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Abstract-Ant colony optimization (ACO) has been proposed as a promising tool for regularization in image classification. The algorithm is applied here in a different way than the classical transposition of the graph color affectation problem. The ants collect information through the image, from one pixel to the others. The choice of the path is a function of the pixel label, favoring paths within the same image segment. We show that this corresponds to an automatic adaptation of the neighborhood to the segment form, and that it outperforms the fixed-form neighborhood used in classical Markov random field regularization techniques. The performance of this new approach is illustrated on a simulated image and on actual remote sensing images.
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I. INTRODUCTION

T HE development of algorithms for global classification, such as maximum a posteriori (MAP) under Markov random field (MRF) modeling has been an area of active study, in particular, since Geman and Geman [START_REF] Geman | Stochastic relaxation, Gibbs distribution and Bayesian restoration of images[END_REF]. For a given neighborhood system with clique potential functions, the equivalence between MRF and Gibbs field is established, and a global energy term is defined that should be minimized. Apart from local minimization processes, such as the iterative conditional mode (ICM), global minimization is generally achieved using the simulated annealing (SA) technique. In this modeling, the neighborhood form is considered to be independent of its location in the image. This may lead to classification errors for pixels located at the segment borders or extremities, since their neighborhoods contain some pixels belonging to other segments or classes. To overcome this problem, one approach consists of defining a line process [START_REF] Geman | Boundary detection by constrained optimization[END_REF]. Due to the induced complexity, in the framework of image restoration, some specific potentials to preserve edges can be used as an alternative [START_REF] Geman | Constrained restoration and recovery of discontinuities[END_REF], [START_REF] Descombes | Spatio-temporal fMRI analysis using Markov random fields[END_REF]. Another solution could be to relax the assumption of neighbourhood stationarity. The lack of an efficient heuristic is probably the main cause of the absence of published work (to our knowledge) dealing with nonstationary neighborhoods.
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Ant colony optimization (ACO) is currently a popular algorithm [START_REF] Dorigo | The ant system: Optimization by a colony of cooperating agents[END_REF]. The classical application is to routing in telecommunication networks, on which a number of papers have been published [START_REF] Schoonderwoerd | Ant-like agents for load balancing in telecommunications networks[END_REF]- [START_REF] Sigel | Application of ant colony optimization to adaptive routing in a LEO telecommunications satellite network[END_REF]. ACO has been applied to various problems with good results [START_REF] Maniezzo | The ant system applied to the quadratic assignment problem[END_REF]- [START_REF] Gambardella | Ant colonies for the quadratic assignment problem[END_REF]. Just as the techniques of simulated annealing and genetic algorithms imitate computing strategies arising from natural physical or biological phenomena, ACO derives from the behavior of social insects. The success achieved using such methods is due, in large part, to the introduction of randomness in the search procedure, permitting to escape from local minima and, thus, achieving a more globally favorable solution. In ACO, the information gathered by simple autonomous mobile agents is shared and exploited to solve the problem.

Ant-based systems have also been used for clustering problems, modeling real ant abilities to sort objects. For instance, in [START_REF] Labroche | A new clustering algorithm based on the ants chemical recognition system[END_REF], the clustering is based on the definition of an "odor" associated to each sample (represented by an ant) and the mutual recognition of ants sharing a similar "odor" to construct a colonial odor used to discriminate between nest mates and intruders. In other approaches, when a specialized ant meets a given object it collects it with a probability that is the higher the sparser are the objects in this region, and, after moving, it brings in the object with a probability that is the higher the denser are the objects in this region. Besides ACO, ant colony systems (ACS) have been proposed. In [START_REF] Fernandes | Self-regulated artificial ant colonies on digital image habitats[END_REF], it is used for edge detection as follows: The ants evolve on the image itself by reinforcing pheromone levels around pixels with different gray levels or presenting gestalt features. The ant system evolves during generations moving to adjacent pixels at each generation and having more favorable survival and reproduction conditions depending on the local features of the image (for edge detection, the most contrasted the most favorable a region is). In [START_REF] Nezamabadi-Pour | Edge detection using ant algorithms[END_REF], the notion of visibility determined using the maximum variation of gray level of the image intensity is used to drive the ant displacement.

In the context of global image classification under the classical MRF assumption, Ouadfel and Batouche [START_REF] Ouadfel | MRF-based image segmentation using ant colony system[END_REF] have shown that ACO produces equivalent or better results than other stochastic optimization methods like SA and genetic algorithm. In [START_REF] Ouadfel | MRF-based image segmentation using ant colony system[END_REF], the authors make an analogy between pixel labeling in the global classification problem and the assignment problem, as it is done in the graph coloring problem. Each ant constructs its own solution, and a trace of the best solution is kept (though the pheromone deposit technique) during the iterative construction of the final solution. Such a use of ACO can be seen as an extension of the SA technique. At each iteration the new solution is constructed taking into account not only the very last one, like in [START_REF] Geman | Stochastic relaxation, Gibbs distribution and Bayesian restoration of images[END_REF], but a combination of several previous solutions (their number depending on the pheromone evaporation rate). Moreover, at each iteration, not only is one new solution constructed, but several (as many as ants) to produce the one which will be "memorized" (generally the best solution). In this sense, it shares some ideas with the particle filtering [START_REF] Moral | Non linear filtering: Interacting particle solution[END_REF] and the Bayesian bootstrap filtering [START_REF] Gordon | Novel approach to nonlinear/nongaussian Bayesian state estimation[END_REF] techniques.

In this study, we propose to use the ACO by exploiting its ability of self-organization, according to an optimization approach which is similar to the traveling salesman problem, and the routing problem in telecommunication systems. It allows a more flexible image modeling in particular concerning the neighborhood form, and it offers a meta-heuristic to solve it. We consider a MRF modeling with a nonstationary neighborhood. We propose an ACO scheme which jointly estimates the regularized classification map and the optimal nonstationary neighborhood.

Section II deals with the image modeling. In Section III, we present the proposed method based on ACO meta-heuristics. Section IV shows some results, firstly obtained on simulated images, and secondly, obtained on an actual remote sensing image acquired by SPOT/HRVIR satellite sensor. Finally, Section V gathers our conclusions.

II. IMAGE MODEL AND CLASSIFICATION PROBLEM

Let us introduce the following notations.

is the dimension in lines of the image and its dimension in columns. The total number of pixels is then . is the set of the pixel locations, and is its cardinal: . The image is defined as a random field taking values in , and the label image is a random field which takes values in , where and is the class number

A. Case of Classical Stationary Neighborhood

The problem of image classification is to determine the realization of , knowing those of . According to the MAP criterion derived from the Bayes theory, the optimum estimate maximizes . Assuming the distribution law of the pixel values conditionally to their class, i.e., an independent Gaussian in our case, is written as follows:

(1)

where and are respectively the mean and the variance of the class of pixel , labeled .

The prior model is defined assuming that a pixel and its neighbors have a high probability to share the same label. We consider a MRF modeling [START_REF] Bartlett | The Statistical Analysis of Spatial Pattern[END_REF]. Defining a neighborhood system such that, if a pixel has a pixel within its neighborhood , then is a neighbor of (3)

Then, according to the Hammerley-Clifford theorem [START_REF] Besag | Spatial interaction and the statistical analysis of lattice systems[END_REF], follows a Gibbs distribution [START_REF] Descombes | Spatio-temporal fMRI analysis using Markov random fields[END_REF] where is the set of the image cliques that describe the interactions between pixels, is a normalization constant, and is the potential. Finally, the MAP criterion leads to the minimization of the global energy

(5) The first two terms within the brackets are called the "data attachment" energy. The minimization of ( 5) is performed using the fact that the global energy difference between two label image configurations only differing by one pixel label, either or , only depends on this pixel and its neighborhood [START_REF] Schoonderwoerd | Ant-like agents for load balancing in telecommunications networks[END_REF] Generally, the pixel neighborhood is defined in the same manner at each pixel location , i.e., it is assumed that the neighborhood geometry is stationary. For example, in the case of 4-connectivity, the neighborhood of a pixel located in where is the line number and the column one, is constituted by the pixels whose locations belong to , and for a 8-connectivity, the neighborhood contains the pixels located within 1 in line and 1 in column. Such an assumption of neighborhood stationarity may not be true in many cases.

B. Case of Nonstationary Neighborhood

In this section, we consider a MRF with a nonstationary neighborhood form, optimal with respect to the classification map in the sense that two pixels having different labels are unlikely to be neighbors. Let us begin with a simple example of an image with 4 5 pixels and two labels. Fig. 1 shows the nonstationary neighborhood system optimal with respect to a binary labeling (triangles and circles represent the label). Note that reciprocity property (3) is verified. More generally, the nonstationarity of the neighborhood is motivated by the diversity of the areas or object shapes: more or less large, elongated, thin, with some peaks, etc. In this study, we relax the neighborhood stationarity assumption and propose an algorithm where the neighborhood form is automatically adjusted. The used criteria to construct the neighborhood at each location pixel are:

• the neighbor pixels are connected;

• the neighbor pixels have a high probability to share the same label; • each pixel has the same number of neighbors. The last assumption allows us to have for each pixel of the image the same weighting between the prior and the "data attach" terms. Now, for the classification problem, ( 5) is still valid except that the cliques are now defined over nonstationary neighborhoods. In the simplest case, only cliques of cardinal 2 are considered. Assuming the Potts model for the potentials, for a given neighborhood system, the function to minimize is given by [START_REF] Di Caro | AntNet: "A mobile agents approach to adaptive routing[END_REF] where is the number of neighbors having a different label than , and is a positive parameter weighting the relative importance of the "data attach" term and the neighborhood one. The factor 1/2 is due to the fact that, for cliques of order 2, their potentials are counted 2 times when the sum is done over the pixels rather than over the image clique set.

Relaxing the neighborhood stationarity assumption, the optimal neighborhood now depends on the label . Therefore, we cannot directly obtain an expression of the energy difference between two label image configurations as simple as [START_REF] Schoonderwoerd | Ant-like agents for load balancing in telecommunications networks[END_REF]. Indeed, now the cliques involving are not the same ones when and when since they depend on the neighborhood geometry which varies with . Moreover, due to the constraint of constant neighborhood cardinal, when neighborhood is changed, the neighborhoods of some other pixels are also changed: The pixel previous neighbors, that have lost one neighbor (namely ), have to find another pixel neighbor replacing it, and the new neighbors, that have gain one neighbor , have to get rid of another pixel neighbor, and so on.

To reprocess one convenient mathematical framework, we assume the existence of another random field that corresponds to the definition of the nonstationary neighborhood in every pixel. Such an approach is similar to the line process one [START_REF] Geman | Stochastic relaxation, Gibbs distribution and Bayesian restoration of images[END_REF], or, more recently, and in a more general form, to the triplet Markov field approach introduced by Pieczynski [START_REF] Benboudjema | Unsupervised image segmentation using triplet Markov fields[END_REF], [START_REF] Pieczynski | Multisensor triplet Markov fields and theory of evidence[END_REF]. In our case, the values of the restriction of to a pixel , denoted , are the sets of "active" neighbor pixels. Its cardinal is , except at the image borders where it is equal to , and at the image corners where it is equal to . Each value verifies the connection condition (first criterion to construct the pixel neighborhood), and, when varies, values are not independent: They are linked by the reciprocity constraint.

We assume that the couple is a Markov field. Actually, is a Markov field since, due to the reciprocity of the connex nonstationary-form neighborhood [START_REF]AntNet: Distributed stigmeric control for communications networks[END_REF] where is in , one realization of , is except in , one realization of , and is a neighborhood of size lines and columns around (fixed-square neighborhood), and is the size of the nonstationary neighborhood (e.g., 4 or 8). We remember that , is assumed to be constant (equal to ), i.e., only the assumption on the neighborhood shape is relaxed, but not those on its cardinality. Then, assuming is a Markov field (as usually), the couple is also a Markov field over the neighborhood system. We define the cliques set over neighborhood system as in ( 9), shown at the bottom of the page, where , , and . Note that with such a definition, all active neighborhood solutions even those not verifying the reciprocity condition are possible. Then, classically [START_REF] Heusse | Adaptive Agent-Driven Routing and Load Balancing in Communication Networks[END_REF] after simplification of that was present at the numerator and at the denominator of the fraction. In the following, we denote the local energy "attached to" pixel . Then [START_REF] Sigel | Application of ant colony optimization to adaptive routing in a LEO telecommunications satellite network[END_REF] Now, comparing two configurations only differing by , if, for one of these two configurations, the reciprocity condition is not verified for the active neighborhood , the probability of this latter will be very low once . Here, because of the size of the solution space, simulated annealing, that investigates any solution even very improbable, fails, and a classical heuristic such as the ICM would also fail, due to the high number of local configurations. Therefore, alternatively, we propose to define a meta-heuristic that focuses on the solutions verifying the reciprocity and that converges to a favorable local minimum. Now, the problem is to construct the neighborhood with the constraint that each pixel, except for on the image border, has the same number of neighbors, and such that the symmetry property (3) is satisfied. For example, in 8-connectivity, eight neighbors have to be selected, each of them been located in a range of [START_REF] Geman | Stochastic relaxation, Gibbs distribution and Bayesian restoration of images[END_REF][START_REF] Geman | Stochastic relaxation, Gibbs distribution and Bayesian restoration of images[END_REF] lines and the column of another neighbor. The order of selection of the neighbors is without importance. Therefore, during the neighborhood construction, the following neighbor can be selected among any of the pixels located in a range of [START_REF] Geman | Stochastic relaxation, Gibbs distribution and Bayesian restoration of images[END_REF][START_REF] Geman | Stochastic relaxation, Gibbs distribution and Bayesian restoration of images[END_REF] lines and the column of an already selected neighbor. As illustrated in Fig. 2, for the choice of the first neighbor, eight locations are possible, for the second neighbor, the number of possible locations ranges between ten and 12, depending on the first neighbor position, for the third neighbor, the possible location number ranges between 12 and 16 depending on the relative positions of the previous neighbors, and so on. Table I gives the number of possible configurations of connected neighborhoods with cardinal . Besides, when a pixel changes its label, generally it will also completely change its neighborhood (e.g., consider a pixel at the border between two regions having different labels. Depending on its own label , will take preferably its neighborhood in one or the other of the two regions). Therefore, to base neighborhood estimation on the current one is not adequate. Moreover once a pixel has constructed its "active" neighborhood , the "active" neighborhoods of some other pixels (those belonging to ) are already partially constructed, due to the symmetry property (3): Subsequent neighborhood constructions should take into account already achieved neighborhood constructions. Therefore, if the pixel "active" neighborhoods are constructed sequentially, the obtained result depends on the order of selection of the pixels and provides no guaranty of optimality. Since the number of neighborhood solutions is too large (even restricted to those satisfying the reciprocity condition) to allow a practical comparison of each of them, a meta-heuristic has to be defined to find the "optimal" neighborhood configuration: i) knowing the image observation, i.e., realization, and ii) assuming the image label, i.e., realization.

Among the meta-heuristics, we focus on the ACO. This choice is motivated by the two following analogies: the first one between the research of an optimal path (between nest and food) by ants and the research of an optimal set of connected pixels from a given "originate" pixel, and the second one between the environment modification through pheromone deposit and the symmetry property (3). Indeed, in ACO the environment is used as a medium to register any already achieved (partial or complete) solution and take it into account in the research of some other solutions. In our case, it allows us to model the fact that the construction of a pixel "active" neighborhood should be guided by the previous "active" neighborhood constructions (either of this pixel or of some other pixels). Moreover, as we will see in next section, it allows introducing a competition between neighborhood constructions: The pixel "active" neighborhoods are researched in parallel, and the "better" ones are the first ones modifying the environment. There is no mathematical proof of the optimality of the obtained solution, but the performance of the ACO approach to a large number of various problems.

III. ACO METHOD

ACO is modeled on the problem-solving ability of social insects such as ants. The nature-inspired basis of the technique is as follows. While searching for food, ants deposit trails of a chemical substance called pheromones to which other ants are attracted. As shorter paths to food will be traversed more quickly, they have a better chance of being sought out and reinforced by other ants before the volatile pheromones evaporate. Other ants then follow suit, and so on. Thus, using pheromones and random search procedures, the colony is able to find the shortest paths to food rapidly.

More conceptually, the problem of the ant colony is the following: Given a function to minimize (the delay between the ant's nest and food), different solutions are examined (ant exploration), and each of them is memorized (thanks to the pheromone deposit) depending on its quality, and guides the research of the next solutions until convergence.

A. Application to Neighborhood Construction

In this study, we use the ants to find some solutions over the over the neighborhood system satisfying the symmetry property (3), i.e., without cliques having potential value equal to . Considering a pixel , we aim at comparing two configurations only differing by the potential values of the cliques included in , the sized neighborhood around . Indeed, it allows us to use a similar computation as given by [START_REF] Sigel | Application of ant colony optimization to adaptive routing in a LEO telecommunications satellite network[END_REF], simply replacing the "local energy attached to pixel ," by a "local energy attached to

." Practically, this means that, for any pixel of having "active" neighbor(s) outside of , these neighbors are fixed, and only the other "active" neighbors are "free" and can be changed with other possible neighbors belonging to . This is the choice of these "free" neighbors that will be optimized by the ants.

Denoting the Kroenecker function: if , otherwise, writes . Then, using (3) (i.e., considering only configurations verifying the reciprocity condition), ( 7) can be written in a more convenient way to guide the construction of the neighborhoods [START_REF] Maniezzo | The ant system applied to the quadratic assignment problem[END_REF] and local energy relative to is similarly computed [START_REF] Colorni | Heuristics from nature for hard combinatorial problems[END_REF] In [START_REF] Colorni | Heuristics from nature for hard combinatorial problems[END_REF], is the set of free neighbors. For each pixel , the active neighborhoods are constructed so that they minimize the sum within the brackets and satisfy the symmetry property. To achieve this construction, ants are used as follows.

The pixels emit ants. The ants gather the information about neighbor label, along some paths of connected pixels including , the emitting pixel. During their paths, or neighborhood solution constructions, the ants select the following neighbor from "routing indicators." These latter are based on previously deposed pheromones (either by ants emitted by or by ants emitted by other pixels having chosen as neighbor) and the "energy hop" defined as ( 14)

Equation [START_REF] Costa | Ants can colour graphs[END_REF] shows that the following neighbor is chosen considering its label (relative to the emitting pixel label ) and also its "data attach" energy, which gives a hint about the confidence. According to the ACO procedure, the next neighbor is chosen either randomly according to the probability of random exploration (necessary once stepping over a "bad" neighbor is necessary to reach "good" neighbors.), or minimizing a function of and pheromone deposition. Practically, to simulate the pheromone deposition we define, for each pixel a "neighborhood" matrix of size representing all the possible neighbor pixel locations from . The "neighborhood" matrix values are real, with the matrix norm equal to 1, i.e., this matrix is somewhat a fuzzy representation of the neighbor feature of the pixels around . Denoting the value of the neighborhood matrix of in , we define the cost of the choice of as following neighbor as . Note that this weighting between pheromone deposition and energy hop terms is empirical.

Arriving at a selected neighbor pixel, an ant waits a time proportional to the cost , before selecting the next neighbor. Each ant has to find a number of neighbors equal to the number of "free active neighbors" of its emitting pixel. When an ant achieves this number, it stops and returns.

On its return, the ant deposits pheromones on the visited neighbor pixels. Practically, for each pixel visited by an ant emitted by pixel , is increased by the quantity of pheromone deposit . Due to the reciprocity condition (3), pheromones are also deposited on the "neighborhood" matrices of the selected neighbors, on the pixel corresponding to in these "neighborhood" matrices, . Due to the waiting time proportional to the cost , pixels on "good" paths are visited frequently by ants, thus increasing neighborhood matrix values for pixels contained in those paths and diminishing those of the other pixels. Ants on poorer paths arrive later, and have only short-lived effect on the estimation of the neighborhood matrices.

B. Global Classification Algorithm

The ant algorithm works in the following way.

1) Initializations: data image ( realization) and class features loading, blind classification, stop criterion definition, initialization of the a priori parameters: pheromone deposit quantity , probability of random exploration , experience duration , and initialization of the "neighborhood matrix" consisting of a set of possible neighbors (located in a range of in lines and in columns) with an isotropic neighborhood. 2) As long as the stop criterion is not verified. , or with a small "exploration probability" , by picking a next neighbor pixel randomly. On the way, at each visited pixel, it waits a time proportional to the cost value corresponding to the chosen neighbor. 2.1.4.2. After hops, an ant emitted by pixel has constructed an active neighborhood solution (or its restriction to ) denoted . Then, it follows the identical path in the reverse direction. At each pixel on the return path, i.e., , the neighborhood matrix value for the ant source pixel is updated, as are the neighborhood matrix values for the ant-visited pixels [START_REF] Dorigo | Ant algorithms for discrete optimization[END_REF] where its element of neighborhood matrix , and is a normalization factor such that the sum of elements be equal to 1. is an a priori parameter representing the quantity of pheromone deposit. 2.1.4.3. If the "experience duration" is not expired, each time an ant is back to its source pixel , generates a new ant, and go to step 2.1.4.1.

When the experience has finished, computation of the

local energy corresponding to the tested label and estimated pixel active neighborhood [START_REF] Gambardella | Ant colonies for the quadratic assignment problem[END_REF] For notation convenience, we subscript (2) all labels in (17) but note that . 2.1.6. Decision to change the label from to if is negative. 2.2. New estimation of the parameter "experience duration," equal to five times the average duration of an ant path.

In step 2.1.3, the tested labels can be chosen either randomly or systematically ranging from 1 to (the number of classes).

With this algorithm, the convergence is ensured by the fact that the global energy is decreased at each step. Indeed, for a configuration change restricted to label and active neighbors of pixels, such that and pixels belong to , the global energy difference induced is equal to local energy difference. Therefore, accepting only configuration changes corresponding to energy decreases ensures the global energy decrease, just as for the iterative conditional modes (ICM) [START_REF] Besag | On the statistical analysis of dirty pictures[END_REF]. However, as for the ICM, the result is minimum depending on the initialization. To overcome problem and obtain a global minimum, step 2.1.5 could be stochastic and some changes may be accepted even if be positive, just as for the classical simulated annealing application to MAP classification. Now, on our images the algorithm is already rather long; therefore, we prefer to keep step 2.1.5 determinist.

There are two kinds of algorithm parameters: the image model parameters and the ACO algorithm ones.

The image model parameters are:

• the class features , , ; • the neighborhood size ; • the neighborhood weight . The ACO algorithm parameters are: • the exploration probability ; • the quantity of pheromone deposit ;

• the experience duration . The class features are assumed to be known: They have been estimated previously either from learning areas, model simulations, or a clustering algorithm. Different values of neighborhood size have been tested, ranging from to 4 to 12. We find the algorithm is not very sensitive to the exact value; in our case, good results were obtained for about equal to 8 (which is the same value as in classical MRF considering the neighborhood surrounding the pixels). Finally, value has been estimated empirically, just as for the classical MAP classification. The exploration probability, the quantity of pheromone deposit and the experience duration should allow the emergence of a stable ant solution. For this purpose, they will not be chosen independently: The lower the exploration probability, the higher the pheromone quantity, the lower the experience duration. In our case, the experience duration is deduced from the mean waiting time (of the ants in visited pixels) as: , where the factor 5 has been chosen empirically, and is not very sensitive. The pheromone deposit quantity is 0.4, and the exploration probability 0.04. These empirical choices have been done among several tested values. However, the obtained results were not very sensitive provided that the decrease of and are sufficiently slow, and sufficiently large.

IV. RESULTS

A. Method Validation

First of all, we validate the proposed algorithm on simulated data. Fig. 3(a) shows the label image. There are four classes, centered on {100, 200, 300, 400}, respectively, and having standard deviation equal to 40 (variance 1600). The pixel value distribution, for a given class, is Gaussian . , , and initial values of are (4%,40%,100). For comparison (in the following), the value has been chosen equal to those empirically optimized for the stationary neighborhood MAP. We note that the blind result is very noisy. Analyzing the ACO result versus this blind Fig. 4. Normalized neighborhood potential functions of the four classes (one by column) computed over the auto-adaptive neighborhood: first row corresponds to the classical fixed-form neighborhood; second row is after ACO first iteration; and last row shows the result after ACO convergence. classification (i.e., spatial regularization versus data attach), we note that regularization seems to have occurred at the expected places. Before further analysis and comparison with alternative classification, we check whether the algorithm succeed in the construction of the adaptive neighborhoods.

Fig. 4 shows the normalized neighborhood potential, corresponding to the four classes. We check that the neighborhoods are constructed to be label homogeneous. Before convergence, the potentials are estimated over the fixed-form 8-connectivity square neighborhood (initialization). We see that many pixels have mixed-class neighborhood. After convergence, even at the class border most of the potential values are very close to 1 (white color) or 0 (black color), indicating a homogeneous neighborhood. Indeed, the effect of having a nonstationary auto-adaptive neighborhood is that the pixels having a different label are not included in the neighborhood. Only in some very few cases, the ants fail to construct a completely uniformly-labeled neighborhood, probably because of the relatively high level of noise in the data image. However, we note that the neighborhood function value of the pixel label is always much closer to 1 than the value obtained by classical 8-connectivity.

We now aim at comparing the ACO result with the results obtained using alternative approaches. Fig. 5(a) and (b) show the ICM one and the MAP obtained by simulated annealing, both using 8-connectivity isotropic neighborhood and the Potts model (different values of have been tested, only the best result is presented). Fig. 5(c) is the result provided by the line process as described in [START_REF] Geman | Stochastic relaxation, Gibbs distribution and Bayesian restoration of images[END_REF]. Fig. 5(d) is the result provided by the Chien model [START_REF] Descombes | Spatio-temporal fMRI analysis using Markov random fields[END_REF], [START_REF] Descombes | Fine structure preserving Markov model for image processing[END_REF]. This model, defined on a 5 5 neighborhood, depends on three parameters which control the local energy of edges, lines, and noise. These two approaches (line process and Chien model) have been selected, for comparison with the proposed method, as much more sophisticated (and (a), (b) best result with 8-connectivity and Potts model respectively using ICM and simulated annealing algorithms, (c) result using line process [START_REF] Geman | Stochastic relaxation, Gibbs distribution and Bayesian restoration of images[END_REF], (d) result using high-order cliques (Chien model, [START_REF] Descombes | Spatio-temporal fMRI analysis using Markov random fields[END_REF]). complex) than the isotropic neighborhood model. They are a priori able to preserve image fine structures while regularizing the configuration. The ACO result was presented in Fig. 3(d).

With the ICM 8-connectivity isotropic neighborhood, most of the "isolated" errors have been corrected relative to the blind classification [presented in Fig. 3(c)]. Packet errors can not be corrected without damaging the fine structures. The simulated annealing produces an almost equivalent result (slightly better thanks to the global minimization instead of the local one). The fact that the ICM and the simulated annealing produce very close results shows that the remaining errors are not due to the optimization process but rather to the image model, and in particular (but not exclusively) to the assumption of stationary neighborhood. This is confirmed by the examination of the other results, where several errors have been corrected either due to the use of a more complex image model (line process, Chien model), or to the relaxation of the stationary neighborhood assumption (ACO). Among the considered approaches, ACO leads to the best result, even if some errors remain due to the high level of noise in the initial image: The fine structures are more or less preserved and most classification errors are corrected. Several examples illustrating the interest of the proposed approach are pointed out in Figs. 3 and5. For example, one can see that the fine longitudinal structures in the middle right of the image have been lost by the ICM or MAP classical approaches. Preserving it with classical isotropic neighborhood would require to decrease parameter, but at the expense of the correction of some blind classification errors. Using some more sophisticated approaches, such as the line process, the Chien model, or the adaptive neighborhood, allows preserving these structures. On the other hand, there are some cases, such as those pointed by the circles in Figs. 3 and5 (except the bottom right one), where the simple classical image model (with two-order potential functions) performs better than the line process or the Chien model, but slightly worse than the adaptive neighborhood one. Finally, the area pointed by the bottom right circle shows a case where only the auto-adaptive neighborhood is able to correct initial blind classification errors. This can be explained by the fact that our model is less constrained than the line process which requires a priori on the structure of edges or the Chien model which constrains the orientations of shapes and lines [START_REF] Descombes | Droplet shapes for a class of models in Z2 at zero temperature[END_REF]. The proposed model, while avoiding the over-regularization effect of the Potts model, adapts locally the neighborhood and is, therefore, more flexible than more complex priors. Note also that here we focus on the cases where the more interesting approach is the proposed one, but there are some cases where it is one of the alternative methods (generally the line process or the Chien model).

Quantitatively, the performance of a result is measured by the ratio of well-classified pixels, or by the Kappa function, both defined from the confusion matrix by [START_REF] Labroche | A new clustering algorithm based on the ants chemical recognition system[END_REF] where [START_REF] Fernandes | Self-regulated artificial ant colonies on digital image habitats[END_REF] Table II shows the performance of different classification results obtained from the data images with different white noise levels: standard deviations of the classes respectively equal to 20, 40, and 60, whereas the class centers remain the same in the three cases. The performance is compared in terms of the percentage of good classification and the Kappa value obtained from blind classification, fixed square form (8-connectivity) neighborhood MAP approach, line process, Chien model and the ACO auto-adaptive 8-connectivity result. We note that the improvement between auto-adaptive neighborhood (thanks to ACO) and fixed-form neighborhood modeling (two-order clique MAP, optimized by simulated annealing) is until few percents. However, we also note that in the case of high noise level, the auto-adaptive neighborhood ACO is less performing than the Chien model. For further understanding, Fig. 6 presents the simulated data images and classification results respectively obtained using the ACO and the Chien model, in the two cases of noise and noise. Now, remember that the auto-adaptive neighborhood approach does not use any a priori information about neighborhood (except its cardinal), conversely the some approaches privileging some neighborhood form through the definition of the clique potentials. From Fig. 6(d)-(f), we see that, in the case of important noise, due to the local optimization, the less constraining approach may fail to recover the actual solution, conversely to the case of the lower noise [illustrated in Figs. 3(d We point out that the global improvement in the results corresponding to the proposed approach is due to the use of nonstationary neighborhood rather than to the ACO. Indeed, ACO used with a classical fixed-form MRF model would lead to results similar to simulated annealing ones [START_REF] Ouadfel | MRF-based image segmentation using ant colony system[END_REF]. Here, ACO is used as one way to derive the nonstationary neighborhood solution. In particular, as an alternative to the ACO, an optimization using a Gibbs sampler with simulated annealing was tried to retrieve the couple (defined in Section II-B). However, the energy landscape on the solution space is too much irregular to achieve satisfying results: In particular, changing only one pixel neighborhood configuration at each step makes impossible a direct transition between two configurations checking the condition (there is at least one intermediate nonreciprocal neighborhood configuration, i.e., with high energy).

B. Application to Actual Data

In this section, data were acquired by the SPOT4/HRVIR sensor, which performs measurements in the three following channels: green, red, and near infrared, and has a pixel size equal to m . For the study of vegetation areas (e.g., forest, agricultural areas), vegetation indices are estimated from the radiometric measurements: either empirical vegetation indices defined from simple channel combinations [START_REF] Rondeaux | Vegetation monitoring by remote sensing: A review of biophysical indices[END_REF], such as the normalized difference vegetation index (NDVI), or vegetation indices obtained from physical radiative transfer modeling, requiring the knowledge of acquisition conditions, such as the vegetation fraction cover (FCOV).

The considered data were acquired over an agricultural test site in Romania in June 2001 (ADAM database). From the whole image, a subset of 256 256 pixels was extracted, and the FCOV image was calculated [START_REF] Jacquemoud | PROSPECT: A model of leaf optical properties spectra[END_REF]. It is shown in Fig. 7(a). Five main classes of vegetation densities can be distinguished: from null vegetation cover (water or bare soil), small vegetation cover (corresponding to winter cereal fields almost all at stubble state at the end of June), to maximum vegetation cover (corresponding to fully developed crops at the end of June, e.g., beans, or grassland areas). Table III shows the features of these five classes estimated by fuzzy c-means [START_REF] Bezdek | FCM: The fuzzy c-means algorithm[END_REF], and their color code for classification. We note the great complexity of the landscape, and, in particular, the thinness of most of the fields (excepting winter cereal ones) as a result of both agricultural practices and sensor pixel size. In addition, this image presents two main issues for classification regularization. First, some large fields may present heterogeneous stages of vegetation (e.g., from clear bare soil to stubble), such as those pointed by circled areas 3-6 in Fig. 7(a). These field subparts have generally a geometric form that is based on soil geometry (namely field borders) and soil properties (namely moisture, roughness). For classification, one may expect that they will either be removed by regularization (when their corresponding vegetation stages are not very different from the local background ones), or preserved but retaining their highly structured (i.e., not smoothed) boundaries so that they can still be identified as heterogeneous subareas rather than well delimited fields. Second, due to the pixel size m , the image contains some mixed pixels, in particular corresponding to field borders. Considering hard classification, one may expect that these mixed pixels be classified either in one of the classes composing the mixture (and not in an intermediary class, e.g., low vegetation density class for a pixel straddling a dense vegetation and a bare soil field). We will now see how the different classification methods manage with these issues. Fig. 7(b)-(d) shows the classification results. The comparison is only qualitative due to the lack of sufficiently accurate ground truth data. The blind classification result (not shown) is rather "noisy." This effect can be much reduced taking into account neighborhood. Fig. 7(b) shows the classification results using fixed-form 8-connectivity square neighborhood, Fig. 7(c) shows the Chien model result, and Fig. 7(d) shows the self-organized (auto-adaptive) neighborhood classification. In Fig. 7(b), we note the effect of the isotropic form of the neighborhood, namely a removal of the fine structures, either completely (as shown by circled areas 1 and 2) or partially (as shown by circled areas 8 and 9). However, this effect cannot be alleviated (by decreasing the parameter) without seriously damaging the reduction of blind result noise. Indeed, Fig. 7(b) is the best compromise we obtain between noise regularization and actual complexity preservation. Considering either the Chien model classification result or the adaptive neighborhood one, we note that the fields corresponding to fine structures are restituted. Now, with the Chien model result (like with the isotropic neighborhood one), we note an unrealistic smoothing of the boundaries for the heterogeneous vegetation stage subareas (main issue 1 shown by circled areas 3 to 6). Both approaches have built up some erroneous "blob" structures, that is not the case using the adaptive neighborhood approach. Finally, we note that there are some cases where the blind classification errors are removed only in Fig. 7(d) (ACO result), as shown by circled area 7 or in Fig. 8.

Fig. 8 allows a more precise comparison of the classification results (respectively isotropic neighborhood, adaptive neighborhood and Chien model, from left to right) in the case of three subparts of the previous 256 256 considered image. The circled areas focus on some areas illustrating the interest of the adaptive neighborhood:

• better preservation of fine structures relative to the isotropic neighborhood model (circled areas 1, 2, 4, 5, 11, 13, 14, 16); • better restitution of the actual geometric form of the structures relative to the Chien model (circled areas 6, 8, 10, 13, 14, 15); • better removal of blind classification errors [START_REF] Geman | Constrained restoration and recovery of discontinuities[END_REF][START_REF] Maniezzo | The ant system applied to the quadratic assignment problem[END_REF] in particular in the presence of mixed pixels [START_REF] Di Caro | AntNet: "A mobile agents approach to adaptive routing[END_REF][START_REF] Bonabeau | routing in telecommunications networks with smart ant-like agents[END_REF][START_REF] Dorigo | Ant algorithms for discrete optimization[END_REF][START_REF] Gambardella | Ant colonies for the quadratic assignment problem[END_REF][START_REF] Labroche | A new clustering algorithm based on the ants chemical recognition system[END_REF][START_REF] Fernandes | Self-regulated artificial ant colonies on digital image habitats[END_REF]. To be fair, we also admit that there are some areas where the Chien model leads to a more plausible result, in particular if the problem of mixed pixel misclassification is withdrawn because the mixture is between classes contiguous in the feature space. Indeed, for longitudinal fields the used constraint of shapes and lines can be helpful to retrieve the actual field geometry.

V. C ONCLUSION

The ACO applied to the construction of pixel neighborhoods in global classification problems has been shown to result in near optimal neighborhood functions and to yield a performance superior to that of classical fixed-form neighborhoods in the case of simulated images with different noise levels. This optimization scheme allows us to consider a nonstationary MRF with respect to the neighborhood and provides a numerical tool to estimate locally the neighborhood.

The advantage of having a neighborhood shape which automatically adapts to the image segment clearly appears in the case of images containing fine elements, as shown in the simulated example. Classifications using a classical isotropic 8-connectivity neighborhood fail to recover the true label image, regardless of the optimization algorithm: iterative conditional mode, or simulated annealing, since the limits are not due to the optimization but to the image modeling. More sophisticated image models such as the Chien model or the line process improves somewhat the results. Finally, auto-adaptive neighborhood model seems the more flexible and the more suitable to handle image complexity. Similar results have also been obtained on actual data where the superiority of a self-organized neighborhood was demonstrated qualitatively.

Besides its performance, an interest of the method is its robustness to the parameter fitting. In particular, the ACO parameters (exploration probability, quantity of pheromone deposit, and experience duration) can be calibrated to proposed default values. The parameter can be taken equal to the classical isotropic 8-connectivity neighborhood optimal value. This possibility to use default parameter value or empirical estimation provided by quick algorithms (such as the classical isotropic ICM) is a serious advantage since the proposed algorithm is much slower (due to the additional complexity). Indeed, future work will deal with current approach approximations in order to reduce computation time. One could also investigate recent optimization techniques such as nonparametric belief propagation [START_REF] Sudderth | Nonparametric belief propagation[END_REF], that has been shown to be efficient for the exploration of very large solution space [such as the neighborhood configurations for all the pixels belonging to ], using a Gaussian mixture approximation [START_REF] Ihler | Efficient multiscale sampling from products of Gaussian mixtures[END_REF] for the messages.
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 1 Fig. 1. Neighborhoods of each of the pixels on the simple example of an image with 4 2 5 pixels and two classes. The class of a pixel is represented either by a circle or a triangle. The neighborhood of pixel s is represented with s in black and its neighbors in gray.
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 2 Fig. 2. Possible locations for the choice of the first, second, and third neighbor. Dark gray cells indicate the already selected neighbors, and light gray cells indicate the possible neighbors.
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Fig. 3 .

 3 Fig. 3. Simulated data (noise =4 0 ): (a) label image, (b) data image with Gaussian white noise, and obtained classifications, (c) blind result, and (d) ACO result.
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 3 (b) shows the data image in the case of a Gaussian white noise. Fig. 3(c) shows the blind classification result. Fig. 3(d) represents the result of the ACO method. The parameters are the following:
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 5 Fig. 5. Simulated data (noise =4 0 ), alternative classification results:

  ), 5(d), and 6(b) and (c)].
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 6 Fig. 6. Simulated data: (a) data image with Gaussian white noise ( = 20); (b) ACO classification result; (c) Chien model classification result; (d) data image with Gaussian white noise ( = 60); (e) ACO classification result; (f) Chien model classification result.
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 7 Fig. 7. SPOT4 data and results: (a) vegetation fraction cover image; (b) blind classification result; (c) classification result using the classical isotropic 8-connectivity neighborhood; (d) classification result using the self-organized neighborhood.
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 8 Fig. 8. Comparison of the classification results: respectively, from left to right, isotropic neighborhood (a), (d), (g), adaptive neighborhood (b), (e), (h), and Chien model (c), (f), (i), in the case of three 50 2 50 pixel subparts of Fig. 7 (pointed by blue squares): upper left corner, upper middle right, and bottom right.
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