
HAL Id: hal-00159117
https://hal.science/hal-00159117

Submitted on 21 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Determination of vegetation cover fraction by inversion
of a four-parameter model based on isoline

parametrization.
A. Kallel, S. Le Hégarat-Mascleb, Catherine Ottle, Laurence Hubert-Moy

To cite this version:
A. Kallel, S. Le Hégarat-Mascleb, Catherine Ottle, Laurence Hubert-Moy. Determination of vegetation
cover fraction by inversion of a four-parameter model based on isoline parametrization.. Remote
Sensing of Environment, 2007, 111 (4), pp.553-566. �10.1016/j.rse.2007.04.006�. �hal-00159117�

https://hal.science/hal-00159117
https://hal.archives-ouvertes.fr


vailable online at www.sciencedirect.com 
 

 

 
Remote Sensing of Environment 111 (2007) 553 – 566 

 

 
www.elsevier.com/locate/rse 

 

 

Determination of vegetation cover fraction by inversion of a four-parameter 

model based on isoline parametrization 

Abdelaziz Kallel a,⁎, Sylvie Le Hégarat-Mascle b, Catherine Ottlé c, Laurence Hubert-Moy d 

a CETP/IPSL, 10–12 Avenue de l'Europe 78140, Vélizy, France 
b IEF/AXIS, Université de Paris-Sud 91405, Orsay Cedex, France 

c LSCE/IPSL, Centre d'Etudes de Saclay, Orme des Merisiers 91191, Gif-sur-Yvette, France 
d COSTEL UMR CNRS 6554 LETG/IFR 90 CAREN, Université de Rennes 2, Place du recteur Henri Le Moal 35 043, Rennes Cedex, France 

Received 6 December 2006; received in revised form 12 April 2007; accepted 14 April 2007 

 

 

Abstract 

 
This study focuses on the determination of the fraction of vegetation cover (fCover) based on the inversion of a four-parameter model 

combining the reflectances in the Red (R) and Near Infrared (NIR) domains. This model is semi-empirical since it is based on radiative transfer 

modeling, but requires parameter calibration related to SAIL simulations (Verhoef). As shown by Yoshioka et al., if the multiple soil/vegetation 

interactions are smaller than the first order ones then the fCover isolines can be approximated by straight lines in the (Red, Near Infrared) plane. 

Each isoline is completely defined by its slope α and its intersection point γ (with the soil line), that have been related to fCover using SAIL 

simulations  and  optimization  either  by  the  Simplex  (local  optimization)  or  the  SCE–UA  (global  optimization)  algorithms.  The  results  are 

compared to classical vegetation indices for both simulated and actual data. The method shows an improvement in most of cases. Moreover, when 

using the SCE–UA algorithm, our approach proves its robustness relative to high noise level. 

© 2007 Elsevier Inc. All rights reserved. 
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1. Introduction 

 
Estimation of vegetation features from space is a great chal- 

lenge for agronomist, hydrologist and meteorologist communi- 

ties. For example, land cover during winter in agricultural regions 

strongly influences soil erosion processes and water quality 

(Dabney et al., 2001). Therefore, the identification and monitor- 

ing of vegetation cover constitutes a prior approach for the moni- 

tory of water resources. For such studies, the physical parameter 

used is the vegetation cover fraction (fCover). Now, the use of 

vegetation indices (Rondeaux et al., 1996) to estimate vegetation 

characteristics is very popular. They are empirical combinations 

between Visible (generally Red, R) and Near Infrared (NIR) 

reflectances that show good correlation with plant growth, vege- 

tation cover, and biomass amount. Besides, theoretical methods 

based on radiative transfer model inversion allow vegetation 

feature retrieval like the Leaf Area Index (LAI), leaf area dis- 
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tribution, pigment concentration, or water content (Jacquemoud 

& Baret, 1990). Two kinds of inversion models are distinguished, 

those dealing only with one parameter (Baret et al., 1995; Kuusk, 

1991a, 1995; Verstraete et al., 1990) and those dealing with many 

canopy parameters (Baret & Buis, 2007; Combal et al., 2002; 

Kimes et al., 2000). In this study, we propose to derive a semi- 

empirical method allowing the inversion of the fCover. Note that 

LAI is the vegetation biophysical parameter widely used by the 

empirical models described below. However, the canopy 

reflectances saturate for LAI values higher than values around 3 

which makes the inversion too imprecise. Besides, in this study, 

the researched physical parameter is the fCover (used in the TNT- 

2 pollutant transfer mode (Durand et al., 2002)). Therefore, we 

propose to do the inversion directly in terms of fCover values, not 

using LAI as an intermediate variable (which would decrease the 

accuracy of the method). 

In our study, the adding method (Cooper et al., 1982; van de 

Hulst, 1981) and the SAIL model (Verhoef, 1984, 1985) were 

combined to approximate the canopy reflectance, allowing its 

inversion. The well-known SAIL model, largely used in the 

http://www.sciencedirect.com/
http://www.elsevier.com/locate/rse
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remote sensing community, allows the calculation of the canopy 

Bidirectional Reflectance Distribution Function (BRDF). Based 

on the adding method approximation, a simple relationship 

between the R and NIR reflectances is derived in the case of 

homogeneous canopies (i.e. for a given field, vegetation density 

is assumed constant at any subscale). Then, as theoretically 

shown by Nilson (1971), assuming that the vegetation is a 

turbid medium, a one to one relationship exists between LAI 

and the gap fraction (allowing the incident flux to reach the soil) 

and then between LAI and fCover. 

Having defined the direct model, the model inversion consists 

in determining the direct model input (fCover in our study) versus 

its observed outputs (reflectances). As a first step, vegetation 

isoline parameters are retrieved, that is similar to the approach of 

Yoshioka et al. (2002, 2003). In the case of non linear models, 

many inversion methods are based on Artificial Neural Network 

(ANN) simulations (Rumelhart et al., 1986) with applications 

such as function modeling, dynamic filtering, prediction and 

anomaly detection (Anderson, 1995). In our case, the main 

drawback is the important size of the learning or training data set 

required for ANN satisfying result (Anderson, 1995). Moreover, 

at the present time, no real mathematical justification has been 

provided for these approaches. In this study, our purpose is to 

assess the relationships between the fCover and the bidirectional 

reflectances in the R and NIR domains, having at our disposal a 

small database with noised observations and the direct radiative 

transfer model (SAIL and the adding method). Our problem is 

then reduced to the inversion of a four-parameter model for which 

classical optimization methods are sufficient. 

In the following, we firstly present the theoretical bases 

(physical modeling and mathematical properties) of our semi- 

empirical inversion method: radiative transfer approximation, 

isoline set modeling. Secondly, we describe the proposed inver- 

sion method. Finally, the obtained results in terms of fCover are 

compared with those derived from classical vegetation indices. 

 

2. Theoretical study 

 
In this section, based on the SAIL model and the adding bidi- 

rectional reflectance approximations, we present an approximation 

of the fCover isoline as a segment of straight line. An isoline set 

parametrization is then empirically derived using SAIL simulations. 

 

2.1. Vegetation isoline parametrization 

 
The adding method (Cooper et al., 1982; van de Hulst, 1981) 

allows to model the radiative transfer between different 

vegetation layers and soil background as operators. Conversely, 

the SAIL model (Verhoef, 1984, 1985) allows the radiation flux 

modeling under a vegetation sublayer. In this subsection, we 

propose to simplify the bidirectional reflectance given by SAIL 

model using some adding method assumption. 

Assuming the canopy is composed by a vegetation layer 

covering the soil, the flux reaching the top of the canopy is partly 

reflected without reaching the soil, and partly transmitted to the soil 

that will scatter it. Then, the flux is partially transmitted upward 

and partially reflected again to the soil, and so on (as illustrated on 

 

 

Fig. 1. Adding method operators: T d;1; T u;1 are respectively the downward and the 

upward vegetation layer transmittance operators, Rt;1; Rb;1 the top and the bottom 

vegetation layer reflectance operators and Rt;2 the soil reflectance operator. 

 
Fig. 1). The Adding method assumes that the total reflectance of 

canopy is the sum of the reflectance by the vegetation layer and the 

reflectance by the soil after a given number of interactions between 

the soil and the vegetation layer. The reflectance of the soil after a 

number n N 1 of soil–vegetation interactions is weakened due to 

the absorption by the leaves and the soil. The global reflectance 

operator of the canopy, noted t can then be modeled as a function 

of the reflectance and the transmittance operators of the vegetation 

layer and the reflectance operator of the soil: 

Rt ¼ Rt;1 þT u;1 ◦ ðI — Rt;2 ◦ Rb;1Þ
—1 

◦ Rt;2  ◦T  d;1: ð1Þ 

If the contribution of the multiple scattering between the 

vegetation and the soil is small relative to the single one 

(Yoshioka, 2004; Yoshioka et al., 2000a,b, 2002, 2003): 

Rt cRt;1  þ T u;1  ◦ Rt;2  ◦ T d;1: ð2Þ 

The SAIL model developed by Verhoef (1984, 1985) deals 

with the interactions between the radiation fluxes and the leaves. 

The bidirectional reflectance (Rso) is given by integrating the 

interactions between the fluxes and the vegetation over all kinds 

of leaves, knowing their geometric distribution and the depth of 

the vegetation layer. We assume that the canopy is composed of 

one vegetation layer covering the soil (Verhoef, 1985): 

Rso ¼ qso þ sssrsosoo 

ðsssrsd þ ssdrddÞsdo þ ðssd þ sssrsdqddÞrdosoo 
; 3

 

1 — rddqdd 

where the ρ.., τ.. terms are respectively the different components 

of vegetation reflectances and transmittances depending on the 

vegetation parameters (the leaf reflectance and transmittance 

(ρ, τ), LAI, leaf distribution) and the source and observation 

orientations, rso the soil bidirectional reflectance, rdo the soil 

directional reflectance of hemispherical incidence, rsd the soil 

hemispheric reflectance for direct incidence and rdd the soil 

hemispherical reflectance for hemispherical incidence (Verhoef, 

1985). Note that, τss and τoo are two extinction terms depending 

only on the vegetation architecture. Physically these terms 

represent respectively the gap fractions in the direction of the 

source and the observation: when the source (respectively the 

observation) zenithal angle equals 0, τss (respectively τoo) 

equals the gap fraction observed on the nadir direction (Pgap). 
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Fig. 2. Comparison between bidirectional reflectance of the canopy estimated by 

the SAIL model (continuous line) and its approximation (dashed line) 

(simulation parameters are given in Table 1). 

 

Now, for our version of SAIL, the distribution of the leaf area 

is assumed ellipsoidal, with mean leaf inclination angle, noted 

ALA, that varies between 0 and 90°, from planophile vegetation 

to erectophile one (Campbell, 1990). Then, from the relation- 

ship of Nilson (1971) between LAI and Pgap, and having fCover 

equal to 1 − Pgap: 

fCover ¼ 1 — exp½—KpðALAÞ:LAI]: ð4Þ 

where Kp is the extinction factor that depends on and only on ALA. 

Eq. (4) is used in the following to link the canopy bidirectional 

reflectance (that depends on LAI in SAIL model) to the fCover. 

Following the adding method approach (2), the SAIL model 

BRDF (3) is approximated at first order eliminating the terms 

depending on the soil reflectance rso, rsd, rdo and rdd at high 

orders (rn for n N 1): 

respectively. In this study, we use the inputs listed in Table 1 that 

appear correct and for which change does not affect the 

interpretation of the results (Jacquemoud & Baret, 1990). Note 

that for simulations, the non simplified SAIL version is used. 

Now, a couple of reflectance measurements for R and NIR 

spectral bands gives a point in the space (R, NIR). A set of 

points having the same fCover is called fCover isoline in the (R, 

NIR) space. The empirical linear relationship between the soil 

reflectances in R (Rsoil,R) and NIR (Rsoil,NIR) domains is called 

the soil line (Baret et al., 1989, 1993; Huete et al., 1984). It is 

defined through two parameters a0 and b0: 

Rsoil;NIR ¼ a0Rsoil;R þ b0; ð7Þ 

From (5)–(7), for a homogeneous vegetation layer and for a 

given fCover, reflectances in R (Rso,R(fCover)) and NIR (Rso,NIR 

(fCover)) are linearly linked: 

Rso;NIRðfCoverÞ¼ aðfCoverÞRso;RðfCoverÞþ bðfCoverÞ; ð8Þ 

where: 

a fCover a 
ðsss þ ssd;NIRÞðsdo;NIR þ sooÞ 

; 9
 

ssssoo 

 

bðfCoverÞ¼ qso;NIR — aðfCoverÞqso;R þ b0ðsss þ ssd;NIRÞ 

× ðsdo;NIR þ sooÞ: ð10Þ 

Whatever the source and the observation directions, Rso,R(0), 

Rso,NIR(0) are respectively equal to  Rsoil,R,  Rsoil,NIR,  α(0) = a0 

and β(0) = b0. 

Also, note that the property that the vegetation isolines are 

straight lines was also shown previously by (Huete, 1989; 

Yoshioka, 2004; Yoshioka et al., 2000a,b, 2002, 2003) and in 

Rsocqso þ sssrsosoo þ ðsssrsd þ ssdrddÞsdo þ ssdrdosoo: 
(Yoshioka et al., 2000b) this property was extended to the 

heterogeneous canopy case. 

In the Lambertian case, rso = rsd = rdo = rdd = Rsoil, and so: 

Rso ¼ qso þ ðsss þ ssdÞRsoilðsdo þ sooÞ: ð5Þ 

Fig. 2 illustrates the good fitting of approximation (5) in the 

NIR case that is the more unfavorable case relative to visible 

one (Gausman et al., 1970; Jacquemoud & Baret, 1990) where 

in addition to NIR case τsd and τdo are negligible compared to 

τss and τoo (Suits, 1972): 

Rsocqso  þ sss Rsoilsoo: ð6Þ 

The expressions (5) and (6) will be used as first order 

approximations of the reflectances in the NIR and R domains, 

Straight line parametrization from the SAIL parameters is 

complex and requires the knowledge of a priori information about 

the vegetation such as leaf distribution, pigment concentration, 

and water content. As an alternative, here we propose to search 

empirical relationships between the isoline parameters that will be 

used as a priori knowledge simplifying the model inversion. 

 

2.2. Isoline set parametrization 

 
A set of isolines is obtained by sampling the fCover. Fig. 3 

shows a simulation of the SAIL model in (R, NIR) space 

corresponding to different values of fCover varying from 0 

(bare soil) to 0.98 (very dense vegetation). Using the linear 

 

Table 1 

Simulation parameters and figure numbers where they are involved 

Parameter Vegetation layer Leaf Soil Scene angles 

 ALA fCover Step  (ρ, τ)NIR (ρ, τ)R  (a0, b0) [min, max]R  θs (θo, φo) 

Value 45° [0, 0.98] 0.1  (0.47, 0.49) (0.1, 0.09)  (1.1, 0.07) [0.02, 0.32]  30° (50°, 0°) 

Figure number 2, 3, 6, 7 3, 7 3, 7  2, 3, 4, 6, 7 3, 4, 6, 7  3, 6, 7 3, 7  2, 3, 4, 6, 7 2, 3, 4, 6, 7 
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¼ ð Þ 
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G E 

  
a V ¼ g1ð1 — ð1 — fCoverÞ

g2 Þþ  g5; 

a 3 4 

 

ing the previously mentioned increase, particularly the relation- 

ship between α′ and the fCover appears quasi-linear. Fig. 4b 

shows the variation of γa, X-coordinate of γ versus fCover: the 

curves are about linear, with a slope depending on ALA value. 

Previous observations on Fig. 4 are formalized mathemat- 

ically by: 

 

g ¼ g fCover þ g ; 
ð13Þ 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. SAIL simulation of fCover isoline set (simulation parameters are given in 

Table 1). 

 
approximation for the fCover isolines, the average quadratic 

error remains lower than 5 · 10− 5. From Fig. 3, we note that the 
fCover isoline slope increases with vegetation density. 

In the (R, NIR) space, the intersection of fCover isolines (8) 

and the soil line (7) is noted γfCover (Fig. 3)). γfCover is a function 

of α and β (Yoshioka et al., 2000b): 

g    ¼

 

— 
b — b0 

; 
a0b — ab0

  

: ð11Þ 

where ηi, i ∈{1, …, 5} are the isoline parameters. Taking into 
account the fact that when fCover = 0 the isoline coincides with 
the soil line, 

g5 ¼ 0: ð14Þ 

Note that for fCover negligible relative to one, 1 − (1 − fCover)η2 

is approximated by (η2fCover) and so α′(fCover) is a linear 

function. For η2 greater than one, the slope saturates for fCover 

close to 1, that is the case of erectophile vegetation. In Section 3, 

a derivation of ξ = {η1, η2, η3, η4} from a learning data set will 

be proposed. Then using Eqs. (13) and (14), (α′, γa) are obtained. 

In the following, we call ‘direct model’ the model that simulates 

(R, NIR) values knowing ξ. To inverse this model, the next 

subsection provides some mathematical properties. 

 

2.3. Inverse problem: existence and unicity 

 
For a homogeneous canopy, the inverse problem consists in 

deriving for each point of the (R, NIR) space the corresponding 

fCover value. It is shown below that a solution always exists 

and can be defined in a unique way. 
fCover 

a — a0 a0 — a Let be the subpart of the (R, NIR) space formed by the 

envelope of the points corresponding to the ideal unnoisy 

Lets change the coordinate plan such that X-axis becomes the 

soil line. The slope relating to this new coordinate plane is α′: 

a V 
a — a0 

: 12 

1 þ a0a 

Fig. 4 shows different simulations of SAIL for three ALA 

values. Fig. 4a shows the variations of α′ versus fCover confirm- 

spectral values in the (R, NIR) domain. We note the subpart of 

(R, NIR) located between the soil line and any possible isoline. 

The isoline corresponding to a vegetation density fCover is 

called DfCover. Fig. 5 shows, for an assumed soil line, the isoline 

set and the (R, NIR) subparts and . 

Let M(xM, yM) be a point in the (R, NIR) plane. By definition 

of E, M aE if and only if yM ≥ a0xM + b0 and ∃fCovers such as 

 

 
 

Fig. 4. SAIL simulations of planophile, extremophile and erectophile vegetation (simulation parameters are given in Table 1): (a) Isoline slope α′ versus fCover, (b) γa 

(X-coordinate of γ) versus fCover. 
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M M M ∂fCover ∂fCover 

∂fCover ∂fCover 

fCover V 
∂t 

dt N 
∂t 

dt; 

M 

∂t 
dt N afCover V 

fCover M 

; ; 

 

From Fig. 5, several isolines can intersect at M. Calling S the 

set of fCover values whose isolines intersect at M, we now show 

that the actual M fCover value, called fCo
~

ver, is the S lowest one: 

fCo
~

ver ¼ minf f =gM ð f Þ¼ 0g: ð15Þ 

For this demonstration, it is sufficient to prove that any point 

in corresponding to vegetation density fCover is higher 

(belonging to the mid-high plane) than any DfCover′ such as 

fCover′ bfCover. We have to show that each actual point of 

the DfCover line is higher than DfCover′. As the parameter α is an 

increasing function of fCover (Eq. (9) and Fig. 4), the slope of 

DfCover is greater than the slope of DfCover′, and it is sufficient to 

show that the point of DfCover with the lowest x-coordinate is 

above DfCover′. Since this point corresponds to the lower value 

of the R soil reflectance that is higher than 0, it is sufficient to 

show this property for a point corresponding to a null soil 

reflectance value in R band (called M(r, nir)). Let M′(r′, nir′) 

be the point of DfCover′ with null value of soil reflectance in R 

band (Fig. 5). In order to show that M is above DfCover′, it is 
sufficient to show that the slope of the line (M′M), i.e. nir—nir V, is 
higher than the slope of D , i.e. α r—r V 

Fig. 5. Soil line, isoline set, G and E repartition in (R, NIR) space. Some 

intersections between isolines are shown in subpart G DfCover and DfCover′ are 

 

point out that: 
fCover′ fCover′. We have then to 

two isolines, M and M′ are two points respectively of DfCover and DfCover′, Rso;NIRðfCoverÞ— Rso;NIRðfCover VÞ 
Na

 ; ð16Þ 
corresponding to null soil reflectance value in R band. 

Rso;R ðfCoverÞ— Rso;R ðfCover VÞ 
fCover V 

y ≤ α(fCovers)x + β(fCovers). Let g  be the function defined Let s ¼
 

∂Rso;NIR

      

∂Rso;R  

  —1

, it is derived by dividing Eq. (16) 

by: 
 

gM ðfCoverÞ¼ yM — aðfCoverÞxM — bðfCoverÞ: 

On the one hand, gM(fCovers) ≤ 0, and on the other hand, 

left member numerator and denominator by fCover−fCover′ and 
making fCover′ converge towards fCover. s is the slope of varia- 
tion of M versus fCover whereas α is the slope of variation of M 

versus the soil reflectance. Assume that s N α: 

gM(0) ≥ 0. The isoline parameters α′ and γa are continuous 
sðfCoverÞNa () 

∂Rso;NIRðfCoverÞ 
N a

 ∂Rso;RðfCoverÞ 
;
 

continuous functions of fCover on [0, 1]. Finally gM being a 

   
Z 

Z fCover ∂Rso;NIRðtÞ 
Z fCover 

 

 

∂Rso;RðtÞ 

fCover. Therefore, ∃fCover⁎ such as g (fCover⁎)=0 and 
 Z 

Z fCover ∂Rso;NIRðtÞ 
Z fCover ∂Rso;RðtÞ 

therefore yM = αfCover
⁎ · xM − βfCover

⁎. Then: 8M aE, ∃fCover fCover V fCover V 
such as M ∈ DfCover

⁎. Now, each edge point M in G corresponds 
Z 

Rso;NIRðfCoverÞ— Rso;NIRðfCover VÞ 
N a :

 

to a vegetation density value fCover , then M ∈ D . Rso RðfCoverÞ— Rso RðfCover VÞ 
fCover V 

Since  DfCoverM    
belongs  to  E,  then  M aE.  Therefore,  G is  in- 

cluded in E. 

 

So, to show Eq. (16), it is sufficient to show that s N α. 
 

 
 

Fig. 6. (a) Variation of s and α versus fCover, (b) Variation of ψ versus fCover. The simulation parameters are presented in Table 1. 

⁎ 

fCover V is a continuous function of M linear function of α and β, g 

functions of fCover on [0, 1], consequently α and β are also fCover fCover 

at 

∂t 
dt; 

M 
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s 

s 
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s 

1 þ a
fCoveri 

i i 3. Computation of the centroid of the Ns lowest cost vertices 

Ns i¼1 
i 

s 

G E E G E 
G
 

~ 
G 

s 

¼ i 

2 

 

Using the SAIL model, we find as illustrated on Fig. 6a that s is 

always larger than α. Moreover, due to the saturation of the Red 

reflectance, the difference increases while increasing fCover. 

Roughly, this means that, when the soil reflectance is equal to 0, 

the variation of the reflectances in the (R, NIR) plane versus the 

fCover is higher than their variation versus the soil reflectance. 

We now show that the cardinal of S is lower than 2. For this 

purpose, it is sufficient to show that the intersection between 

three isolines is the empty set. According to Appendix A, it is 

sufficient to show that: 

Distinction between optimization methods occurs generally in 

terms of deterministic or stochastic features. Deterministic ap- 

proaches are efficient for linear problems or convex functions 

presenting one and only one extremum. In the case of local extrema, 

the optimization result depends on the initialization making not sure 

the convergence towards the global optimum. For such cases, only 

stochastic approaches can reach the global optimum, even if math- 

ematical convergence has been proved only for few algorithms (e.g. 

simulated annealing). In other cases, heuristics allow the obtention 

of ‘good’ solutions without warranting the global optimum. In our 

case, the solution space of L is not convex and simulation tests 

∂2b ∂a ∂b ∂2a showed the existence of many local optima. We compare the result 

∂fCover2 ∂fCover 
— 

∂fCover ∂fCover2 
b 0: ð17Þ

 
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl fflffl{

w

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl fflffl} 

Fig. 6b presents the variation of ψ versus fCover. ψ is a 

decreasing function of fCover with ψ(0) b 0. Thus, Eq. (17) is 

true and therefore in each actual point in (R, NIR) intersects at 

maximum two different isolines. This property will be used in 

Section 3 to optimize the derivation of the fCover based on the 

isoline parametrization. 

 
3. Method implementation 

 
The previous section presented the ideal case where data were 

unnoised and model is exact. Now, for actual inversion, 
~ 

(observed   ) and  ̂  (estimated   ) are introduced:  
~       

and  ˆc 
except at the borders of the domains. The previous properties are 

~ 

This section first d

G
eals with the estimation of ξ using a 

learning data set and secondly with the inversion method. 

 
3.1. Parameter estimation 

 
Assuming that the soil line parameters are known, the 

remaining isoline parameters (i.e. ξ set) are estimated using a 

learning data set, formed by Nlearn points Mi, i ∈{1, …, Nlearn}, 
, for which the fCover value is known. The optimization of ξ 

is done according to the Root Mean Square Error (RMSE) 

minimizing criterion and the fCoveri isolines. For this, we define 

the distance between Mi and the associated fCoveri isoline as 

equal to qffiffiffiffiffiffi ffiffiffi ffiffi
2
ffiffiffiffi ffiffiffi ffiffi ffi. Then noting gi = gM  and αi = αfCover , L(.) the 

of a deterministic method the Simplex (Dantzig et al., 1955; Nelder 

& Mead, 1965), and a heuristic, the Shuffled complex algorithm 

(SCE–UA) (Duan et al., 1992; Sorooshian et al., 1992) which uses 

many Simplex simultaneously and in competition. 

The Simplex has been developed by Dantzig et al. (1955) for 

numerical resolution of linear problems and extended to the non 

linear case by Nelder and Mead (1965), in order to reach the 

global optimum in convex spaces. Assuming the solution space 

is of dimension Ns, the researched optimum O⁎ will be 
surrounded by a polytope P of Ns + 1 vertices (corners), by 

displacing these vertices until being sure that O⁎ is inside P and 

that the size of P is in agreement with required precision on O⁎. 

The method evolution is done by the Algorithm 1. 

In order to overcome the local minima, SCE–UA is a heuristical 

technique using many Simplex simultaneously. SCE–UA uses p 

subsets called complex of 2N + 1 points (in our application, we 

choose p = 12). Each complex evolves (independently to the others) 

during a few number of iterations. Following a probabilistic law 

(function of the cost), a set of points (Ns+ 1) is extracted that evolves 

as a Simplex during ♯it iterations (in our case ♯it = 2Ns + 1). After 
evolution, the complexes are merged: all elements are sorted 

before redistribution into new complexes, allowing the local 

minima to ‘go out’. The processes (complex evolution, complex 

merging and complex distribution) are repeated until convergence. 

Algorithm 1. Simplex Method 

 
1. Selection of Ns + 1 vertices {v1, v2, …, vN + 1} as initialization 

of the Simplex; 

2. Sorting the vertices according to their cost ct(v1) ≤ ct 

(v2) ≤… ≤ ct(vN + 1); 

functional to minimize, g ¼ 
 1  XNs     

v ; 
Nlearn 2 4. Reflection of the worse vertex through the centroid r =g −v . 

LðnÞ¼  
giðfCoveriÞ  

i  1 1 þ a2 
; ð18Þ 

Ns +1  

If the cost is decreasing: ct(r) ≤ ct(vN + 1), do the update: 
vN +1 ← r, else go to step 6; 

The use of an optimization technique is justified since: 

 
• the presence of both polynomial and exponential terms in L(ξ) 

makes the analytical inversion of L impracticable; 

• approximately, the domain of variation of (η1, η2, η3, η4) is 

[0.2, 1.2] ×[0.9, 1.5] × [0.0, 0.55] ×[− 0.4, 0], and the aimed 
precisions for these parameters are respectively 10− 2, 10− 3, 

5. Expending of the reflection by factor 2: e = g − 2vN +1. If the cost 

decreases: ct(e) ≤ ct(r), do the update: vN +1←e, go to step 8; 

6. Contraction: t ¼ 
g þ vNsþ1. If ct(t) ≤ ct(vN + 1), do the update: 

vN +1 ← t, go to step 8; 

7. Shrinking the whole Simplex: update the vertices {vi, i ∈ {2, …, 
Ns + 1}}; by moving them halfway between their location and 
v1 : vip

vi þ v1
 

10− 3 and 10− 3. Therefore, an exhaustive search corresponds 
to a number of configurations to test of about 1.32 × 1010. 

2 
8. Test of convergence: based on the ‘size’ of the Simplex 

(distance between vertices). 

in 



A. Kallel et al. / Remote Sensing of Environment 111 (2007) 553–566 559 
 

KVI 

so,R so,R 

M 

G 

~ 

 

Now, according to Clevers (1989) and Baret and Guyot (1991), 

a vegetation index is linked to LAI by: 

VI ¼ VIl þ ðVIs — VIlÞexpð—KVILAIÞ; 

with VIs and VI∞ the vegetation indices respectively for bare 

soil (LAI= 0) and very dense vegetation (LAI=∞). From Eq. (4) 
and the previous equation, the relationship between fCover and 

VI is (Baret et al., 1995): 

 
fCover 1 

  
VI — VIl 

  
Kp  

19
 

 

 
 

¼ — 
VIs — 

VIl 
KVI ; ð Þ 

 

 

 

 
 

Fig.  7.  Sets  of  isolines  actual  and  derived  by  the  SCE–UA  method  (the 

simulation parameters are presented in Table 1). 

 

 
 
 

Fig. 7 shows both the actual set of fCover isolines and 

those  derived  by  the  SCE–UA  method.  For  higher  fCover 

values, the isoline estimation is the less accurate due to the 

added complexity for dense vegetation (saturation in the red 

spectral domain). 

 
3.2. Model inversion 

 
Having defined the set of isolines, the model inversion 

attributes to each point M of 
~ 

a vegetation density value 

fCover corresponding to the first fCo
~

ver which makes g 
null (15). From Section 2.3 and as illustrated by Fig. 8, gM can have 

either one or two zeros. As gM(0) ≥ 0 (all points are above the soil 

line), then fCo
~

ver is before the unique interval such as gM is 

negative: f˜∈ [f1, f2] with 0 =f1b f2≤ 1, gM( f1) ≥ 0 and gM( f2) ≤ 0. 
In the case of one zero, we can choose f2= 1. Otherwise, an ad hoc 

initialization of f2 in the interval [0, 1] has to be performed. Then, f˜ 

is derived using a dichotomic search between [ f1, f2] with an 

accuracy of about 10−4 (in our case). 
Note that, because of noise and the model imperfection, the 

two unexpected situations may be encountered: 

• gM(0) b 0: we set fCo
~

ver ¼ 0; 

Practically, VIs and VI∞ are the average values of the 
vegetation indices over the points respectively of the bare soil 

and with fCover≲ 1. The factor
 Kp 

is derived as the value 
minimizing the estimation RMSE (18) over the interval [0.5, 5] 

with a step equal to 10− 3. 

4.1. Simulated data 

 
The simulated data have been derived using both the SAIL and 

PROSPECT models (Fourty & Baret, 1997, 1998; Jacquemoud & 

Baret, 1990). Varying the soil and the vegetation features, many 

simulations have been carried out. Such simulations allow both 

the intercomparison between the fCover retrieval methods and 

the study of our model sensitivity to different parameter variation 

and noise. 

The PROSPECT model is a radiative transfer model 

allowing the derivation of the hemispherical reflectance and 

transmittance of leaves from the knowledge of different matter 

concentrations and features which absorb the radiation. In the 

Visible domain, absorption is mainly due to pigment concen- 

tration (chlorophyll a + b) Ca + b. In the NIR domain, the ab- 

sorption is lower, and it is due to the mesophyll leaf structure, 

in particular the number of sublayers, N. The SAIL input 

parameters are the leaf reflectance and transmittance simulated 

by PROSPECT, the vegetation density (fCover), leaf area 

distribution (ALA), the sun and observation geometry: sun 

zenithal angle (θs), observation zenithal and azimuthal angles 

(θo, φo), hot spot parameters (hs) (Andrieu et al., 1997; Kuusk, 

1985, 1991b), and the soil reflectances (Rsoil,R, Rsoil,NIR) that 

are entirely determined by Red soil reflectance variation 

[minR , maxR ] and the soil line equation (a0, b0). Following 

Huete et al. (1984) and Baret et al. (1993), the soil type 

• gM( f ) N 0 ∀f ∈[0, 1]: we set fCover ¼ 1. 

4. Validation data 

 
In this section the proposed method is compared to the 

fCover estimation with the other widely used vegetation indices 

(VI), both considering simulated and actual data. In the last 

decades, many vegetation indices combining the R and NIR 

spectral bands have been developed (Rondeaux et al., 1996). 

Those used here are listed in Table 2. Experimental and 

theoretical studies showed the correlation between them and 

vegetation features such as LAI, fCover and vegetation health. 

 
 

 
Fig. 8. gM versus fCover for the two cases: 1 and 2 zero function. 
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Table 2 

Vegetation indices 

 

Index Abbreviation Formulation 

Perpendicular vegetation index (Richardson & Wiegand, 1977) PVI rNIR — a0rR — b0 

pffi
a

ffiffi2ffiffiffi
þ
ffiffiffiffiffi

1
ffiffi 

0 

 

 

 

 

 

rNIR þ rR 

Soil-adjusted vegetation index (Huete, 1988) SAVI 
1  L 

  rNIR þ rR    
; L 0:5

 

rNIR þ rR þ L 

Transformed soil adjusted vegetation index (Baret & Guyot, 1991; Baret et al., 1989) TSAVI   a0ðrNIR — a0rR — b0Þ 
; X 0 08

 

a0rNIR þ rR — a0b0 þ X ð1 þ a2Þ 

Modified soil adjusted vegetation index (Qi et al., 1994) MSAVI 1 
  

2r
 

þ 1 — 

qffi

ð

ffi

2

ffiffiffi

r

ffiffiffiffiffi

þ

ffiffiffiffiffi

1

ffiffi

Þ

ffiffi
2
ffiffiffi

—

ffiffiffiffiffi

8

ffiffi

ð

ffiffi

r

ffiffiffiffiffiffi

—

ffiffiffiffiffi

r

ffiffiffiffiffiffiffi

Þ

ffiffi  

 
 

 

variability is simulated by an additive noise (ϵso) on the soil 

line equation: 

Rsoil;NIR ¼ a0Rsoil;R þ b0 þ sso 

different tests and the different methods. Tests 1, 2 and 3 show 

that the variation of ALA (planophile, extremophile and 

erectophile) of the vegetation has small influence on the 

estimation performance. We also see that MSAVI and TSAVI 

give accurate results for respectively small and large ALA 

In this section, for all experiences, (a0, b0) and [minR  
so,R 

values. Test 4, which corresponds to the presence of more 

maxR ] are assumed fixed and equal respectively to (1.1, 0.07) 

and [0.02, 0.32]. 

Table 3 shows the set of simulations which will be used to 

compare the performance of the proposed method to classical 

vegetation indices and evaluate the robustness of the method to 

parameter inaccuracy (spatial and/or noise). The three first sets 

of simulations (scenarii 1 to 3) test the impact of LAD variation, 

the scenarii 4, 5 and 6 deal with the leaf features, the scenario 7 

tests the effect of the hot spot and finally the scenario 8 tests both 

the effect of noise inaccuracy over all parameters and on the hot 

spot effect. Table 4 presents the RMSE obtained considering the 

 

 

Table 3 

Set of simulations used to evaluate the performance of the method 
 

 
aMean value. 
bStandard                                                                                         deviation. 
The isoline set is obtained varying fCover from 0 to 0.98 (sample step equal to 0.1). 

When ‘Sdv = 0’ (by default for the 4 last parameters), the parameter value is given in 

first (or unique) column, else it is a random value generated following a normal 

distribution N ðM ; SdvÞ. Grey cells point out differences with first test configuration. 

senescent vegetation, shows that the variation of vegetation 

features does not have important effects on the performance of 

the method. Tests 5 and 6 point out that the uncertainties over the 

pigment concentration affect more the results than the 

uncertainties over mesophyll leaf structure. Test 7 shows that 

the hot spot effect (when the source and the observation have the 

same solid angle), even in the case of uncertainty over its value, 

 

 
 

Table 4 

RMSE obtained using different methods, in the different cases of test, and for 

training (top value, 100 points) and validation sets (bottom value, 120 points) 
 

 
Per line, the dark grey cell shows the best result, and the light grey one the 

second best result. 

R 

, 

Weighted infrared–red vegetation index (Clevers, 1989) 
 

Ratio vegetation index (Pearson & Miller, 1972) 

WDVI 
 

RVI 

rNIR − a0rR 

rNIR 

 
 

Normalized difference vegetation index (Rouse et al., 1974) 

 
 

NDVI 

rR 

rNIR — rR 
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Fig. 9. Robustness tests: fCover estimation variation versus canopy parameters. The solid (resp. dashed) curves correspond to the learning (resp. validation) set. 

 

has no significant impact on the fCover estimation accuracy. Test 

8 shows the results assuming an accentuation of the hot spot 

effect and both uncertainties over the soil line, concentration of 

chlorophyll, mesophyll leaf structure and hot spot. The relatively 

large error is mainly due to the strong influence of the Ca + b 

concentration inaccuracy (as in test 5), and the influence of the 

mesophyll (N) variability (as in test 6). 

About the respective performance of the different vegetation 

indices, it is shown that SCE–UA and Simplex perform better. 

Moreover, due to the non convexity of L(ξ) over the solution 

space,  SCE–UA  gives  often  more  accurate  results  than  the 

Simplex. In our application, the Simplex algorithm was run many 

times to lead to sufficiently accurate results. Only considering 

classical vegetation indices (Table 2), we note that for unnoised 

data (tests 1 to 4), TSAVI performs often better, whereas MSAVI 

and SAVI are more robust to noised data (tests 5 to 8). The fact that 

PVI and WDVI give the same result is consistent since they are 

linearly dependent. Finally, note that there is no significant 

difference between training and validation sets. This result is very 

satisfying and means that using a set of 100 elements for training, 

as we did, is statistically sufficient. 

Supplementary simulations are shown in Fig. 9 which 

presents three robustness tests in case of: variation of soil line 

slope, noise added on soil line and ALA. Fig. 9a shows the 

robustness to the slope variation. SCE–UA and Simplex show a 

small degradation of performance versus the slope value. Since 

 

 
 

Fig. 10. Ground fCover distribution (grey rectangles) and RMSE distributions versus fCover: (a) 2003, (b) 2006. The solid (resp. dashed) curves correspond to the 

learning (resp. validation) set. 
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i i i    i={1, …, Np} 

R —R 

 

it takes into account the effective soil line, TSAVI is the more 

robust, conversely to SAVI and MSAVI whose performance 

decreases dramatically versus the slope value. Fig. 9b shows 

that the increase of the soil line noise affects quasi-linearly the 

fCover estimation performance. Fig. 9c shows that the increase 

of ALA variation domain does not affect significantly the 

results. In summary, for all these tests the developed method 

gives accurate estimation results, better that those obtained 

using any classical vegetation index. 

 

4.2. Actual data 

 
Now, in order to validate the proposed method, both remote 

sensed data and reference field data (ground truth) measure- 

ments acquired simultaneously over the   Yar   watershed 

(61 km2), located in a fairly intensive farming area in northern 

Brittany in France has been carried out for several years 

(Corgne et al., 2002). 

 

4.2.1. Ground truth data 

In 2003 and 2006, ground truth measurements corresponding 

Now, for each frequency band (fb) and in the absence of 

atmospherical corrections, the data measurement is the 

reflectance top of atmosphere (TOA), noted RTOA, which is a 

linear function of the reflectance top of canopy (TOC), noted 

RTOC (Tanré et al., 1990; Vermote et al., 1997): 

RTOC ¼ AfbRTOA þ Bfb: ð20Þ 

In our study, RTOC values are required. To derive the couple 

(Afb, Bfb) for each image and for R and NIR bands, the 

following processing was performed: 

 

• Spatial low frequency filtering (field level): since the ground 

truth measurement is equal to the more frequent vegetation 

density on the considered field, a remote sensing value at field 

scale is derived accordingly as the mode (more frequent value) 

of the distribution of the pixel values over the considered field. 

• Determination of the TOA soil line: using TOA reflectances 

measurement, the soil line derived from these measurements 

is different from the ground truth soil line (computed in 

Section 4.2.1) which corresponds to TOC observations. Due 
to the insufficient range of ground truth points, (aTOA, bTOA) 

respectively to 244 and 155 fields have been acquired. The field 0 0

 

average area is 1 ha. For each visited field, an estimation of the 
fCover was derived with a 5% precision for low fCover values 

(fCover ≤ 25%) and a 10% accuracy for high fCover value 
(fCover N 25%). On Fig. 10, the gray rectangles show the 

distribution of fCover ground measurements. Since the majority 

of fields are covered in winter, we observe a pick for fCover = 1. 

is derived as follows: a linear regression between the R and 

NIR values is made for the points (Ml(Rl, NIRl)) 

corresponding to the lower R values for each NIR value in 

the (R, NIR) space, and the points (Mp(Rp, NIRp)) 

corresponding to the fields with null fCover value: 

Nl l l 2 

Fields with mean vegetation are few, since the leaseholders are ða ; b Þ¼ argmin 1 X ðNIRi — aRi — bÞ 
 

either respecting law (winter coverage) or not respecting it, but 0 
0

 
rarely respecting it only partially. 

a;b Nl 
Np 

i¼1 

p 

a2 þ 1 
p 2 

The actual soil line parameters were determined from the 

 
þ 

 1  X ðNIRi  — aRi  — bÞ  Þ:
 

progressively, measuring the soil reflectance (with a spectrom- 

eter) to plot the NIR reflectance versus the R one. Table 5 shows 

the soil line parameters obtained from each sample. For the 

following of our study, the slope a0 is set equal to the mean 

slope, and the intercept b0 equal to zero. 

 

4.2.2. Remote sensing data 

Two satellite images have been acquired over the Yar basin. 
The first one is a high resolution SPOT 5 image (pixel size equal 

to 10 m× 10 m, 4 frequency bands: Green (500−590 nm), Red 

(610−680 nm), NIR (780−890 nm) and Mean Infrared (1580− 
1750 nm)) acquired on 01/24/2003, and the second one a very- 

high resolution Quickbird image (pixel 2.8 m× 2.8 m, 4 frequency 

bands Blue (450−520 nm), Green (520−600 nm), Red (630− 

690 nm) and NIR (760−900 nm)) acquired on 03/22/2006. 

 
Table 5 

Soil line parameters: for samples (1 to 6) and the used values in the following 
 

 

 

Note that the normalization by Nl ≃ 103 and Np ≃ 10 gives 
the same weight to the two sets of points respectively derived 
from ground truth and image histogram analysis. 

• NIR reflectance calibration: NIR channel calibration was 

done from a priori knowledge about specific targets: water 

and forest. On the one hand, the water reflectance (Rw) in 

NIR band is assumed null. Therefore from Eq. (20): 

ANIRR
TOA;w þ BNIR ¼ 0: ð21Þ 

On the other hand, one can assume that the dense coniferous 

forests keep a constant bidirectional reflectance (Rf) all along 

the year and are Lambertian reflectors (Holben & Kimes, 

1986). Then assuming that the atmospherical effects are 

negligible in summer (RTOA ≈ RTOC), the forest reflectances 
have been estimated from an additional summer image used 

to constraint the winter NIR TOC reflectances (20): 

ANIRR
TOA;f 

þ BNIR ¼ R
TOC;f 

: ð22Þ 

Sample   1 2 3 4 5 6 Used values RMSE NIR NIR RTOC;f 

a0 1.7 1.67 1.68 1.62 1.56 1.48   1.62 0.085 

b0 0.008 0.015 0.005 − 0.02 − 0.011 − 0.02 0 0.016 
 

 

 

Eqs. (21) and (22) give: ANIR 
TOA;w   TOC;f 

      NIR NIR  

RTOA;f —RTOA;w 

NIR 
TOA; TOA;w 
NIR NIR 

and BNIR ¼ 

The RMSE are calculated between the samples and the used values. 

analysis of six soil samples collected from six agricultural 

fields. Having dried the samples, they were wetted again 

¼ 
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TOA 

0 

a0 

 

• R reflectance calibration: after NIR calibration, linking the 

TOA soil line to the TOC one, the R reflectance calibra- 

tion is: 

consistent between the learning and validation set results. This 

can be explained by (i) the fact that, the Quickbird image is a 

high resolution image allowing the extraction of ‘pure’ pixels by 

elimination of the field edges and lanes, and (ii) the fact that, for 
TOC 
soil;R ¼ ARRsoil;R þ BR; the Quickbird image the number of pixels per field is almost 13 

times greater than for the SPOT 5 image making the statistical 

where A 
ANIR aTOA 

¼ and B ¼ ANIR b
TOAþBNIR—b0 : estimation of modal value more accurate. 

 

Table 6 shows the fCover estimation RMSE using the 

developed method and classical vegetation indices. Fig. 10 

shows the distribution of the RMSE versus fCover 

superposed to the fCover histogram. In general, the obtained 

RMSE are large. Firstly, a part of this error can be explained 

by the ground measurement ‘weak’ accuracy especially for 

dense fields (ground fCover± 5%). Secondly, the diversity of 

biophysical features, especially the senescent vegetation, 

influencing the radiative properties. Less concentration of 

chlorophyll (Ca + b) leads to the increase of the red vegetation 

reflectance. Conversely, in the NIR domain, the senescent 

leaf internal structure is increasing the equivalent number 

layers (N), the leaf absorption and decreasing the whole 

vegetation reflectance. Senescent vegetation is found both 

for fields having low cover only due to the remainder of crop 

(Fig. 10 shows a relatively high RMSE for low fCover) and 

for covered meadow fields affected by cattle trod on and 

grazing. Due to this latter case, in the (R, NIR) space, the 

isolines corresponding to the fCover values close to 1 are 

spread out abnormally in comparison with SAIL simulation 

(2). Now, considering the more significant points of (Fig. 10) 

curves, i.e. modes of the fCover histograms: values about 0.1 

and  1,  SCE–UA  and  Simplex  RMSE  are  lower  than  the 

classical vegetation index ones. 

A more surprising observation is the closeness of the results 

(Simplex, SCE–UA, classical vegetation indices) since the 

soil line slope is rather high, and according to the simulations 

(cf. Fig. 9a), the indices which do not take into account the 

soil line provide less accurate results. We explain this 

absence of soil line sensitivity by the fact that in winter, the 

soil is very wet (almost saturated) due to the abundant rains, 

therefore the surface reflectance spatial variability is too low 

to let appear the soil line dependence. 

 

Finally, although a larger ground truth data set is available 

for 2003, the fCover estimation results of 2006 are more 

 

 
Table 6 

Actual data RMSE for different methods for training (top value) and validation 

sets (bottom value) having the same number of points (the half of the total 

number of fields) 
 

 
Per line, the dark grey cell shows the best result (smallest RMSE value), and the 

light grey cell shows the second best result. 

5. Conclusion 

 
Neglecting the high order interactions between vegetation 

and soil background in the SAIL model, the parameters of 

fCover isoline in the (R, NIR) space, which are segments of 

straight lines, are analytical functions of the SAIL scattering 

parameters. Using SAIL simulations, the relationships between 

the fCover and the isoline slope and between the fCover and the 

x-coordinate of the intersection between the isoline and the soil 

line have been derived. These relationships allow the 

parametrization of the isoline set, for which the existence and 

the unicity of fCover solution for any (R, NIR) actual point has 

been demonstrated. Using a learning data set, the isoline 

parameter calibration was done both by Simplex and SCE–UA 

methods. Compared to classical vegetation indices, the method 

leads to better results in terms of fCover inversion and 

robustness against noise level. Moreover, due to its global 

optimization,  the  SCE–UA  algorithm  performs  a  little  better 

than the Simplex method. The two limitations of the proposed 

method are (i) a priori knowledge (ground truth or simulated 

data) is needed to calibrate the 4-parameter direct model and (ii) 

its computation is more complex than the vegetation index 

method. 

Next studies will then try to derive other empirical relation- 

ships between the isoline parameters and other vegetation 

density descriptors like the LAI or other vegetation features like 

the fraction of absorbed photosynthetically active radiation 

(FAPAR), the hot spot coefficient, ALA, Ca+b and N. Also 

heterogeneous kinds of canopy can be tested (Yoshioka et al., 

2000b). In these cases, a larger number of spectral bands is 

required since the number of independent parameters would be 

higher (in particular the one-to-one relationship between LAI 

and fCover is no more valid). Assuming the existence of soil 

line between all couples of bands, a parametrization of the 

reflectance isolines in each plane of band couple can be adapted 

to solve such an inverse problem. 
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Appendix A. Condition of non concurrence between three Lemma 1. FaF, f0, f1, f2∈ [0, 1], such that f0 b f1 b f2. If Mf , f  
0     2 

isolines N Mf ,f then Mf ,f N Df ,Mf ,f N Mf  ,f and Mf , f  N Mf ,f .Recip- 
0    1 1    2 0 1   2 0    1 1     2 0    2 

rocally, if Mf , f  N Df , then Mf , f N Mf , f  . 
1     2 0 0     2 0     1 

In this appendix, we show a sufficient condition of non Proof. direct sense ♮ Let A ∈ Df and B ∈ Df such that A N Df 
concurrence between three different isolines. 

and B N Df 
1 2 0 

(cf. Fig. A.1): 
Definition 1. We note F the set of F line sets parameterized by  

Y Y Y Y Y Y 

f ∈ [0, 1]. For FaF, the corresponding line to f is called Df. 
The slope and the intercept of D are called respectively α(f) and 

ðAMf0 ; f1 
; BMf0 ; f2  

ÞuðAMf0 ; f1 
; Mf0 ; f1 

Mf0 ; f2 
Þ þ ðMf0 ; f1 

Mf0 ; f2 
; BMf0 ; f2 

Þ½2kk]; 
ukþðM A ; M M ÞþkþðM M ; M B Þ½2kk]; 

f u — ðMYM ; M
Y

A Þ þ ðMYM ; MYB Þ½2kk]: 

β(f). ∀f, α(f) N 0 and α(f) is a strictly increasing function of f. 
f0 ; f1 f0 ; f2 f0 ; f1 f0 ; f1 f0 ; f2 f0 ; f2 

Property 1. ∀f1, f2 ∈ [0, 1] such that f1 ≠ f2 Df and Df are not Since (Mf , f Mf , f ), (Mf , f A) and (Mf , f B) are respectively 
1 2 0     2 0    2 0    1 0    2 

parallel. collinear to Df , and Df , and Df and α( f ) is an increasing 
0 1 2 

Definition 2. FaF, f1, f2 ∈ [0, 1]. Mf ,f (xf ,f , yf ,f ) is the function of f, then k — BMf̂0 ; f2 Mf0 ; f1 NAMf̂0 ; f1 Mf0 ; f2 : 

intersection between Df and Df . 
1   2 1   2 1   2  

Y Y Y Y 

Definition 3. Mo(xo, yo) being a point of R2 and D: y =αx +β a line 

in R2, we say that MoN D if yo N αxo+β, and Mo b D if yob αxo +β. 

2kkb — ðMf0 ; f1 Mf0 ; f2 ; Mf0 ; f1 AÞþ ðMf0 ; f1 Mf0 ; f2 ; Mf0 ; f2 BÞbk 

þ 2kk: 

Definition 4. M1(x1, y1) and M2(x2, y2) being two points in R2, Then, 2kkbðA
Y
M 

 
f0; f1 ; BYM 

 
f0; f2 Þbk þ 2kk. Therefore the inter- 

we say that M2 N M1 if x2 N x1 and y1 N y2. section between (AMf , f ) and (BMf , f ) is situated in the half 
0    1 0     2 

Property 2. Let FaF, Df ∈ F and M1(x1, y1), M2(x2, y2) ∈ Df. 

x2 N x1 ⇔ y2 N y1 ⇔ M2 N M1. (Proof: use α(f)  N 0) 

Definition 5. We say that Fa verifies the increasing property, 

 

 

 

plan above Df : Mf ,f N Df (see Fig. A.1). 

f0 b f1 

g P:5
 

 

 
Definition 6. We say that FaF verifies the increasing property reciprocal sense ♮ 

1      2 0     2 

restrictively to the interval [a, b], noted F↗[a,b], if ∀f0, f1, 

f2 ∈ [a, b] such that f0 b f1 b f2, Mf , f b Mf , f . 
 

 

f0bf1 

Mf ; f aDf 

  g P:5 
M NM

 

f0bf1 

Mf aD 

 
 

Property 4. Let FaF and a, b ∈ [0, 1], such that a b b. If F↗[a,b], 
 
 

P:5 
Mf ND

 Mf ; f aDf 

  g P:5 
M

 

NM : □ 

Property 5. FaF, f0, f1, f3 ∈ [0, 1], such that f0 b f1 b f2,A ∈ Df . 
Then, A N Df ⇔ A N Mf ,f and A N Df ⇔ A b Mf , f (Fig. A.1 

 

Lemma 2. FaF, f0, f1, f2, f3 ∈ [0, 1] and Df , such that f0 b 
0 0    1 2 1    2 

illustrates the A configuration relative to Df and Df ). f1 b f2 b f3. If Mf , f N Mf , f , and Mf , f N Mf , f then Mf , f N Mf , f 

(cf. Fig. A.1). 

Proof 

 
f0bf1bf2 

Mf ; f NMf ; f 

 

 

 

 

 

 

 
 

L:1 

Z M 
 

 
 

 

 

 
 

f1; f2 
NMf0; f2 g  

 

 

 

 

0    2 0   1 

Z 

g 

2 
Mf0; f1NDf 

Mf0; f1 bMf1; f2 
0 

Mf1; f2NDf Property 3. Let FaF. F↗[a,b] ⇔∀f0, f1, f2 ∈ [a, b] / f0 b f1 b f2, 
Mf , f b Mf , f ⇔ rf , f b rf , f ⇔— bð f1Þ—bð f0Þ b — bð f2Þ—bð f0Þ.

 

By the same way, we obtain Mf , f N Mf , f . 
and Mf , f b Mf , f . 

Fig. A.1. shows such a configuration: Mf ,f b Mf ,f b Mf ,f  

1 2 

0 

3 

1 f0; f1 Z f1 

f2 Z 0 f0; f2 

0 
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2    3 0 

0    2 0    1 

2 

f0; f2 

f2; f3 

Z Mf2; f3 NMf0; f2 

f1bf2bf3 

Mf ; f NMf ; f 

L:1 

Z M 

f2; f3 

NMf1; f2 

1    3 1   2 
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f1bf2 
M f  
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f aDf 
g P:5 

M ND
 

f0bf2bf3 
g L:1r 

M NM □
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Fig. A.1. Df , Df , Df and Df are four lines of the set F. {Mf ,f }= Df ∩ Df . 
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Lemma 3 (Generalization of the lemma 2). Let FaF, f0, f1, 
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f2 ∈ [0, 1], such that f0 b f1 b f2 b and Mf ,f N Mf ,f . Let f22, f33∈ [f2, 
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0 1 2 3 i   j i j 
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A ∈ Df and B ∈ Df such that A N Df and B N Df . 1] such as f22b f33. If Mf ,f b Mf ,f b Mf ,f  then Mf ,f b Mf ,f . 
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1 2 0 0 
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1    2 1    22 
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1    33 
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0    22 
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0    33 
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2n 

0   2 1   3 0  3 

Mf0 ; f1 
bMf0 ; f22 

8iaf1; 2n — 1gjb — a jVe Z Fc 

Z Mf22 ;f33 
NMf0 ;f22 Z Mf22 ;f33 

aDf22 

Z Mf22 ;f33 
NDf0 Z Mf

 

f NDf g Z Mf0 ;f22 
bMf0 ;f33 

Lemma 4. Let FaF and a, b ∈ [0, 1], such that a b b, α and β 

Mf22 ;f33 
NMf0 ;f22 

(see Definition 1) are C1 functions. Then F↗ if ∀f , f ∈ [a, b] 
22 ; 33 0 

 

Proof Proof. Let   naN ⁎,   such   that   n ≥ 1,   ∀i ∈ {1,   …  2n − 1} 

 
f1bf22bf33 g 

 
 

 
L:1 

M bM
 

ai ¼ i—1 g 
 

 

 

 

 

and bi ¼ iþ1. g 

Mf  ; f    bMf  ; f    
gZ

 

f1 ; f22 f22 ; f33 

0 ¼ a Va bb Va bb N a bb Vb ¼ 1 

f0bf1bf2bf22 L:2 
1   22 1   33 

f bf bf L:1 1 2 1 3 2 2n—1 2n—2 2n—1 Pr:1 

Mf0 ; f1 
bMf0 ; f2 Z Mf0 ; f1 

bMf0 ; f22 
Z 

0     1     22 
g Z Mf1 ; f22 NMf0 ; f22 

Z Fc:   □ 

1 ; 2 1 ; 22 f0bf22 

Mf   f bMf   f 

2n 
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g P:5 

f
0bf
22bf
33 

L:1r 

i  i ½ai;bi ] 
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2 

2 

— þ b e e A; 

Theorem 2 (The increasing property). Let FaF, such that α, 

β are C2 functions, and α‴ and β‴ exist. Then F↗ if ∀f ∈[0, 1]: 

bWa V— b VaW b0: 
|fflfflfflfflfflfflfflffl{

w

zfflfflfflfflfflfflffl ffl} 

□ 
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g 
00   22 00     11 00    22 

Mf00; f1 bMf00; f2 ðFc½ f0; f2]Þ Z Mf00 ; f2 
bMf00 ; f22 

Z Mf00 ;f11
bMf00 ; f22 

Þ ½ 1; 3] 

Mf00; f11bMf00; f2ðFc½ f0; f2]Þ 

• case 3: f ≤ f f f f f ≤ f : 

00 1 00 2 0 2 g 

Theorem 1. Let FaF,f , f  , f  , f  ∈ [0, 1] such that f b f b f b 
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such that f0 b f1: 

d
 
bðf1Þ—bðf0Þ
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[a,b] 0   1 



584 A. Kallel et al. / Remote Sensing of Environment 111 (2007) 553–566 

 

 

0    1    2    3 0 1 2 aðf1Þ—aðf0Þ b0: ðA:1Þ 
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f3. If F↗[f ,f ] and F↗[f ,f ] then F↗[ f ,f ]. 
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Proof. Let f00, f11, f22 ∈[ f0, f3] such that f00 b f11 b f22. Let us 
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df1 

|fflfflfflfflfflffl
W

fflffl{
ð 

z
f1

ffl
;

ffl
f

ffl
0

fflffl
Þ

fflfflffl} 
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show that Mf 

00, f11 

b Mf 

00, f22 

in any of the six cases: 

Proof. Ψ ( f , f ) b 0 then 
bð f1Þ—  bð f0Þ 

is a strictly increasing 1     0 
að f Þ —  að f Þ 
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• case 1: f0 ≤ f00 b f11 b f22 ≤ f2 b f3: then f00, f11, f22 ∈[ f0, f2], 
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F↗[ f , f ] by assumption. 
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function then: 1 0
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0      2 
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• case 2: f0 ≤ f00 b f11 ≤ f1 b f2 b f22 ≤ f3: 
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bð f1Þ—  bð f0Þ bðf2Þ— bð f0Þ P:3 □ 
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— 
að f  Þ — að f  Þ 

b — 
að f  Þ — að f  Þ 

Z Fc½a;b]:
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Mf ; f bMf ; f ðFc f f 1 2 1 22 

f00bf1bf2bf22 
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gL:2 g 
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1 0 2 0 
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0 00 b 1 b 11 b 2 b 22 3 
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Proof. As ψ is a 
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continuous function in [0, 
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1] and ∀f ∈[0, 1], 

ψ( f ) b 0. Then aeaR⁎, such that ψ b− ε. 
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f00bf11bf2bf22 

Mf00; f11 bMf00; f2 ðFc½ f0; f2 ]Þ 
Mf11; f2 bMf11; f22 ðFc½ f1; f3 ]Þ 

L:2 

Z Mf00 ;f11 
bMf00 ;f22 

Let f0, f1 ∈ [0, 1], s
þ

uch that f0 b f1: 
Wðf1; f0Þb0 () b Vð f1Þðaðf1Þ— aðf0ÞÞ — a Vð f1Þðbð f1Þ— bð f0ÞÞb0; 

() 
ð f1 — f0Þ 

wð f0Þþ Oð f1 — f0Þ
3b0; 

• case 4: f0 ≤ f00 b f1 b f11 = f2 
Mf   ,f   ⇒ Mf   , f    b M f   , f 
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b f22 ≤ f3 : as in case 2, M 

f00, f2  
b 

(

)

 wð f0Þþ Oð f1 — f0Þb0; 

where O verifies:eaAaRþ=8f a½0; 1]; Oð f ÞbfA 



A. Kallel et al. / Remote Sensing of Environment 111 (2007) 553–566 605 

 

• case 5: f0 ≤ f00 b f1 b f2 b f11 b f22 ≤ f3: 
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Now, let e0 ¼ 
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, f ∈[0, 1], f0, f1 ∈[f, f + ε0], such that f0 
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b f1: 
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A 
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Mf ; f bMf 

f00bf1bf2 f2bf11bf22 

; f  ðFc½ f  ; f  ]Þ 
L:3 

Z Mf00 ;f11 
bMf00 ;f22 
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wð f0Þþ O ð f1 — f0Þ  b — e þð f1 — f0ÞA; 
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0 

b 0 : Mf1; f2 bMf1; f11 bMf1; f22 ðFc½ f1; f3]Þ 
• case 6: f0 b f1 ≤ f00 b f11 b f22 ≤ f3: then  f00, f11, f22 ∈[ f1, f3], 

F↗[ f1, f3] by assumption. □ 

Proposition 1. Let FaF; naN ⁎, a1, …, an, b1, …, bn ∈ [0, 1] 

such that 0 = a1 ≤ a2 b b1 ≤ a3 b b2 ≤ a4 b b3 ≤ a5 … an−1 b bn−2 
≤ an b bn−1 ≤ bn = 1. If ∀i ∈ {1, …, n}, F↗[a ,b ], then F↗. 

Then, ∀f0, f1 ∈[ f, f + ε0]/ f0 b f1, Ψ ( f1, f0) b 0. Then, ∀f ∈[0, 1] 

F↗[ f, f + ε0]. Therefore, according to the Proposition 2 F↗. □ 
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