Patrick Cegielski
email: cegielski@univ-paris12.fr

Irene Guessarian

Yuri Matiyasevich

Patrick Cégielski

Irène Guessarian

et Applications TREE INCLUSION PROBLEMS *

Keywords: 1991 Mathematics Subject Classification. 68Q25, 68W05 Subtree inclusion, algorithm

come

Introduction

Given two trees, we study the following problems: can P be obtained from T by deleting nodes? if this holds, is P contained in a reasonably small (i.e. of a small height) subtree of T ? If P is contained in a subtree of height w (a "window") of T , how many times can this occur?

These problem generalize in a natural way the subsequence problems for words: we proved in [START_REF] Boasson | Window Accumulated Subsequence Matching is linear[END_REF], that the problem of counting the number of w-windows of a text t containing a pattern p as a subsequence (i.e. letters of p appear in the window in the same order as in p but are not necessarily consecutive and may be interleaved with other letters) can be solved in time O(n) where n is the size of t. The generalization to trees can be stated as follows: P is an embedded subtree of T if P can be obtained by deleting some nodes from T (if a node v is deleted, the ingoing edge to v (if it exists) is also deleted, and outgoing edges are replaced by edges going from the parent of v (if it exists) to the children of v). P is an embedded subtree of T within a w-window if P is an embedded subtree of W , and W is a subtree of T of height w.

We cannot hope to reduce (in a simple and succinct way) the problem of finding whether P is an embedded subtree of T within a w-window to the subsequence problem for words by encoding T and P by words t and p respectively, and then solving some subsequence problem for t and p: it is known [START_REF] Kilpelainen | Ordered and Unordered Tree Inclusion[END_REF] that even the simpler problem of deciding whether P is an embedded subtree of T is NPcomplete, hence the length of t and/or p would probably be exponential in the size of T and/or P .

The problem of finding embedded occurrences of a pattern in a window of a tree is important in two areas extensively studied recently:

1. retrieving information from structured documents [START_REF] Kilpelainen | Ordered and Unordered Tree Inclusion[END_REF] such as dictionaries: via a pattern embedding the user can specify the structure and content of the parts of the document she/he is interested in.

2. discovering frequent substructures in semi-structured data; most semi-structured data are modeled by colored labelled trees (e.g. itemsets in relational databases, chemical compounds, XML documents), and mining such structures is naturally done via finding tree embeddings.

The paper is organized as follows: in section 2 we define notations and problems, in section 3 we describe a new algorithm to decide whether a pattern in embedded in a target (not interesting per se, but for the generalisations given in the following section), and section 4 presents our main contribution, namely, (i) determining (and counting) the w-windows containing a pattern as an embedded subtree, and (ii) determining (and counting) the embeddings of a pattern within a w-window of text.

Notations

Let A be an alphabet.

Definition 2.1. (i) A tree T on A is a finite connected acyclic graph T = V, E, color , where V is the set of nodes, E is the set of edges, and color : V → A is a coloring function: each node (or vertex) is colored by a letter of A.

(ii) A rooted tree T = V, E, color, r is a tree where a node r has been distinguished and is called the root of the tree.

In a rooted tree, edges are naturally directed (from the root to the leaves): all nodes have in-degree one except for the root which has in-degree zero; if (u, v) is an edge oriented from u to v, u is the parent of v and v is a child of u; each node has exactly one parent, except for the root which has none; a node can have any finite number of children and childless nodes are called leaves. Nodes have a depth: the depth of the root is 0, and if the depth of node v is n, then all its children have depth n + 1. Two nodes having the same parent are called siblings. The transitive closure of the parent (resp. child) relation is called the ancestor (resp. descendent) relation.

In the case of trees, the notions similar to subword and subsequence for words exist and are called subtree and embedded subtree. Formally: Definition 2.2. Let T = V, E, color, r and T ′ = V ′ , E ′ , color ′ , r ′ be rooted trees, such that:

1.

V ′ ⊆ V and E ′ ⊆ E 2. the coloring of V ′ is preserved in T ′ , i.e. ∀v ′ ∈ V ′ color ′ (v ′) = color(v ′) Then T ′ is said to be a subtree of T .
Moreover, if for each node v ′ from T ′ all its descendents in T are also its descendents in T ′ , then T ′ is said to be a bottom-up subtree of T .

Intuitively, a bottom-up subtree of T can be obtained by taking a node v of T together with all of v's descendents and corresponding edges; a subtree of T can be obtained by taking a bottom-up subtree of T and pruning some edges together with the subtree below the pruned edge. The bottom-up subtree of T rooted at node v will be denoted by T

[v].
Definition 2.3. Let T = V, E, color, r and T ′ = V ′ , E ′ , color ′ , r ′ be rooted trees; an embedding from T ′ into T is an injective mapping τ : V ′ ֒→ V , such that:

1. for every

v ′ ∈ V ′ , color(τ (v ′)) = color ′ (v ′), i.e. τ preserves colors. 2. v ′ 1 is an ancestor of v ′ 2 in T ′ iff τ (v ′ 1
) is an ancestor of τ (v ′ 2) in T , i.e. τ preserves the ancestor-descendent relationship.

T ′ is said to be an embedded subtree of T if there exists an embedding from T ′ into T .

Intuitively, an embedded subtree of T is obtained by deleting some nodes from T and gluing together the remaining edges in a way preserving the ancestordescendent relationship of T . Definition 2.4. A window of T = V, E, color, r is a subtree W = V ′ , E ′ , color ′ , r ′ of T such that for any node v of T belonging to V ′ all siblings of v in T also belong to V ′ .

For w ∈ IN * , a w-window of T is a window of T of height at most w. P is an embedded subtree of T within a w-window if there is an embedding from P into T and moreover the image of P is contained in a w-window of T .

Example 1. In Figure 1, T ′ , T ′′ , T ′′′ are respectively a bottom-up subtree, a subtree, and an embedded subtree of T . T ′′′ is an embedded subtree of T within a 2-window. W is a 1-window of T .

The problems

• Problem 1. Given two trees, target tree T and pattern tree P , to decide whether P is an embedded subtree of T . • Problem 2. Given two trees, target T and pattern P , to decide whether P is an embedded subtree of T within a w-window. Subsidiarily, to count the number of windows of height at most w of T containing P as an embedded subtree. • Problem 3. Given two trees, target T and pattern P , to count the number of occurrences of P as an embedded subtree of T within a w-window.

Related results

Different versions of the first problem have been considered. Papers [K92,KM95] shows that problem 1 is NP-complete, but can be solved in time O(ptk2 2k), where p = |P | (resp. t = |T |) is the number of nodes (size) of P (resp. T), if the out-degrees of the nodes of P are bounded by k.

Embedded subtree search

We study Problem 1: given target tree T and pattern tree P , to decide whether P is an embedded subtree of T .

Notations

Without loss of generality we may assume that the nodes of P are labelled: each node has a unique label from {1, . . . , p}, see Figure 2. This yields a labelling of the bottom-up subtrees of P : bottom-up subtree rooted at node v has the same label as node v. A bottom-up subtree of P rooted at node v is represented either by the label of v or in the form P [v]: the bottom-up subtree rooted at node v having label j, will thus be denoted by j or P [v] according to the context. Definition 3.1. A forest of P is a set of bottom-up subtrees of P . A forest will be denoted by the set of labels of its roots. Forest F is said to be a max-forest if all its trees are incomparable, i.e. there are no t, t ′ ∈ F such that t ′ is a proper bottom-up subtree of t.

We say that forest F dominates forest F ′ (different from F itself) if every tree from F ′ is a bottom-up subtree of some tree from F .

Idea

Let T be a (big) tree (called the target) and let P be a (small) tree (called the pattern). For each node v of T we will compute a configuration, which will be a set of max-forests of bottom-up subtrees of P .

Intuitively, each forest of the configuration at node v represents a set of subtrees of P which can be embedded in T [v] simultaneously, i.e. in such a way that the images of different trees wouldn't intersect.

Definition 3.2. A configuration is a set C = {F 1 , F 2 , . . . , F k },
where each F i is a max-forest of P , and if i = j then F i does not dominate F j .

Definition 3.3. The union of two configurations

C = {F 1 , F 2 , . . . , F k } and C ′ = {F ′ 1 , F ′ 2 , . . . , F ′ k ′ } is configuration D, denoted by D = C ⊗ C ′
and obtained as follows:

(1) let

D ′ = F i ∪ F ′ i ′ |i ∈ {1, ..., k}, i ′ ∈ {1, ..., k ′ } (2) we pass from D ′ to D ′′ by removing from each F ′ j = F i ∪ F ′ i ′
which is not a max-forest all labels of subtrees of P which are subtrees of a tree whose label is already present in F ′ j (3) we pass from D ′′ to D by removing each F ′′ j which is dominated by some

F ′′ i .
Note that:

• In (2), we obtain a forest F ′′ j such that all subtrees of P belonging F ′′ j are maximal in F ′′ j (all subtrees of F ′′ j are incomparable), i.e. F ′′ j is a max-forest.

• The resulting D = F i |i = 1, . . . , l is a set of max-forests of P , such that if i = j then F i does not dominate F j , hence it is a configuration.

Algorithm

We traverse T bottom-up (from leaves to root, or in postorder): to scan a node v of T we must first have scanned all its children. With each node v of T we will associate a configuration C v such that for every forest F from C v all trees from F can be simultaneously embedded into T [v]. This leads to the following algorithm. (See Figure 3(1) for an example.)

Algorithm1

Let r := the label of the root of P ; //initialization FORALL nodes of T visited bottom-up DO

(1) IF node v is a leaf of T , its configuration is the set of singletons {i} where i is the label of a leaf v ′ of P such that color THEN IF w = r THEN DO output "P is an embedded subtree of T "; STOP ENDDO ENDIF let ∆ * be the result of deleting j 1 , ..., j p from all forests in ∆; ∆ := ∆ * ∪ {{j}} ENDIF ENDDO (c) Remove from ∆ all dominated forests and take the resulting configuration for C v ENDDO ENDIF ENDDO output "P isn't an embedded subtree of T " Comment: when computing ∆ * we delete every occurrence of j 1 , ..., j p in all forests because they are used only to obtain j; at a later stage (i) either we will choose j but it already appears, or (ii) we will choose another subtree, and in that latter case we do not need j 1 , ..., j p .

(v) = color(v ′) = a. //If no leaf of P is colored a, the configuration of v is the empty set. ENDIF (2) IF node v is an internal node colored a, with children v 1 , . . . , v n , THEN DO (a) ∆ := D := C v1 ⊗ C v2 ⊗ • • • ⊗ C vn ; (b)
Complexity: the number of bottom-up subtrees of P is bounded by p where p is the size of P , the number of forests is bounded by 2 p , hence the number of configurations is at most O(2 2 p).

Improvements Improvement 1

Algorithm1 can be improved in practice by reducing the number of configurations. Let us say node v from the target and node v ′ from the pattern are upward compatible, if the path from v ′ to the root of P can be embedded into the path from v to the root of T . We can preprocess target T in order to precompute for each node v in T the set c(v) of all nodes of P which are upward compatible with it. This is trivial for the root of T . Passing from a node v in T to its child w we just add to c(v) each node u in P such that: 1) u has the same color as w, and 2) the parent of u is in c(v).

The algorithm computing the set c(w) of nodes of P upward compatible with w is as follows: The complexity of this preprocessing is O(tp). Then in step 1 of algorithm1 we can demand that v ′ should be upward compatible with v. This could considerably reduce the number of configurations to deal with. For instance in Figure 3 the set of nodes upward compatible with the rightmost leaf of T is {1, 2, 6}, which reduces by half the set of configurations on the rightmost path of T , see Figure 3(2).

Improvement 2

The idea of upward compatibility can be further developed as follows. Suppose that τ : V ′ → V is an embedding of P = V ′ , E ′ , color ′ , r ′ into T = V, E, color, r . We can consider an inverse embedding σ which is a partial map from V onto P(E ′) ∪ V ′ defined as follows:

• if v = τ (v ′) then σ(v) = v ′ ; • if v ′
1 is the parent of v ′ 2 in P , then for every internal node v on the path from τ (v ′ 1) to τ (v ′ 2) the value of σ(v) is equal to the edge between v ′ 1 and v ′ 2 ; • for all other nodes of T the value of σ is left undefined.

For every v from T we can consider the set S(v) of all possible values of σ(v), for all possible embeddings τ . It is easy to check that these sets satisfy the following conditions:

[A1] if S(v) contains some v ′ from V ′ then color(v) = color ′ (v ′); [A2] if S(v) contains some v ′ from V ′ then -if v ′ has the parent v ′ 1 in P , then v has the parent v 1 in T and S(v 1) contains either v ′
1 or the the edge between v ′ 1 and v ′ ; -for every child v ′ 2 of v ′ in P , the node v has a child v 2 such that the set S(v 2) contains either v ′ 2 or the edge between v ′ and v ′

2

[A3] if S(v) contains the edge between some v ′ 2 and its parent v ′ 1 in P then v has the parent v 1 in T and S(v 1) contains either v ′ 1 or the edge between

v ′ 1 and v ′ 2 -v has a child v 2 such that S(v 2) contains either v ′ 2 or the edge between v ′ 1 and v ′ 2
We cannot easily calculate "true" sets S(v) so instead of this we calculate (and dynamically maintain during the entire work of the algorithms) some sets S(v) such that S(v) ⊆ S(v). Initially, we put

S(v) := {v ′ |v ′ ∈ V ′ and color ′ (v ′) = color(v)} ∪ E ′ (1)
and then diminish these sets as long as either [A2] or [A3] is violated.

As soon as we calculated configuration C v for some node v, we try to further trim S(v) in the following way. The set S(v) can be represented as the union S(v) = SV (v) ∪ SE (v) where SV (v) = S(v) ∩ V (P) and SE (v) = S(v) ∩ E(P). Now we can put

S(v) = SV (v) ∩ (∪ w∈F ∈Cv V (P [w])) ∪ SE (v).
(2)

(and then check conditions [A2] and [A3], of course).

In its turn, the calculation of S(v) allows us to add on step (b) additional restriction on the choice of j, namely, we can demand that j ∈ S(v).

Calculation of the S(v)'s can be done with only linear slow-down of the algorithm. This can be implemented as follows. Each of the two conditions in [A2] and the two conditions in [A3] can be expressed by a logical formula of the form

u ′ ∈ S(v) ⇒ u ′ 1 ∈ S(v 1) ∨ • • • ∨ u ′ k ∈ S(v k) (3)
where v 1 , . . . , v k are adjacent to v in T and u ′ 1 , . . . , u ′ k are either adjacent or incident to u ′ in P . Initially, each node v of T writes down these formulas for each elements u ′ from the set (1). As soon as the right hand side of the implication (3) turns out to be empty (=false), the node removes u ′ from S(v) and then v informs its parent (if it exists) and its children (if they exist) about this removal. Having got this information, the parent and the children delete corresponding disjunctive terms in their formulas. This process can propagate by a chain but since each time at least one disjunctive term is deleted, the total complexity is bounded by the total size of initial formulas which is at most O(tp 2).

The Window Subsequence Algorithm

Problem 2

We study Problem 2: Given a target tree T and a pattern tree P , to decide whether pattern P is an embedded subtree of tree T within a window of height w. We will solve an extended version of Problem 2, where we count the number of w-windows of T where P can be embedded.

The algorithm is somehow similar to Algorithm1, but the configurations contain not only the embedded bottom-up subtrees of P , but also the least possible depth of its image in T . We will thus store in configurations ordered pairs consisting of a bottom-up subtree t of P embedded in T , together with an integer n representing the length of the longest root-to-leaf path (in T) of the current embedding of t. The number n will be called a depth-stamp.

Moreover, for the extended version of Problem 2, a counter N will count the number of w-windows containing P .

Configurations will be replaced by s-configurations where each occurrence of a subtree of P will be augmented by the least possible value of the depth-stamp. We will modify accordingly the definition of union of configurations to keep track of the depth-stamps. Definition 4.1. A stamped subtree is an ordered pair (t, n) where t is a bottomup subtree of P , and n ∈ IN is called a depth-stamp.

A set F of stamped trees is called an s-forest, and it is said to be a min-s-forest if the following three conditions hold

• there are no (t, n) and (t, n ′) ∈ F such that n ′ < n, i.e. all its subtrees occur at the least possible depth in T , • there are no (t, n) and (t ′ , n) ∈ F such that t ′ is a proper bottom-up subtree of t, and • there are no (t, n) and (t ′ , n ′) ∈ F such that n ′ ≥ n and t ′ is a proper bottom-up subtree of t.

An s-forest F is said to dominate s-forest F ′ if for every (t ′ , n ′) from F ′ there is a (t, n) from F such that • t ′ is a bottom-up subtree of t, and

• n ′ ≥ n.
An s-configuration is a set C = {F 1 , F 2 , . . . , F k }, where each F i is a min-sforest, and if i = j then F i does not dominate F j . Definition 4.2. If an s-forest F is not a min-s-forest, we can associate with F a reduced forest, the min-s-forest D = red(F) obtained by the following algorithm:

(1) remove all stamped subtrees (t, n) ∈ F such that there is a (t, n ′) ∈ F with n ′ < n: then all subtrees of P belonging F are affected with the minimal possible depth-stamp.

(2) remove all stamped subtrees (t ′ , n) ∈ F such that there is (t, n) ∈ F such that t ′ is a proper bottom-up subtree of t, and (3) remove all stamped subtrees (t ′ , n ′) ∈ F such that there is (t, n) ∈ F such that n ′ ≥ n and t ′ is a proper bottom-up subtree of t.

Definition 4.3. A subtree T ′ of T is said to be a minimal subtree of T containing P iff P is an embedded subtree of T ′ , but there is no proper subtree T ′′ of T ′ such that P is an embedded subtree of T ′′ .

Definition 4.4. The union of two s-configurations

C = {F 1 , F 2 , • • • , F k } and C ′ = {F ′ 1 , F ′ 2 , • • • , F ′ k ′ } is s-configuration D = C ⊗ s C ′ obtained as follows: (1) let D ′ = red(F i ∪ F ′ i ′)|i ∈ {1, ..., k}, i ′ ∈ {1, ..., k ′ } (2) if F ′ i is dominated by F ′ j remove F ′ i .
It is easy to see [BCGM01,K92] that a window of height w of T contains P as an embedded subtree iff it contains a minimal subtree of T containing P ; therefore, it is enough to count the number of w-windows of T containing a minimal subtree containing P .

We now present Algorithm2 for problem 2. See Figure 4 for an illustration of algorithm2 with w = 3.

Algorithm2

Let r := the label of the root of P ; N := 0; //initializations FORALL nodes of T visited bottom-up DO

(1) IF node v is leaf of T , THEN the configuration of v is the set of singletons {(i, 0)} where i is the label of a leaf v ′ of P such that a is the color of both v and v ′ , //if no leaf of P has the same color as v the configuration of v is the empty set. Given two trees, target T and pattern P , we want to count the number of occurrences of P as an embedded subtree of T within a window of height w.

+ d + 1 > w ENDDO (b) ∆ := D := C ′ v1 ⊗ s C ′ v2 ⊗ s • • • ⊗ s C ′ vn ; (c
In order to solve problem 3, configurations will now be replaced by ms-configurations which are multisets of multiforests (i.e. multisets of stamped subtrees of P). We must also modify the definition of union of configurations to keep track of the multiplicities. Note that we now neither reduce the multiforests nor remove dominated multiforests. Definition 4.5. An ms-configuration is a multiset C = {F 1 , F 2 , . . . , F k }, where each F i is a multiset of bottom-up stamped subtrees of P . (1) we now must count all embedded occurrences of P within a w-window and not only the minimal ones. (2) we consider P as a colored labelled tree, that is each node has a (unique) label from {1, . . . , p}, and a (not necessarily unique) color from the alphabet: different nodes can have the same color but not the same label. For instance in Figure 5, P has 2 occurrences in a 2-window of T .

Figure 6 illustrates algorithm3 on the same P, T as in Figure 4, with w = 2. Figure 7 illustrates algorithm3 with thread-like trees P, T with w = 3.

Algorithm3

Let r := the label of the root of P ; N := 0; //initializations FORALL nodes of T visited bottom-up DO

Figure 1 .

 1 Figure1. A tree T with bottom-up subtree T ′ , subtree T ′′ , embedded subtree T ′′′ , and 1-window W .

Figure 2 .

 2 Figure 2. A pattern P and a postorder labelling of its bottom-up subtrees.

Figure 3 .

 3 Figure 3. A target T where the pattern of Figure 2 is embedded.

 Let r := the label of the root of P ; //initialization FORALL nodes w of T visited top-down DO IF node w is the root of T , -THEN c(w) = {r} if color(w) = color(r), ∅ otherwise. -ELSE DO //w has parent v whose set of upward compatible nodes is c(v) c(w) = c(v) ∪ {u|u is a node of P, and parent(u) ∈ c(v), and color(u) = color(w)} ENDDO ENDIF ENDDO

(2)

 2 IF node v is an internal node colored a, with children v 1 , . . . , v n , whose respective configurations are C vi , i = 1, . . . , n, THEN DO (a) FOR i = 1, . . . , n, DO C ′ vi := {(l, d + 1)|(l, d) ∈ F j and h + d + 1 ≤ w where h is the height of l in P }|F j ∈ C vi //subtree (l, d + 1) cannot contribute to any embedding in a w-window if h

Definition 4. 6 .Figure 4 .Figure 5 .

 645 Figure 4. Pattern P occurs in four 3-window (window of height 3 at most) in target T .

) FORALL nodes w of P colored a and with label j DO //w has same color as v• IF node w is not a leaf of P , //w is an internal node of P labelled j • THEN Let j 1 , ..., j p be the children of j in P , FOR {(j 1 , d 1), ..., (j p , d p)} ⊆ F i ∈ D ∆ := ∆ ∪ {{(j, max{d 1 , ..., d p })}} ; Reduce the forests in ∆ and remove from ∆ all dominated forests (e) Take the resulting configuration ∆ for C v (f) IF there are d and F ∈ C v such that (r, d) ∈ F THEN DO let d 0 be the least possible value of such a d;

	•	ELSE //w is a leaf labelled j and colored a
		∆ := ∆ ∪ {(j, 0)} ;
	ENDIF
	ENDDO
	(d) ENDDO	
	ENDIF	
	ENDDO	
	ENDIF	
	ENDDO	
	4.2. Problem 3.	

N := N + 1 + (wd 0) ; output "P is an embedded subtree of T within 1+(w-d r) w-windows at node v".

* Support from the Council for Grants of the President of the Russian Federation under grant NSh-8464.2006.

(1) IF node v is leaf of T , THEN the configuration of v is the set of singletons {(i, 0)} where i is the label of a leaf v ′ of P such that a is the color of both v and v ′ , //the configuration of v is the empty set if no leaf of P is colored a.

(2) IF node v is an internal node colored a, with children v 1 , . . . , v n , whose respective configurations are • IF node w is a not a leaf //w is an internal node labelled j • THEN Let j 1 , ..., j p be the children of j in P ; DO FORALL occurrences {(j 1 , d 1), ...,

output "P is an embedded subtree of T within a w-window at node v". N := N + 1 ;

. Pattern P has 7 occurrences (crossed with a backslash) in a 3-window of target T .

ENDDO ENDIF ENDDO

Conclusion

In the present paper we answered some problems about tree inclusions, namely deciding whether a pattern is an embedded subtree of a target within a w-window, counting the number of windows of height at most w of the target containing the pattern as an embedded subtree, and counting the number of occurrences of the pattern as an embedded subtree of the target within a w-window.

There are many other interesting problems concerning tree inclusions, for instance, counting the number of windows of height exactly w of the target containing the pattern as an embedded subtree, or counting in a slice of the target tree.