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Abstract

In this paper, we give an optimal lower bound for the eigenvalues

of the basic Dirac operator on a quaternion-Kähler foliations. The

limiting case is characterized by the existence of quaternion-Kähler

Killing spinors. We end this paper by giving some examples.
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1 Introduction

On a compact quaternion-Kähler spin manifold (M, g) of dimension 4m ≥ 8,
O. Hijazi and J.-L. Milhorat [13] conjectured that any eigenvalue of the Dirac
operator satisfies

λ2 ≥
m+ 3

4(m+ 2)
S, (1.1)

where S denotes the constant scalar curvature (such manifolds are Einstein
[1]). They proved that (1.1) is true for m = 2 and m = 3. For this, they
introduced [14] the twistor operator, as in the Kähler case, on each eigenbun-
dle associated with the eigenvalues of the fundamental 4-form Ω [12]. Using
representation theory, the lower bound (1.1) is established by W. Kramer,
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U. Semmelmann and G. Weingart [21]. Their proof is based on the decom-
position in two ways of the bundle TM⊗TM ⊗ΣM into parallel subbundles
under the action of the group Sp1 × Spm.
On a compact Riemannian manifold (M, gM ,F) with a spin foliation F of
codimension q and a bundle-like metric gM , S. D. Jung [4] gives a Friedrich-
type inequality. For Kähler foliations, he also gives a Kirchberg-type inequal-
ity for odd complex dimensions [5] where the even case was proved by the
author [7]. The main result of this paper is to prove the following theorem:

Theorem 1.1 Let (M, gM ,F) be a compact Riemannian manifold with a

quaternion-Kähler spin foliation F of codimension q = 4m and a bundle-like

metric gM with a coclosed basic 1-form mean curvature κ. Then the foliation

is minimal and any eigenvalue λ of the basic Dirac operator satisfies

λ2 ≥
m+ 3

4(m+ 2)
σ∇, (1.2)

where σ∇ denotes the transversal scalar curvature.

Our approach comes from an adaptation of [10] and [20] to the case of Rie-
mannian foliations where the key point is to prove that the mean curvature
vanishes since the transversal Ricci curvature is strictly positive. The limit-
ing case is characterized by the existence of quaternion-Kähler Killing spinors
(see section 5 for details).
We point out that throughout this paper, we consider a bundle-like metric
such that the mean curvature is a basic 1-form and coclosed. The existence
of such metric is assured in [3, 16].
The author would like to thank J.-L. Milhorat for helpful discussions also he
would like to thank Oussama Hijazi for his encouragment.

2 Spin Foliations

In this section, we summarize some standard facts about spin foliations. For
details, we refer to [4], [6], [7], [17].

Let (M, gM ,F) be a (p + q)-dimensional Riemannian manifold with a Rie-
mannian foliation F of codimension q and let ∇M be the Levi-civita con-
nection associated with gM . We denote by L the tangent bundle of TM and
Q = TM/L ≃ L⊥ the normal bundle and we assume gM to be a bundle-like

metric on Q, that means the induced metric gQ verifies for all X ∈ Γ(L) the
holonomy invariance condition that is LXgQ = 0, where LX is the Lie deriva-
tive with respect to X. Let ∇ be the transversal Levi-Civita connection on
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Q defined for all Y ∈ Γ(Q) by

∇XY =

{
π[X, Y ], ∀X ∈ Γ(L) ,
π(∇M

X Y ), ∀X ∈ Γ(Q) ,

where π : TM → Q denotes the projection. The curvature of ∇ acts on Γ(Q)
by :

R∇ (X, Y ) = −∇X∇Y + ∇Y ∇X + ∇[X,Y ], ∀X, Y ∈ χ (M) .

We denote by ρ∇, σ∇ the transversal Ricci curvature and the scalar curvature
respectively associated with ∇. The foliation F is said to be transversally Ein-
stein if and only if ρ∇ = 1

q
σ∇Id, with constant transversal scalar curvature.

The mean curvature of F is given for all X ∈ Γ(Q) by κ (X) = gQ (τ,X),
where τ is the trace of the second fundamental form II of F defined by:

II : Γ(L) × Γ(L) −→ Γ(Q)

(X, Y ) 7−→ II (X, Y ) = π
(
∇M

X Y
)
.

We define basic r-forms by :

Ωr
B (F) = {Φ ∈ ΛrT ∗M | XxΦ = 0 and XxdΦ = 0, ∀X ∈ Γ(L)} ,

where d is the exterior derivative and Xx is the interior product. We denote
by dB = d|ΩB(F) where ΩB (F) = ⊕p+q

r=0 Ωr
B (F) and δB the adjoint operator

of dB with respect to the induced scalar product. The basic Laplacian is
defined as ∆B = dBδB + δBdB. Now we prove the following theorem.

Theorem 2.1 Let (M, gM ,F) be a compact Riemannian manifold with a

Riemannian foliation F and a bundle-like metric gM with a coclosed basic 1-
form κ. Assume that the transversal Ricci curvature is strictly positive, then

the mean curvature κ vanishes.

Proof. In [8, 11], it is proved that the positivity of the transversal Ricci
curvature implies the existence of a basic function h such that κ = dBh.
Then ∆Bh = δBdBh = δBκ = 0. Hence the harmonicity of h implies that
the function h is closed, since M is compact. Thus the foliation is minimal. �

Now, we assume that the normal bundle Q carries a spin structure and we
denote by S(F) the foliated spinor bundle. The normal bundle acts on the
spinor bundle by Clifford multiplication and the transversal Dirac operator
[6] is locally given by:

DtrΨ =

q∑

i=1

ei · ∇ei
Ψ −

1

2
κ · Ψ, (2.3)
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for all Ψ ∈ Γ(S(F)). We can easily prove using Green’s theorem [18] that
this operator is formally self-adjoint. We define the subspace of basic sections
ΓB(S(F)) by

ΓB(S(F)) = {Ψ ∈ Γ(S(F))| ∇XΨ = 0, ∀X ∈ Γ(L)}.

The transversal Dirac operator leaves ΓB(S(F)) invariant if and only if the
foliation is isoparametric. Moreover the basic Dirac operator defined by
Db = Dtr|ΓB(S(F)), has a discrete spectrum [2] and if the foliation F is
isoparametric with δBκ = 0, we have the Schrödinger-Lichnerowicz formula
for Db [6]

D2
bΨ = ∇⋆∇Ψ +

1

4
K∇

σ Ψ,

where K∇

σ = σ∇ + |κ|2 and

∇⋆∇Ψ = −

q∑

i=1

∇2
ei,ei

Ψ + ∇κΨ,

with ∇2
X,Y = ∇X∇Y −∇∇XY , for all X, Y ∈ Γ(TM).

3 Quaternion-Kähler Foliations

In this section, we review some basic relations on quaternion-Kähler spin
foliations [13] also we give basic ingredients for the estimate which could be
found in [10] .
A foliation F of codimension q = 4m is said to be quaternion-Kähler if its
principal bundle of oriented orthonormal frames SOQ admits a reduction P
to the subgroup Sp1 · Spm := Sp1 ×Z2

Spm ⊂ SO4m. This is equivalent to the
existence of a subbundle E of End(Q) of rank 3 which admits a local frame
{Jα}α=1,2,3 such that the metric gQ is hermitian for Jα, α = 1, 2, 3 and verifies

{
Jα ◦ Jβ = −δαβId + ε123

αβγJγ ,

∇Jα =
∑3

β=1 ω
β
αJβ,

(3.1)

where ωβ
α are the local 1-forms on M and ε123

αβγ = ±1 if (α, β, γ) is even or
odd permutation of (1, 2, 3). We note that a quaternion-Kähler foliation is
transversally Einstein [1], hence it admits a constant scalar curvature which
is supposed to be positive throughout this paper. A consequence of the
definition is the existence of a parallel 4-form Ω defined by Ω =

∑3
α=1 Ωα∧Ωα,

where the Ωα are the local Kähler 2-forms associated with Jα. The 4-form Ω
can be written as

Ω =
3∑

α=1

Ωα · Ωα + 6mId. (3.2)
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Under the action of Ω, the foliated spinor bundle S(F) splits into an orthog-
onal sum

S(F) =
m

⊕
r=0

Sr(F),

where Sr(F) is the eigenbundle associated with the eigenvalue
µr = 6m − 4r(r + 2) of Ω. Moreover, the action of the group Sp1 × Spm

splits the bundle QC ⊗ Sr(F) into [21]

QC ⊗ Sr(F) = Wr+1,r̄(F) ⊕Wr−1,r̄(F) ⊕Wr+1,r−1(F) ⊕Wr−1,r+1(F)

⊕Wr−1,r−1(F) ⊕Wr+1,r+1(F), (3.3)

whereWr,s(F) denotes the space of the irreducible representation of the group
Sp1 × Spm with dominant weight

(r, 1, · · · , 1, 0, · · · , 0︸ ︷︷ ︸
s

),

and Wr,s̄(F) is the space of the irreducible representation of the group
Sp1 × Spm with dominant weight

(r, 2, 1, · · · , 1, 0, · · · , 0︸ ︷︷ ︸
s

).

The last two bundles in (3.3) are respectively isomorphic to Sr−1(F) and
Sr+1(F). We denote by mr the restriction of the Clifford multiplication to
QC ⊗ Sr(F). The kernel of mr splits into an orthogonal sum

Kermr = Wr+1,r̄(F) ⊕Wr−1,r̄(F) ⊕Wr+1,r−1(F) ⊕Wr−1,r+1(F).

This comes from the computation of the image of mr of the maximal vector
of each component of (3.3). Thus the restriction of mr to Wr−1,r−1(F) (resp.
Wr+1,r+1(F)) is an isomorphism onto Sr−1(F) (resp. Sr+1(F)). Let (. , .) be
the usual hermitian product on QC⊗S(F). Since (mr(.), mr(.)) and (. , .) are
(Sp1×Spm)-invariant scalar products on both Wr−1,r−1(F) and Wr+1,r+1(F),
one gets from Schur lemma

∀w ∈Wr−1,r−1(F), |mr(w)|2 =
2(r + 1)(m− r + 1)

r
|w|2, (3.4)

and,

∀w ∈ Wr+1,r+1(F), |mr(w)|2 =
2(r + 1)(m+ r + 3)

r + 2
|w|2. (3.5)
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In order to obtain a similar result for the other terms in (3.3), we locally
define the operator m̃ : Γ(QC ⊗ S(F)) −→ Γ(EC ⊗ S(F)) by

m̃(X ⊗ Ψ) =
3∑

α=1

Jα ⊗ (Jα(X) · Ψ), (3.6)

for all X ∈ Γ(Q) and Ψ ∈ Γ(S(F)). We denote by m̃r the restriction of m̃
to QC ⊗ Sr(F). As above, computing the image of m̃r of maximal vector of
each component of (3.3), the kernel of m̃r splits into

Ker m̃r = Wr+1,r̄(F) ⊕Wr−1,r̄(F).

Using the same argument as in (3.4) and (3.5), one gets from Schur lemma

∀w ∈Wr+1,r−1(F), |m̃r(w)|2 = 4(m− r + 1)|w|2, (3.7)

∀w ∈Wr−1,r+1(F), |m̃r(w)|2 = 4(m+ r + 3)|w|2, (3.8)

∀w ∈Wr−1,r−1(F), |m̃r(w)|2 =
2(r − 1)(m− r + 1)

r
|w|2, (3.9)

∀w ∈Wr+1,r+1(F), |m̃r(w)|2 =
2(r + 3)(m+ r + 3)

r + 2
|w|2. (3.10)

4 The main Result

In this section, we show (1.2) by using the decomposition of the bundle
QC ⊗ Sr(F) given in the above section . We refer to [10], [19], [21].

Theorem 4.1 Under the same conditions as in Theorem 2.1 with the as-

sumption that the foliation F has a quaternion-Kähler spin structure of codi-

mension q = 4m, then the mean curvature κ vanishes and any eigenvalue λ
of the basic Dirac operator satisfies

λ2 ≥
m+ 3

4(m+ 2)
σ∇,

where σ∇ denotes the transversal scalar curvature.

Proof. The fact that F is minimal comes from Theorem 2.1 since the
transversal scalar curvature is supposed to be positive. For the second part,
according to the decomposition (3.3), for any Ψ ∈ ΓB(Sr(F)), the covariant
derivative ∇Ψ splits into

∇Ψ = (∇Ψ)r+1,r̄ + (∇Ψ)r−1,r̄ + (∇Ψ)r+1,r−1 + (∇Ψ)r−1,r+1

+(∇Ψ)r−1,r−1 + (∇Ψ)r+1,r+1.
(4.1)
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In order to compute the norm of ∇Ψ, since the last two terms in the above
equation are sections in the subbundles Sr−1(F) and Sr+1(F) respectively,
we get from (3.4) and (3.5),

|(∇Ψ)r−1,r−1|
2 =

r

2(r + 1)(m− r + 1)
|D−Ψ|2, (4.2)

and,

|(∇Ψ)r+1,r+1|
2 =

r + 2

2(r + 1)(m+ r + 3)
|D+Ψ|2, (4.3)

where D−Ψ = (DbΨ)r−1 and D+Ψ = (DbΨ)r+1. Similar results could be
obtained for the other terms in (4.1) by using the definition of the operator
m̃ in (3.6). For this, we consider for any spinor Ψ the operator DαΨ locally
defined by

∑4m

i=1 Jα(ei) ·∇ei
Ψ. Hence we have m̃(∇Ψ) =

∑3
α=1 Jα⊗DαΨ and

we get that

|m̃(∇Ψ)|2 =

3∑

α=1

|DαΨ|2.

On the other hand, Equations (3.7), (3.8), (3.9), (3.10) imply that

|m̃((∇Ψ)r+1,r−1)|
2 = 4(m− r + 1)|(∇Ψ)r+1,r−1|

2,

|m̃((∇Ψ)r−1,r+1)|
2 = 4(m+ r + 3)|(∇Ψ)r−1,r+1|

2,

|m̃((∇Ψ)r−1,r−1)|
2 =

2(r − 1)(m− r + 1)

r
|(∇Ψ)r−1,r−1|

2,

|m̃((∇Ψ)r+1,r+1)|
2 =

2(r + 3)(m+ r + 3)

r + 2
|(∇Ψ)r+1,r+1|

2.

Hence by the above equations and (4.2), (4.3), we conclude for any Ψ ∈
ΓB(Sr(F)) that

3∑

α=1

|DαΨ|2 = 4(m− r + 1)|(∇Ψ)r+1,r−1|
2 + 4(m+ r + 3)|(∇Ψ)r−1,r+1|

2

+
r + 3

r + 2
|D+Ψ|2 +

r − 1

r + 1
|D−Ψ|2. (4.4)

Then using equations (4.2), (4.3), (4.4) and by (4.1), we write the norm of
∇Ψ as

|∇Ψ|2 = |(∇Ψ)r+1,r̄|
2 + |(∇Ψ)r−1,r̄|

2 +
2(r + 1)

m+ r + 3
|(∇Ψ)r+1,r−1|

2

+
1

4(m+ r + 3)

3∑

α=1

|DαΨ|2 +
1

4(m+ r + 3)
|D+Ψ|2

+
m+ 3r + 1

4(m− r + 1)(m+ r + 3)
|D−Ψ|2. (4.5)
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Now let λ be any eigenvalue of the basic Dirac operator, then there exists an
eigenspinor Ψ, called of type (r, r + 1), such that

DbΨ = λΨ and Ψ = Ψr + Ψr+1,

with r ∈ {0, · · · , m − 1}. In [13], it is showed that for any spinor
Ψ ∈ ΓB(S(F)), we have

∫

M

3∑

α=1

|DαΨ|2 = 3

∫

M

(D2
bΨ,Ψ) +

σ∇

4m(m+ 2)

∫

M

((Ω − 6m) · Ψ,Ψ).

Therefore, applying Equation (4.5) to Ψr+1 and integrating over M, one gets
since D−Ψr+1 = λΨr and D+Ψr+1 = 0

0 ≤ ||∇Ψr+1||
2
L2 − arλ

2||Ψr+1||
2
L2 + brσ

∇||Ψr+1||
2
L2 − crλ

2||Ψr||
2
L2,

where, 



ar = 3
4(m+r+4)

,

br = (r+1)(r+3)
4m(m+2)(m+r+4)

,

cr = m+3r+4
4(m−r)(m+r+4)

.

Finally with the help of the Schrödinger-Lichnerowicz formula and the fact
that Ψr and Ψr+1 have the same L2-norms, we get (1.2). �

5 The Limiting case

Let λ be the first eigenvalue satisfying equality in (1.2) and Ψ an eigenspinor
of type (r, r + 1). From the proof of Theorem 2.1, one gets necessarily that
r = 0 and the following equations [10]





|∇Ψ0|
2 = 1

m+3
|DbΨ0|

2,

|∇Ψ1|
2 = 1

4m
|DbΨ1|

2 + 1
4(m+4)

∑3
α=1 |DαΨ1|

2.
(5.1)

Furthermore, the spinor Ψ1 satisfies

∑3
α=1 Ωα ·DαΨ1 = 0,

∑
β,γ ε

123
αβγΩβ ·DγΨ1 = 8DαΨ1, ∀α = 1, 2, 3.

(5.2)
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Moreover for all X ∈ Γ(Q), we have the quaternion-Kähler Killing equations
[10], [19], [20]

∇XΨ0 = −
λ

m+ 3
p1(X) · Ψ1, (5.3)

and,

∇XΨ1 = −
λ

4m
X · Ψ0 −

1

4(m+ 4)

3∑

α=1

Jα(X) ·DαΨ1, (5.4)

where for all X ∈ Γ(Q), the operator p1 is defined by (see [14])




p1(X) = 1
8
(5X + J (X)),

J (X) = 1
4
[Ω, X].

In order to prove (5.3), we define the transversal quaternion-Kähler twistor
operator, denoted by P0, on the bundle S0(F) whose the image lies in the
bundle Q∗ ⊗ S0(F) (see [14] for the details). For any spinor field ψ0 ∈
ΓB(S0(F)), we write

P0ψ0 =
4m∑

i=1

ei ⊗ (∇ei
ψ0 +

1

m+ 3
p1(ei) ·Dbψ0),

where {ei}i=1,··· ,4m is a local orthonormal frame of Γ(Q). By a straight-
forward computation and with the definition of p1, we easily verify that∑4m

i=1 ei · P
0
ei
ψ0 = 0. Hence the image of P0 lies in the kernel of Clifford

multiplication m0. Since P0
ei
ψ0 is a section on S0(F), we deduce with the

definition of the operator J , that
∑4m

i=1 J (ei) · P
0
ei
ψ0 = 0. Then

|P0ψ0|
2 =

4m∑

i=1

(P0
ei
ψ0,P

0
ei
ψ0)

=

4m∑

i=1

(P0
ei
ψ0,∇ei

ψ0)

= |∇ψ0|
2 +

1

m+ 3

4m∑

i=1

(p1(ei) ·Dbψ0,∇ei
ψ0). (5.5)

Since Clifford multiplication by J is symmetric, one can easily verify that
(∇ei

ψ0, p1(ei) · Dbψ0) = −(ei · ∇ei
ψ0, Dbψ0). Then for any spinor

ψ0 ∈ Γ(S0(F)), Equation (5.5) reduces to

|P0ψ0|
2 = |∇ψ0|

2 −
1

m+ 3
|Dbψ0|

2,

9



which vanishes by (5.1) for the spinor field Ψ0. Thus Equation (5.3) is satis-
fied for X = ei. �

Now, we will prove Equation (5.4). The proof consists in computing the
sum

∑4m

i=1 |∇ei
Ψ1 + 1

4m
ei ·DbΨ1 + 1

4(m+4)

∑3
α=1 Jαei ·DαΨ1|

2 =

|∇Ψ1|
2 + 1

4m
|DbΨ1|

2 + 1
16(m+4)2

∑4m

i=1 |
∑3

α=1 Jαei ·DαΨ1|
2

+ 1
2m

∑4m

i=1(∇ei
Ψ1, ei ·DbΨ1) + 1

2(m+4)

∑4m

i=1(∇ei
Ψ1, Jαei ·DαΨ1).

(5.6)

The fact that Clifford multiplication by ei and Jα(ei) is skew-symmetric, the
last terms are easily computed and it remains to compute the third term in
the r.h.s. of (5.6) . For this, using a local orthonormal frame {Jαei}i=1,··· ,4m

and (3.1), it follows

4m∑

i=1

|

3∑

α=1

Jαei ·DαΨ1|
2 =

∑

i,α,β

(Jαei ·DαΨ1, Jβei ·DβΨ1)

=
∑

i,α,β

(DαΨ1, ei · JβJαei ·DβΨ1)

= 4(m+ 4)

3∑

α=1

|DαΨ1|
2. (5.7)

The last identity in (5.7) comes from (3.1) and (5.2). Finally substituting
(5.7) and using (2.3), Equation (5.6) reduces to

∑4m

i=1 |∇ei
Ψ1 + 1

4m
ei ·DbΨ1 + 1

4(m+4)

∑3
α=1 Jαei ·DαΨ1|

2 =

|∇Ψ1|
2 − 1

4m
|DbΨ1|

2 − 1
4(m+4)

∑3
α=1 |DαΨ1|

2,

which vanishes by (5.1). �

Example 1 We consider the compact manifold N = M ×HPm, where M is
a compact Riemannian manifold of dimension p and HPm is the quaternionic
projective space with its standard metric. Let gN be the product metric on
N. We define a foliation F on N by its leaves of the form M × {y} where
y ∈ HPm. This is a Riemannian foliation on N and gN is a bundle-like metric
with totally geodesic fibers. Since the fibers of the normal bundle are the
tangent space of HPm, then it carries a quaternion-Kähler spin structure and
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the basic Dirac operator coincides with the one on HPm where the eigenval-
ues are computed in [9]. Hence the limiting case in (1.2) is achieved.

Example 2 Let M be a compact 3-Sasakian manifold and consider the folia-
tion on M defined by its Killing vector fields. This is a Riemannian foliation
with a bundle-like metric and totally geodesic fibers diffeomorphic to Γ \ S3

where Γ is a finite subgroup of Sp1 [15]. It induces a quaternion-Kähler spin
structure on the normal bundle with positive transversal scalar curvature.
If M is either S4q+3 or RP

4q+3, then it projects onto HPm (Hopf fibration).
Since the fibers of the normal bundle are isomorphic to the tangent space of
HPm, then equality in (1.2) is achieved.
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