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Abstract

This paper is concerned with two multi-mechanism based models for application
to ratchetting effect. The 2M1C (2 Mechanisms and 1 Criterion) model and 2M2C
(2 Mechanisms and Criteria) model, proposed by the authors in a previous article,
are modified to incorporate (i) a corrective term in the computation of the local
stresses, (ii) Burlet-Cailletaud’s fading memory term in the kinematic hardening
evolution rule. Experimental data from the literature are selected to assess the
models capability. Numerical results are obtained using the proposed models for
a series of uni-axial and multi-axial ratchetting tests performed at different stress
ranges of an austenitic stainless steel.
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Nomenclature

Variables:

ε̇∼: total strain rate

ε̇∼
e: elastic strain rate

ε̇∼
p: overall plastic strain rate

ε̇∼
I : inelastic strain rate for mechanism I

σ∼: overall stress tensor

σ∼
I : local stress tensor for mechanism I

β
∼

I : accommodation variable for mechanism I

α∼
I : kinematic internal variable for mechanism I

rI : isotropic internal variable for mechanism I (2M2C model only)

r: isotropic internal variable (2M1C model only)

λ̇I : inelastic multiplier for mechanism I (2M2C model only)

λ̇: inelastic multiplier (2M1C model only)

n∼
I : normal to the yield surface for mechanism I

X∼
I : back stress for mechanism I

RI : size change of the elastic domain for mechanism I (2M2C model only)

R: size change of the elastic domain (2M1C model only)
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Material parameters:

B∼∼
I : stress concentration tensor

µ: elastic shear modulus

µ′: localization parameter

(1− z), z: weighting factors of the two mechanisms respectively

C11, C12, C22; [C]: kinematic hardening moduli; interaction matrix

DI : kinematic hardening parameter for mechanism I

δI : additive kinematic hardening parameter for mechanism I

dI : parameter of the accommodation variable for mechanism I

RI
0: initial size of the elastic domain for mechanism I (2M2C model only)

R0: initial size of the elastic domain (2M1C model only)

QI , bI : isotropic parameters for mechanism I (2M2C model only)

Q, b: isotropic parameters (2M1C model only)

Introduction

In the last two decades, a series of studies have been proposed to model

the ratchetting phenomenon. Ratchetting (that is accumulation of inelastic

strain) occurs during onedimensional cyclic loading in the presence of a mean

stress. Strain ratchetting under biaxial loading involves a (generally symmetric)
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loading on a given component, meanwhile a constant value is applied on

an other component (for instance strain symmetric torsional cycling in the

presence of a constant axial load).

Numerous plasticity models have been developed and modifications or new

formulations are currently being proposed: ((McDowell, 1995), (Ristinmaa,

1995), (Jiang and Kurath, 1996), (Basuroychowdhury and Voyiadjis, 1998),

(Taheri and Lorentz, 1999), (Yoshida, 2000), (Abdel-Karim and Ohno, 2000),

(Bari and Hassan, 2000), (Bari and Hassan, 2001), (Bari and Hassan, 2002),

(Vincent et al., 2004), (Yaguchi and Takahashi, 2005), (Abdel-Karim, 2005)).

These works have been realized on two types of models: (i) the first one is

based on the NonLinear Kinematic (NLK) hardening rule (Armstrong and

Frederick, 1966). This approach have been extensively worked out by Chaboche

(Chaboche and Rousselier, ), (Chaboche and Jung, 1997), (Chaboche, 1986),

(Chaboche et al., 1991). A non exhaustive list of major modifications of the

NLK hardening rule includes the work of (Burlet and Cailletaud, 1987), (Ohno

and Wang, 1993b), (Ohno and Wang, 1993a) . . . , (ii) the second kind of model

is based on multi-surface theory (Mroz, 1967) (Krieg, 1975) (Dafalias and

Popov, 1976).

In addition, several experimental studies describing the investigation of

ratchetting behavior are available (Yoshida, 1989), (Ruggles and Krempl,

1989), (Delobelle et al., 1995), (Ohno et al., 1998), (Mizunno et al., 2000),

(Bocher et al., 2001), (Kang et al., 2002), (Feaugas and Gaudin, 2004),

(Yaguchi and Takahashi, ), (Kang et al., 2006). (Jiang and Sehitoglu, 1994a),

(Jiang and Sehitoglu, 1994b).

(Hassan et al., 1992b), (Hassan et al., 1992a), (Hassan and Kyriakides, 1994a),

(Hassan and Kyriakides, 1994b) have performed experimental tests for 1070,

1018 and 1026 carbon steels. Most of the authors have reported experimental
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results on uni-axial and multi-axial ratchetting tests mainly for type 304, 316

and 316L stainless steels. A comparative study has been performed in (Portier

et al., 2000): five sets of constitutive equations were selected and their material

parameters were identified on a large experimental data base. The tests have

been carried out at 25◦C and 250◦C on a 316 austenitic stainless steel.

The purpose of this article is to offer a third point of view for the description

of ratchetting phenomenon. The proposed approach is based upon the

investigation of multi-mechanism and multi-criteria models. These models

are assumed to depend on n ”mechanisms” and m ”criteria” and are usually

called nMmC. This general framework includes the models proposed by (Zarka

and Casier, 1979), (Khabou et al., 1990), (Cailletaud and Sai, 1995), (Zarka

and Navidi, 1998) and (Taleb et al., 2006) for 2M1C model type; (Contesti

and Cailletaud, 1989) (Cailletaud and Sai, 1995) for 2M2C model type. The

newly revisited approach combines the properties of the nMmC models with a

more physical concentration rule inspired from the micro-mechanical approach

(Cailletaud, 1992), (Cailletaud, 1987), (Cailletaud and Pilvin, 1994), (Sai et al.,

2006a) .

Previous works have shown that several mechanical effects can be described

by playing on the characteristics of the hardening matrix [C]. (Contesti and

Cailletaud, 1989) have proposed a 2M2C model type in which one of the two

mechanisms is plastic whereas the second is viscoplastic. They have shown that

this model is able to describe the inverse rate sensitivity and creep-plasticity

interaction. The ratchetting effect is also governed by the numerical value of the

determinant of this matrix in the 2M1C model in the case of linear kinematic

hardening rule: (Zarka and Casier, 1979) and (Cailletaud and Sai, 1995) have

shown that if the matrix [C] is singular, then ratchetting is observed. On the

other hand, a regular matrix leads to shakedown. In the present work, this
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property will be extended to the 2M2C model.

The paper is organized as follows: in section 1 the main lines of the constitutive

equations of the 2M2C and 2M1C models are briefly recalled within their

thermodynamical framework. In that section, a particular attention is paid

to the correlation between the ratchetting behavior and the properties of

the kinematic hardening matrix (this matrix contains the different hardening

moduli). Section 2 is devoted to the description of the new features introduced

in the model (a scale transition rule inspired from the uniform field models to

compute the local stresses, and an improved rule for kinematic hardening). The

mechanical and physical origins of this scale transition rule are first explained.

A new version of the 2M1C and the 2M2C models is then presented. The

capabilities of the modified models are presented in section 3. Two examples

are treated with the new models; the ratchetting effect and the additional

hardening in out-of-phase loading. In these new models, the modifications are

based on:

• the use of the transition rule of the micro-mechanical models (see for instance

(Cailletaud and Pilvin, 1994)) in order to control the kinematic hardening

matrix characteristics,

• the modification of the fading memory terms according to the model

proposed by (Burlet and Cailletaud, 1987) to calibrate multi-axial

ratchetting.

To assess the model reliability, a comparison is made in section 4 between the

modified 2M1C and 2M2C models and an experimental data base taken from

(Portier et al., 2000) for an austenitic stainless steel. A closed form solution

of the variation of the maximal axial strain per cycle obtained for various
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kinematic rules is finally presented for the 2M2C model (Appendix A).

1 2M2C and 2M1C models: initial version

1.1 Thermodynamical framework

Our goal in this section is to recall the constitutive equations of the multi-

mechanism models. It was previously shown (Cailletaud and Sai, 1995) that

the form of the constitutive equations of these models is compatible with the

general thermodynamical framework developed by (Germain et al., 1983). The

construction of a plasticity theory requires in general the definition of (i) a yield

function f , (ii) a flow potential Ω and (iii) a hardening potential Ωh. Within the

frame of a generalized standard material (Halphen and Nguyen, 1975), these

three functions are defined by means of one potential only. In this particular

class of materials, the flow rules defining the (strain like) internal variables

are obtained by derivation of the potential with respect to the associated

(stress like) hardening variables. The intrinsic dissipation is then the difference

between the plastic power and the fraction of power temporarily stored by the

hardening mechanisms:

D = σ∼ : ε̇∼
p − ρΨ̇ = σ∼ : ε̇∼

p − AIα̇
I (1)

As a consequence of the first and the second principle, Clausius-Duhem

inequality tells that D must be positive. This is the case if and only if Ω ≡ Ωh

and Ω is convex. The free energy ρΨ, used as a potential, defines stress and

hardening variables knowing elastic strain and internal variables (where ρ is
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the density of the material):

σ∼ = ρ
∂Ψ

∂ε∼
e

and AI = ρ
∂Ψ

∂αI
(2)

Assuming uncoupling between elastic and plastic part, Ψ can be considered as

the sum of two contributions: an elastic one (Ψe) and a plastic one (Ψp):

Ψ = Ψe + Ψp (3)

From a thermodynamical point of view, the starting point of the multi-

mechanism models is a collection of potentials ΩI , I = 1..N (where N is the

number of the considered mechanisms). For each mechanism I, a local stress

σ∼
I is obtained through a concentration tensor B∼∼

I = ∂σ∼
I

∂σ∼
. Note that for the

initial version of the models, B∼∼
I = I∼∼

has been chosen. Two cases have been

distinguished, in the multi-mechanism models:

• Each σ∼
I is involved in a different yield functions f I , defining a series of

different criteria:

ε̇∼
p =

∑
I

∂ΩI

∂σ∼
=
∑
I

∂ΩI

∂f I

∂f I

∂σ∼
=
∑
I

∂ΩI

∂f I

∂f I

∂σ∼
I

:
∂σ∼

I

∂σ∼
=
∑
I

∂ΩI

∂f I
n∼

I : B∼∼
I (4)

This includes the 2M2C model and the crystal plasticity models. For these

models, each mechanism has its own inelastic multiplier.

• All σ∼
I are combined into an unique global criterion f :

ε̇∼
p =

∂Ω

∂σ∼
=

∂Ω

∂f

∂f

∂σ∼
=

∂Ω

∂f

∑
I

∂f

∂σ∼
I

:
∂σ∼

I

∂σ∼
=

∂Ω

∂f

∑
I

n∼
I : B∼∼

I (5)

2M1C model belongs to this second class of model, for which only one

inelastic multiplier has to be determined.
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1.2 2M2C model

The 2M2C model is assumed to depend on two mechanisms and two criteria

(yield functions). The inelastic part of the free energy function can be expressed

as a function of the internal variables α∼
1, α∼

2, r1 and r2 as follows:

ρΨp =
1

3

∑
I

∑
J

CIJα∼
I : α∼

J +
1

2

∑
I

QI

(
rI
)2

(6)

The hardening variables are then:

X∼
I = ρ

∂Ψp

∂α∼
I

=
2

3

∑
J

CIJα∼
J RI = ρ

∂Ψp

∂rI
= QI rI (7)

The flow rule is generated by a potential, which is the sum of two terms:
f I = J(σ∼ −X∼

I)−RI −RI
0 Ω = Ω1(f 1) + Ω2(f 2)

where J(σ∼ −X∼
I) =

√
3
2 (s∼−X∼

I) : (s∼−X∼
I)

(8)

So that:

ε̇∼
p =

∂Ω1

∂f 1
n∼

1 +
∂Ω2

∂f 2
n∼

2 with n∼
I =

∂f I

∂σ∼
=

3

2

s∼−X∼
I

J(σ∼ −X∼
I)

(9)

In the present form, it can be easily checked that the dissipation (Eq. 1) remains

positive. The hardening rules of the 2M2C model are expressed as follows:

α̇∼
I =

(
n∼

I − 3DI

2CII

XI
∼

)
∂ΩI

∂f I
ṙI =

(
1− bIR

I

QI

)
∂ΩI

∂f I
(10)

The model would be a ”generalized standard” model, by taking DI = 0 and

QI →∞.

The 2M2C model type allows, for example, the simultaneous treatment of

plasticity and viscoplasticity. The plastic formulation leads to time independent
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responses whereas the viscoplastic formulation produces relaxation and creep.

The model is then able to discriminate between the increase of hardening

produced by plasticity or creep. This may be quite important to model complex

behaviors like 316 stainless steel at 650◦C (Contesti and Cailletaud, 1989) or

N-18 alloy in the temperature range 600-700◦C (Sai et al., 2004).

The 2M2C model type can also be applied to study phase transformation. In

this class of models, a stress tensor and a strain tensor are defined in each

phase of the material inside the representative volume element. (Videau et al.,

1994) were the first who applied the multi-mechanism models for the phase

transformation. In the work of (Gautier and Cailletaud, 2004) and (Sai et al.,

2006b) the transformation induced plasticity of a 304 stainless steel is carried

out using a multi-mechanism model in which the influence of each phase is

balanced by its volume fraction which is calculated by a kinetics transformation

rule.

1.3 2M1C model

The 2M1C model is assumed to depend on two mechanisms and one criterion

(yield function). The inelastic part of the free energy function can be expressed

as a function of the internal variables α∼
1, α∼

2 and r as follows:

ρΨp =
1

3

∑
I

∑
J

CIJα∼
I : α∼

J +
1

2
Qr2 (11)

The relations between the internal variables and their associated forces are:

X∼
I = ρ

∂Ψp

∂α∼
I

=
2

3

∑
J

CIJα∼
J R = ρ

∂Ψp

∂r
= Qr (12)
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The evolution laws of these variables are generated by a potential which

introduces a quadratic combination of the two mechanisms:

f =
(
J(σ∼ −X∼

1)2 + J(σ∼ −X∼
2)2
)1/2

−R−R0 Ω ≡ Ω(f) (13)

This form generates a coupling between the two mechanisms that is not

considered in the 2M2C model (see Fig. 1). If Ω is a true viscoplastic potential,

the viscoplastic strain rate is:


ε̇∼

p = ∂Ω
∂f n∼ = ∂Ω

∂f
J1n∼

1 + J2n∼
2

(J2
1 + J2

2 )1/2

with JI = J(σ∼ −X∼
I) and n∼

I = 3
2

s∼−X∼
I

JI

(14)

The partial derivative of Ω with respect to f is simply replaced by a plastic

multiplier to write a time independent plastic model. Finally, the hardening

rules of the 2M1C model are as follows:

α̇∼
I =

(
n∼

I − 3DI

2CII

XI
∼

)
∂ΩI

∂f I
ṙ =

(
1− bR

Q

)
∂Ω

∂f
(15)

1.4 Summary of the 2M2C and 2M1C models

For both 2M2C and 2M1C model, a kinematic-kinematic coupling is introduced

between the hardening variables through the material parameter C12. The

detailed equations of the 2M1C model and the 2M2C model (Cailletaud and

Sai, 1995) are summarized in Table 1 and Table 2 respectively. The 2M1C

model produces one type of flow with the simultaneous activation of the two

mechanisms whereas 2M2C model has several regimes, according to stress and

strain rate levels.
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1.5 Ratchetting effect

Even if the yield criteria are basically different, the 2M1C and 2M2C

models keep common characteristics with respect to ratchetting behavior. As

previously demonstrated (Cailletaud and Sai, 1995), ratchetting behavior of the

2M1C model is closely related to the hardening matrix (Fig. 2). This property

is also applicable for the 2M2C model. It is shown analytically in the Appendix

A, for the case of a one dimensional loading that:

• when linear kinematic hardening rules are considered, the ratchetting

behavior is controlled by the character of the hardening matrix. If the

determinant of this matrix is equal to zero then ratchetting behavior is

observed. However, a regular matrix leads to shakedown behavior.

• in the case of non linear kinematic hardening rules, a constant evolution

of the tensile peak strain is obtained. The variation of the tensile peak

strain between two successive cycles is expressed analytically according to

the components of the matrix [C], the fading memory parameters and the

applied cyclic stresses (σmin, σmax).

In this initial version, all the mechanisms are submitted to the same

macroscopic stress. In order to get closer from a physical situation, it is now

proposed to use a scale transition rule, which will reduce local stress on the

more deformed mechanisms.
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2 New features introduced in the model

2.1 General remarks on the scale transition rules

The aim of this paragraph is to study the effect of the newly introduced

transition rule on the ratchetting behavior. Let us refer for a while to crystal

plasticity, in order to consider the various types of models developed in this

field. Beside the simplest and most widely used models (uniform plastic strain

(Taylor, 1938); uniform stress), the most popular concept is the self-consistent

framework proposed by (Hill, 1965) and revisited by many authors (see for

instance (Molinari, 1999)). In terms of rates, the local stress σ∼
g is expressed

according to global stress σ∼, the global strain ε∼ and the local strain ε∼
g:

σ̇∼
g = σ̇∼ + L∼∼

∗ (ε̇∼− ε̇∼
g) (16)

The fourth order tensor L∼∼
∗ takes into account the incremental behavior of the

equivalent medium and the tangent behavior of each grain. (Berveiller and

Zaoui, 1979) proposed an explicit transition rule using the approximation of

global isotropy, for a radial monotonic loading path:

σ∼
g = σ∼ + µα (σ∼,E∼

p) (E∼
p − ε∼

g) with
1

α
' 1 +

3µEp

2Σ
(17)

where Σ and Ep are respectively the overall equivalent stress and the plastic

part of overall strain in uni-axial tension test. They showed also that Eq.

17 allows plastic accommodation in the polycrystal, meanwhile Kröner’s

rule (obtained with α = 1 (Kröner, 1961)) produces only elastic elastic

accommodation and too large stresses. The idea behind all the approaches

is finally to introduce a corrective term depending on plastic strains, to

compute local residual stresses. Nevertheless, a linear dependency of this
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term with respect to plastic strains gives too large stresses. This concept

was then replaced by (Cailletaud, 1987), (Cailletaud and Pilvin, 1994) and

(Pilvin, 1996), who proposed a ”β rule” model in which the local strain is

replaced by a phenomenological variable β
∼

g. This new variable was shown able

to correctly capture the plastic accommodation which comes from the self

consistent formalism. When applied to material presenting isochoric plastic

flow and uniform isotropic elasticity with a macroscopic shear modulus µ, the

expression of the local stress σ∼
g is:

σ∼
g = σ∼ + µ

(
β
∼
− β

∼

g
)

with β
∼

=
〈
β
∼

g
〉

(18)

The symbol 〈.〉 denotes the volume average. The variable β
∼

g presents a

nonlinear evolution with respect to plastic strain:

β̇
∼

g
= ε̇∼

g −Dβ
∼

g||ε̇g|| (19)

This formulation is purely explicit; it does not need any iterative procedure

like for classical self consistent model. The parameter D is a scale transition

parameter, which should be fitted by means of Finite Element computations

on realistic polycrystalline aggregates.

2.2 Application for two mechanisms

According to Kröner, the physical idea behind the self-consistent framework

is the assumption of perfect disorder. It means that the mixture of the two

constituents is such that in a given realization, the probability to find phase

A and phase B in a given place is totally random. As a consequence, phase A

can be seen as an inclusion in the homogeneous equivalent medium made of

A and B, and phase B can also be seen as an inclusion in the homogeneous
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equivalent medium made of A and B. This is why the localization rules for

both phases are totally symmetric. The ”β rule” is selected for its simplicity

and its versatility. It is now applied to the case of a 2-phase materials. The

role played by its parameters will be studied, and the capabilities of the new

models will be discussed. A similar localization process that is incorporated

into 2M1C and 2M2C models have, as a common root, a decomposition of the

total strain into an elastic part and two inelastic ones. Each inelastic strain can

be associated with a particular mechanism I (I = 1 for the first mechanism

and I = 2 for the second mechanism). The total inelastic strain ε∼in is the

average of the irreversible deformation of each mechanism:

ε∼
in = (1− z)ε∼

1 + zε∼
2 (20)

where (1−z) and z are the volume fraction attributed to the first and the second

mechanism respectively. The multi-mechanism approach is intended to describe

the contribution of several physical levels, or deformation mechanism, to the

inelastic behavior. For the application to the transformation induced plasticity

(Gautier and Cailletaud, 2004), (Sai et al., 2006b), the volume fraction of each

phase is calculated by a kinetics transformation rule. For the specific case of

316 stainless steel, the volume fraction z can be estimated with the help of

the optimization process. The obtained value of the parameter z indicates the

influence of each physical mechanism on the global behavior. The localization

rule, simply writes:

σ∼
1 = σ∼ + µ′

(
β
∼
− β

∼

1
)

σ∼
2 = σ∼ + µ′

(
β
∼
− β

∼

2
)

(21)

with:

β
∼

= (1− z)β
∼

1 + zβ
∼

2 (22)
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The modified models are respectively called 2M1C β and 2M2C β. The new

interphase accommodation variables β
∼

I are defined by:

β̇
∼

I
= ε̇∼

I − dIβ
∼

I ||ε̇I || (23)

2.3 Improvement of the kinematic hardening rule for each mechanism

The previous versions of the model used a classical version of the non linear

kinematic rule, as expressed by Eq. 10 (Cailletaud and Sai, 1995), (Contesti

and Cailletaud, 1989). This rule may become more versatile for the description

of ratchetting by changing the direction of the fading memory term (Burlet

and Cailletaud, 1987):
X∼ = δX∼

1 + (1− δ)X∼
2 X∼

1 = 2
3
Cα∼

1 X∼
2 = 2

3
Cα∼

2

α̇∼
1 = λ̇

(
n∼ −

3D
2C (X∼ : n∼) : n∼

)
and α̇∼

2 = λ̇
(
n∼ −

3D
2C X∼

) (24)

The original version of the model involves 2 kinematic hardening variables with

two different fading memory terms using only one set of parameters (C, D).

Other authors (Delobelle et al., 1995) have used a different combination of the

same terms:
X∼ = X∼

1 + X∼
2 X∼

1 = 2
3
Cα∼

1 X∼
2 = 2

3
Cα∼

2

α̇∼
I = λ̇

(
n∼ −

3DI
2CI

(
(1− δ)X∼

I + δ
(
X∼

I : n∼
I
)
n∼

I
))

(I = 1, 2)

(25)

In the present paper, the following rule will be used:

α̇∼
I = λ̇

(
n∼

I − 3DI

2CII

(
(1− δI)X∼

I + δI

(
X∼

I : n∼
I
)
n∼

I
))

(I = 1, 2) (26)

where δI (I = 1, 2) are two additive material parameters. It is important to note

that, from a thermodynamical point of view, the fading memory terms have to
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be written as function of the back stresses X∼
I instead of the internal variables

α∼
I . This difference vanishes for unified models in isothermal conditions.

2M2C β and 2M1C β models (Table 3 and Table 4) are implemented into

the Finite Element code ZéBuLoN (Besson et al., 1998), using a θ–method

solved by an implicit Newton scheme for the local integration. In the next

section, the simulations of the tests with the two modified models are shown.

3 New capabilities of the model

The purpose of this section is to illustrate the capabilities of the new models

to describe specific mechanical effects. The two examples are treated with the

2M1C β model; for the ratchetting effect, the same results would be obtained

with the 2M2C β model.

3.1 Ratchetting effect

In the new models, the effective stresses for each mechanism can be rewritten

as σ∼ −Y∼
I , with:


Y∼

1

Y∼
2

 =
2

3


C11 C12

C12 C22




α∼

1

α∼
2

+ µ′


z −z

−(1− z) (1− z)




β
∼

1

β
∼

2


This illustrates the difference between the intermechanism and intramechanism

corrective terms for computing internal stresses. When both β
∼

I and X∼
I have

linear evolution rules, it can be easily shown that the modified models are

reduced to the initial form with the following determinant of the hardening
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matrix:

∆ = (4/9)(C11C22 − C2
12) + (2/3)µ′ [(1− z)C11 + zC22 + C12]

As a consequence, ratchetting behavior depends both on the initial determinant

C11C22 − C2
12 and the localization parameter µ′. A systematic study is then

proposed to illustrate the uniaxial and the multi-axial ratchetting behavior

with respect to (i) the evolution rule of the accommodation variables β
∼

I , (ii)

the evolution rule of the back stresses X∼
I , and (iii) the characteristics of the

hardening matrix [C]. In order to easily identify the various tests, their names

are defined by five letters. The first one characterizes the regular (R)/ singular

(S) matrix. The next two capital letters are allotted to the description of the

kinematic hardening evolution rules (L for linear and N for non linear hardening

rules). The last two small letters are reserved to the description of the evolution

rules of the accommodation variables (l for linear and n for non linear). For

example:

• the model with a singular matrix, linear evolution rules for the kinematic

variables and linear evolution rules for the accommodation variables will be

refered to as model SLLll,

• the model with a regular matrix, linear evolution rule for the first kinematic

variable, non linear evolution rule for the second kinematic variable and non

linear evolution rules for the accommodation variables will be refered to as

model RLNnn.

The list of the parameters used for each model is given in Table 5, and the

corresponding predicted uniaxial ratchetting response for applied stresses are

shown in Fig. 3. The main results can be summarized as follows:
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• Ratchetting behavior with a constant increase of a tensile peak strain is

obtained in the following cases:

· for a singular matrix (∆ = 0) and linear evolution rules for both kinematic

hardening variables whatever the evolution rules of the accommodation

variables (models SLLll and SLLnn),

· for a regular matrix (∆ 6= 0) and non linear evolution rules for the

two kinematic hardening variables and the two accommodation variables

(model RNNnn),

• Ratchetting behavior also occurs but with a lower rate with a regular matrix,

two linear kinematic hardening variables and two non linear accommodation

variables (RLLnn)

• A shakedown behavior is obtained with a regular matrix if one (at least)

of the kinematic hardening variables is linear and one (at least) of the the

accommodation variables is linear (models RLLll, RNLll, RLLnl).

• Ratchetting can also be stopped with two non linear kinematic variables if

a regular matrix and two linear accommodation variables are used (model

RNNll). However, the asymptotic tensile peak strain reached at steady state

is large by comparison with the models RLLll, RNLll, RLLnl.

3.2 Behavior under nonproportional loading

In combined axial-torsional fatigue tests, ”out-of-phase”tests refer to sinusöıdal

signals with a 90◦phase lag, meanwhile for ”in-phase” loadings, the phase lag

is zero. A material exhibits an ”additional hardening” if the equivalent stress

range obtained in ”out-of-phase” test is larger than those obtained for any

”in-phase” test having the same equivalent strain range.
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Materials like austenitic stainless steel or copper are famous to be prone to

additional hardening (Cailletaud et al., 1984), (Lamba and Sidebottom, 1978),

(Benallal and Marquis, 1987). Surprisingly, the 2M1C Model can reproduce this

additional hardening. To illustrate this possibility, an axial fatigue test with a

strain range of 1% is compared to a tension-torsion out-of-phase test with the

same axial strain range. As shown in Fig. 4, the resulting stress range is larger

for the out-of-phase test than for the axial test. Note that the model has not

specific material constants to describe the degree of additional hardening. It

will be shown in the next section that the 2M1C β model is able to predict with

a good accuracy the amount of additional hardening obtained for experiments.

On the other hand, it is worth noting that this extra-hardening has a pure

kinematic source, so that it will vanish after one or two cycles in an ”in-phase”

loading which would follow an ”out-of-phase” block. This is not the case in the

experiments when the memory of the initial extra-hardening will slowly vanish

in the subsequent loading.

4 Application to 316 stainless steel at 25◦C

In many cases, the local deformation mechanisms that produce plasticity in

metallic materials generate heterogeneous deformation patterns. This is the

fundamental reason for introducing several mechanisms. Two mechanisms

is the preferred version, since it provides a series of interesting modeling

capabilities, even if they are still manageable. For the specific case of 316

stainless steel, dislocation patterns are known to be present in the grains.

Their form can be either walls or cells according to the level of the loading and

its type. The set dislocation walls / interwall areas can be seen as the physical
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reason for the two mechanisms in the present case.

4.1 Results of simulation of experiments

To assess the models capabilities to quantitatively describe the experimental

effects, an experimental data base obtained on a 316 stainless steel is chosen

(Portier et al., 2000). As in the cited work, the following tests at room

temperature (25◦C) have been used for the identification of the modified 2M1C

and 2M2C models:

• monotonic tensile test,

• cyclic uni-axial tension-compression for three strain ranges,

• tension-torsion ratchetting tests with two values of tensile stress and with

various shear strain amplitude,

• tension-torsion out-of-phase test at mechanical steady-state.

The loading histories related to the different simulations are shown in Fig.

5. The materials parameter identification was performed by means of the

optimization module of the software Zset/Zébulon. To reduce the number

of parameters in the identification procedure, the evolution rules of the

accommodation variables are taken linear for the two models. For the 2M2C β

model one kinematic hardening variable was taken as quasi-linear to reduce

ratchet strain which is much too large with two nonlinear kinematic variables.

The list of the calibrated coefficients for the 2M1C β and the 2M2C β models is

given in Tables 6 and 7, and the corresponding comparison between simulated

responses and experimental data are shown in Fig. 6. According to Table 7,

only the second mechanism in the 2M2C β model has isotropic hardening.

This is in agreement with the fact that there is a soft phase (the areas with
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a low dislocation density) and a hard phase (dislocation walls or cells). The

harder phase is also the phase which will become harder and harder during

the deformation process. For sure, this has an influence on the description of

ratchetting. In addition to the tension ratchetting test which is not included

in the identification procedure, two tension-torsion ratchetting tests are used

to validate a posteriori the prediction of the proposed model (Fig. 7). In

these tests, the specimens are submitted to a constant axial strain with an

increasing shear strain amplitude. The correlation between simulated responses

and experimental results for the optimal set of material parameters are globally

satisfactory. In fact:

• the 2M1C β model does not reproduce each tension-torsion ratchetting test

exactly but it is able to capture the major trends in the tests. In particular,

the out-of-phase test is well described by this model.

• the 2M2C β model gives a more precise description of the 2D ratchetting

tests but underestimates the additional hardening under nonproportional

cyclic loading.

Comparing to the models tested in the work of (Portier et al., 2000), the

proposed models are able to reproduce both ratchetting under uni-axial

condition and multi-axial condition.

4.2 Discussion

The overestimation of the ratchetting by the 2M1C β model and its

underestimation by the 2M2C β model is not a motivation to diversify

the multi-mechanism models but rather to converge towards an unique

formulation. The true nature of the two models was exhibited in Fig. 1, in
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a conventional representation, in terms of effective stresses (σ∼ −X∼
1, σ∼ −X∼

2).

By the way, intermediate solutions can also be found, and, following (Gambin

and Kröner, 1981), a non linear combination of the two mechanisms has already

been proposed (Taleb et al., 2006):

f =

(J(σ∼ −X∼
1)

K1

)N

+

(
J(σ∼ −X∼

2)

K2

)N
1/N

−R (27)

where N is a new material parameter. 2M1C model is recovered by using

N = 2, meanwhile 2M2C model is the limit case when N → ∞. K1 and K2

are not new material parameters. They are equal for the 2M1C model. For the

2M2C model, K1 and K2 are related to the ratio of the initial yield surfaces

R0
1 and R0

2. The effect of the new parameter N is shown on Fig. 8. For N = 1,

the obtained curve is a rhomboid, for the N = 2 (2M1C model) it is a circle,

while for N →∞ it is a rectangle (2M2C model).

The parameter set of Table 6 is used to simulate out-of-phase tests with various

values of N (K1=K2=1). Figure 9 gives the resulting additional hardening for

different values of N . It can be noted that:

• the additional hardening is absent for very small values of the parameter N

(say 1.1) and for the high values of N (corresponding to the 2M2C model),

• the maximum additional hardening is obtained with N '3,

• the optimum value that gives the more precise amount of additional

hardening in the present case is N=2 (corresponding to the 2M1C model),

or, alternatively for N '4.

In this unique formulation, chosing N=1 produces a version which may

degenerate into an unified model with two back stresses for some particular

loadings. For instance, in one dimensional tensile loading, the yield function of
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Eq. 27 is such that:

f = |σ −X1|+ |σ −X2| −R = 2σ −X1 −X2 −R (28)

On the other hand, taking a yield function as in Eq. 27 does not preserve

the opportunity to introduce two different mechanisms, (namely viscoplastic

and plastic) in the constitutive equations. Further simulations are needed to

explore the effect of the parameter N on the description of the whole range of

experimental data.

5 Conclusion

This paper shows the current state of a class of multi-mechanism models with

either unified or additive (visco)plastic flows. It was established from previous

works that, for this type of models, ratchetting behavior is related to the value

of the determinant of the hardening matrix. The improvement proposed here

takes its source in the β rule (Cailletaud and Pilvin, 1994) already used in

polycrystalline approches and from an alternative formulation of the kinematic

hardening rule (Burlet and Cailletaud, 1987). As a result, a good agreement is

obtained between the proposed model and an experimental data base consisting

of one dimensional and multi-axial tests. These results do not imply that the

proposed models are general enough for simulating successfully the ratchetting

in an other experimental data base. Further validation are needed to explore

their general reliability.

The proposed 2M1C β and 2M2C β models are characterized by a high

versatility with regard to ratchetting behavior. Fully equipped with singular

and regular/singular matrices and with different choices of fading memory
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terms, they are implemented in the Finite Element code Zébulon; it is then

possible to use them for structural computations, in order to analyze the

inelastic behavior of machine components submitted to complex multi-axial

loading.
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6 Tables

Table 1

Constitutive equations of the initial 2M2C model

ε̇∼ = ε̇∼
e + ε̇∼

1 + ε̇∼
2

f1 = J(σ∼ −X∼
1)−R1 −R1

0 f2 = J(σ∼ −X∼
2)−R2 −R2

0
X∼

1

X∼
2

 = (2/3)


C11 C12

C12 C22




α∼
1

α∼
2


R1 = Q1r

1 R2 = Q2r
2

ε̇∼
1 = λ̇1n∼

1 ε̇∼
2 = λ̇2n∼

2

α̇∼
1 = λ̇1

(
n∼

1 − 3D1X∼
1

2C11

)
α̇∼

2 = λ̇2

(
n∼

2 − 3D2X∼
2

2C22
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Table 2

Constitutive equations of the initial 2M1C model

ε̇∼ = ε̇∼
e + ε̇∼

1 + ε̇∼
2

f =
(
J(σ∼ −X∼
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2)2
)1/2 −R−R0
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X∼
2

 = (2/3)
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(
1− bR
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Table 5

2M1C β–Model, study of ratchetting behavior with respect to the different material

parameters.

Coefficients Model parameters Units

SLLll RLLll RLLnn RLLln SLLnn RNNll RNLll RNNnn

C11 30 30 50 50 50 50 50 100 GPa

C22 3 3 5 5 5 5 5 10 GPa

C12 9.486 9.486 10 10 15.81 10 10 20 GPa

µ′ 30 0 40 40 40 40 40 80 GPa

D1 0 0 0 0 0 100 300 100 -

D2 0 0 0 0 0 10 0 10 -

d1 0 0 20 0 20 0 0 20 -

d2 0 0 200 200 200 0 0 200 -

(z=0.79, R0=250 MPa, Q=50 MPa, b=30)

Table 6

Identified material parameters of the 2M1C β–Model. 316 austenitic stainless steel

(25◦C) E=192 GPa ν = 0.3

R0 = 163 MPa Q = 129 MPa b = =2.8 z=0.04 µ′=20 GPa

C11=115.6 GPa C22=12.9 GPa C12=19.5 GPa D1=112.5 D2=1464

δ1=0.108 δ2=0.0025 d1=0 d2=0
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Table 7

Identified material parameters of the 2M2C β–Model. 316 austenitic stainless steel

(25◦C), E=192 GPa ν = 0.3

R1
0=145.6 MPa Q1=0 MPa b1=0

R2
0=220 MPa Q2 =200 MPa b2=4

C11=13 GPa C22=11 GPa C12=-7.3 GPa D1=0 D2=388

δ1=0.038 δ2=0.022 d1 = 0 d2 = 0 z=0.373 µ′=19.7 GPa
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7 Figures

2M2C model
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Fig. 1. Comparison of the initial elastic domain for the two models.
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Fig. 2. Ratchetting behavior with linear kinematic hardening rules: (a) 1D loading

under prescribed stress (-300 MPa, +350 MPa); ratchetting stopped by a regular

matrix, (b) loading as in (a); ratchetting allowed by a singular matrix, (c) 2D loading,

axial stress σ11=250 MPa, prescribed shear strain ε12 = ±0.4%; ratchetting stop

allowed by a regular matrix, (d) loading as in (c) : ratchetting allowed by a singular

matrix, (e) 1D Ratchetting: (f) 2D Ratchetting.
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Fig. 3. Simulation of 1D ratchetting test using the 2M1C β model under

onedimensional loading prescribed axial stress (-150 MPa, +300 MPa): Systematic

study of the effect of (i) the hardening matrix and (ii) the evolution rules of the

kinematic hardening variables and the accomodation variables. (a) 200 cycles (b)

2000 cycles.



44

-600

-400

-200

 0

 200

 400

 600

-600 -400 -200  0  200  400  600

sq
rt(

3)
 x

 s
he

ar
 s

tre
ss

 (M
P

a)

axial stress (MPa) 

axial loading (stabilized cycle)

out-of-phase loading

Fig. 4. Simulation of an out-of-phase test using the 2M1C β–Model. The material

parameters are almost the same used for the simulation of the 316 stainless steel

behavior.



45

Time

A
xi

al
 st

ra
in

  ε
11

 (%
)

Monotonic tensile test

ε̇ = 3.10−4s−1.

0 5 10 15 20Time

A
xi

al
 st

re
ss

,  
σ 1

1 (
M

Pa
)

2∆
σ

σ m

Tension ratchetting test

σm = 100MPa, ∆σ = 140MPa

0

0.2

0.4

0.6

0.8

0 100 200 300 400
Number of cycles

Sh
ea

r 
st

ra
in

 a
m

pl
itu

de
   
ε 1

2m
ax

 (%
)

Tension-torsion ratchetting tests

σ11 = 80MPa, σ11 = 100MPa.

Time

A
xi

al
 st

ra
in

  ε
11

 (%
)

∆
ε 1

1

Cyclic loadings

∆ε11 = 0.5, 0.65 and 0.8%

Shear strain, ε12 (%)

A
xi

al
 st

re
ss

,  
σ 1

1 (
M

Pa
)

0

0

σ m
ax ∆ε12

Tension-torsion ratchetting tests

σ11 = 80MPa, ∆ε12 = 0.1%, 0.2%, 0.5%

σ11 = 100MPa, ∆ε12 = 0.1%, 0.2%, 0.5%

Time

St
ra

in
 (%

)

ε=ε0cos(ωt)

γ=31/2ε0sin(ωt)

Tension-torsion out-of-phase test ε0 = 0.5%

Fig. 5. Description of the loading histories for the different tests of the experimental

data base carried out by (Portier et al., 2000).



46

 0

 50

 100

 150

 200

 250

 300

 350

 0  0.5  1  1.5  2

A
xi

al
 s

tre
ss

 (M
P

a)

Axial strain (%)

Monotonic test

2M1C 
2M2C 

 Exp

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  20  40  60  80  100

M
ax

im
um

 a
xi

al
 s

tra
in

 p
er

 c
yc

le
 (%

)

Number of cycles

2D ratchetting (axial stress = 80 MPa)

2M1C
2M2C 

Exp

(c)

 0

 0.5

 1

 1.5

 2

 0  20  40  60  80  100

M
ax

im
um

 a
xi

al
 s

tra
in

 p
er

 c
yc

le
 (%

)

Number of cycles

Tension ratchetting

2M1C
2M2C

Exp

(e)

-400

-300

-200

-100

 0

 100

 200

 300

 400

-1 -0.5  0  0.5  1

A
xi

al
 s

tre
ss

 (M
P

a)

Axial strain (%)

Cyclic behavior

2M1C 
2M2C 

Exp

(b)

 0

 0.5

 1

 1.5

 2

 0  20  40  60  80  100

M
ax

im
um

 a
xi

al
 s

tra
in

 p
er

 c
yc

le
 (%

)

Number of cycles

2D ratchetting (axial stress = 100 MPa)

2M1C
2M2C

Exp

(d)

-600

-400

-200

 0

 200

 400

 600

-600 -400 -200  0  200  400  600

sq
rt(

3)
*S

he
ar

 s
tre

ss
 (M

P
a)

Axial stress (MPa)

out-of-phase steady state response

2M1C 
2M2C 

Exp

(f)

Fig. 6. Comparison between experiments test (Portier et al., 2000) and simulations

for the 2M1C β–Model: (a) Tensile test, (b) Cyclic behavior, (c) 2D Ratchetting,

σmax = 80 MPa with various ∆ε12, (d) 2D Ratchetting, σmax = 100 MPa with

various ∆ε12, (e) 1D Ratchetting, (f) Out of phase.
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Fig. 10. Analytical study of the ratchetting behavior of the 2M2C model: (a)

distinction of the different branches in the stress-strain loop, (b) activation of the

mechanisms according to the different branches.
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Appendix A

A Closed form solution for ratchetting behavior of the 2M2C model

• Case of linear kinematic hardening rule:

Let us assume a one dimensional loading on a time-independent plasticity

model with linear kinematic hardening rules and no isotropic hardening. We

have the following equations:

εin = ε1 + ε2

f 1 = |σ − C11ε
1 − C12ε

2| −R1
0

f 2 = |σ − C12ε
1 − C22ε

2| −R2
0

ε̇1 = λ̇1n1

ε̇2 = λ̇2n2

n1 = sign(σ − C11ε
1 − C12ε

2)

n2 = sign(σ − C12ε
1 − C22ε

2)

The purpose is to calculate the variation of the tensile peak strain between

two successive cycles under applied cyclic stress (-σmin,+σmax) (Fig. 10.a):

δεin = εin
G − εin

A

If the stress σmax is sufficiently high, the two mechanisms are simultaneously

active. The conditions f I = 0 lead to the system of two equations, in which
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the unknowns are the local inelastic strains ε1 and ε2.
C11 C12

C12 C22




ε1

ε2

 =


σmax −R1

0

σmax −R2
0

 (A.1)

If the determinant C11C22 − C2
12 6= 0 then the local inelastic strains can be

obtained from Eq. A.1:

ε1
G =

(C22 − C12) σmax + R2
0C12 −R1

0C22

C11C22 − C12
2 = ε1

A (A.2)

ε2
G =

(C11 − C12) σmax + R1
0C12 −R2

0C11

C11C22 − C12
2 = ε2

A (A.3)

Hence, a first property is obtained:

C11C22 − C2
12 6= 0 ⇒ δεin = 0 (A.4)

However, if C11C22 −C2
12 = 0 Eq. A.1 does not provide the inelastic strains.

It can be noted:

· from A to B the behavior is purely elastic.

· from B to C only the first mechanism is active.

· from C to D the mechanism 2 is active and the coupling effect extinguishes

the mechanism 1. As a matter of fact, the two consistency conditions ḟ 1 =

ḟ 2 = 0 cannot be satisfied simultaneously. Using only the consistency

condition ḟ 2 = 0 leads to C12λ̇1 + C22λ̇2 = n2σ̇. So that any positive

value of λ̇2 gives a negative solution of λ̇1 because of the high value of C12

comparing to C22. The only way to be consistent, is to assign λ̇1 to zero.

· from D to E the behavior is purely elastic.

· from E to F only mechanism 1 is active.

· from F to G the mechanism 2 is active and extinguishes the mechanism 1

for the same reasons explained before.
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Fig. 10.b shows the evolution of the inelastic local strain of the two

mechanisms corresponding to the stress-strain curve of the Fig. 10.a. In

the one dimensional case, the yield surfaces are respectively taken as:

C11ε
1 + C12ε

2 = σ − n1R1
0, C12ε

1 + C22ε
2 = σ − n2R2

0 (A.5)

For the loading phase (n1 = n2 = 1), σ is equal to σmax. Using C11C22−C2
12 =

0 in Eq. A.5, the following expression is obtained:

C11ε
1 + C12ε

2 = σmax −R1
0 =

C11

C12

(σmax −R2
0) (A.6)

The consistency conditions are respectively:

C11ε̇
1 + C12ε̇

2 = σ̇, C12ε̇
1 + C22ε̇

2 = σ̇ (A.7)

Considering the above behaviors in different branches and using the property

C11C22 − C12
2 = 0, the following results are obtained:

ε1
F = ε1

B +
σF + σC − σE − σB

C11

, ε2
G = ε2

B +
σmax + σmin − σC − σF

C22

(A.8)

with:

σF =
C11R

2
0 − C12R

1
0

C11 − C12

and σC =
C12R

1
0 − C11R

2
0

C11 − C12

(A.9)

The stress state at B and E (end of branches with elastic behavior) is such

that:

σB = −R1
0 +

C12

C22

(
σmax −R2

0

)
(A.10)

σE = R1
0 +

C12

C22

(
σmin + R2

0

)
(A.11)

Considering the expressions of these stresses, the variation of the tensile peak

strain between two successive cycles can be deduced:

δεin =
(

1

C22

− 1

C12

)
(σmax + σmin) with C11C22 − C2

12 = 0 (A.12)



53

The two following points should be emphasized:

· A shakedown behavior can also be obtained with a singular matrix in the

special case C11 = C12 = C22. In such a condition, the model degenerates

into a single Chaboche’s model and contains one back stress X∼ ,

· The hardening modulus C22 must be less then C12 in the 2M2C model

with a linear kinematic hardening rule and a singular matrix. Otherwise, a

negative ratchetting may occurs with a high value of σmax. By symmetry

(using C11C22 − C2
12 = 0), C11 must be greater than C12.

• Case of non linear kinematic hardening rule:

The variation of the tensile peak strain between two successive cycles cannot

be obtained analytically for the kinematic hardening rule of Eq. 10. However,

an analytic solution can be obtained if the dynamic recovery term DIα∼I is

used instead of the term (3/2)(DI/CII)X∼
I :

α̇∼
I = λ̇

(
n∼

I −DIα∼
I
)

(I = 1, 2) (A.13)

The branches of the Fig. 10.a are now non linear and the following behaviors

are considered:

· from A to B the behavior is purely elastic.

· from B to C only the first mechanism is active.

· from C to D the 2 mechanisms are active.

· from D to E the behavior is purely elastic.

· from E to F only the first mechanism is active.

· from F to G the 2 mechanisms are active.

The integration of the state variables between the different branches gives

the following expression of the variation of the tensile peak strain:

δεin = ln
[(

1−D2
1(α

1
D)2

1−D2
1(α

1
A)2

)1/D1
(

1−D2
2(α

2
D)2

1−D2
2(α

2
A)2

)1/D2
]

(A.14)
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In which α1
A, α1

D, α2
A and α2

D are the intermediate values of the kinematic

hardening variables:

· α1
A = [(C22 − C12)σmax + R2

0C12 −R1
0C22]/(C22C11 − C2

12)

· α2
A = [(C11 − C12)σmax + R1

0C12 −R2
0C11]/(C22C11 − C2

12)

· α1
D = [(C22 − C12)σmin −R2

0C12 + R1
0C22]/(C22C11 − C2

12)

· α2
D = [(C11 − C12)σmin −R1

0C12 + R2
0C11]/(C22C11 − C2

12)

Eq. A.14 shows that the variation of the tensile peak strain is constant as in

the unified model proposed by (Chaboche, 1986). This is not longer true if

the kinematic hardening rule of Eq. 10 is considered.
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