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STOCHASTIC DOMINATION FOR ITERATED CONVOLUTIONS AND

CATALYTIC MAJORIZATION

GUILLAUME AUBRUN AND ION NECHITA

Abstract. We study how iterated convolutions of probability measures compare under stochastic
domination. We give necessary and sufficient conditions for the existence of an integer n such that µ∗n

is stochastically dominated by ν∗n for two given probability measures µ and ν. As a consequence we
obtain a similar theorem on the majorization order for vectors in R

d. In particular we prove results
about catalysis in quantum information theory.

Notations

Let us start by introducing some notation and recalling basic facts about probability measures.
We write P(R) for the set of probability measures on R. We deonte by δx the Dirac mass at point
x. If µ ∈ P(R), we write supp µ for the support of µ. We write respectively min µ and maxµ for
min suppµ and max suppµ. We also write µ(a, b) and µ[a, b] as a shortcut for µ((a, b)) and µ([a, b]).
The convolution of two measures µ and ν is denoted µ ∗ ν. Recall that if X and Y are independent
random variables of respective laws µ and ν, the law of X + Y is given by µ ∗ ν. The results of this
paper are stated for convolutions of measures, they admit immediate translations in the language of
sums of independent random variables. For λ ∈ R, the function eλ is defined by eλ(x) = exp(λx).

1. Stochastic domination

A natural way of comparing two probability measures is given by the following relation

Definition 1. Let µ and ν be two probability measures on the real line. We say that µ is stochastically
dominated by ν and we write µ 6st ν if

(1) ∀t ∈ R, µ[t,∞) 6 ν[t,∞).

It is immediately checked that (1) is equivalent to

∀t ∈ R, µ(−∞, t] 6 ν(−∞, t].

Stochastic domination is an order relation (in particular, µ 6st ν and ν 6st µ imply µ = ν). The
following result [9] provides an useful characterization of stochastic domination

Theorem (Strassen). Let µ and ν be two probability measures on the real line. Then µ 6st ν if and
only if there is a probability space (Ω,F ,P) with two random variables X and Y such that

• X has law µ,
• Y has law ν,
• X(ω) 6 Y (ω), for all ω ∈ Ω.

The following lemmas can be proved either using Strassen’s theorem or by direct calculation

Research was supported in part by the European Network Phenomena in High Dimensions, FP6 Marie Curie Actions,
MCRN-511953.
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Lemma 1. Let µ, ν be two probability measures on the real line such that µ 6st ν. Then for any
increasing function f : R → R+ and any decreasing function g : R → R+, we have

∫

fdµ 6

∫

fdν and

∫

gdµ >

∫

gdν.

Lemma 2. Let µ1, µ2, ν1, ν2 be probability measures on the real line. If µ1 6st ν1 and µ2 6st ν2,
then µ1 ∗ µ2 6st ν1 ∗ ν2.

Corollary 1. Let µ and ν be two probability measures on the real line such that µ 6st ν. Then, for
all n > 2, µ∗n 6st ν∗n.

The converse to the corollary is false, as shown by the following proposition

Proposition 1. For all n ∈ 2N∗, there exist probability measures µ and ν such that µ∗(n+1) 6st ν∗(n+1)

and, for all 1 6 k 6 n, µ∗k 66st ν∗k. Moreover, µ and ν can be chosen to be a convex combination of
two Dirac masses.

Proof. Let µ = (1 − p)δ0 + pδa and ν = 1
2δa−(1+ε) + 1

2δa+1, where a ∈ N∗, p ∈ (0, 1) and ε > 0 will be
defined later. For k > 1,

µ∗k =

k∑

i=0

(
k

i

)

pi(1 − p)k−iδia,

and

ν∗k =
1

2k

k∑

i=0

(
k

i

)

δka+k−2i−iε.

Hence, supp(µ∗k) ⊂ [0, ka] and supp(ν∗k) ⊂ [ka − k − kε, ka + k]. Choose ε > 0 small enough such
that k − 2i − iε > 0 ⇔ i < k

2 for all 1 6 k 6 n + 1, 0 6 i 6 k; also, choose a > (n + 1)(1 + ε). Then,

for 1 6 k 6 n + 1, the only atom of µ∗k inside [min ν∗k, max ν∗k] is δka. It can be easily showed that,
for all 1 6 k 6 n + 1, µ∗k 6st ν∗k iff. µ∗k[ka,∞) 6 ν∗k[ka,∞). We have:

µ∗k[ka,∞) = pk,

ν∗k[ka,∞) =
1

2k

∑

06i<k/2

(
k

i

)

=

{
1
2 if k is odd,
1
2 − 1

2k+1

(
k

k/2

)
if k is even.

Consider now p ∈ (0, 1) such that pn > 1/2 and pn+1 6 1/2. For all 1 6 k 6 n, we have

ν∗k[ka,∞) 6
1

2
< pk = µ∗k[ka,∞),

and thus µ∗k 66st ν∗k. However, if n is even, µ∗(n+1)[(n+1)a,∞) = pn+1 6 1/2 = ν∗(n+1)[(n+1)a,∞)
and so µ∗(n+1) 6st ν∗(n+1). �

2. Stochastic domination for iterated convolutions and Cramér’s theorem

In light of Proposition 1, we are going to study the following relation which generalizes stochastic
domination

Definition 2. We define a relation 6∗
st on P(R) as follows

µ 6∗
st ν ⇐⇒ ∃n > 1 s.t. µ∗n 6st ν∗n.
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In turns that when defined on P(R), this relation is not an order relation due to pathological
poorly integrable measures. Indeed, there exist two probability measures µ and ν so that µ 6= ν and
µ ∗ µ = ν ∗ ν (see [7], p. 479). For this reason, we restrict ourselves to sufficiently integrable measures
(however, most of what follows generalizes to wider classes of measures).

Definition 3. A measure µ on R is said to be exponentially integrable if
∫

eλdµ < +∞ for all λ ∈ R

(recall that eλ(x) = exp(λx)). We write Pexp(R) for the set of exponentially integrable probability
measures.

Notice that the space of exponentially integrable measures is stable under convolution. On re-
striction to Pexp(R), the relation 6∗

st is a partial order. Indeed, if µ∗k 6st ν∗k and ν∗l 6st µ∗l,
then µ∗kl 6st ν∗kl 6st µ∗kl and therefore µ∗kl = ν∗kl. But if µ and ν are exponentially integrable,
this implies that µ = ν. One can see this in the following way: if we denote the moments of µ by
mp(µ) =

∫
xpdµ(x), one checks by induction on p that mp(µ) = mp(ν) for all p ∈ N. On the other

hand, exponential integrability implies that m2p(µ)1/2p 6 Cp for some constant C, so that Carleman’s
condition is satisfied (see [7], p. 224). Therefore µ is determined by its moments and µ = ν.

We would like to give a description of the relation 6∗
st. We start with the following lemma

Lemma 3. Let µ, ν ∈ Pexp(R) such that µ 6∗
st ν. Then the following inequalities hold

(a) ∀λ > 0,
∫

eλdµ 6
∫

eλdν,
(b) ∀λ < 0,

∫
eλdµ >

∫
eλdν,

(c)
∫

xdµ(x) 6
∫

xdν(x),
(d) min µ 6 min ν,
(e) max µ 6 max ν,

Proof. Let µ 6∗
st ν and λ > 0. Since µ∗n 6 ν∗n for some n, we get from Lemma 1 that

∫

eλdµ∗n
6

∫

eλdν∗n.

It remains to notice that ∫

eλdµ∗n =

(∫

eλdµ

)n

and we get (a). The proof of (b) is completely symmetric, while (c) follows also from Lemma 1.
Conditions (d) and (e) are obvious since min(µ∗n = n min(µ) and max(µ∗n = n max(µ). �

The following lemma shows that the necessary conditions of Lemma 3 are “almost sufficient”.

Lemma 4. Let µ, ν ∈ Pexp(R). Assume that the following inequalities hold:

(a) ∀λ > 0,
∫

eλdµ <
∫

eλdν.
(b) ∀λ < 0,

∫
eλdν <

∫
eλdµ.

(c)
∫

xdµ(x) <
∫

xdν(x).
(d) max µ < max ν 6 +∞.
(e) −∞ 6 min µ < min ν.

Then µ 6∗
st ν, and more preciesly there exists an integer N ∈ N such that for any n > N , µ∗n 6st ν∗n.

We give in Proposition 2 a counter-example showing that Lemma 4 is not true when stated with
large inequalities.

We are going to use Cramér’s theorem on large deviations. The cumulant generating function Λµ

of the probability measure µ is defined for any λ ∈ R by

Λµ(λ) = log

∫

eλdµ.
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It is a convex function taking values in R. Its convex conjugate Λ∗
µ, sometimes called the Cramér

transform, is defined as

Λ∗
µ(t) = sup

λ∈R

λt − Λµ(λ).

Note that Λ∗
µ : R → [0, +∞] is a smooth convex function, which takes the value +∞ on R \

[min µ, maxµ]. Moreover, for t ∈ (min µ, maxµ), the supremum in the definition of Λµ(t) is at-
tained at a unique point λt. Moreover, λt > 0 if t >

∫
xdµ(x) and λt < 0 if t <

∫
xdµ(x). Also,

Λ∗
µ(
∫

xdµ(x)) = 0 since Λ′
µ(0) =

∫
xdµ(x). We now state Cramér’s theorem. The theorem can be

equivalently stated in the language of sums of i.i.d. random variables [5, 9].

Theorem (Cramér’s theorem). Let µ ∈ Pexp(R). Then for any t ∈ (min µ, maxµ),

(2) lim
n→∞

1

n
log µ∗n[tn, +∞) =

{

0 if t 6
∫

xdµ(x)

−Λ∗
X(t) otherwise.

(3) lim
n→∞

1

n
log (1 − µ∗n[tn, +∞)) =

{

0 if t >
∫

xdµ(x)

−Λ∗
X(t) otherwise.

Proof of Lemma 4. Note that the hypotheses imply that the quantities maxµ and min ν are finite. We
write also Mµ =

∫
xdµ(x) and Mν =

∫
xdν(x).

For n > 1, define (fn) and (gn) by

fn(t) = µ∗n[tn, +∞),

gn(t) = ν∗n[tn, +∞).

We need to prove that fn 6 gn on R for n large enough. If t > max µ, the inequality is trivial since
fn(t) = 1. Similarly, if t < min ν we have gn(t) = 1 and there is nothing to prove.

Fix a real number t0 such that Mµ < t0 < Mν . We first work on the interval I = [t0, maxµ]. By

Cramér’s theorem, the sequences (f
1/n
n ) and (g

1/n
n ) converge respectively on I toward f and g defined

by

f(t) = exp(−Λ∗
µ(t)),

g(t) =

{

1 if t0 6 t 6 Mν

exp(−Λ∗
ν(t)) if Mν 6 t 6 max µ

.

Note that f and g are continuous on I. We claim also that f < g on I. The inequality is clear on
[t0, Mν ] since f < 1. If t ∈ (Mν , maxµ], note that the supremum in the definition of Λ∗

ν(t) is attained
for some λ > 0 — to show this we used hypothesis (d). Using (a) and the definition of the convex
conjugate, it implies that Λ∗

ν(t) > Λ∗
µ(t). We now use the following elementary fact: if a sequence

of non-increasing functions defined on a compact interval I converges pointwise toward a continuous
limit, then the convergence is actually uniform on I (for a proof see [16] Part 2, Problem 127; this

statement is attributed to Pólya or to Dini depending on authors). We apply this result to both (f
1/n
n )

and (g
1/n
n ) ; and since f < g, uniform convergence implies that for n large enough, f

1/n
n < g

1/n
n on I,

and thus fn 6 gn.
Finally, we apply a similar argument on the interval J = [min ν, t0], except that we consider the

sequences (1− fn)1/n and (1− gn)1/n, and we use (3) to compute the limit. We omit the details since
the argument is totally symmetric.

We eventually showed that for n large enough, fn 6 gn on I ∪ J , and thus on R. This is exactly
the conclusion of the lemma. �
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3. Geometry and topology of 6∗
st

We investigate here the topology of the relation 6∗
st. We first need to define a adequate topology

on Pexp(R). This space can be topologized in several ways, an important point for us is that the map
µ 7→

∫
eλdµ should be continuous.

Definition 4. A function f : R → R is said to be subexponential if there exist constants c, C so that
for every x ∈ R

|f(x)| 6 C exp(c|x|).

Definition 5. Let τ be the topology defined on the space of exponentially integrable measures, generated
by the family of seminorms (Nf )

Nf(µ) =

∣
∣
∣
∣

∫

fdµ

∣
∣
∣
∣
,

where f belongs to the class of continuous subexponential functions.

The topology τ is a locally convex vector space topology. It can be shown that the relation 6∗
st is

not τ -closed (see Proposition 2). However, its closure can be described by the following theorem.

Theorem 1. Let R ⊂ Pexp(R)2 be the set of couples (µ, ν) of exponentially integrable probability
measures so that µ 6∗

st ν. Then

(4) R =

{

(µ, ν) ∈ Pexp(R)2 s.t. ∀λ > 0,

∫

eλdµ 6

∫

eλdν and ∀λ 6 0,

∫

eλdµ >

∫

eλdν

}

,

the closure being taken with respect to the topology τ .

Proof. Let us write X for the set on the right-hand side of (4). We get from Lemma 3 that R ⊂ X .
Moreover, it is easily checked that X is τ -closed, therefore R ⊂ X . Conversely, we are going to show
that the set of couples (µ, ν) satisfying the hypotheses of Lemma 4 is τ -dense in X . Let (µ, ν) ∈ X .
We get from the inequalities satisfied by µ and ν that

•
∫

xdµ(x) 6 xdν(x) (taking derivatives at λ = 0),
• min µ 6 min ν (taking λ → −∞),
• max µ 6 max ν (taking λ → +∞).

We want to define two sequences (µn, νn) which τ -converge toward (µ, ν), with µn 6st µ and ν 6st νn

and for which the above inequalities become strict. Assume for example that max µ = max ν = +∞
and minµ = min ν = −∞. Then we can define µn and νn as follows: let εn = µ[n, +∞) and
ηn = ν(−∞,−n], and set

µn = µ|(−∞,n) + εnδn,

νn = ν|(−n,+∞) + ηnδ−n.

We check using dominated convergence than lim µn = µ and lim νn = ν with respect to τ , while by
Lemma 4 we have µn 6∗

st νn. The other cases are treated in a similar way: we can always play with
small Dirac masses to make all inequalities strict (for example, if max µ = max ν = M < +∞, replace
ν by (1 − ε)ν + εδM+1, and so on). �

A more comfortable way of describing the relation 6∗
st is given by the following sets

Definition 6. Let ν ∈ Pexp(R). We define D(ν) to be the following set

D(ν) = {µ ∈ Pexp(R) s.t. µ 6
∗
st ν}.



6 GUILLAUME AUBRUN AND ION NECHITA

Using the ideas in the proof of Theorem 1, it can easily be showed that for ν ∈ Pexp(R) such that
min ν > −∞, one has

(5) D(ν) =

{

µ ∈ Pexp(R) s.t. ∀λ > 0,

∫

eλdµ 6

∫

eλdν and ∀λ 6 0,

∫

eλdµ >

∫

eλdν

}

,

where the closure is taken in the topology τ . However, for measures ν with min ν = −∞, the condition
(e) of Lemma 4 is violated and we do not know if the relation (5) holds.

Another consequence of equation (5) is that the τ -closure of D(ν) is a convex set. It is not clear
that the set D(ν) itself is convex. We shall see in Proposition 3 that this is not the case in general
for measures ν /∈ Pexp(R). Not also that for fixed ν ∈ P(R) the set {µ ∈ P(R) s.t. µ 6st ν} is easily
checked to be convex.

Remark 1. One can analously define for µ ∈ Pexp(R) the “dual” set E(µ) = {ν ∈ Pexp(R) s.t. µ 6∗
st

ν}. Results about D(ν) or E(µ) are equivalent. Indeed, let µ↔ be the measure defined for a Borel set
B by µ↔(B) = µ(−B). We have µ 6∗

st ν ⇐⇒ ν↔ 6∗
st µ↔ and therefore E(µ) = D(µ↔)↔.

We now give an example showing that the relation 6∗
st is not τ -closed.

Proposition 2. There exists a probability measure ν ∈ Pexp(R) so that the set D(ν) is not τ-closed.
Consequently, the set R appearing in (4) is not closed either.

Proof. For k > 1, let ak = (k + 2)!, bk = (k + 2)! + 1 and γk = c exp(−kk), where the constant c is
chosen so that

∑
γk = 1. We check that (ak) and (bk) satisfy the following inequalities

(6) (k − 1)bk + bk−1 < kak,

(7) kbk < ak+1.

Start with the following fact which follows from Proposition 1: for each k ∈ N there exist µk and
νk, probability measures with finite support such that µk ∈ D(νk) while µ∗k

k 66st ν∗k
k . Moreover, we

can assume that supp(µk) ⊂ (ak, bk) and supp(νk) ⊂ (ak, bk). Indeed, we can apply to both measures
a suitable affine transformation (increasing affine transformations preserve stochastic domination and
are compatible with convolution). We now define µ and ν as

µ =

∞∑

k=1

γkµk and ν =

∞∑

k=1

γkνk.

Note that the sequence (γk) has been chosen to tend very quickly to 0 to ensure that µ and ν are
exponentially integrable. We also introduce the following sequences of measures

µ̃n =

n∑

k=1

γkµk +

(
∞∑

k=n+1

γk

)

δ0,

ν̃n =

n∑

k=1

γkνk +

(
∞∑

k=n+1

γk

)

δ0.

One checks using Lebesgue’s dominated convergence theorem that the sequences (µ̃n) and (ν̃n) converge
respectively toward µ and ν for the topology τ . Note also that this sequences are increasing with respect
to stochastic domination, so that ν̃n 6st ν. For fixed k, µk and νk satisfy the hypotheses of Lemma 4
and thus the same holds for µ̃n and ν̃n. Therefore µ̃n ∈ D(ν̃n) ⊂ D(ν). This proves that µ ∈ D(ν).

We now prove by contradiction that µ /∈ D(ν). Assume that µ ∈ D(ν), i.e. µ∗k 6st ν∗k for some
k > 1. Let sk = kak and tk = kbk. Fix a sequence i1, . . . , ik of nonzero integers. Set m = µi1 ∗ · · · ∗µik
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or m = νi1 ∗ · · · ∗ νik
. We know that supp(m) ⊂ (a, b), with a =

∑k
j=1 aij

and b =
∑k

j=1 bij
. It is

possible to locate precisely supp(m) using the inequalities (6) and (7).

(a) If ij > k for some j, then a > ak+1 > tk and therefore supp(m) ⊂ (tk, +∞).
(b) If ij = k for all j, then a = sk and b = tk and therefore supp(m) ⊂ (sk, tk).
(c) If ij 6 k for all j and ij0 < k for some j0, then b 6 bk−1 + (k − 1)bk < sk and therefore

supp(m) ⊂ [0, sk).

Consequently,

µ∗k[tk, +∞) =
∑

i1,...,ik

γi1 . . . γik
µi1 ∗ · · · ∗ µik

[tk, +∞) =
∑

i1,...,ik satisfying (a)

γi1 . . . γik
= ν∗k[tk, +∞).

Moreover, because of (b) and (c), we get that for sk 6 t 6 tk,

µ∗k[t, tk) = γk
kµ∗k

k [t, tk) = γk
kµ∗k

k [t, +∞).

and similarly
ν∗k[t, tk) = γk

kν∗k
k [t, +∞).

We assumed that µ∗k 6st ν∗k, i.e. µ∗k[t, +∞) 6 ν∗k[t, +∞) for all t. If t 6 tk, since µ∗k(tk, +∞) =
ν∗k(tk, +∞), we get that µ∗k[t, tk) 6 ν∗k[t, tk). Since γk > 0, this implies that for all t > sk,

µ∗k
k [t, +∞) 6 ν∗k

k [t, +∞). This contradicts the fact that µ∗k
k 66st ν∗k

k . Therefore µ ∈ D(ν) \ D(ν), and
so D(ν) is not closed. �

We now give an example of pathologies that can happen if we consider measures with poor integra-
bility properties.

Proposition 3. There exists a probability measure ν ∈ P(R) such that the set

(8) {µ ∈ P(R) s.t. µ 6∗
st ν}

is not convex.

The difference between equation (8) and our definition of D(ν) is that here we do not suppose the
measures to be exponentially integrable.

Proof. We rely on the following fact which we already alluded to (see [7], p. 479): there exist two
distinct real characteristic functions φ1 and φ2 such that φ2

1 = φ2
2 identically. Consider now the

measures µ and ν with respective characteristic functions φ1 and φ2, i.e. φ1(t) =
∫

eitdµ(t) and

φ2(t) =
∫

eitdν(t). Obviously, we have ν 6∗
st ν and µ 6∗

st ν since µ∗2 = ν∗2. Let χ = 1
2µ + 1

2ν and let
us show that χ 66∗

st ν. We have

χ∗2n =
1

22n

2n∑

i=0

(
2n

i

)

µ∗i ∗ ν∗2n−i =

=
1

22n

[
∑

i even

(
2n

i

)

ν∗2n +
∑

i odd

(
2n

i

)

ν∗2n−1 ∗ µ

]

.

Thus χ∗2n 6st ν∗2n, is equivalent to ν∗2n−1∗µ 6st ν∗2n. Let us show that this is impossible. Indeed, the
measures ν∗2n−1∗µ and ν∗2n have real characteristic functions and thus they are symmetric probability
measures. Note however that two symmetric probability distributions cannot be compared with 6st

unless they are equal. But it cannot be that ν∗2n−1 ∗ µ = ν∗2n because their characteristic functions
are different (φ1(ξ) = φ2(ξ) iff. φ1(ξ) = 0). A similar argument holds for χ∗2n+1 66st ν∗2n+1. �

We conclude this section with few remarks on a relation which is very similar to 6∗
st. It is the

analogue of catalytic majorization in quantum information theory (see Section 4).
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Definition 7. Let µ, ν ∈ Pexp(R). We say that µ is catalytically stochastically dominated by ν and
write µ 6C

st ν if there exists a probability measure π ∈ Pexp(R) such that µ ∗ π 6st ν ∗ π.

The following lemma shows a connection between the two relations.

Lemma 5. Let µ, ν ∈ Pexp(R). Assume µ 6∗
st ν. Then µ 6C

st ν.

Proof. Assume that µ∗n 6st ν∗n for some n. Let π the probability measure defined by

π =
1

n

n−1∑

k=0

µ∗k ∗ ν∗(n−1−k).

Let also ρ be the mesaure defined by

ρ =
1

n

n−1∑

k=1

µ∗k ∗ ν∗(n−k),

then one has µ ∗π = 1
nµ∗n + ρ and ν ∗π = 1

nν∗n + ρ, and since µ∗n 6st ν∗n this implies µ ∗π 6st ν ∗π.

Since π ∈ Pexp(R), we get µ 6C
st ν. �

From Theorem 1 and Lemma 5 one can easily derive the

Corollary 2. The analogue of Theorem 1 is true if we substitute 6∗
st with 6C

st.

4. Catalytic majorization

This section is dedicated to the study of the majorization relation, the notion which was the initial
motivation of this work. The majorization relation provides, much as the stochastic domination for
probability measures, a partial order on the set of probability vectors. Originally introduced in linear
algebra [12], [3], it has found many application in quantum information theory with the work of Nielsen
[13], [14]. We shall not focus on quantum-theoretical aspects of majorization; we refer the interested
reader to [1] and references therein. Here, we study majorization by adapting previously obtained
results for stochastic domination.

The majorization relation is defined for probability vectors, i.e. vectors x ∈ RN with non-negative
components (xi > 0) which sum up to one (

∑

i xi = 1). Before defining precisely majorization, let
us introduce some notation. For d ∈ N∗, let Pd be the set of d-dimensional probability vectors :
Pd = {x ∈ Rd s.t. xi > 0,

∑
xi = 1}. Consider also the set of finitely supported probability vectors

P<∞ =
⋃

d>0 Pd. For a vector x ∈ P<∞, we write xmax for the largest component of x and xmin for
its smallest non-zero component. In this section we shall consider only finitely supported vectors. For
the general case, see Section 6. We shall identify an element x ∈ Pd with the corresponding element
in Pd′ (d′ > d) or P<∞ obtained by appending null components at the end of x.

Next, we define x↓, the decreasing rearrangement of a vector x ∈ Pd as the vector which has the

same coordinates as x up to permutation and such that x↓
i > x↓

i+1 for all 1 6 i < d. We can now
define majorization in terms of the ordered vectors:

Definition 8. For x, y ∈ Pd we say that x is majorized by y and we write x ≺ y if for all k ∈ {1, . . . , d}

(9)

k∑

i=1

x↓
i 6

k∑

i=1

y↓
i .

Note however that there are several equivalent definitions of majorization which do not use the
ordering of the vectors x and y (see [3] for further details):
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Proposition 4. The following assertions are equivalent:

(1) x ≺ y,

(2) ∀t ∈ R,
∑d

i=1 |xi − t| 6
∑d

i=1 |yi − t|,

(3) ∀t ∈ R,
∑d

i=1 (xi − t)+ 6
∑d

i=1 (yi − t)+, where z+ = max(z, 0),
(4) There is a bistochastic matrix B such that x = By.

There are two operations on probability vectors which are of particular interest to us: the tensor
product and the direct sum. For x = (x1, . . . , xd) ∈ Pd and x′ = (x′

1, . . . , x
′
d′) ∈ Pd′ , we define the

tensor product x ⊗ x′ as the vector (xix
′
j)ij ∈ Pdd′ . We also define the direct sum x ⊕ x′ as the

concatenated vector (x1, . . . , xd, x
′
1, . . . , x

′
d′) ∈ Rd+d′

. Note that if we take ⊕-convex combinations, we
get probability vectors: λx ⊕ (1 − λ)x′ ∈ Pd+d′ .

The construction which permits us to use tools from stochastic domination in the framework of
majorization is the following (inspired by [11]): to a probability vector z ∈ P<∞ we associate a
probability measure µz defined by:

µz =
∑

ziδlog zi
.

These measures behave well with respect to tensor products:

µx⊗y = µx ∗ µy.

The connection between majorization and stochastic domination is provided by the following lemma:

Lemma 6. Let x, y ∈ P<∞. Assume that µx 6st µy. Then x ≺ y.

Proof. We can assume that x = x↓ and y = y↓. Note that

µx[t,∞) =
∑

i:log xi>t

xi =
∑

i:xi>exp(t)

xi.

Thus, for all u > 0,
∑

i:xi>u xi 6
∑

i:yi>u yi. To start, use u = y1 to conclude that x1 6 y1. Notice

that it suffices to show that
∑k

i=1 xi 6
∑k

i=1 yi only for those k such that xk > yk (indeed, if xk 6 yk,
the (k + 1)-th inequality in (9) can be deduced from the k-th inequality). Consider such a k and let
xk > u > yk. We get:

k∑

i=1

xi 6
∑

i:xi>u

xi 6
∑

i:yi>u

yi 6

k∑

i=1

yi,

which completes the proof of the lemma. �

Remark 2. The converse of this lemma does not hold. Indeed, consider x = (0.5, 0.5) and y =
(0.9, 0.1). Obviously, x ≺ y but 1 = µx[log 0.5,∞) > µy[log 0.5,∞) = 0.9 and thus µx 66st µy.

We can describe the majorization relation by the sets:

Sd(y) = {x ∈ Pd|x ≺ y},

where y is a finitely supported probability vector. Mathematically, such a set is characterized by the
following lemma, which is a simple consequence of Birkhoff’s theorem on bistochastic matrices:

Lemma 7. For y a d-dimensional probability vector, the set S(y) is a polytope whose extreme points
are y and its permutations.
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The initial motivation for our work was the following phenomena discovered in quantum information
theory (see [10] and repsectively [2]). It turns out that additional vectors can act as catalysts for the
majorization relation: there are vectors x, y, z ∈ P<∞ such that x ⊀ y but x ⊗ z ≺ y ⊗ z; in such a
situation we say that x is catalytically majorized (or trumped) by y and we write x ≺T y. Another
form of catalysis is provided by multiple-copies of vectors: we can find vectors x and y such that x ⊀ y
but still, for some n > 2, x⊗n ≺ y⊗n; in this case we write x ≺M y. We have thus two new order
relations on probability vectors, analogues of 6C

st and respectively 6∗
st. As before, for y ∈ Pd, we

introduce the sets
Td(y) = {x ∈ Pd s.t. x ≺T y},

and
Md(y) = {x ∈ Pd s.t. x ≺M y}.

It turns out that the relations ≺T and ≺M (and thus the sets Td(y) and Md(y)) are not as simple as
≺ and Sd(y). It is known that the inclusion Md(y) ⊂ Td(y) holds (this is the analogue of Lemma 5) and
that it can be strict [8]. In general, the sets Td(y) and Md(y) are neither closed nor open, and although
Td(y) is known to be convex, nothing is known about the convexity of Md(y) (such questions have
been intensively studied in the physical literature; see [6, 4] and the references therein). As explained
in [1] it is natural from a mathematical point of view to introduce the sets T<∞(y) =

⋃

d∈N
Td(y) and

M<∞(y) =
⋃

d∈N
Md(y). A key notion in characterizing them is Schur-convexity:

Definition 9. A function f : Pd → R is said to be

• Schur-convex if f(x) 6 f(y) whenever x ≺ y,
• Schur-concave if f(x) > f(y) whenever x ≺ y,
• strictly Schur-convex if f(x) < f(y) whenever x � y,
• strictly Schur-concave if f(x) > f(y) whenever x � y,

where x � y means x ≺ y and x↓ 6= y↓.

Examples are provided as follows: if Φ : R → R is a (strictly) convex/concave function, then the
following function h : Pd → R defined by h(x1, . . . , xd) = Φ(x1) + · · · + Φ(xd) is (strictly) Schur-
convex/Schur-concave.

For x ∈ Pd and p ∈ R, we define Np(x) as

Np(x) =
∑

16i6d
xi>0

xp
i .

We will also use the Shannon entropy H

H(x) = −

d∑

i=1

xi log xi.

Note that −H(x) is the derivative of p 7→ Np(x) at p = 1 and that N0(x) is the number of non-zero
components of the vector x. These functions satisfy the following properties:

(1) If p > 1, Np is strictly Schur-convex on P<∞.
(2) If 0 < p < 1, Np is strictly Schur-concave on P<∞.
(3) If p < 0, Np is strictly Schur-convex on Pd for any d. However, for p < 0, it is not possible to

compare vectors with a different number of non-zero components.
(4) H is strictly Schur-concave on P<∞.

One possible way of describing the relations ≺M and ≺T is to find a family (the smallest possible) of
Schur-convex functions which characterizes them. In this direction, Nielsen conjectured the following
result:
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Conjecture 1. Fix a vector y ∈ Pd, with nonzero coordinates. Then Td(y) = Md(y) and they both
are equal to the set of x ∈ Pd satisfying

(C1) For p > 1, Np(x) 6 Np(y).
(C2) For 0 < p 6 1, Np(x) > Np(y).
(C3) For p < 0, Np(x) 6 Np(y).

Here, the closures are taken in Rd (recall that neither Md(y) nor Td(y) is closed). By the previous
remarks, any vector in Td(y) or Md(y) (and by continuity, also in the closures) must satisfy conditions
(C1-C3). The other direction is still open.

Note that the conjecture can be reformulated as follows: if x, y ∈ Pd and satisfy (C1-C3), then there
exists a sequence (xn) in Md(y) (and therefore in Td(y)) such that (xn) converges to x. If we relax the
condition that xn and y have the same dimension, we can prove the following two theorems:

Theorem 2. If x, y ∈ Pd and satisfy (C1), then there exists a sequence (xn) in M<∞(y) (and therefore
in T<∞(y)) such that (xn) converges to x in ℓ1-norm.

Recall that the ℓ1 norm is defined by

‖x‖1 =
∑

i

|xi|.

Theorem 3. If x, y ∈ Pd and satisfy (C1-C2), then there exists a sequence (xn) in Md+1(y) (and
therefore in Td+1(y)) such that (xn) converges to x.

Theorem 2 restates the authors’ previous result in [1]; however, the proof presented in the next
section is more transparent than the previous one. The second theorem answers a question of [1]. It
is an intermediate result between Theorem 2 and Nielsen’s Conjecture.

5. Proof of the theorems

We show here how to derive Theorems 2 and 3. We first state a lemma which is the translation of
Lemma 4 in terms of majorization.

Lemma 8. Let x, y ∈ P<∞. Assume that x and y have nonzero coordinates, and respective dimensions
dx and dy. Assume that

(1) xmin < ymin.
(2) xmax < ymax.
(3) H(x) > H(y).
(4) Np(x) < Np(y) for all p ∈]1, +∞[.
(5) Np(x) > Np(y) for all p ∈] −∞, 1[.

Then there exists an integer N such that for all n > N , we have x⊗n ≺ y⊗n.

It is important to notice that since N0(x) = dx and N0(y) = dy , the conditions of the lemma can
be satisfied only when dx > dy. This is the main reason why our approach fails to prove Conjecture 1.

Proof. One checks that the probability measures µx and µy associated to the vectors x and y satisfy
the hypotheses of Lemma 4. Indeed, for p ∈ R, one has

Np(x) =

∫

eλdµx, with λ = p − 1.

As µ∗n
x = µx⊗n , there exists a integer N such that for n > N , we have µx⊗n 6st µy⊗n . It remains to

apply the Lemma 6 in order to complete the proof. �
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The main idea used in the following proofs is to slightly modify the vector x so that the couple (x,
y) satisfies the hypotheses of Lemma 8.

Proof of Theorem 2. Let x, y ∈ Pd satisfying Np(x) 6 Np(y) for all p > 1. Since N1(x) = N1(y) = 1

and −H =
dNp

dp |p=1, we also have −H(x) 6 −H(y). For 0 < ε < d
d+1xmin, define xε ∈ Pd+1 by

xε = (x1 −
ε

d
, . . . , xd −

ε

d
, ε).

One checks that xε � x and therefore Np(xε) < Np(x) 6 Np(y) for any p > 1, and −H(xε) < −H(x) 6

−H(y). Since −H =
dNp

dp |p=1 and the function p 7→ Np(·) is continuous, this means that there exists

some 0 < pε < 1 such that Np(xε) > Np(y) for any p ∈ [pε, 1]. Choose an integer k > 2, depending on
ε, such that

k > max{d1/(1−pε)ε−pε/(1−pε),
ε

ymin
, d}

and define xε,k ∈ P<∞ as

xε,k = (x1 −
ε

d
, . . . , xd −

ε

d
,
ε

k
, . . . ,

ε

k
︸ ︷︷ ︸

k times

).

For any 0 6 p 6 pε we have

Np(xε,k) > k
( ε

k

)p

> d > Np(y),

and for any p < 0 we have

Np(xε,k) > k
( ε

k

)p

> dyp
min > Np(y).

We also have xε,k � xε and therefore Np(xε,k) > Np(xε) > Np(y) for pε 6 p < 1. Similarly,
Np(xε,k) < Np(xε) 6 Np(y) for p > 1. This means that xε,k and y satisfy the hypotheses of Lemma
8, and therefore xε,k ∈ M<∞(y). Since ||xε,k − x||1 6 2ε and ε can be chosen arbitrarily small, this
completes the proof of the theorem. �

Proof of Theorem 3. Let x, y ∈ Pd satisfying Np(x) 6 Np(y) for p > 1 and Np(x) > Np(y) for

0 6 p 6 1. As in the previous proof, we consider for 0 < ε < d
d+1xmin the vector xε defined as

xε = (x1 −
ε

d
, . . . , xd −

ε

d
, ε).

We are going to show using Lemma 8 that for ε small enough, xε is in Md+1(y). Note that xε � x,
and therefore Np(xε) < Np(x) 6 Np(y) for p > 1, and Np(xε) > Np(x) > Np(y) for 0 < p < 1. Also,
since N0(xε) = d + 1 and N0(y) = d, there exists by continuity a number p0 < 0 (not depending on ε)
such that Np(y) < d + 1 for all p ∈ [p0, 0]. Thus for p ∈ [p0, 0] we have

Np(xε) > N0(xε) = d + 1 > Np(y).

It remains to notice that for ε < d1/p0ymin, we have for any p 6 p0

Np(xε) > εp > dyp
min > Np(y).

We checked that xε and y satisfy the hypotheses of Lemma 8, and therefore xε ∈ Md+1(y). Since
||xε − y||1 6 2ε and ε can be chosen arbitrarily small, this completes the proof of the theorem. �
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6. Infinite dimensional catalysis

In light of the recent paper [15], we investigate the majorization relation and its generalizations for
infinitely-supported probability vectors. Let us start by adapting the key tools used in the previous
section to this non-finite setting.

First, note that when defining the decreasing rearrangement x↓ of a vector x, we shall ask that
only the non-zero components of x and x↓ should be the same up to permutation. The majorization
relation ≺ extends trivially to P∞, the set of (possibly infinite) probability vectors. The same holds
for the relations ≺M and ≺T (note however that for ≺T , we allow now infinite-dimensional catalysts).

Note that for a general probability vector, there is no reason that Np for p ∈ (0, 1) or H should
be finite; moreover, if the support of x is not finite, then Np(x) = ∞ for all p 6 0. He have thus to
replace the hypothesis (C1) by the following one:

(C1’) For p > 1, Np(x) 6 Np(y) and H(x) < ∞.

Notice however that the inequalities Np(x) 6 Np(y) for p → 1+ imply that H(y) 6 H(x) < ∞ and
thus both entropies are finite.

Theorem 4. If x, y ∈ P∞ and satisfy (C1’), then, for all ε > 0 there exist finitely supported vectors
xε, yε ∈ P<∞ and n ∈ N such that ‖x − xε‖1 6 ε, ‖y − yε‖1 6 ε and x⊗n

ε ≺ y⊗n
ε .

Proof. Fix ε > 0 small enough. If y has infinite support, consider the truncated vector yε = (y1 +
R(ε), y2, . . . , yN(ε)), where N(ε) and R(ε) are such that R(ε) =

∑∞
i=N(ε)+1 yi 6 ε; otherwise put yε = y.

Clearly, we have ‖y−yε‖1 6 2ε and Np(yε) > Np(y) for all p > 1. If the vector x is finite, use Theorem
2 with xε = x and yε to conclude. Otherwise, consider M(ε) such that S(ε) =

∑∞
i=M(ε)+1 xi 6 ε and

define the vector

xε = (x1, x2, . . . , xM(ε),
S(ε)

k
,
S(ε)

k
, . . . ,

S(ε)

k
︸ ︷︷ ︸

k times

),

where k is a constant depending on ε which will be chosen later. For all k > 1, xε is a finite vector
of size M(ε) + k and we have ‖x − xε‖1 6 2ε. Let us now show that we can chose k such that
Np(xε) 6 Np(x) for all p > 1. In order to do this, consider the function φ : (1,∞) → R+

φ(p) =

[

S(ε)p

∑∞
i=M(ε)+1 xp

i

] 1
p−1

.

The function φ takes finite values on (1,∞) and limp→∞ φ(p) = S(ε)
xM(ε)+1

< ∞. Moreover, as the

Shannon entropy of x is finite, one can also show that limp→1+ φ(p) < ∞. Thus, the function φ is
bounded and we can choose k ∈ N such that k > φ(p) for all p > 1. This implies that

Np(xε) − Np(x) = k

(
S(ε)

k

)p

−

∞∑

i=M(ε)+1

xp
i 6 0.

In conclusion, we have found two finitely supported vectors xε and yε such that ‖x − xε‖1 6 2ε,
‖y − yε‖1 6 2ε and Np(xε) 6 Np(yε) for all p > 1. To conclude, it suffices to apply Theorem 2 to xε

and yε. �
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