Eugénie Foustoucos

Irène Guessarian

INF-DATALOG, MODAL LOGIC AND COMPLEXITIES

Keywords: databases, model-checking, specification languages, performance evaluation

. In the present paper, we study the complexity of query evaluation on finite models for (various fragments of) inf-Datalog. We deduce a unified and elementary proof that global model-checking (computing all nodes satisfying a formula in a given structure) has 1. quadratic data complexity in time and linear program complexity in space for CT L and alternation-free modal µ-calculus, and 2. linear-space (data and program) complexities, linear-time program complexity and polynomial-time data complexity for Lµ k (modal µ-calculus with fixed alternation-depth at most k).

Introduction

The model-checking problem for a logic A consists in verifying whether a formula ϕ of A is satisfied in a given structure K. In computer-aided verification, A is a temporal logic i.e. a modal logic used for the description of the temporal ordering of events and K is a (finite) Kripke structure i.e. a graph equipped with a labelling function associating with each node s the finite set of propositional variables of A that are true at node s.

Our approach to temporal logic model-checking is based on the close relationship between model-checking and Datalog query evaluation: a Kripke structure K can be seen as a relational database and a formula ϕ can be thought of as a Datalog query Q. In this context, the model-checking problem for ϕ in K corresponds to the evaluation of Q on input database K. The advantages of Datalog are that it is a simple declarative query language with clear semantics and low complexity (i.e., fixed Datalog programs can be evaluated in polynomial time over the input databases). When translated into Datalog, we thus can expect modal logic (e.g. µ-calculus) sentences to be easy to understand and check.

In [START_REF] Guessarian | On Temporal Logic versus Datalog[END_REF] we introduced the language inf-Datalog, which extends usual least fixpoint semantics of Datalog with greatest fixpoint semantics: greatest fixpoints are necessary for expressing properties such as fairness (something must happen infinitely often). Various temporal logics (CTL, ETL, alternation-free modal µ-calculus, and modal µ-calculus [START_REF] Emerson | Temporal and modal logic[END_REF], by increasing order of expressive power) can be translated into Monadic inf-Datalog, and conversely fragments of Monadic inf-Datalog can be translated into these logics [START_REF] Guessarian | On Temporal Logic versus Datalog[END_REF]. One of the advantages of inf-Datalog consists in eliminating problems inherent to negations: programs are assumed to be in positive normal form (negations affect only the explicitly given predicates); by duality, negation over computed predicates is expressed via greatest fixed points.

In the present paper we give upper bounds for evaluating inf-Datalog queries: we describe an algorithm evaluating inf-Datalog queries and analyze its complexity with respect to the size of the database (data complexity) and its complexity with respect to the size of the program (program complexity). The data complexity is polynomialtime and linear-space. Using our succinct translations in [START_REF] Guessarian | On Temporal Logic versus Datalog[END_REF] between the temporal logic paradigm and the database paradigm, we deduce upper bounds for the complexity of the model-checking problem for the modal µ-calculus.

Definitions

The basic definitions about Datalog can be found in [START_REF] Abiteboul | Foundations of databases[END_REF][START_REF] Guessarian | On Temporal Logic versus Datalog[END_REF][START_REF] Gottlob | Datalog LITE: temporal versus deductive reasoning in verification[END_REF], and the basic definitions about the µ-calculus and modal logic can be found in [START_REF] Arnold | Rudiments of µ-calculus[END_REF][START_REF] Emerson | Temporal and modal logic[END_REF][START_REF] Emerson | Model-Checking and the Mu-Calculus[END_REF][START_REF] Kozen | Results on the propositional µ-calculus[END_REF]. We proceed directly with the definition of inf-Datalog.

Definition 1 An inf-Datalog program is a Datalog program where some IDB predicates (i.e. predicates occurring in the heads of the rules) are tagged with an overline indicating that they must be computed as greatest fixed points; untagged IDB predicates are computed as least fixed points as usual; in addition, for each set of mutually recursive IDB predicates including both tagged and untagged IDB predicates, the order of evaluation of the IDB predicates in the set is specified by the indexing of the IDB predicates.

The dependency graph of a program is a directed graph with nodes the set of IDB predicates of the program; there is an edge from predicate ψ to predicate ϕ (denoted by ϕ ←ψ) if there is a rule with head an instance of ϕ and at least one occurrence of ψ in its body, and ϕ is said to directly depend on ψ; ϕ is said to depend on ψ if there is a path from ψ to ϕ in the dependency graph (denoted by ϕ ⇐= ψ). See figures 4, 5 and examples 8, 9 for examples of dependency graphs. Two predicates that belong to the same strongly connected component of the dependency graph are said to be mutually recursive.

An inf-Datalog program is said to be monadic if all the IDB predicates have arity at most one. An inf-Datalog program is said to be stratified if no tagged IDB predicate is mutually recursive with an untagged IDB predicate. This notion of stratification is the natural counterpart (with respect to greatest fixed points) of the well-known stratification with respect to negation; the denotational semantics of stratified inf-Datalog is the expected one; it is illustrated in example 2.

Example 2 Consider as database the structure given in figure 1, with two EDB predicates Suc 0 and Suc 1 denoting respectively the first successor and the second successor, and a unary EDB predicate p (which is meant to state some property of the nodes of the tree). Suc 0 is the relation {(ε, 0), (0, 00), (00, 00), (01, 01), (1, 10), (10, 1)}; Suc 1 is the relation {(ε, 1), (0, 01), (00, 00), (01, 01), (1, 10), (10, 1)}; p is assumed to hold for 00, 01 and 10, i.e. p is the relation {00, 01, 10}. The program P below, has as IDB predicates θ (computed as a greatest fixed point) and ϕ (computed as a least fixed point)

P :          θ(x) ←-p(x), Suc 0 (x, y), Suc 1 (x, z), θ(y), θ(z) (1) ϕ(x) ←-θ(x) (2) ϕ(x) ←-Suc 0 (x, y), Suc 1 (x, z), ϕ(y), ϕ(z) (3)
The first stratum consists of rule 1 defining θ (without initialization rule, this is possible because θ is computed as a greatest fixed point); the second stratum defines ϕ as a least fixed point with rules 2 (initializing ϕ with the value computed for θ in the first stratum) and as points where θ holds and {0, 00, 01} as points where ϕ holds.

The structures considered in temporal logics are usually infinite trees, while databases are always finite: how can we model the former with the latter? It should be noted that: (i) the infinite trees usually represent sequences of states occurring during the (infinite) execution of a (finite) program, hence they have a finite representation, and (ii) even with finite databases we can ensure that every node has a successor by adding a self-loop to every state without successor (as in states 00 and 01 of example 2): we thus obtain the infinite sequences of states of temporal logic.

Remark 3

In example 2 we assume that every node has outdegree at most 2; if the nodes have finite (but not known a priori) branching degree, then we slightly change our model, assuming two extensional binary predicates: F irstSuc(x, y) ("y is the leftmost child of x"), and N extSuc(x, y), ("y is the right sibling of x").

For instance, the formula ϕ = A • p (stating that p is true in all successors of a node) is expressed by the program:

P :                G ϕ (x) ←-F irstSuc(x, y), T (y)
T (x) ←p(x), N extSuc(x, y), T (y)

T (x) ←-p(x), ¬HasSuc(x)
HasSuc(x) ←-N extSuc(x, y) Formula ψ = E • p (stating that p is true in some successor of a node) is expressed by program:

P :          G ψ (x) ←-F irstSuc(x, y), T (y) T (x) ←-p(x) T (x) ←-N extSuc(x, y), T (y)
We now explain the more complex denotational semantics of non stratified inf-Datalog programs. Note first that we need not give any evaluation order within a set of IDB predicates that are all computed with the same fixed point (either least or greatest). We define the semantics of non-stratified programs by induction on the number k of alternations between mutually recursive least and greatest fixed points. If k = 0, either all IDBs are computed using least fixed points or all IDBs are computed using greatest fixed points, in the usual way.

Assume the semantics of programs with at most k alternations of least and greatest fixed points is defined and let P be a program with k + 1 such alternations. For instance, let Φ

= Φ 1 ∪ Φ 2 ∪ Φ 3 ∪ • • • ∪ Φ k+1 ∪ Φ k+2
denote the set of IDBs of P , which are assumed to be mutually recursive; the order and type of evaluation are as follows: first all IDBs of Φ 1 are computed as least fixed points, then all IDBs of Φ 2 are computed as greatest fixed points, . . . , and finally all IDBs of Φ k+2 are computed as least fixed points. Since the IDBs in

Φ 1 ∪ Φ 2 ∪ Φ 3 ∪ • • • ∪ Φ k+1 depend
on the IDBs in Φ k+2 , the semantics of P is defined as follows: the IDBs in Φ k+2 are first considered as parameters, as in Gauss elimination method for solving systems of equations; let P k+1 be the program consisting only of those rules of P whose head is in

Φ 1 ∪ Φ 2 ∪ Φ 3 ∪ • • • ∪ Φ k+1 (and
the IDBs in Φ k+2 are considered as EDBs). P k+1 has at most k alternations of least fixed points and greatest fixed points, hence can be solved formally by the induction hypothesis (with IDBs of Φ k+2 appearing in the solution). Then consider the set P ′ k+2 consisting of those rules of P whose head is in Φ k+2 and substitute in the corresponding rule bodies the solutions of P k+1 for the IDBs in Φ 1 ∪ Φ 2 ∪ Φ 3 ∪ • • • ∪ Φ k+1 : we obtain P ′′ where the only IDBs are those of Φ k+2 . Solve P ′′ and substitute the values obtained for the IDBs in Φ k+2 in the solutions of P k+1 . Iterate then these three steps (solving P k+1 and P ′′ , substituting for the IDBs in Φ k+2 the values obtained when solving P ′′), until the least fixpoint is reached (i.e. the IDBs in Φ k+2 no longer change).

Substitute finally this fixpoint for the IDBs of Φ k+2 occurring in P k+1 .

We will give an algorithm computing this semantics in theorem 10.

A related concept of semantics is defined for Horn clause programs with nested least and greatest fixpoints in [START_REF] Charatonik | The Horn Mu-calculus[END_REF]: their semantics is expressed directly in terms of the T P operator. [START_REF] Charatonik | The Horn Mu-calculus[END_REF] consider as database the set of infinite ground terms allowing functions (the Herbrand universe), and the paper focuses on the game theory semantics.

Complexity of inf-Datalog

In the sequel we will count as one basic time unit the time needed to infer a single immediate consequence atom from a clause: i.e. assuming we have a clause ϕ i (x 1 , . . . , x ni) ←-A 1 (x 1 , . . . , x ni), . . . , A k (x 1 , . . . , x ni). and assuming that A 1 (x 1 , . . . , x ni), . . . , A k (x 1 , . . . , x ni) hold, we infer that ϕ i (x 1 , . . . , x ni) holds in one basic time unit. Our time complexities will be counted relatively to that time unit.

Theorem 4 Let P be a stratified program having I IDB symbols ϕ 1 , . . . , ϕ I , and D a relational database having n elements in its domain, then the set of all I queries defined by P and of the form (P, ϕ), where ϕ is an IDB of P , can be evaluated on D in time less than C × n × I and space n × I, where C is the time needed to evaluate T P (g 1 , . . . , g I), g i an arbitrary function having the same arity as ϕ i for i = 1, . . . , I (lemma 5).

Proof. By induction on the number p of strata. Assume P has a single stratum, and, e.g. all IDBs are untagged, hence computed as least fixed points. Let ϕ 1 , . . . , ϕ I be the IDBs, then the answer f 1 , . . . , f I to the set of queries (P, ϕ 1), . . . , (P, ϕ I) defined by P is equal to sup i∈IN T i P (∅, . . . , ∅) and, because D has n objects only, this least upper bound is obtained after at most n iterations, hence a time complexity less than C × n × I. Same proof if all IDBs are tagged (computed as greatest fixed points).

The case where P has p strata is similar: since the IDBs are computed in the order of the strata, assuming stratum j has I j IDBs, the queries it defines will be computed in time at most C × n × I j , hence for the whole of P the complexity will be C × n × j I j = C × n × I. This upper bound is effectively reached as shown in example 6. The space complexity is clear too because we have at any time at most I IDBs true of at most n data objects.

⊓ ⊔

As pointed out by A. Arnold, theorem 4 could also be obtained by first showing that inf-Datalog is a µ-calculus in the sense of [START_REF] Arnold | Rudiments of µ-calculus[END_REF], and then applying lemma 11.1.6 of [START_REF] Arnold | Rudiments of µ-calculus[END_REF] (extended to arbitrary structures).

Lemma 5 Let D be a database with n elements in its domain and let P be an inf-Datalog program consisting of clauses of the form, i = 1, . . . , I:

ϕ i (x 1 , . . . , x ni) ←-ψ 1 (x 1 , . . . , x ni , y 1 , . . . , y pi , c 1 , . . . , c ki), . . . , ψ k (x 1 , . . . , x ni , y 1 , . . . , y pi , c 1 , . . . , c ki).
x 1 , . . . , x ni , y 1 , . . . , y pi are variables and c 1 , . . . , c ki are constants. Let g 1 , . . . , g I be functions having the same arities as ϕ 1 , . . . , ϕ I . The time needed to evaluate the ith component of T P (g 1 , . . . , g I) is not greater than

n ni × C i with C i = max (x1,...,xn i)∈D n |{(y 1 , . . . , y pi) | g 1 (x 1 , ..., x ni , y 1 , ..., y pi , c 1 , ..., c ki), . . . , g k (x 1 , ..., x ni , y 1 , ..., y pi , c 1 , ..., c ki)
holds for some rule with head ϕ i }| hence the time needed to evaluate

T P (g 1 , . . . , g I) is at most C = max i=1,...,I (C i × n ni).
Proof. Indeed evaluating the ith component of T P (g 1 , . . . , g I) at a given point (x 1 , ..., x ni) needs one basic time unit for each tuple (y 1 , . . . , y pi) such that g

1 (x 1 , ..., x ni , y 1 , ..., y pi , c 1 , ..., c ki), . . . , g k (x 1 , ..., x ni , y 1 , ..., y pi , c 1 , ..., c ki)
holds for some rule with head ϕ i , hence C i basic time units at most are needed to compute the ith component of T P (g 1 , . . . , g I) at any given point (x 1 , ..., x ni); then evaluating the ith component of T P (g 1 , . . . , g I) on D ni needs at most n ni × C i basic time units.

⊓ ⊔

A trivial bound for C would be O(max i=1,...,I (n pi × n ni)), but better bounds can be found in special cases of interest (e.g. programs corresponding to modal logic formulas). Even with this trivial bound, theorem 4 implies that the data complexity of stratified inf-Datalog is Ptime, hence adding greatest fixed points in a stratified way does not increase the evaluation complexity of Datalog (even though it increases its expressive power [START_REF] Guessarian | On Temporal Logic versus Datalog[END_REF]).

p 1 2 3 q p,r
P :                ϕ(x) ←-q(x) ϕ(x) ←-p(x), suc(x, y), ϕ(y) ψ(x) ←-ϕ(x), r(x) ψ(y) ←-ψ(x), suc(x, y)
Then, we need 6 steps to compute the queries defined by the program:

ϕ 0 = ∅, ϕ 1 = {3}, ϕ 2 = {2, 3}, ϕ 3 = {1, 2, 3} = ϕ 4 = ϕ 5 = ϕ 6 . ψ 0 = ψ 1 = ψ 2 = ψ 3 = ∅, ψ 4 = {1}, ψ 5 = {1, 2}, ψ 6 = {1, 2, 3}.
We now turn to non-stratified Monadic inf-Datalog programs. The order of evaluation of mutually recursive IDBs will be specified by their indexes, i.e. ϕ i will be computed before ϕ j if and only if i < j. As in µ-calculus, changing the evaluation order of IDBs can change the semantics of the program, see example 8; in plain Datalog, the evaluation order of IDBs is irrelevant for the semantics because all IDBs are evaluated as least fixed points.

Definition 7

The syntactic alternation depth of program P is the largest k such that there exists in the dependency graph of P a cycle with alternations of k pairwise distinct tagged/untagged IDBs depending on each other, e.g.

ϕ 1 =⇒ ϕ 2 =⇒ • • • =⇒ ϕ k-1 =⇒ ϕ k =⇒ ϕ 1 (
all other combinations, i.e. ϕ 1 and/or ϕ k tagged or untagged are allowed). It is 1 if there is no such cycle.

The syntactic alternation depth of programs we just defined corresponds to the syntactic alternation depth of µ-calculus formulas as defined in [START_REF] Bradfield | Fixpoint alternation: Arithmetic, transition systems, and the binary tree[END_REF][START_REF] Seidl | Fast and simple nested fixpoints[END_REF], i.e. whenever program P is the translation of formula ϕ, their syntactic alternation depths are equal.

Example 8 Consider a 3-element structure having domain {1, 2, 3}, where p(1), p(2), p(3), Suc 1 (1, 1), Suc 0 (1, 2), Suc 0 (2, 3), and Suc 1 (2, 3) hold (see figure 3):

p p 2 3 p 1 Figure 3
Another structure with 3 elements

Let P 1 and P 2 be inf-Datalog programs, defined by:

P 1 :                        X1(x) ←-p(x), Z3 (x)
X1(x) ←p(x), Suc i (x, y), X1(y)

for i = 0, 1 Y 2(x) ←-X1(x), p(x), Suc i (x, y), Y 2(y) for i = 0, 1 Z3(x) ←-Y 2(x) Z3(x) ←-Suc 0 (x, y), Suc 1 (x, z), Z3(y), Z3(z) P 2 :                        Z1(x) ←-Y 3(x) Z1(x) ←-Suc 0 (x, y), Suc 1 (x, z), Z1(y), Z1(z) X2(x) ←-p(x), Z1(x) X2(x) ←-p(x), Suc i (x, y), X2(y) for i = 0, 1 Y 3(x) ←-X2(x), p(x), Suc i (x, y), Y 3(y)
for i = 0, 1 P 1 has 2 IDBs computed as least fixed points, X1 and Z3 and one IDB Y 2 computed as a greatest fixed point, the evaluation order is first X1 then Y 2 and last Z3; in the dependency graph we have the cycle

X 1 -→ Y 2 -→ Z 3 -→ X
f 1 = f 2 = f 3 = ∅, while P 2 computes f 1 = f 2 = f 3 = {1}.
P ϕ            W 1(x) ←-p(x), W 1(x) Y 3(x) ←-Z2(x) W 1(x) ←- X4(x) Y 3(x) ←-Y 3(x) W 1(x) ←- Z2(x) Y 3(x) ←-X4(x) Z2(x) ←- W 1(x) X4(x) ←-Y 3(x) P ψ            W 1(x) ←-p(x), W 1(x) X3(x) ←-Z2(x) W 1(x) ←- X3(x) X3(x) ←-Y 4(x) W 1(x) ←- Z2(x) X3(x) ←-X3(x) Z2(x) ←- W 1(x) Y 4(x) ←-X3(x)
The translation is as in corollary 19 and satifies moreover: (i) greatest (least) fixed points correspond to Proof. The proof proceeds in three cases.

Case 1. We will first study the case when I = k, k even, ϕ 1 computed as a least fixed point (the algorithm for ϕ 1 computed as a greatest fixed point is similar): hence, there exist mutually recursive IDBs ϕ 1 , ϕ 2 , . . . , ϕ k-1 , ϕ k , computed in the order: first ϕ 1 , then ϕ 2 , . . . , and last ϕ k , with a cycle

ϕ k =⇒ ϕ 1 -→ ϕ 2 -→ • • • -→ ϕ k-1 -→ ϕ k
in the dependency graph of P . (Program P 1 of example 8 and both programs P ϕ and P ψ of example 9 belong to case 1.) Let P ′ i for i > 1 odd (resp. i even) be the set of rules of P with head ϕ i (resp. ϕ i), and P 1 the set of rules with head ϕ 1 . Then P = P k = P 1 ∪ (∪ k i=2 P ′ i) has the following form:

P k                                        P ′ k ϕ k (x) ←-• • • • • • ϕ k (x) ←-• • • P k-1                            P ′ k-1 ϕ k-1 (x) ←-• • • • • • ϕ k-1 (x) ←-• • • • • • P2            P ′ 2 ϕ2(x) ←-• • • • • • ϕ2(x) ←-• • • P1 ϕ1(x) ←-• • • • • • ϕ1(x) ←-• • •
The idea of the algorithm is similar to an algorithm given in [START_REF] Arnold | Rudiments of µ-calculus[END_REF] for evaluating boolean µ-calculus formulas and proceeds as follows. Let f 1 , . . . , f k be the answers on D to the queries defined by ϕ 1 , . . . , ϕ k . In order to compute f k we must compute inf i T i P ′ k (⊤), where ⊤ is true of every element in the data domain, and f k will be reached after at most n steps (because the domain has n elements). However, since ϕ k depends on ϕ k-1 , we must prealably compute f k-1 [⊤/ϕ k], which denotes f k-1 in which ⊤ has been substituted for the parameter ϕ k : this implies computing sup i T i

P ′ k-1 [⊤/ϕ k](∅)
, which is again reached after at most n steps, etc. The algorithm is described in figure 6.

This algorithm consists of k nested loops FOR j = 1 TO n+ 1 DO. Notice that the innermost loop (j 1) is performed n times, whilst the k-1 outermost nested loops are performed n+1 times each: for j = j 2 , . . . , j k , each individual f j is computed in at most C × n steps (because the time for computing each

T P ′ j (f 1 , f 2 , . . . , f k-1 , f k) is bounded by C).
Then we have to add an n + 1th round of iterations recursively reinitializing f k , . . . , f 2 by substituting the value just computed for f j in f j-1 , . . . , f 1 , for j = k, . . . , 2. At the end f 1 , . . . , f k will contain the answers to the queries defined by ϕ 1 , . . . , ϕ k . Example 13 shows that the final (n + 1)th round of iterations can be necessary; hence the algorithm runs in time at most C × (n + 1) k × I and the upper bound for its complexity

is C × O(n k × I).
By lemma 11, the algorithm is correct. The space complexity is n × I since we store the values of I IDBs, each of which can hold on at most n points. algorithm1 var j 1 , . . . , j k : indices;

f k := ⊤; for j k = 1 to n + 1 do f k-1 := ∅; for j k-1 = 1 to n + 1 do f k-2 := ⊤; • • • f 2 := ⊤; for j 2 = 1 to n + 1 do f 1 := ∅; for j 1 = 1 to n do f 1 := T P1 (f 1 , f 2 , . . . , f k-1 , f k); endfor (j 1) if j 2 ≤ n then f 2 := T P ′ 2 (f 1 , f 2 , . . . , f k-1 , f k); endfor (j 2) • • • if j k-1 ≤ n then f k-1 := T P ′ k-1 (f 1 , f 2 , . . . , f k-1 , f k); endfor (j k-1) if j k ≤ n then f k := T P ′ k (f 1 , f 2 , . . . , f k-1 , f k); endfor (j k) Figure 6 Algorithm1
Case 2. Assume now the set Φ of IDBs of P consists of I IDBs, I > k, which are all mutually recursive. Program

P 2 of example 8 belongs to case 2. Let for instance Φ 1 ∪ Φ 2 ∪ Φ 3 ∪ • • • ∪ Φ k be a partition of Φ such that: 1) all
the IDBs in Φ i (resp. Φ j) are untagged (resp. tagged), and 2) the order and type of evaluation are as follows: first all IDBs of Φ 1 are computed as least fixed points, then all IDBs of Φ 2 are computed as greatest fixed points, . . . , and finally all IDBs of Φ k are computed as greatest fixed points. Assume that, for i = 1, . . . , k, Φ i has m i IDBs ϕ i,1 , . . . , ϕ i,mi defined by program P ′ i (tags omitted). Then it suffices in algorithm1 to (i) replace each initialization (e.g. f i := ⊤) with m i initializations (f i,j := ⊤, j := 1, . . . , m i), and (ii) substitute for each instruction: f i := T P ′ i (f 1 , f 2 , . . . , f i , . . . , f k) the set of m i instructions:

f i,1 := T P ′ i ,1 (f 1 , f 2 , . . . , f i , . . . , f I) . . . f i,mi := T P ′ i ,mi (f 1 , f 2 , . . . , f i , . . . , f I)
where T P ′ i ,l (f 1 , f 2 , . . . , f i-1 , . . . , f I) denotes the set of immediate consequences which can be deduced using the rules of P ′ i with head ϕ i,l . At the end f 1 , . . . , f I will contain the answers to the queries defined by ϕ 1,1 , . . . , ϕ 1,m1 , . . . , ϕ k,1 , . . . , ϕ k,m k . Let t k be the complexity of algorithm1 modified by (i)-(ii) for alternation depth

k programs. Then t 1 = C × (m 1 × n + m 1) = C × (n + 1) × I,
and it is easy to check by induction that

t k ≤ C × (n + 1) k × I: assuming t k-1 ≤ C × (n + 1) k-1 × (I -m k), we have t k = (t k-1 + C × m k) × (n + 1); by the induction hypothesis, t k ≤ C×(n+1) k ×(I-m k)+C×m k ×(n+1), and because k ≥ 2, m k ×(n+1) < m k ×(n+1) k , hence t k ≤ C × (n + 1) k × I.

The other cases: Φ

= Φ 1 ∪ Φ 2 ∪ Φ 3 ∪ • • • ∪ Φ k ∪ Φ k+1
and/or Φ 1 is a set Φ 1 of IDBs computed as greatest fixed points, are similar. The complexity of the algorithm is again O C × n k × I . Case 3. Last, in the most general case, the rules of P can be partitioned into 2n + 1 disjoint sets Σ 0 , Π 1 , Σ 1 , . . . , Π n , Σ n . Each Π i , i = 1, . . . , n, has I i IDBs, all mutually recursive, and syntactic alternation depth k i ≤ I i .

Each Σ i , i = 0, . . . , n is a (possibly empty) stratified program with J i IDBs. The IDBs of Π i can depend on the IDBs of Π j and Σ j , j < i only; the IDBs of Σ i can depend on the IDBs of Π j and Σ j , j ≤ i in a stratified way; no IDB of Π i or Σ i can depend on the IDBs of some Σ j or Π j , j > i. We evaluate first the queries defined by the IDBs of Σ 0 in time O(C × n × J 0) (as in theorem 4), then the queries defined by the I 1 mutually recursive IDBs of Π 1 in time O(C × n k1 × I 1) as in case 2, then the queries defined by the J 1 "stratified" IDBs of Σ 1 in time O(C × n × J 1) as in theorem 4, etc. Finally, the total time complexity is

O(C × n max ki × (n i=1 I i) + n × (C × n i=0 J i)) = O(C × n k × I),
where k is the syntactic alternation depth of P (here k = max{k i |1 ≤ i ≤ n}).

In all three cases, the space complexity of the algorithm is linear in both n and the number of IDBs which are being computed, hence the global space complexity is O(n × I).

⊓ ⊔ Lemma 11 Let P be a program with syntactic alternation depth at most k, with IDBs ϕ 1 , ϕ 2 , . . . , ϕ k , and with parameters g 1 , . . . , g p . Let D be a database with n elements. For any given values of the parameters g 1 , . . . , g p , algorithm1 computes the answers f 1 , . . . , f k to the queries ϕ 1 , ϕ 2 , . . . , ϕ k on D.

Proof. By induction on k. We assume k even and the first IDB is a least fixed point, but the other cases (k odd, and/or ϕ 1 is a greatest fixed point, and/or ϕ k is a least fixed point) are similar.

Basis. For k = 1, the lemma is clear because there is no alternation.

Inductive step. Assume it holds for every k ′ ≤ k and prove it for k + 1. Let P k+1 (g 1 , . . . , g p) be the program

P k+1 (g 1 , . . . , g p)            P ′ k+1        ϕ k+1 (x) ←-• • • • • • ϕ k+1 (x) ←-• • • P k (g 1 , . . . , g p , ϕ k+1)
Let f 1 (g 1 , . . . , g p , ϕ k+1), . . . , f k (g 1 , . . . , g p , ϕ k+1) be the answers to the queries defined by IDBs ϕ 1 , ..., ϕ k of P k (g 1 , . . . , g p , ϕ k+1) (with parameters g 1 , . . . , g p and ϕ k+1). For i = 1, . . . , k, we will denote each f i (g 1 , . . . , g p , ϕ k+1) by f i (ϕ k+1). Let P ′ k+1 be the rules of P k+1 (g 1 , . . . , g p) with head ϕ k+1 . By the definition of nested fixed points, the answer f k+1 to the query defined by ϕ k+1 is the least upper bound of the sequence defined by

f 0 k+1 = ∅, f 1 k+1 = T P ′ k+1 (f 0 k+1), . . . , f n k+1 = T P ′ k+1 (f n-1 k+1
). This sequence is computed in the outermost FOR loop of algorithm1 (for k + 1): indeed,

f 1 k+1 = T P ′ k+1 (f 0 k+1) = T P ′ k+1 (∅) = T P ′ k+1 [∅/ϕ k+1 , f k (∅)/ϕ k , . . . , f 1 (∅)/ϕ 1]
where f k (∅), . . . , f 1 (∅) are the answers to the queries defined by IDBs ϕ k , . . . , ϕ 1 of program P k (g 1 , . . . , g p , ∅) with syntactic alternation depth ≤ k. Similarly, for j = 1, . . . , n -1, each of f k (f j k+1), . . . , f 1 (f j k+1) are the answers to the queries defined by IDBs ϕ k , . . . , ϕ 1 of program P k (g 1 , . . . , g p , f j k+1) and

f j+1 k+1 = T P ′ k+1 (f j k+1) = T P ′ k+1 [f j k+1 /ϕ k+1 , f k (f j k+1)/ϕ k , ..., f 1 (f j k+1)/ϕ 1].
As explained above, f n k+1 is the answer f k+1 to the query ϕ k+1 defined by the program P k+1 (g 1 , . . . , g p); hence, the answers f k , . . . , f 1 to the queries ϕ k , . . . , ϕ 1 defined by the program P k+1 (g 1 , . . . , g p) are respectively f k [f n k+1 /ϕ k+1], . . . , f 1 [f n k+1 /ϕ k+1] which are computed in the final round of iterations.

⊓ ⊔

The next Corollary follows from theorem 10.

Corollary 12

The set of queries defined by inf-Datalog programs can be computed in time polynomial in the number of elements of the database, exponential in the number of variables and the syntactic alternation depth of the program, and linear in the number of IDBs. The space complexity is linear in n × I (where n is the number of elements of the structure and I the number of IDBs).

Example 13 Consider the same structure as in figure 3, and the program P below (where I = 2 = k):

P :          ϕ 2 (x) ←-θ 1 (x), Suc 0 (x, y), Suc 1 (x, z), ϕ 2 (y), ϕ 2 (z) θ 1 (x) ←-Suc i (x, y), θ 1 (y) for i = 0, 1 θ 1 (x) ←-p(x), ϕ 2 (x)
Then algorithm1 will compute: 1. for f 2 = ⊤, f 1 = {1, 2, 3}, and f 2 = {1, 2}; then, 2. for f 2 = {1, 2},

f 1 = {1, 2}
, and f 2 = {1}; then, 3. for f 2 = {1}, f 1 = {1}, and f 2 = ∅; a last round will give 4. for f 2 = ∅,

f 1 = ∅. P is the translation of the temporal logic formula: ϕ = E(F ∞ p ∧ A • F ∞ p)
expressing that there exists a path on which p holds infinitely often and moreover, on all successors of the first state of that path, again p holds infinitely often. This formula cannot hold on a finite structure without infinite paths as the structure in figure 3.

In [START_REF] Arnold | Rudiments of µ-calculus[END_REF][START_REF] Emerson | Efficient model-checking in fragments of the propositional µ-calculus[END_REF] finer notions of alternation depth are defined: they correspond to counting only the alternations which affect the semantics because the innermost fixed point depends on the outermost fixed point; algorithmically, this leads to an improvement by computing beforehand and only once the fixed points associated with closed subformulas. Our algorithm1 can be improved to match the finer notion of [START_REF] Emerson | Efficient model-checking in fragments of the propositional µ-calculus[END_REF], which we first recall.

Definition 14 Given a set P of propositional variables and a set Ξ of variables, the set M of modal µ-calculus formulas is inductively defined by:

M ::= {p|p ∈ P }∪{¬p|p ∈ P }∪{X|X ∈ Ξ}∪{ϕ∨ψ, ϕ∧ψ, A•ϕ, E•ϕ|ϕ, ψ ∈ M }∪{µX.ϕ, νX.ϕ|X ∈ Ξ, ϕ ∈ M }
The semantic alternation depth ad(ϕ) of formula ϕ is defined by: (i)

ad(ϕ) = 0 if ϕ ∈ P ∪ Ξ, (ii) ad(A • ϕ) = ad(E • ϕ) = ad(ϕ), (iii) ad(ϕ ∨ ψ) = ad(ϕ ∧ ψ) = max(ad(ϕ), ad(ψ)
) and (iv) ad(µX.ϕ) = max(ad(ϕ), 1 + max{ad(ψ)|ψ = νY.φ is a subformula of ϕ and X occurs free of any µ or ν binding in ψ}), and similarly ad(νX.ϕ) = max(ad(ϕ), 1 + max{ad(ψ)|ψ = µY.φ is a subformula of ϕ and X occurs occurs free of any µ or ν binding in ψ}).

We now define a notion of semantic alternation depth corresponding to the definition of [START_REF] Emerson | Efficient model-checking in fragments of the propositional µ-calculus[END_REF]. We study here the case when the number of IDBs is equal to the syntactic alternation depth of the program. The other cases can be treated similarly but at the cost of heavier notations.

Definition 15 Let P be a program with syntactic alternation depth k, having mutually recursive IDBs

ϕ 1 , ϕ 2 , . . . , ϕ k , with a cycle ϕ k =⇒ ϕ 1 -→ ϕ 2 -→ • • • -→ ϕ k-1 -→ ϕ k
in the dependency graph of P . The semantic alternation depth of ϕ i , denoted by ad(ϕ i), is defined as follows: ad(ϕ 1) = 1 and ad(ϕ i) = ad(ϕ i-1)

+ e where e = 1, if in the dependency graph of P , there is an edge ϕ i -→ ϕ j (or ϕ i -→ ϕ j), j < i 0, otherwise The semantic alternation depth of ϕ i is defined similarly.

The semantic alternation depth of P , denoted by ad(P) is equal to the semantic alternation depth of ϕ k (resp.

ϕ k).
Example 16 Let ϕ and ψ be as in example 9. Formulas ϕ and ψ, programs P ϕ and P ψ all have the same syntactic alternation depth 4, but their semantic alternation depths differ. In P ϕ , ad(P ϕ) = ad(X4) = 3 and ad(Y 3) = ad(Z2) = 2, while in P ψ , ad(P ψ) = ad(Y 4) = 4 and ad(X3) = 3, ad(Z2) = 2. The (semantic) alternation depth of formula ϕ in the sense of [START_REF] Emerson | Efficient model-checking in fragments of the propositional µ-calculus[END_REF] is also 3, whilst it is only 2 in the sense of [START_REF] Arnold | Rudiments of µ-calculus[END_REF]. The (semantic) alternation depth of formula ψ is 4 in the sense of both [START_REF] Arnold | Rudiments of µ-calculus[END_REF][START_REF] Emerson | Efficient model-checking in fragments of the propositional µ-calculus[END_REF].

Theorem 17 Let P be a program with syntactic alternation depth k, IDBs ϕ 1 , ϕ 2 , . . . , ϕ k , and parameters g 1 , . . . , g p . Let D be a database with n elements. For any given values of the parameters g 1 , . . . , g p , we can compute the answers f 1 , . . . , f k to the queries ϕ 1 , . . . , ϕ k on D in time O(C × n d) where d = ad(P) is the semantic alternation depth of P , and space O(n × k) and C is given in Lemma lemma 5.

Proof. It is similar to Case 1 of theorem 10, but uses a slight improvement of Algorithm1: some iterations computing the f i s need not be nested (we avoid recomputing f i s when their value does not change). By induction on j, we prove (the tags will be omitted in the proof):

Fact: For j ≥ 1, considering ϕ j+1 , . . . , ϕ k as parameters, we compute the answers f 1 (g 1 , . . . , g p , ϕ j+1 , . . . , ϕ k), . . . , f j (g 1 , . . . , g p , ϕ j+1 , . . . , ϕ k) to the queries ϕ 1 , . . . , ϕ j (defined by P j (g 1 , . . . , g p , ϕ j+1 , . . . , ϕ k)) in time O(C × n ad(ϕj)).

Basis: If j = 1, ad(ϕ 1) = 1 and we have to compute f 1 (g 1 , . . . , g p , ϕ 2 , . . . , ϕ k) as a least upper bound, which can be done in at most C × n steps.

Induction: Assume the result holds for j ≥ 1 and prove it for j + 1. We distinguish two cases: case (i): in the dependency graph of P there is an edge ϕ j+1 -→ ϕ i , for some i < j + 1; hence ad(ϕ j+1) = ad(ϕ j) + 1; moreover, as there is a always a path ϕ i =⇒ ϕ j in the dependency graph (because all IDBs are mutually recursive), ϕ j thus depends on ϕ j+1 and f j (g 1 , . . . , g p , f q j+1 , ϕ j+2 , . . . , ϕ k) is a priori different from f j (g 1 , . . . , g p f q+1 j+1 , ϕ j+2 , . . . , ϕ k); hence the FOR j j+1 loop of algorithm1 must be nested over the loops computing f 1 , . . . , f j ; as by the induction hypothesis the latter are computed in time O(C × n ad(ϕj)), together with the final englobing loop FOR j j+1 , f 1 , . . . , f j , f j+1 will be computed in time

O(C × n ad(ϕj) × (n+ 1)) = O(C × n ad(ϕj)+1) = O(C × n ad(ϕj+1)).
case (ii): there is no edge from ϕ j+1 to some ϕ i , i < j + 1; then ad(ϕ j+1) = ad(ϕ j) and none of the IDBs ϕ i , i ≤ j depends directly on ϕ j+1 : thus, for every i ≤ j, each f i (g 1 , . . . , g p , f q j+1 , ϕ j+2 , . . . , ϕ k) is a priori equal to f i (g 1 , . . . , g p , f q+1 j+1 , ϕ j+2 , . . . , ϕ k), and the FOR j j+1 loop of algorithm1 does not need to be nested over the loops computing f 1 , . . . , f j : it suffices to perform it after completion of these loops, in time O(C × n); as by the induction hypothesis the latter are computed in time O(C × n ad(ϕj)), the time for computing f 1 , . . . , f j , f j+1 will be O(C × n ad(ϕj

) + n) = O(C × n ad(ϕj)) = O(C × n ad(ϕj+1)).
Letting j = k gives the time complexity stated in the theorem; the space complexity is clear.

⊓ ⊔

From lemma 5 and theorem 17, we deduce

Corollary 18

The set of queries defined by inf-Datalog programs can be computed in time polynomial in the number of elements of the database, exponential in the number of variables and the semantic alternation depth of the program, and linear in the number of IDBs.

Monadic inf-datalog and Modal Logic

In the present section, all programs will be Monadic inf-Datalog programs.

Recall that the model-checking problem consist, given a formula ϕ, a structure M and an element (node) s of M to check whether ϕ holds at node s of structure M . We will solve the slightly more general problem, which we call global model-checking: given formula ϕ and structure M , to compute the set of nodes s of M such that ϕ holds at node s.

As a consequence of theorem 4 we get the following result. Proof. We can translate every CT L sentence ϕ into a stratified Monadic inf-Datalog program P such that [START_REF] Abiteboul | Foundations of databases[END_REF] the structure (M, s) is a model of ϕ (i.e. ϕ holds at node s of structure M) if and only if s is an answer to query G ϕ (x) defined by P on M , and (2) the number I of IDBs of P is less than the size of ϕ. We treat below a (non exhaustive but typical) set of formulas illustrating the basic steps of our translation.

• ϕ ≡ p 1 ∧ p 2 is translated into G ϕ (x) ←-p 1 (x), p 2 (x) • ϕ ≡ p 1 ∨ p 2 becomes G ϕ (x) ←-p 1 (x) , G ϕ (x) ←-p 2 (x) • ϕ ≡ E • p becomes G ϕ (x) ←-Suc i (x, y), p(y) for i = 0, 1 • ϕ ≡ A • p becomes the 3-rule program:          G ϕ (x) ←-Suc 0 (x, y), ¬2Suc(x), p(y)
G ϕ (x) ←-Suc 0 (x, y), Suc 1 (x, z), p(y), p(z) 2Suc(x) ←-Suc 0 (x, y), Suc 1 (x, z)

• ϕ ≡ E(p 1 Up 2) becomes the 3-rule program: G ϕ (x) ←-p 2 (x) G ϕ (x) ←-p 1 (x), Suc i (x, y), G ϕ (y) for i = 0, 1 • ϕ ≡ E(p 1 Ũp 2) becomes:    G ϕ (x) ←-p 1 (x), p 2 (x) G ϕ (x) ←-p 2 (x), Suc i (x, y), G ϕ (y) for i = 0, 1
For Monadic inf-Datalog programs translating CTL formulas, we note that: (i) for any x in M there is at most one y such that Suc i (x, y) holds (the relations Suc i (x, y) are many-to-one), and each rule body can be true for at most one tuple, (ii) there are at most 3 rules for each non-terminal. Hence the time needed to evaluate one component of T P (g 1 , . . . , g I) is not greater than C = max i=1,...,I (C i × n), with C i ≤ 3.

ET L and alternation-free µ-calculus sentences can be similarly translated [START_REF] Guessarian | On Temporal Logic versus Datalog[END_REF] into stratified Monadic inf-Datalog (the constants C i are now bounded by 4), hence the result.

The restriction that every node has outdegree at most 2 is inessential, see remark 3.

⊓ ⊔

The best known bound for model-checking is linear in the size |M | = n + T of the model (where T is the number of tuples in the database M); see [START_REF] Gottlob | Datalog LITE: temporal versus deductive reasoning in verification[END_REF], and also [START_REF] Arnold | A Linear Algorithm to Solve Fixed-Point Equations on Transition Systems[END_REF][START_REF] Clarke | Automatic Verification of finite-state concurrent systems using temporal logic specifications[END_REF][START_REF] Cleaveland | A linear time model-checking algorithm for the alternation-free modal mucalculus[END_REF].

Similarly, from theorem 17 we can deduce Proof. We detail the proof when ϕ = θ k X k .ϕ k , is a modal µ-calculus sentence of syntactic alternation depth k containing exactly k fixed points, i.e. for i = 2, . . . , k + 1:

ϕ i = g i (X 1 , . . . , θ i-1 X i-1 .ϕ i-1 , . . . , X k)
, where g i is a modal µ-calculus formula and {θ i , θ i-1 } = {µ, ν}, i.e. θ i-1 = θ i .

As in corollary 19, we translate ϕ into a Monadic inf-Datalog program P ϕ (see [START_REF] Guessarian | On Temporal Logic versus Datalog[END_REF]) such that (i) C is in O(n),

(ii) the semantic alternation depth ad(P ϕ) of P ϕ is equal to ad(ϕ) as defined in [START_REF] Emerson | Efficient model-checking in fragments of the propositional µ-calculus[END_REF] (see e.g. example 9), and

(iii) the number of IDBs of P ϕ is less than the size of ϕ. Because of the form of ϕ and because ϕ has syntactic alternation depth k, there is a cycle

X k =⇒ X 1 -→ X 2 -→ • • • -→ X k-1 -→ X k
in the dependency graph of P ϕ , hence the syntactic alternation depth of P ϕ is k. It is easy to check by induction on k that the semantic alternation depth ad(P ϕ) of P ϕ is equal to the semantic alternation depth ad(ϕ) of ϕ: we only have to observe that (i) X i occurs free (of any µ or ν binding) in ϕ j , for j < i, iff X i occurs free in a ϕ s , s ≤ j, and (ii) s is the least index such that X i occurs free in ϕ s , s ≤ j, iff there is in the dependency graph of P ϕ an edge where n is the number of elements in the domain of the database, I the number of IDBs and k the semantic alternation depth. Because Monadic inf-Datalog subsumes the modal µ-calculus, we deduced new proofs of the complexity of model-checking µ-calculus formulas. Our upper bounds are given by polynomials whose degree is higher by one than the degree of the improved upper bound for model checking given in [START_REF] Emerson | Model-Checking and the Mu-Calculus[END_REF]: this is due to the fact that we not only check whether a given node s of structure M satisfies formula ϕ (as in model checking), but we compute the set of all nodes in M that satisfy ϕ. Note also that our bounds are given with respect to the number n of elements of M , and not as usual, with respect to the size |M | = n + T (T is the number of tuples) of M .

X i -→ X s (or X i -→ X s). Then, because C is in O(n), theorem 17
Related ideas can be found in the following papers:

1) Inf-Datalog is equivalent to a fragment of the mu-calculus of [START_REF] Park | Finiteness is µ-ineffable[END_REF], which has only least fixed points, but allows for even numbers of negations and non-Horn formulas; this calculus has been implemented [START_REF] Griffault | The Mec 5 model-checker[END_REF][START_REF] Vincent | Conception et ralisation d'un vrificateur de modles AltaRica[END_REF] using BDDs.

2) [START_REF] Mader | The modal µ-calculus, model-checking, equations systems and Gaußelimination[END_REF] translates model-checking a modal µ-calculus sentence into solving a boolean equation system, which is then solved by Gauss elimination method (similar to our denotational semantics given in Section 2); the complexity of solving the boolean equations is not studied, but an optimisation consisting of solving only those equations necessary to evaluate the variable one wants to compute is proposed. Mader also extended her work to infinite equation systems (corresponding to infinite models).

3) [START_REF] Seidl | Fast and simple nested fixpoints[END_REF] also reduces model-checking a modal µ-calculus sentence f to solving fixed point equations; he proposes to first unfold syntactically the fixed point equations in order to remove some iterations, and this enables him to solve them in time O((|M | × |f |) 1+⌈k/2⌉).

4) [START_REF] Arnold | Rudiments of µ-calculus[END_REF] defines an algorithm close to our algorithm1 of figure 6 for computing vectorial boolean fixed point formulas.

Our programs are in positive normal form, meaning negations can affect only the explicitly given predicates and not the computed IDBs; the subset of µ-calculus formulas thus captured is a strict subset of the whole µ-calculus; however, all µ-calculus sentences can be put in positive normal form, [START_REF] Arnold | Rudiments of µ-calculus[END_REF] page 146; because modelchecking concerns sentences only, we can assume positive normal forms without loss of generality for our purpose, and we gain the fact that problems caused by negations (even number of negations, complex semantics, etc.) vanish. For example, the requirement of "even number of negations" is automatically satisfied for positive normal forms (even if we translate back the formula to a formula without greatest fixpoint and with negations using the duality νy.f (y) = µy.f (y)); for instance, µzνw(x ∨ z ∨ (p ∧ w) becomes µzµw(x ∧ z ∧ (p ∨ w), where all symbols are under an even number of negations, except w which is fully evaluated before the negation is applied, and it is without negation in the scope of its µw. So the condition of even number of negations hold automatically for positive normal forms.

The only counterpart is that the negations are incorporated in the greatest fixpoints, hence we have to be careful and give explicitly (as we did) the order of evaluation of alternating fixed points. The approach allowing explicit negations is taken in the seminal papers [START_REF] Kozen | Results on the propositional µ-calculus[END_REF][START_REF] Emerson | Model-Checking and the Mu-Calculus[END_REF][START_REF] Emerson | Efficient model-checking in fragments of the propositional µ-calculus[END_REF]; in more recent work [START_REF] Arnold | Rudiments of µ-calculus[END_REF][START_REF] Seidl | Fast and simple nested fixpoints[END_REF][START_REF] Mader | The modal µ-calculus, model-checking, equations systems and Gaußelimination[END_REF] only positive normal forms are allowed.

For model-checking formulas of CTL and the alternation-free µ-calculus (which are equivalent to fragments of stratified Monadic inf-Datalog), [START_REF] Gottlob | Datalog LITE: temporal versus deductive reasoning in verification[END_REF] also gives a linear-time algorithm, through a translation into Datalog LITE (an extension of Datalog using universal quantifications in rule bodies). However, Datalog LITE is essentially alternation-free and does not capture CTL*, nor LTL, nor the modal µ-calculus.

Lµ k is the set of modal µ-calculus formulas of syntactic alternation depth k; it is equivalent to a fragment of Monadic inf-Datalog. For model-checking a formula f of Lµ k : (i) [START_REF] Emerson | Efficient model-checking in fragments of the propositional µ-calculus[END_REF] [START_REF] Guessarian | On Temporal Logic versus Datalog[END_REF] from the modal µ-calculus into Monadic inf-Datalog. We believe that this bound could be slightly improved: indeed [START_REF] Browne | An improved algorithm for the evaluation of fixpoint expressions[END_REF] gives an algorithm for modelchecking formulas of Lµ k running in time O (|M | × |f |) 2+k/2 ; however the space complexity of the improved algorithm in [START_REF] Browne | An improved algorithm for the evaluation of fixpoint expressions[END_REF] is exponential whilst the space complexity of the (semi-)naive algorithms is polynomial [START_REF] Emerson | Model-Checking and the Mu-Calculus[END_REF].

By reducing the problem to parity games, [START_REF] Jurdzinski | Small progress measures for solving parity games[END_REF] gives an algorithm running in time O (|M | × |f |) 2+k/2 and in polynomial space. This is currently the best time complexity for model-checking formulas of Lµ k : indeed, for large ks (k = Ω((n) + ε)) a better algorithm for parity games has been given in [START_REF] Jurdzinski | A Deterministic Subexponential Algorithm for Solving Parity Games[END_REF]; however the algorithm in [START_REF] Jurdzinski | Small progress measures for solving parity games[END_REF] outperforms the one in [START_REF] Jurdzinski | A Deterministic Subexponential Algorithm for Solving Parity Games[END_REF] in our case, because k will be small (most natural formulas have an alternation depth of at most 2).

We conjecture that inf-Datalog could be extended to capture the whole µ-calculus of [START_REF] Park | Finiteness is µ-ineffable[END_REF], while retaining a polynomial time data complexity.

Figure 1 A

 1 Figure1A data structure of size 6

Figure 2 AExample 6

 26 Figure 2 A data structure with 3 elements

1

 1 figure 3, P 1 computes f 1 = f 2 = f 3 = ∅, while P 2 computes f 1 = f 2 = f 3 = {1}.

Figure 4 2 Example 9

 429 Figure 4 Dependency graph of P 1 and P 2

(Figure 5

 5 Figure 5 Dependency graphs of P ϕ and P ψ

Corollary 19

 19 The global model-checking problem for CT L, ET L and alternation-free modal µ-calculus can be solved in time O(n 2 × |ϕ|), where n is the number of elements in the domain of model M and |ϕ| is the size of the formula, and space O(n × |ϕ|).

Corollary 20

 20 The global model-checking problem for the modal µ-calculus can be solved in time polynomial in the number of elements in the domain of the model and exponential in the semantic alternation depth of the formula. The space complexity is linear in n × |ϕ| (where n is the number of elements in the domain of the model and |ϕ| the size of the formula).

5

 implies that model-checking for ϕ is in time O((n) 1+ad(ϕ) × |ϕ|) and space O(n × |ϕ|), hence the corollary.For the general case, (i) we first generalize the notion of semantic alternation depth to any form of Monadic inf-Datalog program P , and extend theorem 17 to programs belonging to cases 2 and 3 of theorem 10 (the time and space complexities respectively become O(n ad(P)+1 × I) and O(n × I)), and (ii) we then check (as above) that the translation from an arbitrary µ-calculus sentence ϕ to P ϕ still preserves the semantic alternation depth.Whence the corollary. ⊓ ⊔ Discussion and ConclusionWe gave a (quadratic-) polynomial-time algorithm computing the set of all answers to the queries defined by a (stratified) Monadic inf-Datalog program. The worstcase time complexity of this algorithm is O(n k+1 × I)

 states a time complexity in O (|M | × |f |) k+1 , (ii) [10] describes a semi-naive algorithm avoiding some redundant computations and running in time O (|M | × |f |) k . We obtain for global model-checking a running time O n k+1 × |f | , where k is the semantic alternation depth of f , by combining theorem 17 and our translation

 [START_REF] Arnold | Rudiments of µ-calculus[END_REF]. The IDB predicate θ (resp. ϕ) in this program implements the modality AGp (resp. AF AGp) on the infinite full binary tree: AGp means that p is always true on all paths, and AF AGp means that, on every path we will eventually (after a finite number of steps) reach a state wherefrom p is always true on all paths. Gp is expressed by the CT L path formula ⊥ Up and AF AGp is expressed by the CT L state formula A ⊤UA(⊥ Up) , where ⊥ and ⊤ respectively represent ff and tt. The

µ-calculus analog is the Lµ 1 expression µϕ. νθ.(p ∧ A • θ) A • ϕ . The semantics of P should yield {00, 01}

Acknowledgments:

The second author is very grateful to Damian Niwiński for enlightening discussions and to André Arnold for his reading and comments.