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LAMN property for hidden processes: the case of integrated diffusions

1 Statement of the problem and main results

Introduction

Model. Let us consider the family of strong solutions X θ to the following scalar equation

dX θ t = a(X θ t , θ)dB t + b(X θ t )dt, (1) 
X θ 0 = ξ 0 , (2) 
where B is a one-dimensional Brownian motion. We suppose that θ lies in some compact interval Θ of R and that ξ 0 is a real constant, which does not depend on θ and thus is known to the statistician.

Observations. We consider µ some probability measure on [0, 1] and assume that our observation of the process is given by the local means of X associated with this measure, with sampling of size 1/n:

(observations)

X j = X j,n := 1 0 X s+j n dµ(s), for j = 0, . . . , n -1.

In the sequel this case is referred to as the integrated diffusion case. This is an indirect observation of the process X and the observation is no more the realization of a Markov chain. Thus, this framework is deeply related to the inference of hidden processes. We assume that µ does not depend on θ and is known by the statistician. When µ is equal to the Lebesgue measure, the observation is the discrete sampling of I t = t 0 X s ds. This is presumably the simplest case of the observation of only one component of a bidimensional diffusion process (X t , I t ) 0≤t≤1 , which is known in the literature as the standard integrated diffusion case. Clearly, the usual case of pointwise observation of X is obtained if µ is some Dirac measure. However we will exclude that the measure has mass only on the end points of the interval and hence make the assumption: µ((0, 1)) > 0.

(
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This paper is concerned with the Local Asymptotic Mixed Normality property of this statistical model. Motivation. Taking as the observation the integrated process is actually quite natural. For instance, it arises when the realization of the process has been observed after passage through an electronic filter. Also, in random mechanics (see Krée and Soize [START_REF] Krée | Random vibrations of mechanical structures[END_REF]), X models the velocity of the system and in general, we observe its position, i.e. the integral of X. The modeling of ice-core data can be made through an integrated diffusion process (see Ditlevsen, Ditlevsen and Andersen [START_REF] Ditlevsen | The fast climate fluctuations during the stadial and interstadial climate states[END_REF]). Integrated processes also play an important role in finance, when modeling the stochastic volatility (see for instance Barndorff-Nielsen and Shephard [START_REF] Barndorff-Nielsen | Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics[END_REF] and references therein).

Literature background. Despite of these numerous motivations, few statistical studies deal with this situation. Gloter [START_REF] Gloter | Discrete sampling of an integrated diffusion process and parameter estimation of the diffusion coefficient[END_REF] [START_REF] Gloter | Parameter estimation for a discrete sampling of an integrated Ornstein-Uhlenbeck process[END_REF] provides an estimator in the multiplicative case a(x, θ) = θa(x) and proves its consistency and asymptotic normality. The case of a low frequency observation (local means over interval of length 1) is studied by Ditlevsen and Sørensen [START_REF] Ditlevsen | Inference for observations of integrated diffusion processes[END_REF], using prediction-based estimating functions. On the other hand, for a direct observation of the diffusion X, there are many contributions in the literature: see Genon-Catalot and Jacod [START_REF] Genon-Catalot | On the estimation of the diffusion coefficient for multi-dimensional processes[END_REF], Prakasa-Rao [START_REF] Rao | Statistical inference for diffusion type processes[END_REF] and references therein. None of these works deal with the problem of optimal estimation in the integrated diffusion model.

Here, we directly address the problem of the LAMN property, whose fundamental consequence is to provide information on the minimal dispersion for an estimator of the parameter θ (see Ibragimov and Has'minskii [START_REF] Ibragimov | Has'minskii, Statistical estimation. Asymptotic theory[END_REF], Jeganathan [START_REF] Jeganathan | On the asymptotic theory of estimation when the limit of the log-likelihood ratios is mixed normal[END_REF] [START_REF] Jeganathan | Some asymptotic properties of risk functions when the limit of the experiment is mixed normal[END_REF], Prakasa-Rao [START_REF] Rao | Statistical inference for diffusion type processes[END_REF], Le Cam and Lo Yang [START_REF] Le Cam | Asymptotics in statistics. Some basic concepts[END_REF]). Such properties, for the observation of a discrete sampling of the diffusion, have been established in the one-dimensional setting by Dohnal [START_REF]On estimating the diffusion coefficient[END_REF], and then extended by Gobet [START_REF] Gobet | Local asymptotic mixed normality property for elliptic diffusion: a Malliavin calculus approach[END_REF] [START_REF] Gobet | LAN property for ergodic diffusions with discrete observations[END_REF] to the multidimensional setting, both in the high frequency and ergodic framework. For this, Malliavin calculus techniques were used and paved the way to possibly handle more general situations than Markovian observations. This is exactly this way we follow in this work, to tackle the case of integrated diffusion.

Outlook. We guess that this model captures the main difficulty of most hidden models: the lack of Markov property for the observation. Hence the method developed below (augmented observation, Malliavin calculus representation, Gaussian approximation) may be useful to treat more general situations. Among the natural situations coming from applications, one can think of the measurement of a stochastic phenomenon blurred by some noise, or stochastic volatility models widely used in finance [START_REF] Genon-Catalot | Parameter estimation for discretely observed stochastic volatility models[END_REF]. This can be formalized as follows: the system X θ is governed by the d + d ′ -dimensional stochastic differential equation

X θ t = X θ 0 + t 0 A(X θ s , θ)dB s + t 0 B(X θ s )ds,
where only a discrete sampling of the first d components is observable. This is left to further research.

Main results

Before going into the details of our results, we present a very simple example which gives some insight on the type of results that one can expect.

Example 1 (Multiplicative Brownian case). Assume that the model is X θ t = θB t (corresponding to b ≡ 0 and a(•, θ) = θ, ξ 0 = 0).

1. Consider a first situation where one observes the diffusion at discrete times. Hence, the observation is (X i/n ) 0≤i≤n , or equivalently (Z i = θ(B i/n -B (i-1)/n ) = θG i ) 1≤i≤n , where G i are independent centered Gaussian variables, with a known variance. Thus, the estimation of θ 2 is achieved at rate √ n, with a minimal variance equal to 2θ 4 .

2. Now consider a second situation where one observes only the integrated diffusion at discrete times. Hence, the observation is

( Xi = θ 1 0 B (s+i) n µ(ds) = θG ′ i ) 1≤i≤n
, where (G ′ i ) i is a centered Gaussian vector, with a known covariance matrix. In addition, this matrix is invertible and thus, θ 2 can be estimated with the same rate and asymptotic variance as before.

This means that observing the process at discrete times or its integrated version lead to the same accuracy in the parameter estimation. The results of this paper state that this is true, even for the more general models (1)-( 2), which is far from intuitive.

Before stating our main results, we define the working assumptions of this paper. The coefficients a : R × Θ → R and b : R → R, are assumed to satisfy the following set of conditions (as usual, derivatives w.r.t. θ are denoted with a dot: for instance, ∂ θ a = ȧ).

Assumption (R)

1) The function a : R × Θ → R is C 1+γ for some γ ∈ (0, 1) (it admits a derivative which is γ-Hölder). The one dimensional functions x → a(x, θ), x → ȧ(x, θ), x → b(x) are assumed to be C 3 (R).

2) The functions a, ȧ and b and all their derivatives with respect to x are bounded uniformly in θ.

3) We have the non degeneracy condition, for some a: a(x, θ) > a > 0 for all x, θ.

Actually, the uniform controls in (R) can be weakened to local ones, using extra techniques of space localization (see Lemma 4.1 in [START_REF] Gobet | Local asymptotic mixed normality property for elliptic diffusion: a Malliavin calculus approach[END_REF]). We omit further details. An extension of our results to a multidimensional parameter θ and to time dependent coefficients is straightforward, in the same way as it is done in [START_REF] Gobet | Local asymptotic mixed normality property for elliptic diffusion: a Malliavin calculus approach[END_REF] and [START_REF] Gobet | LAN property for ergodic diffusions with discrete observations[END_REF]. We denote by P θ the law on C([0, 1]) of the process X θ , and then simply denote X the canonical process on C([0, 1]). We let p n,θ denote the law on R n of the observation O n := (X j ) j=0,...,n-1 , when the true value of the parameter is θ. And for θ 0 , θ 1 two values of the parameter we introduce the likelihood ratio,

Z n θ 0 ,θ 1 = dp n,θ 1 dp n,θ 0 (O n ). ( 4 
)
The main result is that this statistical model satisfies the so called LAMN property. For this denote the sequence u n := n -1/2 , and let θ 0 ∈ Θ and h ∈ R such that θ 0 + u n h ∈ Θ, ∀n. Then, by the following theorem, the model has the LAMN property for the likelihood at point θ 0 , with rate u n and conditional information:

I θ 0 = 2 1 0 ȧ a 2 (X s , θ 0 )ds.
Theorem 1. Assume (R), then we have the expansion,

log Z n θ 0 ,θ 0 +unh = hN n -1/2h 2 I n + R n ,
where

I n P θ 0 ---→ n→∞ I θ 0 , R n P θ 0 ---→ n→∞
0 and there exists an extra random variable N ∼ N (0, 1) independent of the process X such that, N n converges in law under P θ 0 to N I θ 0 . Moreover this convergence is stable: for any random variable F measurable with respect to the X, we have the convergence in law

(F, N n ) law ---→ n→∞ (F, N I θ 0 ).
In particular it implies the joint convergence under P θ 0 :

(I n , N n ) law ---→ n→∞ (I θ 0 , N I θ 0 ).

Remark 1.

Let us stress that the rate u n = n -1/2 and the information I θ 0 are the same one as for the pointwise observation (see Genon-Catalot and Jacod [START_REF] Genon-Catalot | On the estimation of the diffusion coefficient for multi-dimensional processes[END_REF]). This corroborates the intuition from Example 1.

We will not be able to prove directly this result, instead we shall consider first the easier problem where one can observe additionally the exact value of the diffusion at some instants. This device was proved to be useful in Gloter and Jacod [START_REF] Gloter | Diffusions with measurement errors. I. Local asymptotic normality[END_REF] for the study of a Gaussian diffusion process observed with noise that leads to non Markovian observations too.

Let k = k n be an integer in {1, . . . , n} and define L = L n := ⌊n/k⌋, then we consider the set of random variables:

O n,aug = O n ∪ X kl n , l = 1, . . . , L ∪ {X 1 } .
Since this set of variables contains more data than the initial set, we call it the augmented observation set. Clearly, we can split this set into blocks, B 0 , . . . , B L , where for l = 0, . . . , L -1

B l = X kl , . . . , X kl+k-1 , X k(l+1)/n
and B L = X kL , . . . , X n-1 , X 1 . Note that if kL = n we consider that the last block is empty, and (immediate) modifications should take care of this in the sequel, however to have shorter notations we will not explicitly write these modifications.

The advantage of this set of augmented observation is that using the Markov property of X, the law the block B l conditional to the previous blocks (B l ′ ) l ′ <l only depends on the last variable, X kl n , of the block B l-1 .

Denote by p n,aug,θ the law of O n,aug on R n+L+1 and introduce the likelihood ratio for the augmented observation:

Z n,aug θ 0 ,θ 1 = dp n,aug,θ 1 dp n,aug,θ 0 (O n,aug ). ( 5 
)
Theorem 2. There exists a sequence k n → ∞, such that the augmented model satisfies the LAMN property:

log Z n,aug θ 0 ,θ 0 +unh = hN aug n -1/2h 2 I aug n + R aug n ,
where

I aug n P θ 0 ---→ n→∞ I θ 0 , R aug n P θ 0 ---→ n→∞
0 and there exists an extra random variable N ∼ N (0, 1) independent of the process X such that, N aug n converges in law under P θ 0 to N I θ 0 . Moreover this convergence is stable.

¿From Theorem 2 and from the consequences of the LAMN property, an asymptotically optimal estimator θ n in the augmented model should satisfy that √ n(θ n -θ 0 ) is asymptotically distributed under P θ 0 as 1 √ I θ 0 N . However any estimator in the initial model of observation O n can be seen as an estimator in the augmented model, hence the Theorem 2 is sufficient by itself to imply a lower bound for estimation in the initial model.

Remark 2. The fact that k n → ∞ means that the data added in the observation are sparse compared to the initial data. Actually, the Theorem 2 holds for any sequence k n whose growth to ∞ is slow enough.

If we assume now that k n = k ∈ N remains fixed as n → ∞, the number of data (X kl n ) l=0,...,L added to the model is not negligible compared to the number of initial data. Hence the statistical properties of the augmented model shall depend on k and thus differ from the statistical properties of the initial model given in Theorem 1. Actually we have the following LAMN property for the augmented model in that case. Theorem 3. If a sequence k n = k is fixed, then the augmented model satisfies the LAMN property with rate u n = n -1/2 and conditional information equal to:

I k,θ 0 = 2 k + 1 k 1 0 ȧ a 2 (X s , θ 0 )ds.
As expected, the conditional information is greater by a factor (k + 1)/k, due to the non negligibility of the added observations. Actually this factor should be read as 1 + 1 k , meaning that an addition of 1 k % of data increases the information in the same way. Local means and values at discrete points are not redundant (as expected from the multiplicative Brownian case, see Example 1) and moreover, they bring an equal information. Considering k = 1 is interesting, since we observe then on each block [i/n, (i + 1)/n] both the exact value X i n and a mean X i . It appears that the asymptotic information is then twice the information given by the observation of only the exact values (or only the means).

Outline of the paper

In Section 2 we study the score function given by the observation of only one block of data (B 0 for instance). We first focus on the existence of a density for a block of data; and in the case of a block of size 2, (n 1/2 1 0 (X s/n -X 0 )dµ(s), n 1/2 (X 1 n -X 0 )) we give original lower and upper bounds of Gaussian type for the density. It is useful for our proof of the LAMN property, but it is also interesting for itself.

In Section 2.2 we present an exact expression for the score function of a block of data B 0 (see Theorem 5). This result is the key point in the proof of the LAMN property, it extends a former result of Gobet [START_REF] Gobet | Local asymptotic mixed normality property for elliptic diffusion: a Malliavin calculus approach[END_REF] [START_REF] Gobet | LAN property for ergodic diffusions with discrete observations[END_REF] which gave the score function for the observation of X θ . In Section 2.3 we study an explicit approximation for the score function when the sampling interval 1/n tends to zero and the length of the block k/n remains moderate so that one can consider the coefficients of the diffusion X almost constant on the interval [0, k/n]. The key point is the Gaussian approximation for the diffusion given in Section 2.3.1.

In Section 3 we deduce from the previous results a proof of Theorems 2-3 and Section 4 deals on how to deduce Theorem 1 from Theorem 2.

Finally the Appendix contains the proof of some results of Section 2.1 together with some useful lemmas.

Notations. In our proofs, we will keep the same notation for constants which may change from one line to another. In particular, the constants c, c(k), c(p), c(p, k) will stand for all finite, non-negative and non-decreasing deterministic functions of an index p (arising from L p -norm) and of the block size k. These constants are independent of n, θ and depend on the process X θ , only through the bounds on the coefficients a, b and their derivatives.

Score function for a block of data

In this section we shall study the law of the blocks of data B l ; recalling the Markov property of the process X it is sufficient to focus on B 0 = X 0 , . . . , X k-1 , X k/n assuming that the diffusion X now starts from some value x 0 . In this section it is convenient to transform the short time asymptotic k/n → 0 into an almost stationarity property of the coefficients. To this end, we introduce the rescaled process

X n,θ t = n 1 2 (X θ t n -x 0 ) (where X θ solves (1) with X θ 0 = x 0 ). It solves the equation dX n,θ t = a n (X n,θ t , θ)dW t + b n (X n,θ t )dt, X n,θ 0 = 0, ( 6 
)
where W is a standard Brownian motion (arising from the rescaling of B), and

a n (x, θ) = a(x 0 + n -1/2 x, θ), b n (x) = n -1/2 b(x 0 + n -1/2 x). (7) 
Since for the score we are only concerned with the law of X n,θ , we can assume that W is independent of the rescaling coefficient n.

The density of an integrated diffusion

In this section, we will present preliminary results on the density of the law of the mean of a diffusion process. However the proofs are postponed to Section 5.1. To our knowledge, the lower and upper bounds for this density are new results.

Existence of the density

Our first result actually deals with the two dimensional variable given by solely one local mean and the exact value:

(U n,θ , V n,θ ) : = 1 0 X n,θ s dµ(s), X n,θ 1 ( 8 
) law = n 1/2 1 0 (X θ s n -x 0 )dµ(s), n 1/2 (X θ 1 n -x 0 ) .
Notice that, by the Markov property, the preliminary study of this bidimensional variable will be a key step to obtain results on the observation vector O n .

Theorem 4. Assume (R), then the vector (U n,θ , V n,θ ) admits a density p n x 0 (., ., θ) on R 2 , and there exist two constants c 1 > c 2 > 0, such that,

c -1 1 e -c 1 (u 2 +v 2 ) ≤ p n x 0 (u, v, θ) ≤ c -1 2 e -c 2 (u 2 +v 2 ) . (9) 
The constants c 1 and c 2 only depend on the bounds on the coefficients a, b and their derivatives.

The proof of this theorem is given in Section 5.1. The existence of the density is obtained by means of the Malliavin calculus. On the other hand, the upper and lower bounds rely on the direct study of (U n,θ , V n,θ ) around its skeleton (see Hirsch and Song [START_REF] Hirsch | Criteria of positivity for the density of a Wiener functional[END_REF] [13] for related works; and Kohatsu-Higa [START_REF] Kohatsu-Higa | Lower bounds for densities of uniformly elliptic random variables on Wiener space[END_REF] for different methods involving Malliavin calculus).

The following is a direct corollary of Theorem 4:

Corollary 1. The vector B 0 = X 0 , . . . , X k-1 , X k/n admits a positive density. Proof. The bi-dimensional process (X l , X l+1 n ) l=0,...,k-1 is a Markov chain with transition density p x l (x l , x l+1 , θ) = np n x l (n 1 2 (x l+1 -x l ), n 1 2 (x l+1 -x l ), θ).
Then it is clear that the vector B 0 admits a positive density.

Invertibility of the Malliavin covariance matrix of a block

Actually the existence of a density for the law of the random variable B 0 will not be sufficient, and we need a non degeneracy condition for this variable.

Before this, let us precise briefly a few notations from the Malliavin calculus, used in the sequel (see Nualart [START_REF] Nualart | The Malliavin Calculus and Related Topics. Probability and its application[END_REF] [23] for details). We let H be the Hilbert space L 2 ([0, ∞)) so that the Brownian motion (W t ) t∈[0,∞) , appearing in [START_REF] Genon-Catalot | Parameter estimation for discretely observed stochastic volatility models[END_REF], is canonically associated to this Hilbert space via the standard L 2 isometry. In this setting, for any p ≥ 1 and natural number q, recall that the set D q,p denotes the space of real valued Wiener functionals with q derivatives and whose derivatives belong to L p (Ω). If we denote by D the derivative operator then the space D q,p is endowed with the norm,

F q,p = E(|F | p ) + q j=1 E( D j F p L 2 ([0,∞) j ) ) 1 
p . The space of variable with q derivatives in any L p (Ω) is denoted D q,∞ = ∩ p≥1 D q,p . These definitions can be extended to random variables with values in any Hilbert space V and the corresponding spaces are denoted D q,p (V ), D q,∞ (V ) (see Section 1.5 in Nualart [START_REF] Nualart | The Malliavin Calculus and Related Topics. Probability and its application[END_REF]). In particular the operator D is then well defined from D q,∞ to D q-1,∞ (H). Finally, the adjoint operator of D is the Skohorod integral δ, and the Malliavin covariance matrix of an element

F ∈ D 1,∞ (R d ) is defined as the matrix γ F 1 ,••• ,F d = [ D.F i , D.F j H ] 1≤i,j≤d .
Now, we consider the variables,

U n,θ 0 := 1 0 X n,θ s dµ(s) (10) 
U n,θ

1 := 1 0 (X n,θ s+1 -X n,θ s )dµ(s) (11) 
. . .

U n,θ k-1 := 1 0 (X n,θ s+k-1 -X n,θ s+k-2 )dµ(s) (12) 
U n,θ k := 1 0 (X n,θ k -X n,θ s+k-1 )dµ(s). ( 13 
)
Note that the joint law of these k+1 variables is, by rescaling, the same as the

Proposition 1. Under (R), (U n,θ 0 , . . . , U n,θ k ) ∈ D 3,∞ . Denote by K(θ) the Malliavin covariance matrix of (U n,θ 0 , . . . , U n,θ k ).
It is a.s. an invertible matrix and for all p ≥ 1, we have

E |det(K(θ))| -p ≤ c(p, k).

An exact expression using Malliavin calculus

In this Section we intend to give an exact expression for the score function of the observation of B 0 or equivalently for the vector (U n,θ 0 , . . . , U n,θ k ) given by ( 10)- [START_REF] Hirsch | Properties of the set of positivity for the density of a regular Wiener functional[END_REF].

Under the condition (R), we know that there exists a version of the solution of ( 6) such that P -almost surely the function θ → X θ t is continuously differentiable for all t and τ n,θ t := ∂X n,θ t ∂θ is a solution of the stochastic equation (see Kunita [START_REF] Kunita | Stochastic differential equations and stochastic flows of diffeomorphisms[END_REF]):

dτ n,θ t = ∂a n ∂x (X n,θ t , θ)τ n,θ t dW t + ∂a n ∂θ (X n,θ t , θ)dW t + ∂b n ∂x (X n,θ t )τ n,θ t dt (14) τ n,θ 0 = 0.
The main result of this section is an explicit representation for the derivative of the log-likelihood of one block. This extends a former result given by Gobet (see [10] [11]).

Theorem 5. The random vector (U n,θ 0 , . . . , U n,θ k ) admits a positive density on R k+1 , denoted by p x 0 (u 0 , . . . , u k , θ). For a.e. (u 0 , . . . , u k ), this density is an absolutely continuous function with respect to the parameter θ and we have the formula:

ṗx 0 p x 0 (u 0 , . . . , u k , θ) = E   δ   0≤j,j ′ ≤k ∂U n,θ j ∂θ K(θ) -1 j,j ′ D.U n,θ j ′   | (U n,θ j = u j ) j=0,...,k   ,
where K(θ) -1 is the inverse of the Malliavin covariance matrix of (U n,θ 0 , . . . , U n,θ k ). Proof. Denote U n,θ the Wiener functional, U n,θ = (U n,θ 0 , . . . , U n,θ k ) and let f : R k+1 → R be a smooth function with compact support. Then the function θ → E f (U n,θ ) can be differentiated pointwise and:

∂ ∂θ E f (U n,θ ) = E   k j=0 ∂f ∂u j (U n,θ ) ∂U n,θ j ∂θ   .
By Proposition 1 the Malliavin covariance matrix of U n,θ is invertible and a standard computation on Wiener functionals (see formula (2.4) p.81 in Nualart [START_REF] Nualart | The Malliavin Calculus and Related Topics. Probability and its application[END_REF]) shows that:

∂f ∂u j (U n,θ ) = k j ′ =0 D(f (U n,θ )), DU n,θ j ′ H K(θ) -1 j,j ′ . It follows that ∂ ∂θ E f (U n,θ ) is equal to E   k j=0 k j ′ =0 D(f (U n,θ )), DU n,θ j ′ H K(θ) -1 j,j ′ ∂U n,θ j ∂θ   = E D(f (U n,θ )), L θ H
where L θ is the H-valued random variable:

L θ := k j=0 k j ′ =0 ∂U n,θ j ∂θ K(θ) -1 j,j ′ DU n,θ j ′ . (15) 
Introducing δ the adjoint operator of D, we get

∂ ∂θ E f (U n,θ ) = E f (U n,θ )δ(L θ ) . (16) 
Let g be any smooth function with compact support on R. Using the integration by part formula and the equation ( 16) we have:

dθ ġ(θ)E(f (U n,θ )) = -dθg(θ) ∂ ∂θ E f (U n,θ ) = -dθg(θ)E f (U n,θ )δ(L θ ) = -dθg(θ)E f (U n,θ )E[δ(L θ ) | (U n,θ 0 , . . . , U n,θ k )] .
Introducing the density of the random vector U n,θ the equation above writes,

ġ(θ)dθ f (u 0 , . . . , u k )p x 0 (u 0 , . . . , u k , θ)du 0 . . . du k = -g(θ)dθ f (u 0 , . . . , u k )E[δ(L θ ) | (U n,θ l = u l ) l ]p x 0 (u 0 , . . . , u k , θ)du 0 . . . du k .
Now using Fubini's theorem it can be seen that du 0 . . . du k -almost everywhere the function θ → p x 0 (u 0 , . . . , u k , θ) is absolutely continuous with

ṗx 0 (u 0 , . . . , u k , θ) = E[δ(L θ ) | (U n,θ l = u l ) l ]p x 0 (u 0 , . . . , u k , θ).
Hence the theorem is proved.

Remark that the proof of Theorem 5 does not rely on the specific expression ( 10)-( 13) and thus an analogous representation for the score function seems achievable in many situations.

A Gaussian approximation for the log-likelihood

In this section we intend to give a tractable approximation for the score function of (U n,θ 0 , . . . , U n,θ k ).

Approximation for the diffusion

We introduce X θ t = a(x 0 , θ)W t and τ θ t = ȧ(x 0 , θ)W t which stand -by ( 6) and ( 14)-for the first order approximations of X n,θ t and τ n,θ t = ∂X n,θ t ∂θ . Then, we consider the quantities obtained by replacing in ( 10)-( 13) the process X by this Gaussian approximation

U θ 0 := a(x 0 , θ) 1 0 W s dµ(s) = a(x 0 , θ) 1 0 µ([s, 1])dW s , (17) 
U θ j := a(x 0 , θ)

1 0 (W j+s -W j-1+s )dµ(s), for j = 1, . . . , k -1 (18) 
= a(x 0 , θ)

j j-1 µ([0, s -(j -1)])dW s + a(x 0 , θ) j+1 j µ([s -j, 1])dW s , U θ k := a(x 0 , θ) 1 0 (W k -W k-1+s )dµ(s), (19) 
= a(x 0 , θ)

k k-1 µ([0, s -(k -1)])dW s ,
where we have repeatedly used the Fubini theorem for stochastic integrals (see [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF] p.176). In the next lemma we control the difference between the U n,θ j and their approximation in terms of Sobolev norm.

Lemma 1. For all k, p > 1, there exist constants c(k, p), c(p) such that for all j ∈ {0, . . . , k}:

U n,θ j -U θ j 2,p ≤ c(k, p)n -1/2 , U θ j 3,p ≤ c(p), (20) 
∂U n,θ j ∂θ - ∂ U n,θ j ∂θ 2,p ≤ c(k, p)n -1/2 , ∂ U θ j ∂θ 3,p ≤ c(p), (21) 
∀ 0 ≤ j, j ′ ≤ k, E U n,θ j U n,θ j ′ -U θ j U θ j ′ ≤ c(k)n -1 . (22) 
Proof. The inequalities on the right hand side of ( 20)-( 21) are immediate by the definition of U θ j . Comparing expressions of ( 10)-( 13) with ( 17)-( 19), the two remaining bounds in ( 20)-( 21) will be a consequence of the Minkowski inequality -for the Sobolev norm -and of the control on the diffusions:

sup t≤k X n,θ t -X θ t 2,p + sup t≤k τ n,θ t -τ θ t 2,p ≤ n -1/2 c(k, p).
We only prove the control on X n,θ since the proof for τ n,θ is analogous. Recalling ( 6)-( 7), we can write

X n,θ t -X θ t = t 0 [a n (X n,θ s , θ) -a(x 0 , θ)]dW s + t 0 b n (X n,θ s )ds = 1 √ n t 0 1 0 a ′ x (x 0 + uX n,θ s √ n , θ)X n,θ s dudW s + 1 √ n t 0 b(x 0 + X n,θ s √ n )ds. ( 23 
)
But we know [START_REF] Nualart | The Malliavin Calculus and Related Topics. Probability and its application[END_REF] that under (R) the variables X n,θ belong to D 3,∞ with a control (independent of θ, n):

sup u 1 ,u 2 ≤s≤k E(|D 2 u 1 ,u 2 X n,θ s | p ) ≤ c(p, k). This is sufficient to deduce X n,θ t -X θ t 2,p ≤ n -1/2 c(p, k) after a few computa- tions.
To obtain [START_REF] Nualart | The Malliavin Calculus and Related Topics. Probability and its application[END_REF] note that by [START_REF] Kunita | Stochastic differential equations and stochastic flows of diffeomorphisms[END_REF] it is sufficient to show

E (U n,θ j -U θ j ) U θ j ′ ≤ c(k)n -1
. This property will follow again from an analogous relation on the diffusion, sup

t,t ′ ≤k E (X n,θ t -X θ t ) X θ t ′ ≤ c(k)n -1 .
Indeed, from [START_REF] Nualart | Analysis on Wiener space and anticipating stochastic calculus[END_REF], the above expectation is equal to

n -1/2 t∧t ′ 0 1 0 E a ′ x (x 0 + n -1/2 uX n,θ s , θ)X n,θ s dua(x 0 , θ 0 )ds+ n -1/2 t 0 E b(x 0 + n -1/2 X n,θ s )W t ′ a(x 0 , θ)ds. Using E[a ′ x (x 0 , θ)X n,θ s ] = s 0 a ′ x (x 0 , θ)E[b n (X n,θ u )]du ≤ cn -1/2 , E [b(x 0 )W t ′ ] = 0 and the boundedness of a ′′
xx and b ′ , we get the required estimate.

Approximation for the log-likelihood

Let us denote the deterministic tridiagonal matrix K of size (k + 1)× (k + 1),

K =          v 1 c 0 0 0 c v 1 + v 2 . . . 0 0 0 . . . . . . . . . 0 0 0 . . . v 1 + v 2 c 0 0 0 c v 2         
, where the entries of the matrix are:

v 1 = 1 0 µ([s, 1]) 2 ds, v 2 = 1 0 µ([0, s]) 2 ds, c = 1 0 µ([0, s])µ([s, 1])ds.
It can be easily checked that a 2 (x 0 , θ) K is the covariance matrix of the Gaussian vector ( U θ 0 , . . . , U θ k ) and that it is invertible using [START_REF] Ditlevsen | Inference for observations of integrated diffusion processes[END_REF]. Now the idea is to introduce the score function that would be produced from the observation of this Gaussian vector. Hence we let:

L x 0 (u 0 , . . . , u k , θ) = ȧ a (x 0 , θ)    a(x 0 , θ) -2 0≤j,j ′ ≤k u j K -1 j,j ′ u j ′ -(k + 1)    . (24) 
In this section, we will show that this quantity is an approximation for the true score function ṗ p : Theorem 6. Let us consider the difference,

ṗx 0 p x 0 (u 0 , . . . , u k , θ) -L x 0 (u 0 , . . . , u k , θ) := r x 0 (u 0 , . . . , u k , θ). ( 25 
)
Then we have the following bounds:

E r x 0 (U n,θ 0 , . . . , U n,θ k , θ) ≤ c(k)n -1 , ( 26 
) ∀p ≥ 1, E r x 0 (U n,θ 0 , . . . , U n,θ k , θ) p 1 p ≤ c(k, p)n -1/2 . ( 27 
)
Proof. Keeping in mind the definition of L θ (see ( 15)), we introduce its approximation based on the Gaussian quantities defined above:

L θ := k j=0 k j ′ =0 ∂ U θ j ∂θ a(x 0 , θ) -2 K -1 j,j ′ D U θ j ′ .
The first step is to obtain the following control on the difference

r 1 := L θ -L θ : ∀p > 1, r 1 D 1,p (H) ≤ c(k, p)n -1/2 . ( 28 
)
Actually, it is a easy consequence of Lemma 1, Proposition 1 and the invertibility of K, noting that the Malliavin covariance matrix of U θ coincides with the covariance matrix a 2 (x 0 , θ) K of the Gaussian vector U θ . We omit further details.

The second step is to obtain a simple expression for δ( L θ ). To see this, we first use the relation for [START_REF] Nualart | The Malliavin Calculus and Related Topics. Probability and its application[END_REF]):

F ∈ D 1,∞ , u ∈ D 1,∞ (H), δ(F u) = F δ(u)-D.F, u H (see
δ( L θ ) = k j=0 k j ′ =0 ∂ U θ j ∂θ a(x 0 , θ) -2 K -1 j,j ′ δ(D( U θ j ′ )) - k j=0 k j ′ =0 a(x 0 , θ) -2 K -1 j,j ′ D. ∂ U θ j ∂θ , D. U θ j ′ H .
On the one hand, δ(D( U θ j ′ )) = U θ j ′ (δ • D is the identity operator on the first chaos space). On the other hand, one has

∂ U θ j ∂θ = ȧ(x 0 ,θ)
a(x 0 ,θ) U θ j by ( 17)- [START_REF] Krée | Random vibrations of mechanical structures[END_REF]. We deduce

δ( L θ ) = ȧ(x 0 , θ) a(x 0 , θ) k j=0 k j ′ =0 U θ j a(x 0 , θ) -2 K -1 j,j ′ U θ j ′ - ȧ(x 0 , θ) a(x 0 , θ) k j=0 k j ′ =0 a(x 0 , θ) -2 K -1 j,j ′ D. U θ j , D. U θ j ′ H = ȧ(x 0 , θ) a(x 0 , θ) k j=0 k j ′ =0 U θ j a(x 0 , θ) -2 K -1 j,j ′ U θ j ′ - ȧ(x 0 , θ) a(x 0 , θ) (k + 1). Now set r 2 = ȧ(x 0 , θ) a 3 (x 0 , θ) 0≤j,j ′ ≤k U θ j K -1 j,j ′ U θ j ′ - ȧ(x 0 , θ) a 3 (x 0 , θ) 0≤j,j ′ ≤k U n,θ j K -1 j,j ′ U n,θ j ′ ,
and take the conditional expectation in the relation δ(L θ ) = δ( L θ )+δ(r 1 ): by Theorem 5, we get [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF] with

r x 0 (u 0 , . . . , u k , θ) = E δ(r 1 ) | (U n,θ j ) j = (u j ) j + E r 2 | (U n,θ j ) j = (u j ) j .
The final step in the proof is to show that r x 0 satisfies conditions (26)-(27). For the first condition, since the Skorohod integral has zero mean, we have E[r x 0 (U n,θ 0 , . . . , U n,θ k , θ)] = E(r 2 ) and we conclude using [START_REF] Nualart | The Malliavin Calculus and Related Topics. Probability and its application[END_REF]. We now prove (27). The conditional expectation being a contraction on L p it is sufficient to prove

E(|δ(r 1 )| p ) 1 p ≤ c(p, k)n -1/2 , E(|r 2 | p ) 1 p ≤ c(p, k)n -1/2 .
The first estimate follows from (28) and the continuity of the operator δ from D 1,p (H) to L p . The second one is an immediate consequence of Lemma 1.

Remark 3. Let us note that the constants c(k), c(k, p) in Theorem 6 should increase as the block length k goes to infinity since the Gaussian approximation ceases to be valid in that case. However in the sequel we shall not need a precise evaluation of this dependence on k since we will have the possibility to conveniently choose the growth rate of k = k n .

In the following sections we will need this corollary of Theorem 6.

Corollary 2. We have for all p > 1,

E ṗx 0 p x 0 (U n,θ 0 , . . . , U n,θ k , θ) p ≤ c(k, p). Proof. By Theorem 6 it is sufficient to show that E L x 0 (U n,θ 0 , . . . , U n,θ k , θ) p ≤ c(k, p).
But from the expression of L x 0 , this estimate is clear.

Asymptotic study for the augmented model

In this paragraph we establish Theorem 2. Let us recall some notations: we now deal with the diffusion given by ( 1)-( 2); k n is some integer in {1, . . . , n}, L n = ⌊n/k n ⌋ and our observation consists of the L n + 1 blocks B 0 , . . . , B Ln described in Section 1. The length of the block B l is k n,l + 1, where k n,l = k n if l ≤ L n -1 and k n,Ln = n -L n k n . For sake of simplicity in the sequel we sometimes omit the dependence with respect to n and l of the block size, and let k n,l = k with a slight abuse of notation in particular for the last block of data.

To be able to use the results of the Section 2, we introduce on each block the random variables corresponding to the definitions (10)- [START_REF] Hirsch | Properties of the set of positivity for the density of a regular Wiener functional[END_REF] for the first block. Hence for l ∈ {0, . . . , L n }, we define the k n,l + 1 following variables:

U 0,l = n 1 2 (X kl -X kl n ), U 1,l = n 1 2 (X kl+1 -X kl ), . . . U k-1,l = n 1 2 (X kl+k-1 -X kl+k-2 ), U k,l = n 1 2 (X k(l+1) n -X kl+k-1 ).
Clearly the observation of the (U j,l ) for l ∈ {0, . . . , L n }, j ∈ {0, . . . , k n,l } is equivalent to the observation of the L n + 1 blocks. Using the Markov property for the process X it appears that the law of the vector (U j,l ) j=0,...,k n,l conditionally to all the variables U j,l ′ with l ′ < l, j ∈ {0, . . . , k n,l ′ } is the same as conditionally to X kl/n only; moreover this law -conditionally to X kl/n = x 0 -coincides with that of the vector (U n,θ 0 , . . . , U n,θ k ) studied in Section 2. Thus it admits the density p X kl n (u 0 , . . . , u k , θ) studied in Sections 2.2-2.3. Hence the log-likelihood of the augmented model admits the additive structure:

ln(Z n,aug θ 0 ,θ 0 +unh (O n,aug )) = Ln l=0 ln p X kl n (U 0,l , . . . , U k,l , θ 0 + u n h) p X kl n (U 0,l , . . . , U k,l , θ 0 ) = Ln l=0 θ 0 +unh θ 0 ṗX kl n (U 0,l , . . . , U k,l , s) p X kl n (U 0,l , . . . , U k,l , s) ds.
Owing to Theorem 6, we deduce the decomposition

ln(Z n,aug θ 0 ,θ 0 +unh (O n,aug )) = Ln l=0 θ 0 +unh θ 0 L X kl n (U 0,l , . . . , U k,l , s)ds + Ln l=0 θ 0 +unh θ 0 r X kl n (U 0,l , . . . , U k,l , s)ds.
In the above decomposition, we will show in Sections 3.1-3.2 that the explicit term involving L x 0 governs the asymptotic behavior of the log-likelihood ratio; the other term does not contribute in the limit.

Proof of Theorem 2: the explicit term

Let us introduce a slight modification of L X kl n , which has the advantage of being a smoother function w.r.t. θ:

ξ l,n (θ) = ȧ a (X kl n , θ 0 )    a(X kl n , θ) -2 0≤j,j ′ ≤k U j,l K -1 j,j ′ U j ′ ,l -(k + 1)    , (29) 
and we set N aug n = u n Ln l=0 ξ l,n (θ 0 ) and

I aug n = -u 2 n Ln l=0 ∂ξ l,n ∂θ (θ 0 ). Proposition 2. If k n → ∞ slowly enough, Ln l=0 θ 0 +unh θ 0 L X kl n (U 0,l , . . . , U k,l , s)ds = hN aug n - h 2 2 I aug n + R n , (30) 
where

I aug n P θ 0 ---→ n→∞ I θ 0 , R n P θ 0 ---→ n→∞
0 and there exists an extra random variable N ∼ N (0, 1) independent of the process X such that, N aug n converges stably in law under P θ 0 to N I θ 0 .

Proof. Comparing [START_REF] Rao | Statistical inference for diffusion type processes[END_REF] with the definition of ξ l,n (θ) above and using a Taylor expansion for ξ l,n (θ) around θ 0 , we get the equation (30) with a remainder term

R n = R (1) n + R (2)
n satisfying:

R (1) n = Ln l=0 θ 0 +unh θ 0 [ ȧ a (X kl n , s) - ȧ a (X kl n , θ 0 )]    0≤j,j ′ ≤k U j,l K -1 j,j ′ U j ′ ,l a(X kl n , s) 2 -(k + 1)    ds, (31) 
R (2) n ≤ c Ln l=0 u 2+γ n    0≤j,j ′ ≤k U j,l K -1 j,j ′ U j ′ ,l    (32) (for R (2) 
n we have used that θ → ȧ(x, θ) is γ-Hölder continuous). To complete the proof, we repeatedly use the following classical convergence result about triangular arrays of random variables.

Lemma 2 (Genon-Catalot and Jacod [START_REF] Genon-Catalot | On the estimation of the diffusion coefficient for multi-dimensional processes[END_REF], Lemma 9). Let (χ n l ) 0≤l≤Ln , U be random variables, with χ n l being F n l+1 -measurable. The two following conditions imply Ln l=0 χ n l P → U :

Ln l=0 E [χ n l |F n l ] P → U and Ln l=0 E (χ n l ) 2 |F n l P → 0.
• We first focus on N aug n . Let us introduce the sigma field F n l = σ(X 0 ; B s , s ≤ kl n ) for l = 0, . . . , L n and F n Ln+1 = σ(X 0 ; B s , s ≤ 1). Then the variable ξ l,n (θ 0 ) is F n l+1 -measurable and the asymptotic behavior of N aug n will follow from Lemma 2. To make clearer this point we introduce the following approximation based on conditionally Gaussian variables:

ξ l,n (θ) = ȧ a (X kl n , θ 0 )    a(X kl n , θ) -2 0≤j,j ′ ≤k U j,l K -1 j,j ′ U j ′ ,l -(k + 1)    . (33) 
Here, U j,l is the Gaussian approximation under P θ of U j,l corresponding on the block B l to the variables ( 17)-( 19) on the block B 0 :

U 0,l := a(X kl n , θ)n 1 2 1 0 (B kl+s n -B kl n )dµ(s), U j,l := a(X kl n , θ)n 1 2 1 0 (B kl+j+s n -B kl+j-1+s n )dµ(s) for j = 1, . . . , k -1, U k,l := a(X kl n , θ)n 1 2 1 0 (B k(l+1) n -B kl+k-1+s n )dµ(s).
Observe that this vector ( U j,l ) j=0,...,k has, under P θ and conditionally to X kl n = x 0 , the same law as the vector ( U θ j ) j=0,...,k defined in Section 2.3.

Thus its conditional law is Gaussian with covariance matrix a(X kl n , θ) 2 K.

Hence, the variable ξ l,n (θ 0 ) is F n l+1 -measurable and under P θ 0 , it is conditionally (to X kl n ) distributed as a recentered χ 2 (k + 1) variable. Thus we deduce the following four properties:

1) u n Ln l=0 E θ 0 ξ l,n (θ 0 ) | F n l = 0; 2) Using u 2 n = 1/n, L n ∼ n/k n → ∞ and k n → ∞, one has u 2 n Ln l=0 E θ 0 ( ξ l,n (θ 0 )) 2 | F n l = u 2 n Ln l=0 2(k n + 1) ȧ a 2 (X kl n , θ 0 ) = 2(k n + 1) k n 1 0 ȧ a 2 (X s , θ 0 )ds + o P θ 0 (1) (34) P θ 0 --→ 2 1 0 ȧ a 2 (X s , θ 0 )ds = I θ 0 ; 3) u 4 n Ln l=0 E θ 0 ξ l,n (θ 0 ) 4 | F n l ≤ cn -2 L n k 4 n ≤ cn -1 k 3 n → 0, if k n goes to ∞ slowly enough; 4) u n Ln l=0 E θ 0 ξ l,n (θ 0 )[B (k+1)l n -B kl n ] | F n l = 0.
¿From these four properties, it follows (see Jacod [START_REF] Jacod | On continuous conditional Gaussian martingales and stable convergence in law[END_REF]) that u n Ln l=0 ξ l,n (θ 0 ) converges stably under P θ 0 to a mixed Gaussian variable as in the statement of the proposition. To obtain the limit for N aug n , it is sufficient to prove that

N aug n -u n Ln l=0 ξ l,n (θ 0 ) P θ 0 --→ 0. ( 35 
)
Due to Lemma 2 a sufficient condition consists in the two following points:

1) u n Ln l=0 E θ 0 ξ l,n (θ 0 ) -ξ l,n (θ 0 ) | F n l → 0 in probability; 2) u 2 n Ln l=0 E θ 0 ( ξ l,n (θ 0 ) -ξ l,n (θ 0 )) 2 | F n l → 0 in probability.
But these two points can be shown using ( 20) and ( 22) of Lemma 1 (for k n slowly increasing).

• We now study

I aug n . A direct differentiation of ξ l,n (θ) (recall (29)) gives ξl,n (θ) = ȧ a (X kl n , θ 0 ) -2 ȧ a 3 (X kl n , θ) 0≤j,j ′ ≤k U l,j K -1 j,j ′ U l,j ′ .
Then, with a few computations similar to the study of N aug n , we obtain (for appropriate k n ):

1) u 2 n Ln l=0 E θ 0 ξl,n (θ 0 ) | F n l = u 2 n Ln l=0 -2(k n,l +1) ȧ2 a 2 (X kl n , θ 0 )+O P θ 0 ( c(k n ) √ n ) = -2 (k n + 1) k n 1 0 ȧ a (X s , θ 0 ) 2 ds + o P θ 0 (1) (36) 
P θ 0 --→ -I θ 0 ; 2) u 4 n Ln l=0 E θ 0 [ ξl,n (θ 0 )] 2 | F n l ≤ cn -1 k 4 n → 0.
Combined with Lemma 2, these two convergences imply that of I aug n to I θ 0 under P θ 0 .

• The remainder term R n . Firstly a direct use of ( 20) gives E( R

(2) n ) ≤ c(k n )n -γ/2 → 0 if k n slowly goes to ∞. Secondly the convergence to zero of R (1) n = Ln l=0 R (1)
n,l is more delicate and Lemma 2 is helpful for this. To this end we evaluate the conditional expectation of R (1) n,l using ( 22) and the fact the ( U j,l ) j have the conditional covariance matrix a(X kl n , θ) 2 K:

E θ 0 [R (1) n,l | F n l ] = θ 0 +unh θ 0 [ ȧ a (X kl n , s)- ȧ a (X kl n , θ 0 )]{ a(X kl n , θ 0 ) 2 a(X kl n , s) 2 -1}(k n +1)ds + O(n -1 u n c(k n )).
The function a being C 1+γ in θ, one gets:

Ln l=0 E θ 0 [R (1) n,l | F n l ] ≤ cn -γ/2 + c(kn)
kn n -1/2 → 0 for appropriate k n . With similar considerations we evaluate the second conditional moment and obtain u 2

n Ln l=0 E θ 0 [(R (1) n ) 2 | F n l ] ≤ c(k n )L n u 2+2γ n n→∞ ---→ 0.

Proof of Theorem 2: the negligible terms

It remains to prove that, as announced, there is convergence to zero of

Ln l=0 η l with η l = θ 0 +unh θ 0 r X kl n (U 0,l , . . . , U k,l , 
s)ds. We aim at applying Lemma 2 by computing the first two conditional moments of η l under P θ 0 . The main difficulty here comes from the fact that we do not have an explicit expression for r x 0 ((u j ) j , θ). Indeed by Theorem 6 we know bounds for the moments E n θ,x 0 (|r x 0 ((U j ) j , θ)| p ) where by E n x 0 ,θ we denote the expectation with respect to the law of X n,θ solution of ( 6). This is a priori insufficient to compute the conditional moments of η l under P θ 0 which involve quantities such as E n θ 0 ,x 0 (|r x 0 ((U j ) j , s)| p ) for s = θ 0 . Thus in Lemmas 7-8 in the Appendix we study the transformation of such moments under change of measure.

Firstly, we evaluate the conditional expectation of η l ,

E θ 0 [η l | F n l ] = θ 0 +unh θ 0 E n θ 0 ,x [r x ((U j ) j , s)] |x=X kl n ds. But E n θ 0 ,x [r x ((U j ) j , s)] ≤ E n s,x [r x ((U j ) j , s)] + E n θ 0 ,x [r x ((U j ) j , s)] -E n s,x [r x ((U j ) j , s)
] can be bounded using (26) and Lemma 8 in the Appendix by c(k

)n -1 + |s -θ 0 | E n s,x [|r x ((U j ) j , s)| α ] 1 α for some α ≥ 1. Then by (27) we deduce |E [η l | F n l ]| ≤ c(k n )[u n n -1 + u 2 n n -1/2 ]. Finally a block length k n slowly increasing guarantees Ln l=0 E θ 0 [η l | F n l ] P θ 0
--→ 0. Secondly and similarly, owing to Theorem 6 and Lemma 7 in the Appendix, we get

E η 2 l | F n l ≤ c(k n )u 2 n n -1 → 0.
Therefore, by Lemma 2, we have proved Ln l=0 η l P θ 0 --→ 0. This ends the proof of Theorem 2.

Proof of Theorem 3

The proof is essentially the same as that of Theorem 2, the difference in the asymptotic information comes from the difference in the limit of the quantities (34) and (36) when k is fixed.

LAMN property for the initial model

In this Section we are back to the model where the observation is only O n = (X j ) j=0,...,n-1 and we will prove Theorem 1 by relying on the LAMN property for the augmented model. A first intermediate result is that one can approximate the log-likelihood of the augmented model by a function of the observation O n . Proposition 3. There exist random variables Γ n measurable with respect to O n such that:

ln(Z n,aug θ 0 ,θ 0 +unh (O n,aug )) -Γ n n→∞ ---→ P θ 0 0.
Proof. We have seen in Section 3 that ln(Z n,aug θ 0 ,θ 0 +unh (O n,aug )) = hN aug Thus the proof of the proposition consists in introducing a proper modification of these quantities which only depends on the observations. We let for l = 0, . . . , k n

ξ obs l,n (θ) = ȧ a (X kl-1 , θ 0 )    a -2 (X kl-1 , θ) 1≤j,j ′ ≤k-1 U l,j K -1 j,j ′ U l,j ′ -(k -1)    ,
with the convention X -1 = ξ 0 is the known initial value of the diffusion and the matrix a 2 (x 0 , θ) K is the covariance matrix of the conditionally Gaussian vector ( U θ 1 , , U θ k-1 ):

K =       v 1 + v 2 c 0 0 c . . . . . . 0 0 . . . . . . c 0 0 c v 1 + v 2       .
Clearly, ξ obs l,n (θ) only depends on the observation O n since we have suppressed all occurrences of the variables U 0,l and U k,l and replaced X kl n by X kl-1 in the expression of ξ l,n (θ) (compare with ( 29)). Then we let

N obs n = u n Ln l=0 ξ obs l,n (θ 0 ) and I obs n = -u 2 n Ln l=0 ∂ξ obs l,n ∂θ (θ 0 ). • Study of N aug n -N obs n .
The first step is to consider the conditionally recentered chi square approximation of ξ obs l,n (θ) that we define as:

ξ obs l,n (θ) = ȧ a (X kl n , θ 0 )    a -2 (X kl n , θ) 1≤j,j ′ ≤k-1 U l,j K -1 j,j ′ U l,j ′ -(k -1)    . (37) 
The first step is to prove the validity of the approximation:

u n Ln l=0
{ξ obs l,n (θ 0 )ξ obs l,n (θ 0 )}

P θ 0 --→ 0. ( 38 
)
This is done similarly to the proof of N aug nu n Ln l=0 ξ l,n (θ 0 ) → 0 in proposition 2, by considering the first two conditional moments, but here the first moment is more delicate to handle: the conditional moment

E θ 0 [ξ obs l,n (θ 0 ) - ξ obs l,n (θ 0 ) | F n l ] is of the form (k-1){g(X kl n )-g(X kl-1 )}h(X kl-1 )+O(c(k n )/n)
for g and h two C 2 functions.If we abruptly use the relation

X kl n -X kl-1 L p ≤ c(p)n -1/2 then we only deduce that u n Ln l=0 E θ 0 [ξ obs l,n (θ 0 ) -ξ obs l,n (θ 0 ) | F n l ]
remains bounded in probability. To show that it actually converges to zero, we have to apply again Lemma 2 to the new triangular array of variables,

u n Ln l=0 (k -1){g(X kl n )-g(X kl-1 )}h(X kl-1 ). Then by rather long computa- tions, using that X kl-1 -X kl-2 L p ≤ c(p)(k/n) 1/2 and E θ 0 [X kl n -X kl-1 | F n l-1 ] ≤ cn -1 , we can prove, u n Ln l=0 (k -1) E θ 0 [{g(X kl n ) -g(X kl-1 )}h(X kl-1 ) | F n l-1 ] ≤ c(k)n -1/2 P θ 0 --→ 0, u 2 n Ln l=0 (k -1) 2 E θ 0 [{g(X kl n ) -g(X kl-1 )} 2 h(X kl-1 ) 2 | F n l-1 ] ≤ c(k)n -1 P θ 0 --→ 0. Thus we deduce u n Ln l=0 E θ 0 [ξ obs l,n (θ 0 ) -ξ obs l,n (θ 0 ) | F n l ] → 0. The second condition u 2 n Ln l=0 E θ 0 [(ξ obs l,n (θ 0 ) -ξ obs l,n (θ 0 )) 2 | F n l ] ≤ c(k)n -1
→ 0 is easily obtained and we deduce (38).

Thus, in view of the equation ( 35), it remains to prove that u n Ln l=0 { ξ obs l,n (θ 0 )ξ l,n (θ 0 )} is negligible. But by Lemma 10 in the Appendix, comparing expressions (33) and (37), it appears that conditionally to F n l the random variable ξ obs l,n (θ 0 )ξ l,n (θ 0 ) is a recentered χ 2 (2) variable and hence the following properties hold:

u n Ln l=0 E θ 0 ξ obs l,n (θ 0 ) -ξ l,n (θ 0 ) | F n l = 0, u 2 n Ln l=0 E θ 0 ξ obs l,n (θ 0 ) -ξ l,n (θ 0 ) 2 | F n l = Ln l=0 u 2 n 4 ȧ2 a 2 (X kl n , θ 0 ) ≤ c k n → 0.
These two properties imply by Lemma 2 the convergence to 0 under P θ 0 of

u n Ln l=0 ξ obs l,n (θ 0 ) -ξ l,n (θ 0 ) , and thus N aug n -N obs n P θ 0 --→ 0.
• Study of I aug n -I obs n . Exactly as we proved that I aug n tends to I θ 0 we can show that I obs n → I θ 0 . Thus the difference is negligible. Finally the proposition is obtained by setting Γ n = hN obs n -h 2 /2I obs n .

Then Theorem 1 is a consequence of the following proposition combined with Proposition 3 and Theorem 2.

Proposition 4. We have the convergence,

Z n θ 0 ,θ 0 +unh -e Γn n→∞ ---→ P θ 0 0.
Proof. The starting point is the relation between the likelihood of the initial and of the augmented model: Z n θ 0 ,θ 0 +unh = E θ 0 Z n,aug θ 0 ,θ 0 +unh | O n . By Proposition 3 we can write Z n,aug θ 0 ,θ 0 +unh = e Γn e εn where ε n tends to zero in P θ 0 probability. Using that Γ n is O n measurable we deduce,

Z n θ 0 ,θ 0 +unh -e Γn = E θ 0 e Γn (e εn -1) | O n .
We now use the inequality |e u -1| ≤ (|u| ∧ 1)(e u + 1) to obtain that Z n θ 0 ,θ 0 +unhe Γn ≤ α n + β n with:

α n = E θ 0 (|ε n | ∧ 1)e Γn | O n = E θ 0 [|ε n | ∧ 1 | O n ] e Γn , β n = E θ 0 (|ε n | ∧ 1)e Γn e εn | O n = E θ 0 (|ε n | ∧ 1)Z n,aug θ 0 ,θ 0 +unh | O n .
It now remains to show the convergence to zero of α n and β n .

For α n , let us notice that (e Γn ) n is a tight sequence and that

E θ 0 [|ε n | ∧ 1 | O n ] converges in L 1 (P θ 0 ) norm to zero since, E θ 0 [E θ 0 [|ε n | ∧ 1 | O n ]] = E θ 0 [|ε n | ∧ 1] n→∞ ---→ 0. For β n , we have E θ 0 [β n ] = E θ 0 +unh [|ε n | ∧ 1]
. But the sequence of probabilities P θ 0 and P θ 0 +unh restricted to the sigma fields O n,aug are contiguous (this is a consequence of the LAMN property for the augmented model, see e.g. Proposition 1 in Jeganathan [START_REF] Jeganathan | On the asymptotic theory of estimation when the limit of the log-likelihood ratios is mixed normal[END_REF]); hence the sequence (ε n ) n which is measurable with respect to O n,aug and converges to zero in P θ 0probability converges also in P θ 0 +unh -probability. This implies

E θ 0 [β n ] = E θ 0 +unh [|ε n | ∧ 1] → 0.

Appendix

Proof of results of Section 2.1

Since the results of Section 2.1 concern only the study of a density for fixed values of θ, we omit the dependence upon θ in our notations. We will prove the results in the following order. First in section 5.1.1, we show that the law of the Wiener functional

(U n , V n ) = 1 0 X n s dµ(s), X n
1 admits a density. Then we prove the lower and upper bounds given in Theorem 4 (section 5.1.2) and eventually we deduce the Proposition 1 (section 5.1.3).

Existence of the density p n x 0

We know [START_REF] Nualart | The Malliavin Calculus and Related Topics. Probability and its application[END_REF] that under (R) the random variable X n t is an element of D 3,∞ and its first derivative is equal to

D t X n s = 1 {t≤s} Y n s (Y n t ) -1 a n (X n t ), (39) 
where Y n is the solution of

dY n t = a ′ n (X n t )Y n t dW t + b ′ n (X n t )Y n t dt, Y n 0 = 1. (40) 
In the sequel we will repeatedly use the positivity of Y n and the control

E( sup t∈[0,1] (Y n t ) p ) + E( sup t∈[0,1] (Y n t ) -p ) ≤ c(p). (41) 
¿From this we can see that the random variables U n and V n are elements of D 3,∞ and using (39) with the linearity of the operator D, we have

D t U n = 1 0 1 {t≤s} Y n s (Y n t ) -1 a n (X n t )dµ(s) = a n (X n t )(Y n t ) -1 1 {t≤1} [t,1]
Y n s dµ(s),

D t V n = a n (X n t )Y n 1 (Y n t ) -1 1 {t≤1} .
Using Theorem 2.1.2 p. 86 in [START_REF] Nualart | The Malliavin Calculus and Related Topics. Probability and its application[END_REF], a sufficient condition for the existence of a density for (U n , V n ) is that its Malliavin covariance matrix γ U n ,V n satisfies a non degeneracy condition given, for instance, by the following lemma.

Lemma 3. γ U n ,V n is an a.s invertible matrix and for all p ≥ 1, we have

E |det(γ U n ,V n )| -p ≤ c(p).
Proof. To have shorter notations, during the proof we will denote by c * any generic positive random variable which satisfies E(c -p * ) ≤ c(p). By direct computations we have,

U n , U n H = 1 0 a 2 n (X n t )(Y n t ) -2 [t,1] Y n s dµ(s) 2 dt, (42) 
U n , V n H = 1 0 a 2 n (X n t )(Y n t ) -2 [t,1] Y n s dµ(s) dt Y n 1 , (43) 
V n , V n H = 1 0 a 2 n (X n t )(Y n t ) -2 dt (Y n 1 ) 2 . (44) 
Now, define the probability density on [0, 1]

m n t = a 2 n (X n t )(Y n t ) -2 1 0 a 2 n (X n s )(Y n s ) -2 ds -1 , (45) 
and set f n (t) := [t,1] Y n s dµ(s). Thus we can write:

det(γ U n ,V n ) = V n , V n 2 H (Y n 1 ) -2 1 0 m n t f n (t) 2 dt - 1 0 m n s f n (s)ds 2 .
Hence the above bracket can be interpreted as the variance of the function f n (t) under the probability measure m n t dt and hence:

det(γ U n ,V n ) = V n , V n 2 H (Y n 1 ) -2 1 0 m n t f n (t) - 1 0 m n r f n (r)dr 2 dt. But clearly under Assumption (R), V n , V n 2 H ≥ a 2 inf t∈[0,1] (Y n t ) -2 inf t∈[0,1] (Y n t )
2 and hence by (41) this yields, V n , V n 2 H ≥ c * , using our convention about generic positive random variables c * . Similarly, by (45), we have m n t ≥ c * and thus,

det(γ U n ,V n ) ≥ c * 1 0 f n (t) - 1 0 m n r f n (r)dr 2 dt.
Then, writing the integral above as

1/2 0 f n (t) - 1 0 m n r f n (r)dr 2 + f n (t + 1/2) - 1 0 m n r f n (r)dr 2 dt,
and using the simple inequality x 2 + y 2 ≥ (xy) 2 /2, we get: det(γ

U n ,V n ) ≥ c * 1/2 0 [t,t+ 1 
2 ) Y n s dµ(s)

2 dt. Using again inf s∈[0,1] Y n s ≥ c * , we obtain: det(γ U n ,V n ) ≥ c * 1/2 0
µ ([t, t + 1/2)) 2 dt. But this integral is positive as soon as µ ((0, 1)) > 0 which is the case by assumption [START_REF] Ditlevsen | Inference for observations of integrated diffusion processes[END_REF]. Thus the lemma is proved.

Bounds for the density

For the proof of ( 9), we make a crucial use of the fact that the diffusion process X n is one dimensional by introducing the classical transformation:

s n (x) := x 0 a -1 n (y)dy, W n t := s n (X n t ).
By the assumptions on a, the function s n is one to one on R and the derivatives of s n and s -1 n are bounded independently of n. By Itô's formula, W n solves the equation dW n t = dW t + bn (W n t )dt where bn (w) :

= bn an • s -1 n (w) -1 2 a ′ n • s -1 n (w)
and the initial value is W n 0 = s n (X n 0 ) = 0. We let P be the probability defined on (Ω, A) by

d P dP = exp - 1 0 bn (W n u )dW u - 1 2 1 0 b2 n (W n u )du .
The Girsanov theorem implies that the process W n is under P a standard Brownian motion. Note that the random variables (U n , V n ) have the following expressions with respect to this P -Brownian motion:

U n = 1 0 s -1 n (W n r )dµ(r), (46) 
V n = s -1 n (W n 1 ). ( 47 
)
Now let h 0 and h 1 be non negative real functions, then:

E P [h 0 (U n )h 1 (V n )] = E P [h 0 (U n )h 1 (V n )L n ] , (48) 
where

L n = exp 1 0 bn (W n r )dW n r -1 2 1 0 b2 n (W n r )dr . But using Itô's for- mula, L n = exp Bn (W n 1 ) -1 2 1 0 ( b2 n + b′ n )(W n r
)dr where Bn is the primitive function of bn vanishing at zero. Since bn and b′ n are clearly bounded by cn -1/2 for some constant c only depending on a and b and Bn (x) ≤ cn -1/2 |x| we have:

c -1 exp -cn -1/2 |W n 1 | ≤ L n ≤ c exp cn -1/2 |W n 1 |
. By (47) and the boundedness of s ′ n we deduce c -1 exp -cn

-1/2 |V n | ≤ L n ≤ c exp cn -1/2 |V n | .
From this and (48), we obtain:

c -1 E P h 0 (U n )h 1 (V n )e -cn -1 2 |V n | ≤ E P [h 0 (U n )h 1 (V n )] ≤ cE P h 0 (U n )h 1 (V n )e cn -1 2 |V n | .
Hence we have transformed the problem of finding bounds for the density of the law of (U n , V n ) under P into an analogous problem under P . Consequently the bounds for p n x 0 stated in (9) will follow from the next lemma. Lemma 4. Let h 0 , h 1 be two non negative functions. There exist some constants c 1 > c 2 > 0, depending only on the coefficients a and b such that:

c -1 1 h 0 (u)h 1 (v)e -c 1 (u 2 +v 2 ) dudv ≤ E P [h 0 (U n )h 1 (V n )] ≤ c -1 2 h 0 (u)h 1 (v)e -c 2 (u 2 +v 2 ) dudv.
Proof. We first show the lower bound. Using that the random variable V n is measurable with respect to W n 1 (by ( 47)), we can write:

E P [h 0 (U n )h 1 (V n )] = E P h 1 (V n )E P [h 0 (U n ) | W n 1 ] = g(w)h 1 s -1 n (w) E P [h 0 (U n ) | W n 1 = w] dw, ( 49 
)
where g is the density of the standard Gaussian law. Now let us admit temporarily the following relation on the conditional law of U n :

E P [h 0 (U n ) | W n 1 ] ≥ c -1 e -c(W n 1 ) 2 h 0 (u)e -cu 2 du. ( 50 
) Then E P [h 0 (U n )h 1 (V n )] is greater than: c -1 h 0 (u)e -cu 2 du × g(w)h 1 s -1 n (w) e -cw 2 dw.
The change of variable v = s -1 n (w) in the second integral above, the inequalities |w| ≤ c |v| and s ′ n (v) ≥ c give the new lower bound

c -1 h 0 (u)e -cu 2 du × g (s n (v)) h 1 (v) e -cv 2 dv,
with a new constant c. Since g is the Gaussian kernel and thanks to the inequality |s n (v)| ≤ c |v|, we deduce the required lower bound for

E P [h 0 (U n )h 1 (V n )].
We obtain the upper bound quite similarly. Let us temporarily admit that for all ε small enough there exists c(ε) such that:

E P [h 0 (U n ) | W n 1 ] ≤ c(ε) -1 e ε(W n 1 ) 2 h 0 (u)e -c(ε)u 2 du. ( 51 
)
where the inner expectation denotes the expectation with respect to the random variable ξ and the outer one with respect to the process W * * . First we evaluate the inner expectation. Using that ξ is a standard Gaussian variable we have

E (ξ) [h 0 (g W * * (ξ))] = (2π) -1/2 h 0 (g W * * (x))e -x 2 2 dx. ( 57 
)
Note now that for any realization of W * * , the function x → g W * * (x) is differentiable and using that

1 c ≤ (s -1 n ) ′ ≤ c we get 1 c 1 0 η t dµ(t) ≤ g ′ W * * (x) ≤ c 1 0 η t dµ(t).
By assumption (3) on the measure µ the integral 1 0 η t dµ(t) is positive. Thus the function x → g W * * (x) is invertible on R, with a derivative bounded from above and from below by some constant independent of W * * and n. This allows us to make a change of variable in (57) to obtain the bounds

c -1 h 0 (u)e -( g -1 W * * (u) ) 2 2 du ≤ E (ξ) [h 0 (g W * * (ξ))] ≤ c h 0 (u)e -( g -1 W * * (u) ) 2 2 du. 
(58) Now the proofs of ( 52) and ( 53) are treated separately.

• For the lower bound, we have seen that g -1 W * * is globally Lipschitz with a constant independent of W * * and thus g

-1 W * * (u) ≤ c |u| + g -1 W * * (0) ≤ c |u| + c |g W * * (0)|.
In addition, a simple computation from the definition of g W * * and then boundedness of (s

-1 n ) ′ show that |g W * * (0)| ≤ c[|w| + sup t∈[0,1] |W * * t |]. (59) 
Using this in (58) we find a new lower bound for the inner expectation:

E (ξ) [h 0 (g W * * (ξ))] ≥ c -1 e -cw 2 e -c sup t∈[0,1] (W * * t ) 2 h 0 (u)e -cu 2 du.
Taking the expectation with respect to W * * proves that (56) is larger than c -1 E (W * * ) e -c sup t∈[0,1] (W * * t ) 2 × e -cw 2 h 0 (u)e -cu 2 du. This gives (52). • For the upper bound, we write using that g

W * * is Lipschitz ||u| -|g W * * (0)|| ≤ g W * * (g -1 W * * (u)) -g W * * (0) ≤ c g -1 W * * (u) . Together with the relation (x - y) 2 ≥ x 2 ε 1+ε -εy 2 (for x, y ∈ R, ε ∈ (0, 1)), we deduce that exp -1 2 (g -1 W * * (u)) 2 is upper bounded by exp - εu 2 2c 2 (1 + ε) + ε(g W * * (0)) 2 2c 2 ≤ exp - εu 2 2c 2 (1 + ε) + εw 2 + ε sup t∈[0,1] (W * * t ) 2
where we have used (59). Combining this with (58) and taking the expectation with respect to W * * , we get that the quantity (56) is smaller than:

c h 0 (u)e -εu 2 2c(1+ε) e εw 2 E W * * e ε sup t∈[0,1] (W * * t ) 2 .
The last expectation is finite as soon as ε is small enough, and thus (53) holds.

Proof of Proposition 1

To have shorter notations we set X n j = 1 0 X n j+t dµ(t), for j ≥ 0. First we prove: Lemma 6. Let us define Γ k the Malliavin covariance matrix of the vector (X n j , X n j+1 ) j=0,...,k-1 of size 2k. Then this matrix is a.s invertible and

E(det(Γ k ) -p ) ≤ c(p, k).
Proof. In the case k = 1, the lemma reduces to Lemma 3. For k ≥ 2, we proceed by induction by establishing simple relations between the columns of Γ k (this simplification follows from the flow property of the process X n ).

To see this, notice that firstly by (39

) if t < k -1 and s > k -1, we have D t X n s = D t X n k-1 Y n s (Y n k-1 ) -1
; and secondly if t > k -1 and s < k -1, D t X n s = 0. Using these two properties, a calculation shows that if (C j ) j=1,...,2k denote the columns of Γ k , we have the relation,

[C 2k-1 ; C 2k ] = 1 0 Y n k-1+s (Y n k-1 ) -1 dµ(s) C 2k-2 ; Y n k (Y n k-1 ) -1 C 2k-2 +      0 0 . . . . . . 0 0 γ k     
where γ k is the matrix of size 2 × 2 given by

k k-1 (D t X n k-1 ) 2 dt k k-1 (D t X n k )(D t X n k-1 )dt k k-1 (D t X n k )(D t X n k-1 )dt k k-1 (D t X n k ) 2 dt .
This proves that det Γ k = det Γ k-1 det γ k . But it can be seen that the matrix γ k has an expression similar to γ U n ,V n (but with integration interval shifted from [0, 1] to [k -1, k]) from which we can prove E((det γ k ) -p ) ≤ c(p).

The lemma then follows from induction on k.

Now we can deduce the Proposition 1. Recalling ( 10)-( 13) we can find an invertible matrix M of size 2k × 2k that maps (X 

Some estimates on the change of measures

For this section we denote by X the canonical process on C([0, ∞)) and we consider the random variable on this space defined by H = f (U 0 , . . . , U k ), where (U 0 , . . . , U k ) is given by ( 10)-( 13) with the canonical process X in place of X θ,n ; we denote by E n θ,x 0 the expectation with respect to the measure induced on the canonical space by the law of X θ,n solution of (6).

Lemma 7. There exist r ≥ 1 and a constant c(k) ≥ 0, such that ∀H = f (U 0 , . . . , U k ) ≥ 0, ∀θ, θ ′ ∈ Θ, ∀x 0 ∈ R, we have

E n θ ′ ,x 0 [H] ≤ c(k)E n θ,x 0 [H r ] 1 r .
Proof. Recalling the notation of Section 2.1.1 we denote p n x 0 (u, v, θ) the density of the vector (8) and for j = 0, . . . , k -1 we let Z j,θ,θ ′ = p n X j 1 0 (X j+s -X j )dµ(s), (X j+1 -X j ), θ ′ p n X j 1 0 (X j+s -X j )dµ(s), (X j+1 -X j ), θ .

(60)

Then using the Markov property of the process X under the laws P n θ and P n θ ′ , we have

E n θ ′ ,x 0 [H] = E n θ,x 0   H k-1 j=0 Z j,θ,θ ′   ≤ E n θ,x 0 [H r ] 1 r E n θ,x 0   k-1 j=0 (Z j,θ,θ ′ ) r ′   1 r ′
, where r and r ′ are conjugate exponents. But we know by Theorem 4 that there exist two constants 0 < c 2 ≤ c 1 (uniform w.r.t. θ, x 0 , n) such that c -1 1 e -c 1 (u 2 +v 2 ) ≤ p n x 0 (u, v, θ) ≤ c -1 2 e -c 2 (u 2 +v 2 ) .

Then one can bound the conditional expectation E n θ,x 0 [(Z k-1,θ,θ ′ ) r ′ | X s , s ≤ (k -1)] by c (r ′ -1)

1 c r ′ 2 R 2
e (u 2 +v 2 )(-r ′ c 2 +(r ′ -1)c 1 ) dudv.

But if r is chosen large enough such that r ′ is sufficiently close to 1 the latter integral converges and is equal to some constant κ. Proceeding by induction we get:

E n θ,x 0   k-1 j=0 (Z j,θ,θ ′ ) r ′   1 r ′ ≤ E n θ,x 0   k-2 j=0 (Z j,θ,θ ′ ) r ′   1 r ′ κ 1 r ′ ≤ • • • ≤ κ k/r ′
which gives the result.

Lemma 8. There exist c(k) ≥ 0 and α ≥ 1 such that ∀H = f (U 0 , . . . , U k ) (with E n θ,x 0 |H| α < +∞), ∀θ, θ ′ ∈ Θ, ∀x 0 ∈ R, we have

E n θ ′ ,x 0 [H] -E n θ,x 0 [H] ≤ c(k) θ -θ ′ [E n θ,x 0 |H| α ] 1 α . ( 61 
)
Proof. Using the notations of Lemma 7, we write

E n θ ′ ,x 0 [H] -E n θ,x 0 [H] = E n θ,x 0     k-1 j=0 Z j,θ,θ ′ -1   H   = k-1 i=0 E n θ,x 0   Z i,θ,θ ′ -1 k-1 j=i+1 Z j,θ,θ ′ H   .
Thus for conjugate exponents α and β, the left hand side of (61) is bounded by

k-1 i=0 E n θ,x 0 |H| α 1 α E n θ,x 0   Z i,θ,θ ′ -1 β k-1 j=i+1 (Z j,θ,θ ′ ) β   1 β = k-1 i=0 E n θ,x 0 |H| α 1 α E n θ,x 0   Z i,θ,θ ′ -1 β E n θ,x 0   k-1 j=i+1 (Z j,θ,θ ′ ) β | X s , s ≤ i + 1     1 β
Using the Markov property of X it can be shown exactly as in Lemma 7 that the conditional expectation in the equation above is finite, as soon as β is small enough and bounded by κ k-i-1 . Thus by Lemma 9 below, we deduce

E θ ′ ,x 0 [H] -E θ,x 0 [H] ≤ c(β) |θ -θ ′ | E n θ,x 0 |H| α 1 α k-1 i=0 κ k-i-1 β
. Lemma 9. There exists β > 1 such that for all 1 < β ≤ β we have:

E n θ,x 0 Z i,θ,θ ′ -1 β 1 β ≤ c(β) θ -θ ′ .
Proof. Using the expression of Z i,θ,θ ′ , and the equation ( 8) with the Markov property, it suffices to bound the quantity

E n
x 0 ,θ p n x 0 (U n , V n , θ ′ )p n x 0 (U n , V n , θ) p n

x 0 (U n , V n , θ)

β 1 β . ( 62 
)
By Theorem 5 with k = 1 the function θ → p x 0 (U n , V n , θ) is absolutely continuous and we can write the quantity above as: E n x 0 ,θ θ ′ θ ṗn x 0 (U n ,V n ,s)ds p n

x 0 (U n ,V n ,θ)

β 1 β
.

Using first the Minkowski inequality, a change of measure and then the Hölder inequality one finds the following bounds for this quantity:

θ ′ θ E n
x 0 ,s ṗn x 0 (U n , V n , s) p n

x 0 (U n , V n , θ)

β p n x 0 (U n , V n , θ) p n x 0 (U n , V n , s)

1 β ds ≤ θ ′ θ E x 0 ,s ṗn x 0 (U n , V n , s) p n x 0 (U n , V n , s) βα ′ 1 βα ′ E x 0 ,s p n x 0 (U n , V n , s) p n
x 0 (U n , V n , θ) The second expectation can be bounded if (β -1)β ′ is close enough to zero by using [START_REF] Gloter | Diffusions with measurement errors. I. Local asymptotic normality[END_REF] as in the proof of Lemma 7. This gives that (62) is smaller than c |θθ ′ |.

A technical lemma

Lemma 10. Let (G 0 , . . . , G k ) be a centered Gaussian vector with invertible covariance matrix C k+1 and let us denote by C k-1 the covariance matrix of (G 1 , . . . , G k-1 ). Then,

0≤j,j ′ ≤k G j [C k+1 ] -1 j,j ′ G j ′ - 1≤j,j ′ ≤k-1 G j [C k-1 ] -1 j,j ′ G j ′ , (63) 
is a χ 2 (2) random variable.

Proof. Write the Gram-Schmidt orthonormalization procedure for the L 2 vectors G 1 , . . . , G k , G 0 as:

   H 0 . . . H k    = P k    G 0 . . . G k    ,
where the variables H 0 , . . . , H k are i.i.d. with standard Gaussian law and P k is some triangular matrix. Then a few linear algebra shows that (63) is equal to k j=0 H 2 j -k-1 j=1 H 2 j = H 2 0 + H 2 k and thus is chi-square distributed.

n - 1 /

 1 2h 2 I aug n + o P θ 0 (1) where the quantities N aug n and I aug n were defined in Section 3.1.

1 ,

 1 k +1 first components are exactly (U n 0 , . . . , U n k ). Denoting Γk the Malliavin covariance matrix of the image by M of (X n j , X n j+1 ) j=0,...,kwe have Γk = M Γ k M ⋆ . Thus, Lemma 6 yields E((det( Γk )) -p ) ≤ c(p, k) since M is invertible. Observing that the Malliavin covariance matrix K(θ) is the matrix extracted from the k+1 first rows and columns of Γk we deduce Proposition 1.

  exponents α ′ and β ′ . But the first expectation in the right hand side above is bounded by Corollary 2 (with k = 1) for all choices of α ′ , β.

Plugging this in equation ( 49), we deduce that E P [h 0 (U n ) | W n 1 ] is smaller than c(ε) -1 h 0 (u)e -c(ε)u 2 du × g(w)e εw 2 h 1 s -1 n (w) dw.

Since g(w) = exp(-w 2 /2)/ √ 2π, any choice of ε smaller than 1/4 implies that the second integral in the equation above is bounded by c e -1 4 w 2 h 1 s -1 n (w) dw. As for the lower bound, we conclude by the change of variable v = s -1 n (w).

It remains to show (50)-(51). This is done in the following lemma.

Lemma 5. For some constant c > 0 and ε > 0, we have

For all ε ∈)0, ε(, there exists c(ε) > 0 such that,

Proof. Let us recall that the process W * t := W n t -tW n 1 is a Brownian bridge on [0, 1], independent of the variable W n 1 . Thus, we can evaluate the conditional expectation

for W * some Brownian bridge. This Brownian bridge itself admits a decomposition

where ξ is a N (0, 1) variable, η is the deterministic triangle shaped function:

and W * * is the process on [0, 1] constructed as the concatenation of two independent Brownian bridges, one on [0, 1/2] and another on [1/2, 1]. Furthermore in this decomposition the r.v. η and the process W * * are independent.

For any realization of W * * we can introduce the real function,

x → g W * * (x) =