
HAL Id: hal-00159130
https://hal.science/hal-00159130

Preprint submitted on 2 Jul 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Inf-datalog, Modal Logic and Complexities
E. Foustoucos, Irene Guessarian

To cite this version:

E. Foustoucos, Irene Guessarian. Inf-datalog, Modal Logic and Complexities. 2007. �hal-00159130�

https://hal.science/hal-00159130
https://hal.archives-ouvertes.fr

INF-DATALOG, MODAL LOGIC AND COMPLEXITIES.

Eugénie Foustoucos Irène Guessarian
aflaw@otenet.gr Corresponding author: ig@liafa.jussieu.fr

MPLA, Department of Mathematics, LIAFA, UMR 7089,
National and Capodistrian University of Athens Université Paris 7

Panepistimiopolis, 15784 Athens, Greece case 7014, 2 Place Jussieu, 75251 Paris Cedex 5, France

Abstract: Inf-Datalog extends the usual least fixpoint semantics of Datalog with greatest fixpoint semantics:

we defined inf-Datalog and characterized the expressive power of various fragments of inf-Datalog in [16]. In

the present paper, we study the complexity of query evaluation on finite models for (various fragments of) inf-

Datalog. We deduce a unified and elementary proof that global model-checking (computing all nodes satisfying

a formula in a given structure) has 1. quadratic data complexity in time and linear program complexity in

space for CTL and alternation-free modal µ-calculus, and 2. linear-space (data and program) complexities,

linear-time program complexity and polynomial-time data complexity for Lµk (modal µ-calculus with fixed

alternation-depth at most k).

Key words: databases, model-checking, specification languages, performance evaluation.

1 Introduction

The model-checking problem for a logic A consists in verifying whether a formula ϕ of A is satisfied in a given

structure K. In computer-aided verification, A is a temporal logic i.e. a modal logic used for the description

of the temporal ordering of events and K is a (finite) Kripke structure i.e. a graph equipped with a labelling

function associating with each node s the finite set of propositional variables of A that are true at node s.

Our approach to temporal logic model-checking is based on the close relationship between model-checking and

Datalog query evaluation: a Kripke structure K can be seen as a relational database and a formula ϕ can be

thought of as a Datalog query Q. In this context, the model-checking problem for ϕ in K corresponds to the

evaluation of Q on input database K. The advantages of Datalog are that it is a simple declarative query

language with clear semantics and low complexity (i.e., fixed Datalog programs can be evaluated in polynomial

time over the input databases). When translated into Datalog, we thus can expect modal logic (e.g. µ-calculus)

sentences to be easy to understand and check.

In [16] we introduced the language inf-Datalog, which extends usual least fixpoint semantics of Datalog with

greatest fixpoint semantics: greatest fixpoints are necessary for expressing properties such as fairness (something

must happen infinitely often). Various temporal logics (CTL, ETL, alternation-free modal µ-calculus, and

modal µ-calculus [9], by increasing order of expressive power) can be translated into Monadic inf-Datalog, and

conversely fragments of Monadic inf-Datalog can be translated into these logics [16]. One of the advantages

of inf-Datalog consists in eliminating problems inherent to negations: programs are assumed to be in positive

normal form (negations affect only the explicitly given predicates); by duality, negation over computed predicates

1

2 Inf-datalog, Modal Logic and Complexities

is expressed via greatest fixed points.

In the present paper we give upper bounds for evaluating inf-Datalog queries: we describe an algorithm evaluat-

ing inf-Datalog queries and analyze its complexity with respect to the size of the database (data complexity) and

its complexity with respect to the size of the program (program complexity). The data complexity is polynomial-

time and linear-space. Using our succinct translations in [16] between the temporal logic paradigm and the

database paradigm, we deduce upper bounds for the complexity of the model-checking problem for the modal

µ-calculus.

2 Definitions

The basic definitions about Datalog can be found in [1,16,13], and the basic definitions about the µ-calculus

and modal logic can be found in [3,9,10,19]. We proceed directly with the definition of inf-Datalog.

Definition 1 An inf-Datalog program is a Datalog program where some IDB predicates (i.e. predicates

occurring in the heads of the rules) are tagged with an overline indicating that they must be computed as

greatest fixed points; untagged IDB predicates are computed as least fixed points as usual; in addition, for

each set of mutually recursive IDB predicates including both tagged and untagged IDB predicates, the order of

evaluation of the IDB predicates in the set is specified by the indexing of the IDB predicates.

The dependency graph of a program is a directed graph with nodes the set of IDB predicates of the program;

there is an edge from predicate ψ to predicate ϕ (denoted by ϕ←− ψ) if there is a rule with head an instance of

ϕ and at least one occurrence of ψ in its body, and ϕ is said to directly depend on ψ; ϕ is said to depend on

ψ if there is a path from ψ to ϕ in the dependency graph (denoted by ϕ⇐= ψ). See figures 4, 5 and examples

8, 9 for examples of dependency graphs. Two predicates that belong to the same strongly connected component

of the dependency graph are said to be mutually recursive.

An inf-Datalog program is said to be monadic if all the IDB predicates have arity at most one. An inf-

Datalog program is said to be stratified if no tagged IDB predicate is mutually recursive with an untagged

IDB predicate. This notion of stratification is the natural counterpart (with respect to greatest fixed points)

of the well-known stratification with respect to negation; the denotational semantics of stratified inf-Datalog is

the expected one; it is illustrated in example 2.

Example 2 Consider as database the structure given in figure 1, with two EDB predicates Suc0 and Suc1 de-

noting respectively the first successor and the second successor, and a unary EDB predicate p (which is meant to

state some property of the nodes of the tree). Suc0 is the relation {(ε, 0), (0, 00), (00, 00), (01, 01), (1, 10), (10, 1)};

Suc1 is the relation {(ε, 1), (0, 01), (00, 00), (01, 01), (1, 10), (10, 1)}; p is assumed to hold for 00, 01 and 10, i.e.

p is the relation {00, 01, 10}.

0

00 01

1

10

ppp

ε

Figure 1 A data structure of size 6

Eugénie Foustoucos Irène Guessarian 3

The program P below, has as IDB predicates θ (computed as a greatest fixed point) and ϕ (computed as a least

fixed point)

P :






θ(x)←− p(x), Suc0(x, y), Suc1(x, z), θ(y), θ(z) (1)

ϕ(x)←− θ(x) (2)

ϕ(x)←− Suc0(x, y), Suc1(x, z), ϕ(y), ϕ(z) (3)

The first stratum consists of rule 1 defining θ (without initialization rule, this is possible because θ is computed

as a greatest fixed point); the second stratum defines ϕ as a least fixed point with rules 2 (initializing ϕ with

the value computed for θ in the first stratum) and 3. The IDB predicate θ (resp. ϕ) in this program implements

the modality AGp (resp. AFAGp) on the infinite full binary tree: AGp means that p is always true on all

paths, and AFAGp means that, on every path we will eventually (after a finite number of steps) reach a state

wherefrom p is always true on all paths. Gp is expressed by the CTL path formula ⊥Ũp and AFAGp is

expressed by the CTL state formula A
(
⊤UA(⊥Ũp)

)
, where ⊥ and ⊤ respectively represent ff and tt. The

µ-calculus analog is the Lµ1 expression µϕ.
(
νθ.(p∧A ◦ θ)

∨
A ◦ ϕ

)
. The semantics of P should yield {00, 01}

as points where θ holds and {0, 00, 01} as points where ϕ holds.

The structures considered in temporal logics are usually infinite trees, while databases are always finite: how can

we model the former with the latter? It should be noted that: (i) the infinite trees usually represent sequences

of states occurring during the (infinite) execution of a (finite) program, hence they have a finite representation,

and (ii) even with finite databases we can ensure that every node has a successor by adding a self-loop to every

state without successor (as in states 00 and 01 of example 2): we thus obtain the infinite sequences of states of

temporal logic.

Remark 3 In example 2 we assume that every node has outdegree at most 2; if the nodes have finite (but

not known a priori) branching degree, then we slightly change our model, assuming two extensional binary

predicates: FirstSuc(x, y) (“y is the leftmost child of x”), and NextSuc(x, y), (“y is the right sibling of x”).

For instance, the formula ϕ = A ◦ p (stating that p is true in all successors of a node) is expressed by the

program:

P :






Gϕ(x)←− FirstSuc(x, y), T (y)

T (x)←− p(x), NextSuc(x, y), T (y)

T (x)←− p(x),¬HasSuc(x)

HasSuc(x)←− NextSuc(x, y)

Formula ψ = E ◦ p (stating that p is true in some successor of a node) is expressed by program:

P :






Gψ(x)←− FirstSuc(x, y), T (y)

T (x)←− p(x)

T (x)←− NextSuc(x, y), T (y)

We now explain the more complex denotational semantics of non stratified inf-Datalog programs. Note first

that we need not give any evaluation order within a set of IDB predicates that are all computed with the same

fixed point (either least or greatest). We define the semantics of non-stratified programs by induction on the

number k of alternations between mutually recursive least and greatest fixed points. If k = 0, either all IDBs

are computed using least fixed points or all IDBs are computed using greatest fixed points, in the usual way.

4 Inf-datalog, Modal Logic and Complexities

Assume the semantics of programs with at most k alternations of least and greatest fixed points is defined and

let P be a program with k + 1 such alternations. For instance, let Φ = Φ1 ∪ Φ2 ∪ Φ3 ∪ · · · ∪ Φk+1 ∪ Φk+2

denote the set of IDBs of P , which are assumed to be mutually recursive; the order and type of evaluation

are as follows: first all IDBs of Φ1 are computed as least fixed points, then all IDBs of Φ2 are computed as

greatest fixed points, . . . , and finally all IDBs of Φk+2 are computed as least fixed points. Since the IDBs in

Φ1 ∪ Φ2 ∪ Φ3 ∪ · · · ∪ Φk+1 depend on the IDBs in Φk+2, the semantics of P is defined as follows: the IDBs

in Φk+2 are first considered as parameters, as in Gauss elimination method for solving systems of equations;

let Pk+1 be the program consisting only of those rules of P whose head is in Φ1 ∪ Φ2 ∪ Φ3 ∪ · · · ∪ Φk+1 (and

the IDBs in Φk+2 are considered as EDBs). Pk+1 has at most k alternations of least fixed points and greatest

fixed points, hence can be solved formally by the induction hypothesis (with IDBs of Φk+2 appearing in the

solution). Then consider the set P ′
k+2 consisting of those rules of P whose head is in Φk+2 and substitute in the

corresponding rule bodies the solutions of Pk+1 for the IDBs in Φ1 ∪Φ2 ∪Φ3 ∪ · · · ∪Φk+1: we obtain P ′′ where

the only IDBs are those of Φk+2. Solve P ′′ and substitute the values obtained for the IDBs in Φk+2 in the

solutions of Pk+1. Iterate then these three steps (solving Pk+1 and P ′′, substituting for the IDBs in Φk+2 the

values obtained when solving P ′′), until the least fixpoint is reached (i.e. the IDBs in Φk+2 no longer change).

Substitute finally this fixpoint for the IDBs of Φk+2 occurring in Pk+1.

We will give an algorithm computing this semantics in theorem 10.

A related concept of semantics is defined for Horn clause programs with nested least and greatest fixpoints in

[6]: their semantics is expressed directly in terms of the TP operator. [6] consider as database the set of infinite

ground terms allowing functions (the Herbrand universe), and the paper focuses on the game theory semantics.

3 Complexity of inf-Datalog

In the sequel we will count as one basic time unit the time needed to infer a single immediate consequence atom

from a clause: i.e. assuming we have a clause ϕi(x1, . . . , xni
)←− A1(x1, . . . , xni

), . . . , Ak(x1, . . . , xni
).

and assuming that A1(x1, . . . , xni
), . . . , Ak(x1, . . . , xni

) hold, we infer that ϕi(x1, . . . , xni
) holds in one basic

time unit. Our time complexities will be counted relatively to that time unit.

Theorem 4 Let P be a stratified program having I IDB symbols ϕ1, . . . , ϕI , and D a relational database

having n elements in its domain, then the set of all I queries defined by P and of the form (P, ϕ), where ϕ is

an IDB of P , can be evaluated on D in time less than C × n× I and space n× I, where C is the time needed

to evaluate TP (g1, . . . , gI), gi an arbitrary function having the same arity as ϕi for i = 1, . . . , I (lemma 5).

Proof. By induction on the number p of strata. Assume P has a single stratum, and, e.g. all IDBs are untagged,

hence computed as least fixed points. Let ϕ1, . . . , ϕI be the IDBs, then the answer f1, . . . , fI to the set of queries

(P, ϕ1), . . . , (P, ϕI) defined by P is equal to supi∈IN T
i
P (∅, . . . , ∅) and, because D has n objects only, this least

upper bound is obtained after at most n iterations, hence a time complexity less than C × n× I. Same proof

if all IDBs are tagged (computed as greatest fixed points).

The case where P has p strata is similar: since the IDBs are computed in the order of the strata, assuming

stratum j has Ij IDBs, the queries it defines will be computed in time at most C × n× Ij , hence for the whole

Eugénie Foustoucos Irène Guessarian 5

of P the complexity will be C × n ×
∑

j Ij = C × n× I. This upper bound is effectively reached as shown in

example 6. The space complexity is clear too because we have at any time at most I IDBs true of at most n

data objects. ⊓⊔

As pointed out by A. Arnold, theorem 4 could also be obtained by first showing that inf-Datalog is a µ-calculus

in the sense of [3], and then applying lemma 11.1.6 of [3] (extended to arbitrary structures).

Lemma 5 Let D be a database with n elements in its domain and let P be an inf-Datalog program consisting

of clauses of the form, i = 1, . . . , I:

ϕi(x1, . . . , xni
)←− ψ1(x1, . . . , xni

, y1, . . . , ypi
, c1, . . . , cki

), . . . , ψk(x1, . . . , xni
, y1, . . . , ypi

, c1, . . . , cki
).

x1, . . . , xni
, y1, . . . , ypi

are variables and c1, . . . , cki
are constants. Let g1, . . . , gI be functions having the same

arities as ϕ1, . . . , ϕI . The time needed to evaluate the ith component of TP (g1, . . . , gI) is not greater than

nni × Ci with

Ci = max(x1,...,xni
)∈Dn |{(y1, . . . , ypi

) | g1(x1, ..., xni
, y1, ..., ypi

, c1, ..., cki
), . . . , gk(x1, ..., xni

, y1, ..., ypi
, c1, ..., cki

)

holds for some rule with head ϕi}|

hence the time needed to evaluate TP (g1, . . . , gI) is at most C = maxi=1,...,I(Ci × nni).

Proof. Indeed evaluating the ith component of TP (g1, . . . , gI) at a given point (x1, ..., xni
) needs one basic time

unit for each tuple (y1, . . . , ypi
) such that g1(x1, ..., xni

, y1, ..., ypi
, c1, ..., cki

), . . . , gk(x1, ..., xni
, y1, ..., ypi

, c1, ..., cki
)

holds for some rule with head ϕi, hence Ci basic time units at most are needed to compute the ith component

of TP (g1, . . . , gI) at any given point (x1, ..., xni
); then evaluating the ith component of TP (g1, . . . , gI) on Dni

needs at most nni × Ci basic time units. ⊓⊔

A trivial bound for C would be O(maxi=1,...,I(n
pi × nni)), but better bounds can be found in special cases of

interest (e.g. programs corresponding to modal logic formulas). Even with this trivial bound, theorem 4 implies

that the data complexity of stratified inf-Datalog is Ptime, hence adding greatest fixed points in a stratified

way does not increase the evaluation complexity of Datalog (even though it increases its expressive power [16]).

p

1 2 3

qp,r

Figure 2 A data structure with 3 elements

Example 6 Consider the structure given in figure 2, where suc(1, 2), suc(2, 3), p(1), p(2), q(3), r(1) hold and

the Monadic Datalog program:

P :






ϕ(x)←− q(x)

ϕ(x)←− p(x), suc(x, y), ϕ(y)

ψ(x)←− ϕ(x), r(x)

ψ(y)←− ψ(x), suc(x, y)

Then, we need 6 steps to compute the queries defined by the program: ϕ0 = ∅, ϕ1 = {3}, ϕ2 = {2, 3}, ϕ3 =

{1, 2, 3} = ϕ4 = ϕ5 = ϕ6. ψ0 = ψ1 = ψ2 = ψ3 = ∅, ψ4 = {1}, ψ5 = {1, 2}, ψ6 = {1, 2, 3}.

We now turn to non-stratified Monadic inf-Datalog programs. The order of evaluation of mutually recursive

IDBs will be specified by their indexes, i.e. ϕi will be computed before ϕj if and only if i < j. As in µ-calculus,

6 Inf-datalog, Modal Logic and Complexities

changing the evaluation order of IDBs can change the semantics of the program, see example 8; in plain Datalog,

the evaluation order of IDBs is irrelevant for the semantics because all IDBs are evaluated as least fixed points.

Definition 7 The syntactic alternation depth of program P is the largest k such that there exists in the

dependency graph of P a cycle with alternations of k pairwise distinct tagged/untagged IDBs depending on

each other, e.g. ϕ1 =⇒ ϕ2 =⇒ · · · =⇒ ϕk−1 =⇒ ϕk =⇒ ϕ1 (all other combinations, i.e. ϕ1 and/or ϕk tagged

or untagged are allowed). It is 1 if there is no such cycle.

The syntactic alternation depth of programs we just defined corresponds to the syntactic alternation depth of

µ-calculus formulas as defined in [4,23], i.e. whenever program P is the translation of formula ϕ, their syntactic

alternation depths are equal.

Example 8 Consider a 3-element structure having domain {1, 2, 3}, where p(1), p(2), p(3), Suc1(1, 1), Suc0(1,

2), Suc0(2, 3), and Suc1(2, 3) hold (see figure 3):

p p

2 3

p

1

Figure 3 Another structure with 3 elements

Let P1 and P2 be inf-Datalog programs, defined by:

P1:






X1(x)←− p(x), Z3(x)

X1(x)←− p(x), Suci(x, y), X1(y) for i = 0, 1

Y 2(x)←− X1(x), p(x), Suci(x, y), Y 2(y) for i = 0, 1

Z3(x)←− Y 2(x)

Z3(x)←− Suc0(x, y), Suc1(x, z), Z3(y), Z3(z)

P2:





Z1(x)←− Y 3(x)

Z1(x)←− Suc0(x, y), Suc1(x, z), Z1(y), Z1(z)

X2(x)←− p(x), Z1(x)

X2(x)←− p(x), Suci(x, y), X2(y) for i = 0, 1

Y 3(x)←− X2(x), p(x), Suci(x, y), Y 3(y) for i = 0, 1

P1 has 2 IDBs computed as least fixed points, X1 and Z3 and one IDB Y 2 computed as a greatest fixed

point, the evaluation order is first X1 then Y 2 and last Z3; in the dependency graph we have the cycle

X1 −→ Y2 −→ Z3 −→ X1 and the syntactic alternation depth is k = 3; P2 has 2 IDBs computed as least fixed

points, X2 and Z1 and one IDB Y 3 computed as a greatest fixed point, the evaluation order is first Z1 then

X2 and last Y 3; in the dependency graph we have the cycle Z1 −→ X2 −→ Y3 −→ Z1, which can be reduced

to Z1 =⇒ Y3 −→ Z1 and the syntactic alternation depth is k = 2. If we forget the numbers indicating the

evaluation order, both P1 and P2 have the same dependency graph, pictured in figure 4. On the structure of

figure 3, P1 computes f1 = f2 = f3 = ∅, while P2 computes f1 = f2 = f3 = {1}.

Eugénie Foustoucos Irène Guessarian 7

X

Z

 Y

Figure 4 Dependency graph of P1 and P2

Example 9 The µ-calculus sentences ϕ ≡ µX.νY.(X ∨ Y ∨ µZ.νW.(X ∨Z ∨ (p∧W))) and ψ ≡ µY.νX.(X ∨

Y ∨ µZ.νW.(X ∨ Z ∨ (p ∧W))) are respectively translated into inf-Datalog programs Pϕ and Pψ:

Pϕ






W1(x) ←− p(x),W1(x) Y 3(x) ←− Z2(x)

W1(x) ←− X4(x) Y 3(x) ←− Y 3(x)

W1(x) ←− Z2(x) Y 3(x) ←− X4(x)

Z2(x) ←− W1(x) X4(x) ←− Y 3(x)

Pψ






W1(x) ←− p(x),W1(x) X3(x) ←− Z2(x)

W1(x) ←− X3(x) X3(x) ←− Y 4(x)

W1(x) ←− Z2(x) X3(x) ←− X3(x)

Z2(x) ←− W1(x) Y 4(x) ←− X3(x)

The translation is as in corollary 19 and satifies moreover: (i) greatest (least) fixed points correspond to

(un)tagged IDBs, (ii) IDBs are endowed with an index giving their evaluation order with the IDB corresponding

to innermost (outermost) fixed points having lowest (highest) index, and (iii) subformulas of the form µX.νY.ψ

give rules of the form Xi+1(x)←− Yi(x), and similarly for all other possible combinations of µ and ν. Both Pϕ

and Pψ have syntactic alternation depth 4, and their dependency graphs are pictured in figure 5 below; notice

that arrows in the dependency graph go in the same direction as the corresponding arrows in the program.

Z2

W1 X4

Y3

ψ

Z2

W1 X3

Y4
PPϕ

Figure 5 Dependency graphs of Pϕ and Pψ

Theorem 10 Let P be a program with I recursive IDBs and syntactic alternation depth k fixed. Let D be

a relational database having n elements. Then the set of all queries of the form (P, ϕ), where ϕ is an IDB of

P , can be computed on D in time O
(
C × nk × I

)
and space O(n× I), where C is given in Lemma lemma 5.

Proof. The proof proceeds in three cases.

Case 1. We will first study the case when I = k, k even, ϕ1 computed as a least fixed point (the algorithm for

ϕ1 computed as a greatest fixed point is similar): hence, there exist mutually recursive IDBs ϕ1, ϕ2, . . . , ϕk−1,

ϕk, computed in the order: first ϕ1, then ϕ2, . . . , and last ϕk, with a cycle ϕk =⇒ ϕ1 −→ ϕ2 −→ · · · −→

ϕk−1 −→ ϕk in the dependency graph of P . (Program P1 of example 8 and both programs Pϕ and Pψ of

example 9 belong to case 1.) Let P ′
i for i > 1 odd (resp. i even) be the set of rules of P with head ϕi (resp.

ϕi), and P1 the set of rules with head ϕ1. Then P = Pk = P1 ∪ (∪ki=2P
′
i) has the following form:

8 Inf-datalog, Modal Logic and Complexities

Pk






P ′

k

{
ϕk(x) ←− · · ·

· · ·

ϕk(x) ←− · · ·

Pk−1





P ′

k−1

{
ϕk−1(x) ←− · · ·

· · ·

ϕk−1(x) ←− · · ·

· · ·

P2






P ′

2

{
ϕ2(x) ←− · · ·

· · ·

ϕ2(x) ←− · · ·

P1

{
ϕ1(x) ←− · · ·

· · ·

ϕ1(x) ←− · · ·

The idea of the algorithm is similar to an algorithm given in [3] for evaluating boolean µ-calculus formulas

and proceeds as follows. Let f1, . . . , fk be the answers on D to the queries defined by ϕ1, . . . , ϕk. In order to

compute fk we must compute infi T
i
P ′

k

(⊤), where ⊤ is true of every element in the data domain, and fk will be

reached after at most n steps (because the domain has n elements). However, since ϕk depends on ϕk−1, we

must prealably compute fk−1[⊤/ϕk], which denotes fk−1 in which ⊤ has been substituted for the parameter ϕk:

this implies computing supi T
i
P ′

k−1

[⊤/ϕk](∅), which is again reached after at most n steps, etc. The algorithm

is described in figure 6.

This algorithm consists of k nested loops FOR j = 1 TO n+1 DO. Notice that the innermost loop (j1) is performed

n times, whilst the k−1 outermost nested loops are performed n+1 times each: for j = j2, . . . , jk, each individual

fj is computed in at most C×n steps (because the time for computing each TP ′

j
(f1, f2, . . . , fk−1, fk) is bounded

by C). Then we have to add an n+ 1th round of iterations recursively reinitializing fk, . . . , f2 by substituting

the value just computed for fj in fj−1, . . . , f1, for j = k, . . . , 2. At the end f1, . . . , fk will contain the answers

to the queries defined by ϕ1, . . . , ϕk. Example 13 shows that the final (n + 1)th round of iterations can be

necessary; hence the algorithm runs in time at most C × (n+ 1)k × I and the upper bound for its complexity

is C ×O(nk × I).

By lemma 11, the algorithm is correct. The space complexity is n× I since we store the values of I IDBs, each

of which can hold on at most n points.

Eugénie Foustoucos Irène Guessarian 9

algorithm1

var j1, . . . , jk: indices;

fk := ⊤;
for jk = 1 to n+ 1 do

fk−1 := ∅;
for jk−1 = 1 to n+ 1 do

fk−2 := ⊤;
· · ·

f2 := ⊤;
for j2 = 1 to n+ 1 do

f1 := ∅;
for j1 = 1 to n do

f1:= TP1
(f1, f2, . . . , fk−1, fk);

endfor (j1)

if j2 ≤ n then f2 := TP ′

2
(f1, f2, . . . , fk−1, fk);

endfor (j2)
· · ·
if jk−1 ≤ n then fk−1 := TP ′

k−1
(f1, f2, . . . , fk−1, fk);

endfor (jk−1)

if jk ≤ n then fk := TP ′

k
(f1, f2, . . . , fk−1, fk);

endfor (jk)

Figure 6 Algorithm1

Case 2. Assume now the set Φ of IDBs of P consists of I IDBs, I > k, which are all mutually recursive. Program

P2 of example 8 belongs to case 2. Let for instance Φ1 ∪Φ2 ∪Φ3 ∪ · · · ∪Φk be a partition of Φ such that: 1) all

the IDBs in Φi (resp. Φj) are untagged (resp. tagged), and 2) the order and type of evaluation are as follows:

first all IDBs of Φ1 are computed as least fixed points, then all IDBs of Φ2 are computed as greatest fixed

points, . . . , and finally all IDBs of Φk are computed as greatest fixed points. Assume that, for i = 1, . . . , k, Φi

has mi IDBs ϕi,1, . . . , ϕi,mi
defined by program P ′

i (tags omitted). Then it suffices in algorithm1 to (i) replace

each initialization (e.g. fi := ⊤) with mi initializations (fi,j := ⊤, j := 1, . . . ,mi), and (ii) substitute for each

instruction: fi := TP ′

i
(f1, f2, . . . , fi, . . . , fk) the set of mi instructions:

fi,1 := TP ′

i
,1(f1, f2, . . . , fi, . . . , fI)

...

fi,mi
:= TP ′

i
,mi

(f1, f2, . . . , fi, . . . , fI)

where TP ′

i
,l(f1, f2, . . . , fi−1, . . . , fI) denotes the set of immediate consequences which can be deduced using the

rules of P ′
i with head ϕi,l. At the end f1, . . . , fI will contain the answers to the queries defined by ϕ1,1, . . . ,

ϕ1,m1
, . . . , ϕk,1, . . . , ϕk,mk

. Let tk be the complexity of algorithm1 modified by (i)-(ii) for alternation depth

k programs. Then t1 = C × (m1 × n + m1) = C × (n + 1) × I, and it is easy to check by induction that

tk ≤ C×(n+1)k×I: assuming tk−1 ≤ C×(n+1)k−1×(I−mk), we have tk = (tk−1 +C×mk)×(n+1); by the

induction hypothesis, tk ≤ C×(n+1)k×(I−mk)+C×mk×(n+1), and because k ≥ 2,mk×(n+1) < mk×(n+1)k,

hence tk ≤ C × (n+ 1)k × I.

The other cases: Φ = Φ1 ∪Φ2 ∪Φ3 ∪ · · · ∪Φk ∪Φk+1 and/or Φ1 is a set Φ1 of IDBs computed as greatest fixed

points, are similar. The complexity of the algorithm is again O
(
C × nk × I

)
.

Case 3. Last, in the most general case, the rules of P can be partitioned into 2n+1 disjoint sets Σ0,Π1,Σ1, . . . ,

Πn,Σn. Each Πi, i = 1, . . . , n, has Ii IDBs, all mutually recursive, and syntactic alternation depth ki ≤ Ii.

Each Σi, i = 0, . . . , n is a (possibly empty) stratified program with Ji IDBs. The IDBs of Πi can depend

10 Inf-datalog, Modal Logic and Complexities

on the IDBs of Πj and Σj , j < i only; the IDBs of Σi can depend on the IDBs of Πj and Σj , j ≤ i in a

stratified way; no IDB of Πi or Σi can depend on the IDBs of some Σj or Πj , j > i. We evaluate first the

queries defined by the IDBs of Σ0 in time O(C × n × J0) (as in theorem 4), then the queries defined by the

I1 mutually recursive IDBs of Π1 in time O(C × nk1 × I1) as in case 2, then the queries defined by the J1

“stratified” IDBs of Σ1 in time O(C × n × J1) as in theorem 4, etc. Finally, the total time complexity is

O(C ×nmax ki × (
∑n

i=1 Ii) + n× (C ×
∑n
i=0 Ji)) = O(C × nk × I), where k is the syntactic alternation depth of

P (here k = max{ki|1 ≤ i ≤ n}).

In all three cases, the space complexity of the algorithm is linear in both n and the number of IDBs which are

being computed, hence the global space complexity is O(n× I). ⊓⊔

Lemma 11 Let P be a program with syntactic alternation depth at most k, with IDBs ϕ1, ϕ2, . . . , ϕk, and

with parameters g1, . . . , gp. Let D be a database with n elements. For any given values of the parameters

g1, . . . , gp, algorithm1 computes the answers f1, . . . , fk to the queries ϕ1, ϕ2, . . . , ϕk on D.

Proof. By induction on k. We assume k even and the first IDB is a least fixed point, but the other cases (k

odd, and/or ϕ1 is a greatest fixed point, and/or ϕk is a least fixed point) are similar.

Basis. For k = 1, the lemma is clear because there is no alternation.

Inductive step. Assume it holds for every k′ ≤ k and prove it for k + 1. Let Pk+1(g1, . . . , gp) be the program

Pk+1(g1, . . . , gp)





P ′
k+1





ϕk+1(x)←− · · ·

· · ·

ϕk+1(x)←− · · ·

Pk(g1, . . . , gp, ϕk+1)

Let f1(g1, . . . , gp, ϕk+1), . . . , fk(g1, . . . , gp, ϕk+1) be the answers to the queries defined by IDBs ϕ1, ..., ϕk of

Pk(g1, . . . , gp, ϕk+1) (with parameters g1, . . . , gp and ϕk+1). For i = 1, . . . , k, we will denote each fi(g1, . . . , gp,

ϕk+1) by fi(ϕk+1). Let P ′
k+1 be the rules of Pk+1(g1, . . . , gp) with head ϕk+1. By the definition of nested

fixed points, the answer fk+1 to the query defined by ϕk+1 is the least upper bound of the sequence defined

by f0
k+1 = ∅, f1

k+1 = TP ′

k+1
(f0
k+1), . . . , f

n
k+1 = TP ′

k+1
(fn−1
k+1). This sequence is computed in the outermost FOR

loop of algorithm1 (for k+ 1): indeed, f1
k+1 = TP ′

k+1
(f0
k+1) = TP ′

k+1
(∅) = TP ′

k+1
[∅/ϕk+1, fk(∅)/ϕk, . . . , f1(∅)/ϕ1]

where fk(∅), . . . , f1(∅) are the answers to the queries defined by IDBs ϕk, . . . , ϕ1 of program Pk(g1, . . . , gp, ∅)

with syntactic alternation depth ≤ k. Similarly, for j = 1, . . . , n − 1, each of fk(f
j
k+1), . . . , f1(f

j
k+1) are the

answers to the queries defined by IDBs ϕk, . . . , ϕ1 of program Pk(g1, . . . , gp, f
j
k+1) and f j+1

k+1 = TP ′

k+1
(f jk+1) =

TP ′

k+1
[f jk+1/ϕk+1, fk(f

j
k+1)/ϕk, ..., f1(f

j
k+1)/ϕ1]. As explained above, fnk+1 is the answer fk+1 to the query ϕk+1

defined by the program Pk+1(g1, . . . , gp); hence, the answers fk, . . . , f1 to the queries ϕk, . . . , ϕ1 defined by the

program Pk+1(g1, . . . , gp) are respectively fk[f
n
k+1/ϕk+1], . . . , f1[f

n
k+1/ϕk+1] which are computed in the final

round of iterations. ⊓⊔

The next Corollary follows from theorem 10.

Corollary 12 The set of queries defined by inf-Datalog programs can be computed in time polynomial in

the number of elements of the database, exponential in the number of variables and the syntactic alternation

Eugénie Foustoucos Irène Guessarian 11

depth of the program, and linear in the number of IDBs. The space complexity is linear in n × I (where n is

the number of elements of the structure and I the number of IDBs).

Example 13 Consider the same structure as in figure 3, and the program P below (where I = 2 = k):

P :





ϕ2(x)←− θ1(x), Suc0(x, y), Suc1(x, z), ϕ2(y), ϕ2(z)

θ1(x)←− Suci(x, y), θ
1(y) for i = 0, 1

θ1(x)←− p(x), ϕ2(x)

Then algorithm1 will compute: 1. for f2 = ⊤, f1 = {1, 2, 3}, and f2 = {1, 2}; then, 2. for f2 = {1, 2},

f1 = {1, 2}, and f2 = {1}; then, 3. for f2 = {1}, f1 = {1}, and f2 = ∅; a last round will give 4. for f2 = ∅,

f1 = ∅. P is the translation of the temporal logic formula: ϕ = E(F∞p∧A◦ F∞p) expressing that there exists

a path on which p holds infinitely often and moreover, on all successors of the first state of that path, again p

holds infinitely often. This formula cannot hold on a finite structure without infinite paths as the structure in

figure 3.

In [3,11] finer notions of alternation depth are defined: they correspond to counting only the alternations which

affect the semantics because the innermost fixed point depends on the outermost fixed point; algorithmically,

this leads to an improvement by computing beforehand and only once the fixed points associated with closed

subformulas. Our algorithm1 can be improved to match the finer notion of [11], which we first recall.

Definition 14 Given a set P of propositional variables and a set Ξ of variables, the set M of modal µ-calculus

formulas is inductively defined by:

M ::= {p|p ∈ P}∪{¬p|p ∈ P}∪{X |X ∈ Ξ}∪{ϕ∨ψ, ϕ∧ψ,A◦ϕ,E◦ϕ|ϕ, ψ ∈M}∪{µX.ϕ, νX.ϕ|X ∈ Ξ, ϕ ∈M}

The semantic alternation depth ad(ϕ) of formula ϕ is defined by: (i) ad(ϕ) = 0 if ϕ ∈ P ∪ Ξ, (ii) ad(A ◦ ϕ) =

ad(E ◦ ϕ) = ad(ϕ), (iii) ad(ϕ ∨ ψ) = ad(ϕ ∧ ψ) = max(ad(ϕ), ad(ψ)) and (iv) ad(µX.ϕ) = max(ad(ϕ), 1 +

max{ad(ψ)|ψ = νY.φ is a subformula of ϕ and X occurs free of any µ or ν binding in ψ}), and similarly

ad(νX.ϕ) = max(ad(ϕ), 1 + max{ad(ψ)|ψ = µY.φ is a subformula of ϕ and X occurs occurs free of any µ or ν

binding in ψ}).

We now define a notion of semantic alternation depth corresponding to the definition of [11]. We study here

the case when the number of IDBs is equal to the syntactic alternation depth of the program. The other cases

can be treated similarly but at the cost of heavier notations.

Definition 15 Let P be a program with syntactic alternation depth k, having mutually recursive IDBs

ϕ1, ϕ2, . . . , ϕk, with a cycle ϕk =⇒ ϕ1 −→ ϕ2 −→ · · · −→ ϕk−1 −→ ϕk in the dependency graph of P . The

semantic alternation depth of ϕi, denoted by ad(ϕi), is defined as follows: ad(ϕ1) = 1 and ad(ϕi) = ad(ϕi−1)

+ e where

e =

{
1, if in the dependency graph of P , there is an edge ϕi −→ ϕj (or ϕi −→ ϕj), j < i

0, otherwise
The semantic alternation depth of ϕi is defined similarly.

The semantic alternation depth of P , denoted by ad(P) is equal to the semantic alternation depth of ϕk (resp.

ϕk).

12 Inf-datalog, Modal Logic and Complexities

Example 16 Let ϕ and ψ be as in example 9. Formulas ϕ and ψ, programs Pϕ and Pψ all have the same

syntactic alternation depth 4, but their semantic alternation depths differ. In Pϕ, ad(Pϕ) = ad(X4) = 3 and

ad(Y 3) = ad(Z2) = 2, while in Pψ , ad(Pψ) = ad(Y 4) = 4 and ad(X3) = 3, ad(Z2) = 2. The (semantic)

alternation depth of formula ϕ in the sense of [11] is also 3, whilst it is only 2 in the sense of [3]. The (semantic)

alternation depth of formula ψ is 4 in the sense of both [3,11].

Theorem 17 Let P be a program with syntactic alternation depth k, IDBs ϕ1, ϕ2, . . . , ϕk, and parameters

g1, . . . , gp. Let D be a database with n elements. For any given values of the parameters g1, . . . , gp, we can

compute the answers f1, . . . , fk to the queries ϕ1, . . . , ϕk on D in time O(C × nd) where d = ad(P) is the

semantic alternation depth of P , and space O(n× k) and C is given in Lemma lemma 5.

Proof. It is similar to Case 1 of theorem 10, but uses a slight improvement of Algorithm1: some iterations

computing the fis need not be nested (we avoid recomputing fis when their value does not change). By

induction on j, we prove (the tags will be omitted in the proof):

Fact: For j ≥ 1, considering ϕj+1, . . . , ϕk as parameters, we compute the answers f1(g1, . . . , gp, ϕj+1, . . . , ϕk),

. . . , fj(g1, . . . , gp, ϕj+1, . . . , ϕk) to the queries ϕ1, . . . , ϕj (defined by Pj(g1, . . . , gp, ϕj+1, . . . , ϕk)) in time O(C×

nad(ϕj)).

Basis: If j = 1, ad(ϕ1) = 1 and we have to compute f1(g1, . . . , gp, ϕ2, . . . , ϕk) as a least upper bound, which

can be done in at most C × n steps.

Induction: Assume the result holds for j ≥ 1 and prove it for j + 1. We distinguish two cases:

case (i): in the dependency graph of P there is an edge ϕj+1 −→ ϕi, for some i < j + 1; hence ad(ϕj+1) =

ad(ϕj) + 1; moreover, as there is a always a path ϕi =⇒ ϕj in the dependency graph (because all IDBs are

mutually recursive), ϕj thus depends on ϕj+1 and fj(g1, . . . , gp, f
q
j+1, ϕj+2, . . . , ϕk) is a priori different from

fj(g1, . . . , gpf
q+1
j+1 , ϕj+2, . . . , ϕk); hence the FOR jj+1 loop of algorithm1 must be nested over the loops computing

f1, . . . , fj ; as by the induction hypothesis the latter are computed in time O(C×nad(ϕj)), together with the final

englobing loop FOR jj+1, f1, . . . , fj, fj+1 will be computed in time O(C×nad(ϕj)×(n+1)) = O(C×nad(ϕj)+1) =

O(C × nad(ϕj+1)).

case (ii): there is no edge from ϕj+1 to some ϕi, i < j + 1; then ad(ϕj+1) = ad(ϕj) and none of the IDBs ϕi,

i ≤ j depends directly on ϕj+1: thus, for every i ≤ j, each fi(g1, . . . , gp, f
q
j+1, ϕj+2, . . . , ϕk) is a priori equal

to fi(g1, . . . , gp, f
q+1
j+1 , ϕj+2, . . . , ϕk), and the FOR jj+1 loop of algorithm1 does not need to be nested over the

loops computing f1, . . . , fj: it suffices to perform it after completion of these loops, in time O(C ×n); as by the

induction hypothesis the latter are computed in time O(C × nad(ϕj)), the time for computing f1, . . . , fj, fj+1

will be O(C × nad(ϕj) + n) = O(C × nad(ϕj)) = O(C × nad(ϕj+1)).

Letting j = k gives the time complexity stated in the theorem; the space complexity is clear. ⊓⊔

From lemma 5 and theorem 17, we deduce

Corollary 18 The set of queries defined by inf-Datalog programs can be computed in time polynomial in the

number of elements of the database, exponential in the number of variables and the semantic alternation depth

of the program, and linear in the number of IDBs.

Eugénie Foustoucos Irène Guessarian 13

4 Monadic inf-datalog and Modal Logic

In the present section, all programs will be Monadic inf-Datalog programs.

Recall that the model-checking problem consist, given a formula ϕ, a structure M and an element (node) s of

M to check whether ϕ holds at node s of structure M . We will solve the slightly more general problem, which

we call global model-checking: given formula ϕ and structure M , to compute the set of nodes s of M such that

ϕ holds at node s.

As a consequence of theorem 4 we get the following result.

Corollary 19 The global model-checking problem for CTL, ETL and alternation-free modal µ-calculus can

be solved in time O(n2 × |ϕ|), where n is the number of elements in the domain of model M and |ϕ| is the size

of the formula, and space O(n× |ϕ|).

Proof. We can translate every CTL sentence ϕ into a stratified Monadic inf-Datalog program P such that (1)

the structure (M, s) is a model of ϕ (i.e. ϕ holds at node s of structure M) if and only if s is an answer to

query Gϕ(x) defined by P on M , and (2) the number I of IDBs of P is less than the size of ϕ. We treat below

a (non exhaustive but typical) set of formulas illustrating the basic steps of our translation.

• ϕ ≡ p1 ∧ p2 is translated into Gϕ(x)←− p1(x), p2(x)

• ϕ ≡ p1 ∨ p2 becomes Gϕ(x)←− p1(x) , Gϕ(x)←− p2(x)

• ϕ ≡ E ◦ p becomes Gϕ(x)←− Suci(x, y), p(y) for i = 0, 1

• ϕ ≡ A ◦ p becomes the 3-rule program:



Gϕ(x)←− Suc0(x, y),¬2Suc(x), p(y)

Gϕ(x)←− Suc0(x, y), Suc1(x, z), p(y), p(z)

2Suc(x)←− Suc0(x, y), Suc1(x, z)

• ϕ ≡ E(p1Up2) becomes the 3-rule program:
{
Gϕ(x)←− p2(x)

Gϕ(x)←− p1(x), Suci(x, y), Gϕ(y) for i = 0, 1

• ϕ ≡ E(p1Ũp2) becomes:


Gϕ(x)←− p1(x), p2(x)

Gϕ(x)←− p2(x), Suci(x, y), Gϕ(y) for i = 0, 1

For Monadic inf-Datalog programs translating CTL formulas, we note that: (i) for any x in M there is at most

one y such that Suci(x, y) holds (the relations Suci(x, y) are many-to-one), and each rule body can be true for

at most one tuple, (ii) there are at most 3 rules for each non-terminal. Hence the time needed to evaluate one

component of TP (g1, . . . , gI) is not greater than C = maxi=1,...,I(Ci × n), with Ci ≤ 3.

ETL and alternation-free µ-calculus sentences can be similarly translated [16] into stratified Monadic inf-Datalog

(the constants Ci are now bounded by 4), hence the result.

The restriction that every node has outdegree at most 2 is inessential, see remark 3. ⊓⊔

The best known bound for model-checking is linear in the size |M | = n+T of the model (where T is the number

of tuples in the database M); see [13], and also [2,7,8].

Similarly, from theorem 17 we can deduce

14 Inf-datalog, Modal Logic and Complexities

Corollary 20 The global model-checking problem for the modal µ-calculus can be solved in time polynomial

in the number of elements in the domain of the model and exponential in the semantic alternation depth of the

formula. The space complexity is linear in n × |ϕ| (where n is the number of elements in the domain of the

model and |ϕ| the size of the formula).

Proof. We detail the proof when ϕ = θkXk.ϕk, is a modal µ-calculus sentence of syntactic alternation depth k

containing exactly k fixed points, i.e. for i = 2, . . . , k + 1: ϕi = gi(X1, . . . , θi−1Xi−1.ϕi−1, . . . , Xk), where gi is

a modal µ-calculus formula and {θi, θi−1} = {µ, ν}, i.e. θi−1 6= θi.

As in corollary 19, we translate ϕ into a Monadic inf-Datalog program Pϕ (see [16]) such that (i) C is in O(n),

(ii) the semantic alternation depth ad(Pϕ) of Pϕ is equal to ad(ϕ) as defined in [11] (see e.g. example 9), and

(iii) the number of IDBs of Pϕ is less than the size of ϕ. Because of the form of ϕ and because ϕ has syntactic

alternation depth k, there is a cycle Xk =⇒ X1 −→ X2 −→ · · · −→ Xk−1 −→ Xk in the dependency graph of

Pϕ, hence the syntactic alternation depth of Pϕ is k. It is easy to check by induction on k that the semantic

alternation depth ad(Pϕ) of Pϕ is equal to the semantic alternation depth ad(ϕ) of ϕ: we only have to observe

that (i) Xi occurs free (of any µ or ν binding) in ϕj , for j < i, iff Xi occurs free in a ϕs, s ≤ j, and (ii) s

is the least index such that Xi occurs free in ϕs, s ≤ j, iff there is in the dependency graph of Pϕ an edge

Xi −→ Xs (or Xi −→ Xs). Then, because C is in O(n), theorem 17 implies that model-checking for ϕ is in

time O((n)1+ad(ϕ) × |ϕ|) and space O(n× |ϕ|), hence the corollary.

For the general case, (i) we first generalize the notion of semantic alternation depth to any form of Monadic

inf-Datalog program P , and extend theorem 17 to programs belonging to cases 2 and 3 of theorem 10 (the time

and space complexities respectively become O(nad(P)+1 × I) and O(n × I)), and (ii) we then check (as above)

that the translation from an arbitrary µ-calculus sentence ϕ to Pϕ still preserves the semantic alternation depth.

Whence the corollary. ⊓⊔

5 Discussion and Conclusion

We gave a (quadratic-) polynomial-time algorithm computing the set of all answers to the queries defined by

a (stratified) Monadic inf-Datalog program. The worstcase time complexity of this algorithm is O(nk+1 × I)

where n is the number of elements in the domain of the database, I the number of IDBs and k the semantic

alternation depth. Because Monadic inf-Datalog subsumes the modal µ-calculus, we deduced new proofs of the

complexity of model-checking µ-calculus formulas. Our upper bounds are given by polynomials whose degree is

higher by one than the degree of the improved upper bound for model checking given in [10]: this is due to the

fact that we not only check whether a given node s of structure M satisfies formula ϕ (as in model checking),

but we compute the set of all nodes in M that satisfy ϕ. Note also that our bounds are given with respect

to the number n of elements of M , and not as usual, with respect to the size |M | = n+ T (T is the number of

tuples) of M .

Related ideas can be found in the following papers:

1) Inf-Datalog is equivalent to a fragment of the mu-calculus of [21], which has only least fixed points, but allows

for even numbers of negations and non-Horn formulas; this calculus has been implemented [15,22] using BDDs.

Eugénie Foustoucos Irène Guessarian 15

2) [20] translates model-checking a modal µ-calculus sentence into solving a boolean equation system, which

is then solved by Gauss elimination method (similar to our denotational semantics given in Section 2); the

complexity of solving the boolean equations is not studied, but an optimisation consisting of solving only those

equations necessary to evaluate the variable one wants to compute is proposed. Mader also extended her work

to infinite equation systems (corresponding to infinite models).

3) [23] also reduces model-checking a modal µ-calculus sentence f to solving fixed point equations; he proposes

to first unfold syntactically the fixed point equations in order to remove some iterations, and this enables him

to solve them in time O((|M | × |f |)1+⌈k/2⌉).

4) [3] defines an algorithm close to our algorithm1 of figure 6 for computing vectorial boolean fixed point

formulas.

Our programs are in positive normal form, meaning negations can affect only the explicitly given predicates

and not the computed IDBs; the subset of µ-calculus formulas thus captured is a strict subset of the whole

µ-calculus; however, all µ-calculus sentences can be put in positive normal form, [3] page 146; because model-

checking concerns sentences only, we can assume positive normal forms without loss of generality for our purpose,

and we gain the fact that problems caused by negations (even number of negations, complex semantics, etc.)

vanish. For example, the requirement of ”even number of negations” is automatically satisfied for positive

normal forms (even if we translate back the formula to a formula without greatest fixpoint and with negations

using the duality νy.f(y) = µy.f(y)); for instance, µzνw(x∨ z ∨ (p∧w) becomes µzµw(x̄ ∧ z̄ ∧ (p̄ ∨ w), where

all symbols are under an even number of negations, except w which is fully evaluated before the negation is

applied, and it is without negation in the scope of its µw. So the condition of even number of negations hold

automatically for positive normal forms.

The only counterpart is that the negations are incorporated in the greatest fixpoints, hence we have to be

careful and give explicitly (as we did) the order of evaluation of alternating fixed points. The approach allowing

explicit negations is taken in the seminal papers [19,10,11]; in more recent work [3,23,20] only positive normal

forms are allowed.

For model-checking formulas of CTL and the alternation-free µ-calculus (which are equivalent to fragments of

stratified Monadic inf-Datalog), [13] also gives a linear-time algorithm, through a translation into Datalog LITE

(an extension of Datalog using universal quantifications in rule bodies). However, Datalog LITE is essentially

alternation-free and does not capture CTL*, nor LTL, nor the modal µ-calculus.

Lµk is the set of modal µ-calculus formulas of syntactic alternation depth k; it is equivalent to a fragment of

Monadic inf-Datalog. For model-checking a formula f of Lµk: (i) [11] states a time complexity in O
(
(|M | ×

|f |)k+1
)
, (ii) [10] describes a semi-naive algorithm avoiding some redundant computations and running in time

O
(
(|M | × |f |)k

)
. We obtain for global model-checking a running time O

(
nk+1 × |f |

)
, where k is the semantic

alternation depth of f , by combining theorem 17 and our translation [16] from the modal µ-calculus into Monadic

inf-Datalog. We believe that this bound could be slightly improved: indeed [5] gives an algorithm for model-

checking formulas of Lµk running in time O
(
(|M | × |f |)2+k/2

)
; however the space complexity of the improved

algorithm in [5] is exponential whilst the space complexity of the (semi-)naive algorithms is polynomial [10].

By reducing the problem to parity games, [17] gives an algorithm running in time O
(
(|M | × |f |)2+k/2

)
and in

16 Inf-datalog, Modal Logic and Complexities

polynomial space. This is currently the best time complexity for model-checking formulas of Lµk: indeed, for

large ks (k = Ω(
√

(n)+ ε)) a better algorithm for parity games has been given in [18]; however the algorithm in

[17] outperforms the one in [18] in our case, because k will be small (most natural formulas have an alternation

depth of at most 2).

We conjecture that inf-Datalog could be extended to capture the whole µ-calculus of [21], while retaining a

polynomial time data complexity.

Acknowledgments: The second author is very grateful to Damian Niwiński for enlightening discussions and

to André Arnold for his reading and comments.

6 References

[1] S. Abiteboul, R. Hull, V. Vianu, Foundations of databases, Addison-Wesley, 1995.

[2] A. Arnold, P. Crubillé, A Linear Algorithm to Solve Fixed-Point Equations on Transition Systems, IPL,

29 (2), 1988, 57-66.

[3] A. Arnold, D. Niwiński, Rudiments of µ-calculus, Elsevier Science, Studies in Logic and the Foundations

of Mathematics, 146, North-Holland, Amsterdam, 2001.

[4] J. Bradfield, Fixpoint alternation: Arithmetic, transition systems, and the binary tree, RAIRO, Theo-

retical Informatics and Applications, Vol 33, 1999, 341-356.

[5] A. Browne, E. Clarke, S. Jha, D. Long, W. Marrero, An improved algorithm for the evaluation of fixpoint

expressions, TCS 178 , 1997, 237-255.

[6] W. Charatonik, D. McAllester, D. Niẃinski, A. Podelski, I. Walukiewicz, The Horn Mu-calculus, LICS,

1998, 58-69.

[7] E. M. Clarke, E. A. Emerson, A. P. Sistla, Automatic Verification of finite-state concurrent systems using

temporal logic specifications, ACM TOPLAS, 8, 1986, 244-263.

[8] R. Cleaveland, B. Steffan, A linear time model-checking algorithm for the alternation-free modal mu-

calculus, Formal methods in system design, 2 (1993), 121-148.

[9] E. Emerson, Temporal and modal logic, Handbook of Theoretical Computer Science, 1990, 997-1072.

[10] E. Emerson, Model-Checking and the Mu-Calculus, in Descriptive Complexity and Finite Models, N.

Immerman and Ph. Kolaitis eds., American Mathematical Society, 1997.

[11] E. A. Emerson, C.L.Lei, Efficient model-checking in fragments of the propositional µ-calculus, In Proc.

of 1rst Symposium on Logic in Computer Science, 1986, 267-278.

[12] E. Foustoucos, I. Guessarian, Complexity of Monadic inf-datalog. Application to Temporal

Logic, Extended abstract in Proceedings 4th Panhellenic Logic Symposium, 2003, 95-99.

[13] G. Gottlob, E. Grädel, H. Veith, Datalog LITE: temporal versus deductive reasoning in verification, ACM

Trans. on Comput. Logic, 3, 2002, 39-74.

[14] G. Gottlob and C. Koch, Monadic Datalog and the Expressive Power of Web Information Extraction

Languages, Proc. PODS’02, 17-28.

[15] A. Griffault and A. Vincent, The Mec 5 model-checker, CAV’04, Lecture Notes in Computer Science,

3114 , 2004, 488–491.

Eugénie Foustoucos Irène Guessarian 17

[16] I. Guessarian, E. Foustoucos, T. Andronikos, F. Afrati, On Temporal Logic versus Datalog, TCS, 303,

2003, 103-133.

[17] M. Jurdzinski, Small progress measures for solving parity games, Proc. STACS’2000, 290-301.

[18] M. Jurdzinski, M. Paterson, U. Zwick,A Deterministic Subexponential Algorithm for Solving Parity

Games, Proc. SODA 2006, 117-123.

[19] D. Kozen, Results on the propositional µ-calculus, TCS, 27, 1983, 333-354.

[20] A. Mader, The modal µ-calculus, model-checking, equations systems and Gaußelimination, TACAS 95,

1995, 44-57.

[21] D. Park, Finiteness is µ-ineffable, TCS, 3, 1976, 173-181.

[22] A. Vincent, Conception et ralisation d’un vrificateur de modles AltaRica, PhD thesis, LaBRI, University

of Bordeaux 1, 2003, http://altarica.labri.fr/Doc/Biblio/Author/VINCENT-A.html.

[23] H. Seidl, Fast and simple nested fixpoints, IPL, 59 (6), 1996, 303-308.

