscosity and surface tension decrease. This in turn re-

duces porosity level between lamellas [9] and increases

inter-lamellar cohesion [10]. Cohesion improvement is

responsible for a good wear resistance and can explain

the decrease of friction coefficient. However, the low

Table 2

Experimental and predicted friction coefficient values for the consid-

ered tests

Exp I H/A A +H CG ID F

Experimental Predicted

C1 440 35 30 2.6 1.5 0.578 ± 0.010 0.587 ± 0.009

C2 440 35 30 3.7 1.8 0.523 ± 0.011 0.531 ± 0.009

C3 440 35 60 2.6 1.8 0.548 ± 0.012 0.550 ± 0.001

C4 440 35 60 3.7 1.5 0.533 ± 0.010 0.537 ± 0.004

C5 440 13 40 2.6 1.8 0.532 ± 0.011 0.544 ± 0.012

C6 440 13 40 3.7 1.5 0.591 ± 0.012 0.596 ± 0.005

C7 440 43 40 2.6 1.5 0.557 ± 0.012 0.569 ± 0.012

C8 440 43 40 3.7 1.8 0.521 ± 0.011 0.527 ± 0.005

C9 630 35 30 2.6 1.8 0.562 ± 0.011 0.569 ± 0.007

C10 630 35 30 3.7 1.5 0.563 ± 0.010 0.572 ± 0.009

C11 630 35 60 2.6 1.5 0.536 ± 0.010 0.541 ± 0.006

C12 630 35 60 3.7 1.8 0.551 ± 0.012 0.558 ± 0.007

C13 630 13 40 2.6 1.5 0.545 ± 0.011 0.553 ± 0.008

C14 630 13 40 3.7 1.8 0.527 ± 0.010 0.532 ± 0.004

C15 630 43 40 2.6 1.8 0.574 ± 0.012 0.578 ± 0.004

C16 630 43 40 3.7 1.5 0.542 ± 0.011 0.547 ± 0.006

4



Fig. 5. Wear track showing positive wear analysed used laser profilometry. (a) Elevation profile and (b) 3D surface roughness map.

Fig. 4. Wear track showing negative wear analysed used laser profilometry. (a) Elevation profile and (b) 3D surface roughness map.
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decrease of friction coefficient, which is within the stan-

dard deviation, indicates that injection parameters were

not adapted, especially carrier gas flow rate. Indeed, this

parameter controls particle injection velocity. When the

flow rate is too low, initial particle velocity is not suffi-

cient to overcome plasma jet viscosity. In the counter

part, if carrier gas flow rate is too high, particles may

cross the plasma jet and degrade consequently coating

properties. Thus, the dependence of friction coefficient

on carrier gas flow rate can be approximated by a para-

bolic curve for which an optimal should exist. Despite of

the fact that there is only two experimental sets available

to show the influence of this parameter, the neural net

learnt the correlations based on the whole enlarged

database. Thus, the decrease of friction coefficient rela-

tive to the increase of this parameter can be explained

by an improved particle trajectory in the plasma jet

[11] which increases particle temperature.

A large injector diameter seems to be more adequate

and can be related to an increased particle velocity

dispersion [8]. Its influence is more correlated to spray

temperature rather than to particle velocity and temper-

ature. Indeed, energetic parameters increase microcrack

density in the microstructure by the increase of coating

temperature because of the increase of the heat flux

transmitted to the workpiece and different thermal

expansion coefficients between ceramic coating and

metallic substrate. Microcrack density is expected to be

lower when varying injection parameters especially injec-

tor diameter.

Hydrogen ratio plays the same effect as arc current

because it improves plasma jet enthalpy and viscosity

[12]. However, this parameter did not exhibit a signif-

icant effect on friction coefficient. This can be ex-

plained by the low arc current value associated to

hydrogen variation. When the hydrogen ratio is suffi-

cient, plasma energy level associated to total plasma

gas flow rate becomes more important and plays thus

the same role as that of arc current. However, the in-

crease of argon gas in the mixture decreases particle

temperature because of plasma core shortening associ-

ated to a more diffuse plasma [9,12]. In this case, par-

ticle injection must be adapted in order to introduce

particles deeply in the plasma jet [8]. This can explain

the sigmoid shape associated to total plasma flow rate

increase.

3.3. Microstructure and friction coefficient

The discussion of process parameter effects can be re-

duced to the discussion to the available energy to melt

particles. The analysis of the particle temperature pro-

files during their flight towards the substrate shows

clearly the shift of the temperature distribution when

increasing the net energy (Fig. 8a). A lower condition

set would have the consequence to lower the coating

cohesion and to provoke the incursion of unmolten par-

ticles (Fig. 8b). These can increase the plowing phenom-

enon before the formation of the glassy film and

increases the friction coefficient.
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Fig. 7. Friction coefficient variation as function of process parameters

keeping at each time the other parameter at a reference value. (ref.:

I = 440 A; H/A = 35%; H + A = 40 SLPM; CG = 2.6 SLPM; ID =

1.5 mm).
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Table 3

Friction coefficient relative variation with respect to process

parameters

Parameter type (unit) I (A) H/A

(%)

H + A

(SLPM)

CG

(SLPM)

ID

(mm)

Parameter

range, xmin–xmax

400–680 10–45 25–65 2.5–4 1–2

Friction coefficient

relative variation (%)

2 2 8 5 10
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4. Conclusions

Friction coefficient of alumina–13 wt.% titania exhib-

ited a low variation with respect to process parameters.

This variation was predicted to be less than 10% when

using an artificial neural network. All process parame-

ters, when varied individually with respect to a reference

condition, improved wear resistance. This study pointed

out the role of injection parameters and total plasma gas

flow rate in the control of friction coefficient evolution.

Arc current and hydrogen ratio were not efficient

parameters when considering their relative increase with

respect to the reference condition. In order to study

other process parameter combinations at the input of

the artificial neural network, a methodology is under

development based on hypervolume representations in

order to predict optimal parameter ranges for which

wear resistance is improved.
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