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We present in this paper a new tool for outliers detectiorhendontext of multiple regression models. This graphical t®
based on recursive estimation of the parameters. Simntati@re carried out to illustrate the performance of thiphieal
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1 Introduction

We consider the classical multiple regression model (@dimmodel). Let” be a random vector (called response
variable) in R* such that EY'] = X3 and co(Y) = ¢%I,, whereX € M,, ,(R) is a known matrix (rows of{

are the explanatory variables) and whgre R” ando? € R, are the unknown parameters (to be estimated). If
the rank ofX equals tg (which will be assumed here), then the solution of Ieaslasqproblerrﬁ is unique and is
given byB = (!X X))~ XY. This estimator is unbiased with covariance matrix equaftd X X ). It follows
that the predictiort’ is a linear transformation of the response variableY = HY with H = X(*X X))~ X

(called hat matrix).

Sensitive analysis is a crucial, but not obvious, task. &limgortant notions can be considered together: outliers,
leverage points and influential points. The notion of outienot easy to define. In fact one has to distinguish

between two cases: an observation can be an outlier witkecespthe response variable or/and to the explanatory
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variable(s). An observation is said to be an outlier wie tesponse variable if its residual (standardized or sot) i
large enough. This notion is not sufficient in some casesrdhédourth Anscombe data set [1]: the residual of the
extreme point is zero but it is clearly an outlier. It follogt® second definition of an outlier: an observation is an
outlier w.r.t. the explanatory variable(s) if it has a highidrage. As precised by Chatterjee and Price [9],"the {ever
age of a point is a measure of its "outlyingness’ [...] in tegfdlanatory] variables and indicates how much that
individual point influences its own prediction value”. A stcal way to measure leverage is to consider diagonal
elements of the hat matrik (that depends only on matriX and not onY’): thei-th observation is said to have a
high leverage ifH;; > 2p/n (which is twice the average value of the diagonal elemen# pfAny observation
with a high leverage has to be considered with care. Fromlibeeaguotation, one has also to define the notion
of influential observations. An observation is "an influahfoint if its deletion, singly or in combination with
others [...] causes substantial changes in the fitted” [9ler& exists several measures of influence: among the
most widely used, the Cook distance [12] and the DFFIT destgdB]. These two distances are cross-validation
(or jackknife) methods since they are defined on regressittndeletion of thei-th observation (when measuring
its influence). Observations which are influential pointgehalso to be considered with care. However one has to
consider simultaneously leverage and influence measuoesk @ocedure has been improved and used for defin-
ing several procedures (see [28] for instance). For a swualeyt various methods for multiple outliers detection

throughout Monte Carlo simulations, the reader could ref¢82].

In this paper we propose a new graphical tool for outliergct&n in linear regression models (but not for the
identification of the outlying observation(s)). This gragath method is based on recursive estimation of the param-
eters. Recursive estimation over a sample provides a usafaework for outliers detection in various statistical
models (multivariate data, time series, regression aisalys ). Next section is devoted to the introduction of this
tool. In order to study its performance, simulations wergied out on which our tool was applied in section
3. First we apply our graphical method to the case of data ghtame single outlier, either in the explanatory
variable or/and in the response variable. Second we apelgréiphical tool to the case of multiple outliers. In the

last section, our tool is applied to real data for which it Eliwknown that they contain one or two outliers.
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2 A new graphical tool

In one hand many authors suggested graphical tools for thiemsudetection in regression models. For instance
Atkinson [2] suggested half normal plots for the detectidrsiagle outlier (see also [3] for a large panorama).
In other hand the seminal paper by Broenal. [8] (see also [29]) about recursive residuals (we share ételd
opinion - see his comments about [8] - about the misuse ofitedee residuals’ instead of 'sequential residuals’
for instance, but as it is noticed by Broven al. [8] "the usage [of this term] is too well-establish to chatge
has been the source of various studies on outliers or rgtaitdilems, most of them being based on CUSUM test.
Schweder [31] introduced a related version of CUSUM test tackward CUSUM test (the summation is made
from n to i with i > p + 1) which was proved to have greater average power (than tissicdd CUSUM test).

Later Chuet al. [10] proposed MOSUM tests based on moving sums of recurssiduals.

Comments by Barnett and Lewis [5] about recursive residsiatsmarize well all the difficulty when considering
such approach: "There is a major difficulty in that the labglof the observations is usually done at random, or
in relation to some concomitant variable, rather than '#iglaly’ in response to the observed sample values”. For
instance Schweder [31] in order to develop two methods dfesudetection assumed that the data set could be
divided into two subsets with one containing no outliers{ 18] the reader will find another case in which the half
sample is used and assumed to be free of outliers. Sincerntetheds are not satisfactory Kianifard and Swallow
[22] defined a test procedure for the outliers detectioniagdpb data ordered according to a given diagnostic
measure (standardized residuals, Cook distance, .. .cé\thiat recursive residuals can also be used to check the
model assumptions of normality and homoscedasticity [1§; Bor a review about the use of recursive residuals
in linear models, the reader could refer to the state-ofrat®96 by Kianifard ans Swallow [23] (see also a less

recent state-of-art by Hawkins [19]).

For a given subset of observations, estimators of the pdeasare invariant under any permutation of the ob-
servations, except if one apply recursive estimations. idiba of a (graphical or not) method based on recursive
estimation (of the parameters) is to order the observaganh that the presence of one or more outliers will be
visible (on a figure or/and on a table). This point of view waediby Kianifard and Swallow [22] in the method
described above. However their procedure does not guartiraeoutliers are detected: this unfortunate case hap-
pens for instance when the outliers is precisely one optfiist observations (which are used for the initialization

of the recursive computation of residuals). This point hesrbalready noticed by Clarke [11] (who focused on
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robust method of outlier detection in the case of small sarsjge). For example, one can clearly observe this
phenomenon on the fourth Anscombe data set [1] if one usestdnelardized residuals as a diagnostic measure
(see the introduction above for previous comments on this sket). For each of these cases it is usually assumed
that the initial subset (or elemental set) does not contatiliess (such subset are called to be clean subset) but with

no guarantee that this assumptions is checked (see [20p&dher such situation).

Since the graphical tool we propose is based on a recursbeagure, we will introduce some notation for pa-
rameters estimation based on a subset of the observationani subsef of {1,...,n}, we denote bﬁ([) the
estimator ofg based on observations;,, . .., X;, with i € I. We denote byX; (resp.Y;) the sub-matrix ofX
(resp.Y) corresponding to the above situation. We will assume thiadufiy subsef such that| > p the matrix
X7 is full-rank. It follows thatB(I) is unique and given b@([) = (*X; X))~ X;Y;. We will denote bys,, the

set of all permutations of1, ..., n} and for any permutation € S,,, I := {s(1),...,s(i)}.

The graphical procedure we suggest here consists in gengratlifferent graphical displays, one for each co-
ordinates ofg (including the intercept in case of). On theth graphical display pointsz',ﬁj(I;JrFl)) with

i€ {l,...,n—p+ 1} are plotted, for a given number of permutatians .S,, (points can be joined with lines).
Similar graphical displays can also be produced for theavee estimation and for various coefficients (determina-
tion coefficient, AIC, ...). This graphical tool can be viehas dynamic graphics defined by Cook and Weisberg
[14]. This approach seems to be new to the best of our knowlddgpite recursive residuals are quite old (indeed
earlier related papers are due to Gauss in 1821 and Pizzd®d1 - see the historical note by Farebrother [17] ;
see also [30]). In fact recursive residuals and recursitimation are most of the times considered in the context
of time series (see for instance the presentation proposf])isince hence there exists a natural order for the
observations. It follows that in such situation it is not gibe to consider any permutation of the observations (it
explains why recursive residuals are mainly used to chexzkdmstancy of the parameters over time).

The presence of one (or more) outlier in a data set shoulccam@limps/perturbations at least on some of these
plots. However the effect will not be really visible if thetar lies in the first observations (see above the remark
above about [20] and [22]) or in the last observations. I, fiacthe first case, the effect will be diluted due to the
small sample size inducing a lack of precision in the esiionat And in the second case the effect should be also
diluted because of a kind of law of large numbers (as notigefifzlerson in his comments of [8(?,,Z convergesto

/3 in probability as» tends to infinity if(* X,, X,,) ! converges to zero astends to infinity). Hence it suggests that
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there exists some 'optimal’ positions for the outlying widuals in order to be detected by a recursive approach.

The number of permutations used for the graphics shouldrikpe the sample size. We suggest to distinct the

three following cases:

1. Large sample size: one can plot points for all theircular permutations. In this way, on each graphical

displaysn lines will be represented.

2. Medium or small sample size: if the sample size is not ehdargje to apply the above rule, one can choose
at randomN permutations and to plot th&¥ curves corresponding to recursive estimation. The valug of

may depend on: the smallest: is, the largestV has to be.

3. Very small sample size: if is small enough (say smaller than 10), one can plot alhitsquences on each

graphical displays. Such situation could appear in theedmf experimental designs for instance.

A major advantage of this new graphical tool is that it dogsraquire the normality assumption. This assump-
tion is generally required in the former outliers detecfiocedures (especially when using standardized residuals

for instance). Moreover it can be performed on data with feseovations.

Before applying the graphical method described above tolsited data and real data, we wish to consider some

practical aspects:

1. Inorder to enlight the presence of outliers (indeed taisreduce the effect induced by the lack of data), one
could prefer to plot only pointéi, Bj(lg+i71)) fori > |an] with a € (0,1). The value of may depend
on the sample size: for small sample size, the value obuld reach up t@5%. This could emphasize the

cases where the outliers are in the 'optimal’ positions.

2. Since the graphical method suggested here relies onsieewwstimation of parameters, one wish to apply
updating formula as given by Browet al. [8]. However one should avoid to use such formula, espgciall
when dealing with large data set, and prefer to inverse oettior each points (since computers are more
reliable and efficient than in the past). In fact using upgaformula may induce cumulative rounding-off
errors making the graphical method unuseful (this point alesady noticed by Kendall in his comments

about the paper by Browet al. [8]).

For now we will assume that the response variabls a Gaussian random vector. We will see how one can use

cumulative sum (CUSUM) of recursive residuals in order togjmilar graphical displays revealing the presence
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(or not) of outliers. This is fully inspired by [8] (see alsbg]). In fact as showed by McGilchrist al. [25] (in a
more general context), recursive residuals and recurstimations ofg are related one to the other by re-writing

the update formula as follows forc {1,...,n — p},

XI;+i—1 )_1

R(I3, (X1,

—1

\/1 +ta, p+1)( XIQ 1X11§+i71)_1175(p+i)

)

B( p+z) B( p+z 1

wherez; denotes theé-th row of X and whereR(I7, ;) is thei-th recursive residuals defined by:

s Ys(pti) — th(pH)ﬁ(I;H—ﬂ
R(Ip-H,) : 1 .
\/1 + :L'S(p+7‘)( XI;+1 1XI;+i,1)7 :rs(p+i)
As proved by Browret al. (lemma 1 in [8]),R(I}), ..., R(I;_,) are iid random variables having the Gaussian

distribution with mean 0 and variane@. It allows to construct a continuous-time stochastic pssagsing Donsker

theorem (see chapter 2 in [7]):

W (0.1) . Xult) = = (Sl + (0t = )Ry 0))

whereS, =0 andsS; = S;—1 + R( pﬂ) The unknown variance? is estimated considering all the observations:
— ||[Y = Y|[2/(n — p). If all the assumptions of the Gaussian linear model arsfgedi { X,,(t); ¢ € (0,1)}

converges in distribution to the Brownian motiorvatends to infinity. It follows that this graphical method cdul

be only used for large sample size. According to Bratal. [8], the probability that a sample path; crosses

one of the two following curves:

Y= 3aVt or Y= —3aV/t

equals tax if a is solution of the equation:
9 1
— ®(3a) + exp(—4a)®(a) = e

where® is the cumulative distribution function of the standard &san distribution (for instance, when= 0.01

it givesa = 1.143).
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3 Simulations

In this section we provide some simulations in order to olaséine phenomenon which arises in such graphical
displays in presence of one or more outliers. We will firstsidar the case where the data set contains only one
outlier (either in the explanatory variable or/and in thep@nse variable). Secondly we will consider the case of

multiple outliers which is more difficult to detect when ugithe classical tools.

3.1 Single outlier

We present here some simulations on which we apply our graptuiol. Data were generated as follows :

V’L'E{l,...,’n}, Y =14+2x;+¢;,

where(z;) are iid random variables double exponential distributigtihmnean 1 ande;) are iid random variables
with the centered Gaussian distribution with standardatewi c = 0.1. From this model, we derive three
perturbed bivariate data sets. First we construct the uaieadata setz;) as follows: for alli € {1,...,n}\
{[n/2]} andz |, /2 = 102, /2, (it correspondsto a typo errors with the decimal separgtobsl). We construct
similarly the perturbed univariate data égt). Thus we combine these univariate data sets to produceiffenesht
scenario: no outlier, one outlier in the explanatory vdgdl), one outlier in the response variablg énd one

outlier simultaneously in the explanatory and responsiabbes.

Figure 1 shows these four situations (one for each columtimvi= 100 observations (large sample size): the two
first rows contain the recursive estimationsdfand 3;, the third one the recursive values Bf (determination
coefficient) and the last one the recursive estimations’ofThe presence of one outlier (either in the explanatory
variable and/or in the response variable) leads to pettiormin the recursive parameter estimations (especially

for the variance estimation) and in the recursive companiatf the determination coefficient.

[Fig. 1 about here.]

On figure 2 (each column concern each situation as describegep stochastic processes (that should be
Brownian motions in model assumptions are all satisfiedstraoted with the CUSUM procedure (see last part
in the previous section) are plotted for all circular peratioins. Even though these stochastic processes do not

frequently cross the parabolic border, it is clear qualiedy of the outliers presence in the three last cases.
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[Fig. 2 about here.]

Figure 3 contains the same outputs (as on the first one) blatmdt 10 (small sample size) and with' = 100
(the number of random permutations on which recursive egtims are done). Similar outputs are obtained in this
case, with slightly difference due precisely to the samjzde.sThe presence of the outlier is more visible for the

recursive estimations gf; and for the recursive estimations of the varianée

[Fig. 3 about here.]

When the response variabteis a non-Gaussian random vector, the method is still valid E@ads also to the
same kind of phenomenon on the various plots. Moreover spplhoach can be also used to detect switching

regime in a regression model. Simulations for these caseseeeried out (but not presented here).

3.2 Multiple outliers

The presence of multiple outliers in a data set is more difficudetect. Methods based on single deletion [3;
13] may fail and thus outliers will be remained undetectedhisTphenomenon is called the 'masking effect’:
in presence of multiple outliers, "least squares estinmatibthe parameters may lead to small residuals for the
outlying observations” [4] (see also [24] for a discussibouat this effect). Moreover "if a data set contains more
than one outlier, because of the masking effect, the verydirservation [with the largest standardized residuals]
may not be declared discordant [i.e. as an outlier]” [27]wdwer since we initialize the recursive estimations at

various positions in the data set, this consequence of tis&ingpeffect should disappear.

We consider the same model as the previous section but iretitierped univariate data sets we introduce multiple
outliers. Two cases are considered: first the outliers ansexutive observations and second the outliers are at
random positions in the data sets. Simulation were onlyiezhiwut for large samples. Figures 4 and 5 contain
the outputs obtained respectively witttonsecutive outliers and withoutliers uniformly drawn at random over

{1,...,100}.

[Fig. 4 about here.]

[Fig. 5 about here.]
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4 Application to health data sets

We apply our graphical tool to two real data sets. A simpleassjon will be performed on the first data set which
contains a single of outlier. While a multiple regressiofi né performed on the second data sets which contains

a couple of outliers.

e Alcohol and tobacco spending in Great Britain [26]. Data esnfrom a British government survey of
household spending in the eleven regions of Great Britaire €an consider the simple regression of alcohol
spending on tobacco spending. It appears that this dateos&dins one single outlier (corresponding to
Northern Ireland - the last individual in the data set). Omifgg6 the various recursive estimations are
plotted: from left to right and from up to dowi,, 51, R? ando?. Red lines (resp. black) correspond to
data with (resp. without) the single outlier. These outpugse obtained by applying the rule for small data
sets (withV = 100 randomly chosen permutations). Graphical plots of theaveé estimation and of the

determination coefficient clearly indicates the preseri@mutlier.

[Fig. 6 about here.]

e Smoking and cancer data [15]. The data are per capita nurobeigarettes smoked (sold) by 43 states
and the District of Columbia in 1960 together with death sgter thousand population from various forms
of cancer: bladder cancer, lung cancer, kidney cancer akeieia. A classical sensitive analysis leads to
conclude that the data set contains two outliers, Nevad#erdistrict of Columbia (the two last individuals
in the data set), in the distribution of cigarette consumpfihe response variable). Figure 7 contains the
outputs in three cases (corresponding to the three colurans)of the two outliers have been removed for
the two first cases and the two outliers have been removea ilagh case. As for the previous example, the
red line correspond to the original data set and the red otlestdata set with one or two outliers removed.
The five first rows contain plots f(ﬁ, the sixth row the plot for the determination coefficient ahd last
row the plot forg. The graphical plots for the variance estimation indicatearly that removing only one

outlier is not sufficient.

[Fig. 7 about here.]
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Fig. 3: Graphical plots for simulated data: single outliers andlssaanple size
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Fig. 6: Graphical plots for alcohol and tobacco data



A new graphical tool of outliers detection

LT
> LLLT7

bbbl L7
77 ~: 7

i

Lol P IFREre—
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