
HAL Id: hal-00159125
https://hal.science/hal-00159125

Preprint submitted on 3 Jul 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tree inclusion problems
Patrick Cegielski, Irene Guessarian, Yuri Matiyasevich

To cite this version:

Patrick Cegielski, Irene Guessarian, Yuri Matiyasevich. Tree inclusion problems. 2007. �hal-00159125�

https://hal.science/hal-00159125
https://hal.archives-ouvertes.fr

, ,

Theoretical Informatics and Applications Will be set by the publisher

Informatique Théorique et Applications

TREE INCLUSION PROBLEMS ∗

Patrick Cégielski1, Irène Guessarian2 and

Yuri Matiyasevich3

Abstract. Given two trees (a target T and a pattern P) and a nat-
ural number w, window embedded subtree problems consist in deciding
whether P occurs as an embedded subtree of T and/or finding the
number of size (at most) w windows of T which contain pattern P as
an embedded subtree.

P is an embedded subtree of T if P can be obtained by deleting
some nodes from T (if a node v is deleted, all edges adjacent to v are
also deleted, and outgoing edges are replaced by edges going from the
parent of v (if it exists) to the children of v). Deciding whether P is
an embedded subtree of T is known to be NP-complete.

Our algorithms run in time O(|T |22
|P |

) where |T | (resp. |P |) is the
size of T (resp. P).

1991 Mathematics Subject Classification. 68Q25, 68W05.

For 60th birthday of Serge Grigorieff

1. Introduction

Given two trees, we study the following problems: can P be obtained from T by
deleting nodes? if this holds, is P contained in a reasonably small (i.e. of a small
height) subtree of T ? If P is contained in a subtree of height w (a “window”) of
T , how many times can this occur?

These problem generalize in a natural way the subsequence problems for words:
we proved in [BCGM01], that the problem of counting the number of w-windows

Keywords and phrases: Subtree inclusion, algorithm.

∗ Support from the Council for Grants of the President of the Russian Federation under

grant NSh-8464.2006.1 is acknowledged by the third author.
1 LACL, Université Paris 12, Route forestière Hurtault, F-77300 Fontainebleau, France, e-
mail: cegielski@univ-paris12.fr

2 LIAFA, UMR 7089 and Université Paris 6, 2 Place Jussieu, 75254 Paris Cedex 5, France;
send correspondence to e-mail: ig@liafa.jussieu.fr

3 Steklov Institute of Mathematics, Fontanka 27, St. Petersburg, 191023, Russia. e-mail:
yumat@pdmi.ras.ru

c© EDP Sciences 1999

2 TITLE WILL BE SET BY THE PUBLISHER

of a text t containing a pattern p as a subsequence (i.e. letters of p appear in the
window in the same order as in p but are not necessarily consecutive and may be
interleaved with other letters) can be solved in time O(n) where n is the size of
t. The generalization to trees can be stated as follows: P is an embedded subtree
of T if P can be obtained by deleting some nodes from T (if a node v is deleted,
the ingoing edge to v (if it exists) is also deleted, and outgoing edges are replaced
by edges going from the parent of v (if it exists) to the children of v). P is an
embedded subtree of T within a w-window if P is an embedded subtree of W , and
W is a subtree of T of height w.

We cannot hope to reduce (in a simple and succinct way) the problem of finding
whether P is an embedded subtree of T within a w-window to the subsequence
problem for words by encoding T and P by words t and p respectively, and then
solving some subsequence problem for t and p: it is known [KM95] that even
the simpler problem of deciding whether P is an embedded subtree of T is NP-
complete, hence the length of t and/or p would probably be exponential in the size
of T and/or P .

The problem of finding embedded occurrences of a pattern in a window of a
tree is important in two areas extensively studied recently:

1. retrieving information from structured documents [KM95] such as dictionar-
ies: via a pattern embedding the user can specify the structure and content of the
parts of the document she/he is interested in.

2. discovering frequent substructures in semi-structured data; most semi-struc-
tured data are modeled by colored labelled trees (e.g. itemsets in relational
databases, chemical compounds, XML documents), and mining such structures
is naturally done via finding tree embeddings.

The paper is organized as follows: in section 2 we define notations and problems,
in section 3 we describe a new algorithm to decide whether a pattern in embedded
in a target (not interesting per se, but for the generalisations given in the following
section), and section 4 presents our main contribution, namely, (i) determining
(and counting) the w-windows containing a pattern as an embedded subtree, and
(ii) determining (and counting) the embeddings of a pattern within a w-window
of text.

2. Notations

Let A be an alphabet.

Definition 2.1. (i) A tree T on A is a finite connected acyclic graph T =
〈V, E, color〉, where V is the set of nodes, E is the set of edges, and color : V 7→ A

is a coloring function: each node (or vertex) is colored by a letter of A.
(ii) A rooted tree T = 〈V, E, color, r〉 is a tree where a node r has been

distinguished and is called the root of the tree.

In a rooted tree, edges are naturally directed (from the root to the leaves): all
nodes have in-degree one except for the root which has in-degree zero; if (u, v) is

TITLE WILL BE SET BY THE PUBLISHER 3

an edge oriented from u to v, u is the parent of v and v is a child of u; each node
has exactly one parent, except for the root which has none; a node can have any
finite number of children and childless nodes are called leaves. Nodes have a depth:
the depth of the root is 0, and if the depth of node v is n, then all its children have
depth n+1. Two nodes having the same parent are called siblings. The transitive
closure of the parent (resp. child) relation is called the ancestor (resp. descendent)
relation.

In the case of trees, the notions similar to subword and subsequence for words
exist and are called subtree and embedded subtree. Formally:

Definition 2.2. Let T = 〈V, E, color, r〉 and T ′ = 〈V ′, E′, color′, r′〉 be rooted
trees, such that:

1. V ′ ⊆ V and E′ ⊆ E

2. the coloring of V ′ is preserved in T ′, i.e. ∀v′ ∈ V ′ color′(v′) = color(v′)
Then T ′ is said to be a subtree of T .

Moreover, if for each node v′ from T ′ all its descendents in T are also its
descendents in T ′, then T ′ is said to be a bottom-up subtree of T .

Intuitively, a bottom-up subtree of T can be obtained by taking a node v of T

together with all of v’s descendents and corresponding edges; a subtree of T can
be obtained by taking a bottom-up subtree of T and pruning some edges together
with the subtree below the pruned edge. The bottom-up subtree of T rooted at
node v will be denoted by T [v].

Definition 2.3. Let T = 〈V, E, color, r〉 and T ′ = 〈V ′, E′, color′, r′〉 be rooted
trees; an embedding from T ′ into T is an injective mapping τ : V ′ →֒ V , such
that:

1. for every v′ ∈ V ′, color(τ(v′)) = color′(v′), i.e. τ preserves colors.
2. v′1 is an ancestor of v′2 in T ′ iff τ(v′1) is an ancestor of τ(v′2) in T , i.e. τ

preserves the ancestor-descendent relationship.
T ′ is said to be an embedded subtree of T if there exists an embedding from

T ′ into T .

Intuitively, an embedded subtree of T is obtained by deleting some nodes from
T and gluing together the remaining edges in a way preserving the ancestor-
descendent relationship of T .

Definition 2.4. A window of T = 〈V, E, color, r〉 is a subtree W = 〈V ′, E′,

color′, r′〉 of T such that for any node v of T belonging to V ′ all siblings of v in T

also belong to V ′.
For w ∈ IN∗, a w-window of T is a window of T of height at most w. P is an

embedded subtree of T within a w-window if there is an embedding from P

into T and moreover the image of P is contained in a w-window of T .

Example 1. In Figure 1, T ′, T ′′, T ′′′ are respectively a bottom-up subtree, a sub-

tree, and an embedded subtree of T . T ′′′ is an embedded subtree of T within a

2-window. W is a 1-window of T .

4 TITLE WILL BE SET BY THE PUBLISHER

f

d

a

b c d

a

b c d

e f

g

h

T T’ T’’ T’’’

a

c b c

fe

a

W

d

e

Figure 1. A tree T with bottom-up subtree T ′, subtree T ′′, embed-
ded subtree T ′′′, and 1-window W .

The problems

• Problem 1. Given two trees, target tree T and pattern tree P , to decide
whether P is an embedded subtree of T .

• Problem 2. Given two trees, target T and pattern P , to decide whether P

is an embedded subtree of T within a w-window. Subsidiarily, to count the
number of windows of height at most w of T containing P as an embedded
subtree.

• Problem 3. Given two trees, target T and pattern P , to count the number
of occurrences of P as an embedded subtree of T within a w-window.

Related results

Different versions of the first problem have been considered. Papers [K92,KM95]
shows that problem 1 is NP-complete, but can be solved in time O(ptk22k), where
p = |P | (resp. t = |T |) is the number of nodes (size) of P (resp. T), if the
out-degrees of the nodes of P are bounded by k.

3. Embedded subtree search

We study Problem 1: given target tree T and pattern tree P , to decide whether
P is an embedded subtree of T .

3.1. Notations

Without loss of generality we may assume that the nodes of P are labelled:
each node has a unique label from {1, . . . , p}, see Figure 2. This yields a labelling
of the bottom-up subtrees of P : bottom-up subtree rooted at node v has the same
label as node v. A bottom-up subtree of P rooted at node v is represented either
by the label of v or in the form P [v]: the bottom-up subtree rooted at node v

having label j, will thus be denoted by j or P [v] according to the context.

Definition 3.1. A forest of P is a set of bottom-up subtrees of P . A forest will
be denoted by the set of labels of its roots. Forest F is said to be a max-forest

TITLE WILL BE SET BY THE PUBLISHER 5

a

e

c c d

b

1

2

3 4

5

6

Figure 2. A pattern P and a postorder labelling of its bottom-up subtrees.

if all its trees are incomparable, i.e. there are no t, t′ ∈ F such that t′ is a proper
bottom-up subtree of t.

We say that forest F dominates forest F ′ (different from F itself) if every tree
from F ′ is a bottom-up subtree of some tree from F .

3.2. Idea

Let T be a (big) tree (called the target) and let P be a (small) tree (called the
pattern). For each node v of T we will compute a configuration, which will be a
set of max-forests of bottom-up subtrees of P .

Intuitively, each forest of the configuration at node v represents a set of subtrees
of P which can be embedded in T [v] simultaneously, i.e. in such a way that the
images of different trees wouldn’t intersect.

Definition 3.2. A configuration is a set C = {F1, F2, . . . , Fk}, where each Fi is
a max-forest of P , and if i 6= j then Fi does not dominate Fj .

Definition 3.3. The union of two configurations C = {F1, F2, . . . , Fk} and C′ =
{F ′

1, F
′
2, . . . , F

′
k′} is configuration D, denoted by D = C ⊗ C′ and obtained as

follows:

(1) let D′ =
{

Fi ∪ F ′
i′ |i ∈ {1, ..., k}, i′ ∈ {1, ..., k′}

}

(2) we pass from D′ to D′′ by removing from each F ′
j = Fi ∪ F ′

i′ which is not
a max-forest all labels of subtrees of P which are subtrees of a tree whose
label is already present in F ′

j

(3) we pass from D′′ to D by removing each F ′′
j which is dominated by some

F ′′
i .

Note that:

• In (2), we obtain a forest F ′′
j such that all subtrees of P belonging F ′′

j

are maximal in F ′′
j (all subtrees of F ′′

j are incomparable), i.e. F ′′
j is a

max-forest.
• The resulting D =

{

Fi|i = 1, . . . , l
}

is a set of max-forests of P , such that
if i 6= j then Fi does not dominate Fj , hence it is a configuration.

6 TITLE WILL BE SET BY THE PUBLISHER

3.3. Algorithm

We traverse T bottom-up (from leaves to root, or in postorder): to scan a node
v of T we must first have scanned all its children. With each node v of T we will
associate a configuration Cv such that for every forest F from Cv all trees from F

can be simultaneously embedded into T [v]. This leads to the following algorithm.
(See Figure 3(1) for an example.)

Algorithm1

Let r := the label of the root of P ; //initialization

FORALL nodes of T visited bottom-up DO

(1) IF node v is a leaf of T , its configuration is the set of singletons {i} where
i is the label of a leaf v′ of P such that color(v) = color(v′) = a.
//If no leaf of P is colored a, the configuration of v is the empty set.

ENDIF

(2) IF node v is an internal node colored a, with children v1, . . . , vn, THEN DO

(a) ∆ := D := Cv1
⊗ Cv2

⊗ · · · ⊗ Cvn
;

(b) FORALL nodes w of P colored a and labelled j DO //w has the same

color as v

Let j1, ..., jp be the children (if they exists) of j in P

IF there is an Fi ∈ D such that {j1, ..., jp} ⊆ Fi // true if there are

no children

THEN

IF w = r THEN DO

output “P is an embedded subtree of T ”;
STOP ENDDO ENDIF

let ∆∗ be the result of deleting j1, ..., jp from all forests in ∆;
∆ := ∆∗ ∪ {{j}}

ENDIF

ENDDO

(c) Remove from ∆ all dominated forests and take the resulting configu-
ration for Cv

ENDDO

ENDIF

ENDDO

output “P isn’t an embedded subtree of T ”

Comment: when computing ∆∗ we delete every occurrence of j1, ..., jp in all
forests because they are used only to obtain j; at a later stage (i) either we will
choose j but it already appears, or (ii) we will choose another subtree, and in that
latter case we do not need j1, ..., jp.

Complexity: the number of bottom-up subtrees of P is bounded by p where p

is the size of P , the number of forests is bounded by 2p, hence the number of
configurations is at most O(22

p

).

TITLE WILL BE SET BY THE PUBLISHER 7

{4}{ } {4}{ }{1} {3}{ , } {1} {3}}{

a

x

e

ce

c d

b

{3,4} {2}

{

{

{

{
}

{6}

 {2} {5}}

}

{1}}

 {2,5}}

{2}

}

a

x

e

ce

c d

b

{3,4} {2}

{

{

{

{{1} {3}

}

{6}

 {2} {5}} {3} {2} }

}

 {2,5}}

,
,

,,

,

,

,

 (1) (2)

}{

{

{

{

Figure 3. A target T where the pattern of Figure 2 is embedded.

3.4. Improvements

Improvement 1

Algorithm1 can be improved in practice by reducing the number of configura-
tions. Let us say node v from the target and node v′ from the pattern are upward
compatible, if the path from v′ to the root of P can be embedded into the path
from v to the root of T . We can preprocess target T in order to precompute for
each node v in T the set c(v) of all nodes of P which are upward compatible with
it. This is trivial for the root of T . Passing from a node v in T to its child w we
just add to c(v) each node u in P such that: 1) u has the same color as w, and 2)
the parent of u is in c(v).

The algorithm computing the set c(w) of nodes of P upward compatible with
w is as follows:

Let r := the label of the root of P ; //initialization

FORALL nodes w of T visited top-down DO

IF node w is the root of T ,

– THEN c(w) =

{

{r} if color(w) = color(r),

∅ otherwise.

– ELSE DO //w has parent v whose set of upward compatible nodes is c(v)

c(w) = c(v) ∪ {u|u is a node of P, and parent(u) ∈ c(v), and color(u) =
color(w)} ENDDO

ENDIF

ENDDO

The complexity of this preprocessing is O(tp). Then in step 1 of algorithm1 we
can demand that v′ should be upward compatible with v. This could considerably
reduce the number of configurations to deal with. For instance in Figure 3 the set
of nodes upward compatible with the rightmost leaf of T is {1, 2, 6}, which reduces
by half the set of configurations on the rightmost path of T , see Figure 3(2).

8 TITLE WILL BE SET BY THE PUBLISHER

Improvement 2

The idea of upward compatibility can be further developed as follows. Suppose
that τ : V ′ → V is an embedding of P = 〈V ′, E′, color′, r′〉 into T = 〈V, E, color, r〉.
We can consider an inverse embedding σ which is a partial map from V onto
P(E′) ∪ V ′ defined as follows:

• if v = τ(v′) then σ(v) = v′;
• if v′1 is the parent of v′2 in P , then for every internal node v on the path

from τ(v′1) to τ(v′2) the value of σ(v) is equal to the edge between v′1 and
v′2;

• for all other nodes of T the value of σ is left undefined.

For every v from T we can consider the set S(v) of all possible values of σ(v), for
all possible embeddings τ . It is easy to check that these sets satisfy the following
conditions:

[A1] if S(v) contains some v′ from V ′ then color(v) = color′(v′);
[A2] if S(v) contains some v′ from V ′ then

– if v′ has the parent v′1 in P , then v has the parent v1 in T and S(v1)
contains either v′1 or the the edge between v′1 and v′;

– for every child v′2 of v′ in P , the node v has a child v2 such that the
set S(v2) contains either v′2 or the edge between v′ and v′2

[A3] if S(v) contains the edge between some v′2 and its parent v′1 in P then
– v has the parent v1 in T and S(v1) contains either v′1 or the edge

between v′1 and v′2
– v has a child v2 such that S(v2) contains either v′2 or the edge between

v′1 and v′2

We cannot easily calculate “true” sets S(v) so instead of this we calculate (and

dynamically maintain during the entire work of the algorithms) some sets S̃(v)

such that S(v) ⊆ S̃(v). Initially, we put

S̃(v) := {v′|v′ ∈ V ′ and color′(v′) = color(v)} ∪ E′ (1)

and then diminish these sets as long as either [A2] or [A3] is violated.
As soon as we calculated configuration Cv for some node v, we try to further

trim S̃(v) in the following way. The set S̃(v) can be represented as the union

S̃(v) = S̃V(v)∪ S̃E(v) where S̃V(v) = S̃(v)∩V (P) and S̃E(v) = S̃(v)∩E(P). Now
we can put

S̃(v) =
(

S̃V(v) ∩ (∪w∈F∈Cv
V (P [w]))

)

∪ S̃E(v). (2)

(and then check conditions [A2] and [A3], of course).

In its turn, the calculation of S̃(v) allows us to add on step (b) additional

restriction on the choice of j, namely, we can demand that j ∈ S̃(v).

Calculation of the S̃(v)’s can be done with only linear slow-down of the algo-
rithm. This can be implemented as follows. Each of the two conditions in [A2]

TITLE WILL BE SET BY THE PUBLISHER 9

and the two conditions in [A3] can be expressed by a logical formula of the form

u′ ∈ S(v) ⇒ u′
1 ∈ S(v1) ∨ · · · ∨ u′

k ∈ S(vk) (3)

where v1, . . . , vk are adjacent to v in T and u′
1, . . . , u

′
k are either adjacent or incident

to u′ in P . Initially, each node v of T writes down these formulas for each elements
u′ from the set (1). As soon as the right hand side of the implication (3) turns

out to be empty (=false), the node removes u′ from S̃(v) and then v informs
its parent (if it exists) and its children (if they exist) about this removal. Having
got this information, the parent and the children delete corresponding disjunctive
terms in their formulas. This process can propagate by a chain but since each
time at least one disjunctive term is deleted, the total complexity is bounded by
the total size of initial formulas which is at most O(tp2).

4. The Window Subsequence Algorithm

4.1. Problem 2

We study Problem 2: Given a target tree T and a pattern tree P , to decide
whether pattern P is an embedded subtree of tree T within a window of height
w. We will solve an extended version of Problem 2, where we count the number
of w-windows of T where P can be embedded.

The algorithm is somehow similar to Algorithm1, but the configurations contain
not only the embedded bottom-up subtrees of P , but also the least possible depth
of its image in T . We will thus store in configurations ordered pairs consisting of a
bottom-up subtree t of P embedded in T , together with an integer n representing
the length of the longest root-to-leaf path (in T) of the current embedding of t.
The number n will be called a depth-stamp.

Moreover, for the extended version of Problem 2, a counter N will count the
number of w-windows containing P .

Configurations will be replaced by s-configurations where each occurrence of a
subtree of P will be augmented by the least possible value of the depth-stamp.
We will modify accordingly the definition of union of configurations to keep track
of the depth-stamps.

Definition 4.1. A stamped subtree is an ordered pair (t, n) where t is a bottom-
up subtree of P , and n ∈ IN is called a depth-stamp.

A set F of stamped trees is called an s-forest, and it is said to be a min-s-forest
if the following three conditions hold

• there are no (t, n) and (t, n′) ∈ F such that n′ < n, i.e. all its subtrees
occur at the least possible depth in T ,

• there are no (t, n) and (t′, n) ∈ F such that t′ is a proper bottom-up
subtree of t, and

• there are no (t, n) and (t′, n′) ∈ F such that n′ ≥ n and t′ is a proper
bottom-up subtree of t.

10 TITLE WILL BE SET BY THE PUBLISHER

An s-forest F is said to dominate s-forest F ′ if for every (t′, n′) from F ′ there
is a (t, n) from F such that

• t′ is a bottom-up subtree of t, and
• n′ ≥ n.

An s-configuration is a set C = {F1, F2, . . . , Fk}, where each Fi is a min-s-
forest, and if i 6= j then Fi does not dominate Fj .

Definition 4.2. If an s-forest F is not a min-s-forest, we can associate with F a
reduced forest, the min-s-forest D = red(F) obtained by the following algorithm:

(1) remove all stamped subtrees (t, n) ∈ F such that there is a (t, n′) ∈ F with
n′ < n: then all subtrees of P belonging F are affected with the minimal
possible depth-stamp.

(2) remove all stamped subtrees (t′, n) ∈ F such that there is (t, n) ∈ F such
that t′ is a proper bottom-up subtree of t, and

(3) remove all stamped subtrees (t′, n′) ∈ F such that there is (t, n) ∈ F such
that n′ ≥ n and t′ is a proper bottom-up subtree of t.

Definition 4.3. A subtree T ′ of T is said to be a minimal subtree of T con-
taining P iff P is an embedded subtree of T ′, but there is no proper subtree T ′′

of T ′ such that P is an embedded subtree of T ′′.

Definition 4.4. The union of two s-configurations C = {F1, F2, · · · , Fk} and
C′ = {F ′

1, F
′
2, · · · , F ′

k′} is s-configuration D = C ⊗s C′ obtained as follows:

(1) let D′ =
{

red(Fi ∪ F ′
i′)|i ∈ {1, ..., k}, i′ ∈ {1, ..., k′}

}

(2) if F ′
i is dominated by F ′

j remove F ′
i .

It is easy to see [BCGM01,K92] that a window of height w of T contains P as an
embedded subtree iff it contains a minimal subtree of T containing P ; therefore,
it is enough to count the number of w-windows of T containing a minimal subtree
containing P .

We now present Algorithm2 for problem 2. See Figure 4 for an illustration of
algorithm2 with w = 3.

Algorithm2

Let r := the label of the root of P ; N := 0; //initializations

FORALL nodes of T visited bottom-up DO

(1) IF node v is leaf of T , THEN the configuration of v is the set of singletons
{(i, 0)} where i is the label of a leaf v′ of P such that a is the color of both
v and v′,
//if no leaf of P has the same color as v the configuration of v is the empty set.

(2) IF node v is an internal node colored a, with children v1, . . . , vn, whose
respective configurations are Cvi

, i = 1, . . . , n, THEN DO

(a) FOR i = 1, . . . , n, DO

TITLE WILL BE SET BY THE PUBLISHER 11

C′
vi

:=
{

{(l, d + 1)|(l, d) ∈ Fj and h + d + 1 ≤ w where h is the

height of l in P }|Fj ∈ Cvi

}

//subtree (l, d+ 1) cannot contribute to any

embedding in a w-window if h + d + 1 > w ENDDO

(b) ∆ := D := C′
v1

⊗s C′
v2

⊗s · · · ⊗s C′
vn

;
(c) FORALL nodes w of P colored a and with label j DO //w has same color

as v

• IF node w is not a leaf of P ,
//w is an internal node of P labelled j

• THEN Let j1, ..., jp be the children of j in P ,
FOR {(j1, d1), ..., (jp, dp)} ⊆ Fi ∈ D

∆ := ∆ ∪ {{(j, max{d1, ..., dp})}} ;
• ELSE //w is a leaf labelled j and colored a

∆ := ∆ ∪
{

{(j, 0)}
}

;
ENDIF

ENDDO

(d) Reduce the forests in ∆ and remove from ∆ all dominated forests
(e) Take the resulting configuration ∆ for Cv

(f) IF there are d and F ∈ Cv such that (r, d) ∈ F

THEN DO let d0 be the least possible value of such a d;
N := N + 1 + (w − d0) ;
output “P is an embedded subtree of T within 1+(w−dr) w-windows
at node v”.
ENDDO

ENDIF

ENDDO

ENDIF

ENDDO

4.2. Problem 3.

Given two trees, target T and pattern P , we want to count the number of
occurrences of P as an embedded subtree of T within a window of height w.

In order to solve problem 3, configurations will now be replaced by ms-configu-

rations which are multisets of multiforests (i.e. multisets of stamped subtrees of
P). We must also modify the definition of union of configurations to keep track
of the multiplicities. Note that we now neither reduce the multiforests nor remove
dominated multiforests.

Definition 4.5. An ms-configuration is a multiset C = {F1, F2, . . . , Fk}, where
each Fi is a multiset of bottom-up stamped subtrees of P .

Definition 4.6. The union of two ms-configurations C = {F1, F2, . . . , Fk} and
C′ = {F ′

1, F
′
2, . . . , F

′
k′} is ms-configuration D = C⊗msC′ =

{

Fi∪F ′
i′ |i ∈ {1, ..., k} ,

i′ ∈ {1, ..., k′}
}

.

Algorithm3 below will count the number of embeddings of P as an embedded
subtree of T within a w-window. The reader is invited to note that

12 TITLE WILL BE SET BY THE PUBLISHER

a

b

a

a

b

1

2

Pattern

Target

P

T

}{

}

}

{

{

x

x

b

x

{(1,0)}

{ }{(1,0)}}{

}{{(1,1)}

{(2,1)}{ {(1,0)}b

{

{(2,3),(1,2)} }

{(2,3)} }

{(2,2) , (1,1)}

x O

Figure 4. Pattern P occurs in four 3-window (window of height 3 at
most) in target T .

b

a

cc2

a3

1 c

P

T

c

Figure 5. Pattern P has 2 occurrences in a window of height 2 of T .

(1) we now must count all embedded occurrences of P within a w-window and
not only the minimal ones.

(2) we consider P as a colored labelled tree, that is each node has a (unique)
label from {1, . . . , p}, and a (not necessarily unique) color from the alpha-
bet: different nodes can have the same color but not the same label. For
instance in Figure 5, P has 2 occurrences in a 2-window of T .

Figure 6 illustrates algorithm3 on the same P, T as in Figure 4, with w = 2.
Figure 7 illustrates algorithm3 with thread-like trees P, T with w = 3.

Algorithm3

Let r := the label of the root of P ; N := 0; //initializations

FORALL nodes of T visited bottom-up DO

TITLE WILL BE SET BY THE PUBLISHER 13

{(2,2)} {(2,1)} {(1,2) , (1,1)}{

a

b 1

2

Pattern P

a

a

a

b

b

b

Target T

b

}

} }{

{

{

{

}

{(1,0)}

{(1,0)}{(2,1)} {(1,1)}

{(1,0)}

{(1,2),(1,1)}

{(2,2)} {(2,1)} }

{

{

}{(1,0)}
}

,

, ,

,

,

Figure 6. Pattern P has 5 occurrences (which are crossed with a
backslash) in a 2-window (window of height at most 2) of target T .

(1) IF node v is leaf of T , THEN the configuration of v is the set of singletons
{(i, 0)} where i is the label of a leaf v′ of P such that a is the color of both
v and v′, //the configuration of v is the empty set if no leaf of P is colored a.

(2) IF node v is an internal node colored a, with children v1, . . . , vn, whose
respective configurations are Cvi

, i = 1, . . . , n, THEN DO

(a) FOR i = 1, . . . , n, DO
C′

vi
:=

{

{(l, d+1)|(l, d) ∈ Fj and h+ d+1 ≤ w where h is the height

of l in P }|Fj ∈ Cvi

}

ENDDO

(b) ∆ := D := C′
v1

⊗ms C′
v2

⊗ms · · · ⊗ms C′
vn

;
(c) FORALL nodes w of P colored a and labelled j DO //w has same color

as v

• IF node w is a not a leaf
//w is an internal node labelled j

• THEN Let j1, ..., jp be the children of j in P ; DO
FORALL occurrences {(j1, d1), ..., (jp, dp)} ⊆ Fi ∈ D

∆ := ∆ ∪
{

{(j, max{d1, ..., dp})}
}

; ENDDO

• ELSE ∆ := ∆ ∪
{

{(j, 0)}
}

; //w is a leaf labelled j

ENDIF

ENDDO

(d) FORALL (r, dr) such that (r, dr) ∈ Fj ∈ ∆ DO

output “P is an embedded subtree of T within a w-window at
node v”.
N := N + 1 ;
Fj := Fj \ {(r, dr)} ; ENDDO

(e) Cv := ∆

14 TITLE WILL BE SET BY THE PUBLISHER

Pattern P

a

a

a

Target T

a

a

}{(1,0)}{{(2,1)} {(1,1)}

{ }{(3,2)} {(2,2)} {(2,1)} {(2,2)} {(1,2)} {(1,1)} {(1,0)}

{(1,0)}
{ }{(2,2)} {(1,2)} {(1,1)}{(2,3)} {(2,3)} {(1,3)}

{(3,3)} {(3,2)} {(2,3)} {(2,2)} {(2,1)}

,,,,,
, , , , , ,{(3,3)}

{(1,0)}
{ }{(2,2)} {(1,2)} {(1,1)}{(2,3)} {(2,3)} {(1,3)}

{(3,3)} {(3,2)} {(2,3)} {(2,2)} {(2,1)}

,,,,,
, , , , , ,{(3,3)}a

a

a 1

2

3

}{ {(1,0)}

,

, ,

, , , , , ,

Figure 7. Pattern P has 7 occurrences (crossed with a backslash) in
a 3-window of target T .

ENDDO

ENDIF

ENDDO

5. Conclusion

In the present paper we answered some problems about tree inclusions, namely
deciding whether a pattern is an embedded subtree of a target within a w-window,
counting the number of windows of height at most w of the target containing the
pattern as an embedded subtree, and counting the number of occurrences of the
pattern as an embedded subtree of the target within a w-window.

There are many other interesting problems concerning tree inclusions, for in-
stance, counting the number of windows of height exactly w of the target containing
the pattern as an embedded subtree, or counting in a slice of the target tree.

References

[BCGM01] L. Boasson, P. Cegielski, I. Guessarian, Yu. Matiyasevich, Window Accumu-
lated Subsequence Matching is linear, Annals of Pure and Applied Logic Vol.
113 (2001), pp. 59-80.

[CMNK05] Y. Chi, R. Muntz, S. Nijssen, J. Kok, Frequent subtree mining – an overview,
Fundamenta Informaticae, Volume 66 (2005), pp. 161–198.

TITLE WILL BE SET BY THE PUBLISHER 15

[K92] P. Kilpelainen, Tree matching problems with applications to structured
text databases, PhD Thesis, Helsinki (1992), http://thesis.helsinki.fi/
julkaisut/mat/tieto/vk/kilpelainen/

[KM95] P. Kilpelainen, H. Mannila, Ordered and Unordered Tree Inclusion, SIAM
Journal on Computing , Volume 24 ,B Issue 2 B (April 1995), pp. 340 - 356.

Communicated by (The editor will be set by the publisher).
today.

