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A CONVERGENT ADAPTIVE FINITE ELEMENT METHOD WITH

OPTIMAL COMPLEXITY

ROLAND BECKER∗, SHIPENG MAO† , AND ZHONG-CI SHI‡

Abstract. In this paper, we introduce and analyze a simple adaptive finite element method for
second order elliptic partial differential equations. The marking strategy depends on whether the data
oscillation is sufficiently small compared to the error estimator in the current mesh. If the oscillation
is small compared to the error estimator, we mark as many edges such that their contributions to
the local estimator is at least a fixed proportion of the global error estimator (bulk criterion for the
estimator). Otherwise we reduce the oscillation by marking sufficiently many elements, such that the
oscillations of the marked cells is at least a fixed proportion of the global oscillation (bulk criterion
for the oscillation). This marking strategy guarantees a strict reduction of the error augmented by
the oscillation term. Both, convergence rates and optimal complexity of the adaptive finite element
method are established, with an explicit expression of the constants in the estimates.

Key words. Adaptive finite element method, a posteriori error estimator, convergence rate,
optimal computational complexity.

AMS subject classifications. 65N12, 65N15, 65N30, 65N50

1. Introduction. The analysis of adaptive finite element methods has made
important progress in recent years. Up to now, a large amount of work has been
performed concerning AFEMs based on a posteriori error estimation for finite element
methods, which typically consists of successive loops of the sequence

SOLVE → ESTIMATE → MARK → REFINE. (1.1)

We refer to the review articles of Eriksson et al [19] and the books of Ainsworth [1],
Babus̆ka [2], Verfürth [27] and the references therein.

On the other hand, while these adaptive finite element methods have been shown
to be very successful computationally, the theory describing the advantages of such
methods over their nonadaptive counterparts is still not complete. Apart from the
well-known results in the one dimensional case by Babus̆ka and Vogelius [4], the
convergence of AFEMs in the multidimensional case was an open issue before the work
by Dörfler [17], which was later extended by Morin, Nochetto and Siebert [23, 24], and
more recently by Carstensen and Hoppe for mixed FEM [11] and for nonconforming
FEM [12], by Mekchay and Nochetto for general second order linear elliptic PDE [21].
Especially, the importance and necessity of controlling data oscillations and inner
nodes are pointed out in [23] and [24].

Another important break through in the theoretical understanding of AFEMs is
the estimation of the dimension of the adaptively constructed discrete spaces, first
achieved by Binev, Dahmen and DeVore [9] who showed the optimal computational
complexity. The key to prove the optimality was the introduction of an additional
so-called coarsening step. A further significant improvement has been achieved by
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Cedex, France (roland.becker@univ-pau.fr).

† Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of
Mathematics and System Science, Chinese Academy of Science, PO Box 2719, Beijing, 100080,
China (maosp@lsec.cc.ac.cn).

‡ Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of
Mathematics and System Science, Chinese Academy of Science, PO Box 2719, Beijing, 100080,
China (shi@lsec.cc.ac.cn).

1



Stevenson [25] who shows that the additional coarsening step is not necessary in
order to prove optimal complexity, and recently similar results are extended to Stokes
problem [20] by Kondratyuk and Stevenson, to mixed FEMs [15] by Chen, Holst
and Xu. The importance of the above mentioned results lays in the fact that they
show optimal complexity of adaptive algorithms in the following sense: if the exact
solution can be approximated by a given adaptive method at a certain rate (quotient
of accuracy to number of unknowns), the iteratively constructed sequence of meshes
will realize this rate up to a constant factor.

In this paper, we present a simple adaptive finite element method for second order
elliptic partial differential equations, which is a modification of the MNS algorithm of
[23] and [24] by Morin, Nochetto and Siebert. Our modification is motivated by the
idea that if the data oscillation term is small compared to the error estimator, it is
sufficient to mark elements such that the sum of the local error indicators amounts to
a fixed proportion of the global error estimator, otherwise we only need to perform a
similar marking strategy for the oscillation term. The adaptive algorithm consdiered
here can simplify the MNS algorithm in some sense, but its convergence proof is not
obvious. Since in one refinement step we mark elements either according to the error
estimator or according to the oscillation term, one cannot expect the oscillation term
to be reduced in every iteration as is the case in the MNS algorithm. Therefore,
in order to prove convergence of our algorithm, we need to couple the error and
oscillation term by an argument similar to [23]. As a novel theoretical result, we
prove a contraction property of the error augmented by the data oscillation term.
In addition, both convergence rates and optimal complexity of the adaptive finite
element method are established by a detailed analysis in the spirit of [23] and [25].

An outline of the remaining parts of the paper is as follows. In Section 2, we
introduce the set-up and discretization of the model problem, an a posteriori error
estimate for the finite element method and the adaptive algorithm AFEM along with
some notations and preliminaries for subsequent use. In Section 3 we present some
useful lemmata concerning the a posteriori error estimator and prove the convergence
rates and optimal complexity of the adaptive finite element method by a detailed
analysis. Finally, some comments and extensions of the results conclude the paper in
Section 4.

2. A simple adaptive finite element method. We start this section with
some useful notations. Throughout this paper, we adopt the standard conventions for
Sobolev spaces (see, e.g. [16]), the norms and seminorms of a function v defined on
an open set G:

‖v‖m,G =




∫

G

∑

|α|≤m

|Dαv|2





1

2

, |v|m,G =




∫

G

∑

|α|=m

|Dαv|2





1

2

.

Let Ω ⊂ Rn be a bounded polygonal (polyhedral) domain. We consider the
following second order elliptic equations : Find u ∈ H1

0 (Ω) such that
{
−∆u = f, in Ω

u = 0, on ∂Ω,
(2.1)

where f ∈ L2(Ω).
We denote by (·, ·)G the L2(G) inner product, and if G = Ω, we drop the index

Ω for simplicity. For any f ∈ L2(Ω), the weak formulation of the problem (2.1) reads
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as follows:
{

Find u ∈ H1
0 (Ω), such that

a(u, v) = (f, v), ∀ v ∈ H1
0 (Ω)

(2.2)

with a(u, v) =
∫
Ω
∇u · ∇v dx.

Let TH be a conforming regular triangulation of Ω and let VH denote the finite
element space of piecewise linear functions over TH . We denote by V H the space of
continuous piecewise linear functions over TH , and let V H

0 be the subspace of functions
of V H that vanish at the boundary ∂Ω. Let uH denote the solution of the discrete
problem

{
Find uH ∈ V H

0 , such that

a(uH , vH) = (f, vH), ∀ vH ∈ V H
0 .

(2.3)

We shall not discuss the step SOLVE which deserves a separate investigation.
We assume that the solutions of the finite-dimensional problems can be generated to
any accuracy to accomplish this in optimal space and time complexity. Multigrid-like
methods are well-known to achieve this goal, cf. [7, 29].

We denote by EH the set of edges (or faces in 3D) of the triangulation TH that
do not belong to the boundary ∂Ω of the domain Ω. For E ∈ EH , HE denotes the
diameter of E and the domain ωE is the union of the two elements in TH sharing E.
For any K ∈ TH , HK stands for its diameter and the domain ωK is the union of the
adjacent elements in TH .

Subtracting (2.2) for (2.2) and integrating by parts yields

a(u − uH , v) =
∑

K∈TH

(f, v − IHv) +
∑

E∈EH

∫

E

JE(v − IHv)ds, ∀v ∈ H1
0 (Ω), (2.4)

Here and after, JE = [[∇uH ]]E · ν represents the jump of flux across side E which
is independent of the orientation of the unit normal ν, and IH denotes the Clément
interpolation operator [14]. It plays an important role in the analysis of the reliability,
which is well established in the literature [13, 28].

Let ηE be the local error indicator associated with edge E ∈ EH which is defined
as

ηE(uH) :=

(
∑

K∈ωE

‖HKf‖2
0,K + ‖H

1

2

EJE‖
2
0,E

) 1

2

. (2.5)

For any given subset FH ⊆ EH and SH ⊆ TH , we define

η(uH ,FH) :=

(
∑

E∈FH

η2
E(uH)

) 1

2

(2.6)

and

osc(f,SH) :=

(
∑

K∈SH

‖HK(f − fH)‖2
0,K

) 1

2

, (2.7)
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where fH denotes a piecewise constant approximation of f on TH . If f ∈ L2(Ω), its
value on K is the mean value of f over K.

The following upper and lower bounds are well known, see e.g., [1] and [27].

Lemma 2.1 (upper bound) There exists a constant C1 > 0 depending only on

the minimum angle of MH such that

|u − uH |21,Ω ≤ C1η
2(uH , TH). (2.8)

Lemma 2.2 (lower bound) There exists two constants C2, C3 > 0 depending only

on the minimum angle of MH such that, for any E ∈ EH ,

η2
E(uH) ≤ C2

∑

K∈ωE

|u − uH |21,K + C3osc2(f, ωE). (2.9)

Summing up all E ∈ EH in (2.9) we have

η2(uH , EH) ≤ (n + 1)C2|u − uH |21,Ω + (n + 1)C3osc2(f, TH). (2.10)

We note that we can assume without loss of generality C2 ≥ C3.

In practice, both the local error estimator η(uH ,FH) and the oscillation term
osc(f,SH) should be used in the MARK step of the algorithm. The precise way they
are used in the MARK step influences the convergence of the AFEM, see [23] and
[24]. What is more, it also influences the optimality of the AFEM. Therefore, the
MARK step plays a key role in AFEMs and should be designed properly.

As for the REFINE step, we need to carefully choose the rule for dividing the
marked triangles such that the family of meshes obtained by this refinement rule is
conforming and shape regular. In addition, we need to control the number of elements
added in order to ensure the overall optimality of the refinement procedure. In this
article, we shall use the newest vertex bisection technique. We refer to [9, 22, 25] for
details of this algorithm and restrict ourselves to list the following properties used
lateron.

Lemma 2.3. Let Th be a refinement of a shape regular triangulation TH using

the new vertex rule and let M be the collection of all triangles refined in going from

TH to Th. Let N (T ) denote the number of elements of a triangulation T . Then Th

is uniform shape regular with respect to h and the shape regularity of Th only depends

on that of TH and furthermore,

N (Th) ≤ N (TH) + C0N (M). (2.11)

Remark 2.1. The result (2.11) was first proved by Binev, Dahmen and DeVore [9]
in the 2D triangular case and generalized by Stenvenson [26] to the case of n-simplices.

Another important rule which appears in the REFINE step is the interior node

property. Let Th be a refinement of the triangulation TH . We say that the refinement
satisfies the interior node property if each element of the marked set Mh to be refined,
as well as each of its edges, contains a node of Th in its interior. In fact, the interior
node property is also a necessary condition for the error reduction of adaptive linear
finite element methods, see [23] for an example which shows that if the refinement
does not produce interior nodes, the error may not change.

We are now in the position to present our adaptive algorithm AFEM.
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Algorithm 1 AFEM

(0) Select parameters 0 < α, θ, γ < 1 and an initial mesh T0, and set k = 0.
(1) Solve the discrete system (2.3) on Tk for the finite element solution uk.
(2) Compute the a posteriori error estimator η(uk, Tk) and oscillation term osc(f, Tk).

If η(uk, Tk) ≤ ǫ, then stop.
(3) i) If osc2(f, Tk) < γ η2(uk, Tk) mark the minimal edge set Fk of Ek such that

η2(uk,Fk) ≥ α η2(uk, Ek). (2.12)

Define the marked elements Mk =
⋃

E∈Fk
ωE .

ii) Otherwise choose the marked elements set Mk of Tk to be set of elements
with the minimal cardinality such that

osc2(f,Mk) ≥ θ osc2(f, Tk). (2.13)

(4) Let Tk+1 be the refinement of Tk (in the case i), the refinement should satisfy
the interior node property).

(5) Set k := k + 1 and go to step (1).

3. Convergence and optimality of AFEM. In this section we shall prove the
convergence and optimality of the algorithm developed in Section 2. The techniques
are adapted from [9, 23, 21, 25]. For completeness we include some results established
in the mentioned references without proofs.

The convergence analysis starts from the orthogonality relation between u − uH

and uh − uH , the so-called Pythagoras equality, which follows immediately from the
Galerkin orthogonality.

Lemma 3.1. (Galerkin orthogonality) Let Th be a refinement of the triangulation

TH such that V H ⊂ V h, suppose uH , uh are then the discrete finite element solutions

over TH and Th, respectively. Then the following relation holds:

|u − uh|
2
1,Ω = |u − uH |21,Ω − |uh − uH |21,Ω. (3.1)

The following local bound for the estimator in terms of the local difference be-
tween two Galerkin solutions up to a local oscillation term plays a key role in the
convergence analysis of AFEM.

Lemma 3.2. Let Th be a refinement of the triangulation TH such that V H ⊂ V h,

if for any E ∈ EH , both E and K ∈ ωE satisfy the interior node property, then we

have

η2
E(uH) ≤ C4

∑

K∈ωE

|uh − uH |21,K + C5osc2(f, ωE). (3.2)

As mentioned in the previous section, a successful convergent AFEM should in-
clude the so-called oscillation reduction. This idea has been developed by Morin,
Nochetto and Siebert [23, 24], and is stated as follows.
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Lemma 3.3. (oscillation reduction) Let 0 < σ < 1 be the reduction factor

of element size associated with one refinement step. Given 0 < θ < 1, let α̂ :=
1 − (1 − σ2)θ. Let MH be a subset of TH such that

osc2(f,MH) ≥ θosc2(f, TH). (3.3)

If Th is a triangulation obtained from TH by refining at least every element in MH ,

then the following data oscillation reduction occurs:

osc2(f, Th) ≤ α̂osc2(f, TH). (3.4)

The following lemma deals with a localized version of the upper bound for the
difference between two Galerkin solutions with respect to two different partitions,
which was proved by Stevenson [25].

Lemma 3.4. Let C1 be the constant in Lemma 2.1. Then there exists a subset
FH ⊂ EH , such that

|uh − uH |21,Ω ≤ C1η
2(uH ,FH) (3.5)

and

N (FH) ≤ C6(N (Th) −N (TH)). (3.6)

Based on Lemmata 2.1, 2.2 and Lemmata 3.1, 3.2, 3.3, we are now in a position
to prove the convergence of Algorithm 1 developed in the last section.

Theorem 3.5. (Convergence of AFEM). Let {Vk}k≥0 be a sequence of nested
finite element spaces generated by algorithm AFEM and let {uk}k≥0 be the cor-
responding sequence of finite element solutions. Assume that 0 < γ < γ∗ with
γ∗ := α

(n+1)C2[(n+1)C1C5+αC3]
. Then there exist constants β > 0 and 0 < ρ < 1,

depending only on the shape regularity of meshes, the data, the dimension n, the
parameters α, θ, γ used by AFEM, such that for any two consecutive iterates k and
k + 1 we have

|u − uk+1|
2
1,Ω + βosc2(f, Tk+1) ≤ ρ

(
|u − uk|

2
1,Ω + βosc2(f, Tk)

)
. (3.7)

Therefore, algorithm AFEM converges with a linear rate ρ, namely

|u − uk|
2
1,Ω + βosc2(f, Tk) ≤ C∗ρk, (3.8)

where C∗ := |u − u0|
2
1,Ω + βosc2(f, T0).

Proof. We treat the two possible cases of the algorithm. First consider the case
osc2(f, Tk) < γ η2(uk, Ek). By Lemma 2.1, Lemma 3.2 and the marking strategy
(2.12), we have

|u − uk|
2
1,Ω ≤ C1η

2(uk, Ek) ≤
C1

α
η2(uk,Fk)

≤
(n + 1)C1

α

(
C4|uk+1 − uk|

2
1,Ω + C5osc2(f, Tk)

)
,

(3.9)
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which implies that

|uk+1 − uk|
2
1,Ω ≥

α

(n + 1)C1C4
|u − uk|

2
1,Ω −

C5

C4
osc2(f, Tk). (3.10)

Let β > 0 be a constant to be chosen in the subsequent analysis. Thanks to the
Galerkin orthogonality (3.1), one can prove

|u − uk+1|
2
1,Ω + βosc2(f, Tk+1)

≤ |u − uk|
2
1,Ω − |uk − uk+1|

2
1,Ω + βosc2(f, Tk)

≤

(
1 −

α

(n + 1)C1C4

)
|u − uk|

2
1,Ω +

(
β +

C5

C4

)
osc2(f, Tk).

(3.11)

Introducing another constant 0 < b < 1 and using the lower bound (2.10), we get

|u − uk+1|
2
1,Ω + βosc2(f, Tk+1)

≤

(
1 −

α

(n + 1)C1C4

)
|u − uk|

2
1,Ω

+ γb

(
β +

C5

C4

)
η2(uk, Ek) + (1 − b)

(
β +

C5

C4

)
osc2(f, Tk)

≤

(
1 −

α

(n + 1)C1C4
+ (n + 1)bC2γ

(
β +

C5

C4

))
|u − uk|

2
1,Ω

+

(
(1 − b)

(
β +

C5

C4

)
+ (n + 1)bC3γ

(
β +

C5

C4

))
osc2(f, Tk).

(3.12)

In view of (3.12), in order to prove (3.7), we select the two constants β and b such
that

(1 − b)

(
β +

C5

C4

)
+ (n + 1)bC3γ

(
β +

C5

C4

)

≤

(
1 −

α

(n + 1)C1C4
+ (n + 1)bC2γ

(
β +

C5

C4

))
β

(3.13)

and
(

1 −
α

(n + 1)C1C4
+ (n + 1)bC2γ

(
β +

C5

C4

))
< 1. (3.14)

For the sake of our analysis, we can select another parameter µ ∈ (0, 1), and b is
chosen such that

b =
µα

(n + 1)2C1C2C4γ
(
β + C5

C4

) , (3.15)

which implies that the error reduction rate is

ρ := 1 −
(1 − µ)α

(n + 1)C1C4
. (3.16)

Substituting (3.15) into (3.13) and after a proper arrangement, we obtain

−
α

(n + 1)C1C4
(1 − µ)β ≥

C5

C4
−

µα

(n + 1)C1C4

(
1

(n + 1)C2γ
− C3

)
,
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which implies

β ≤ β1(µ) :=
−(n + 1)C1C5 + µα

(
1

(n+1)C2γ − C3

)

(1 − µ)α
(3.17)

if we choose µ such that

µ > µ∗
1 :=

(n + 1)C1C5

α
(

1
(n+1)C2γ − C3

) . (3.18)

Note that µ∗
1 < 1 under the assumption that 0 < γ < γ∗.

Now, let us consider the case osc2(f, Tk) ≥ γη2(uk, Ek), then the marking strategy
(2.13) will be adopted. Let 0 < a < 1 be a constant to be chosen suitably. By Lemma
3.3 and Lemma 2.1, we have

|u − uk+1|
2
1,Ω + βosc2(f, Tk+1)

= (1 − a)|u − uk+1|
2
1,Ω + a|u − uk+1|

2
1,Ω + βosc2(f, Tk+1)

≤ (1 − a)|u − uk+1|
2
1,Ω + aC1η

2(uk, Ek) + βα̂osc2(f, Tk)

≤ (1 − a)|u − uk|
2
1,Ω +

(
aC1

γ
+ βα̂

)
osc2(f, Tk).

(3.19)

We will choose the constant a such that the error contraction in the second case is
also ρ, that is to say,

a =
(1 − µ)α

(n + 1)C1C4
. (3.20)

Then in order to prove (3.7), it is sufficient that if the constant β satisfy

aC1

γ
+ βα̂ ≤ (1 − a)β, (3.21)

which implies

β ≥ β2(µ) :=

C1

γ (1 − µ)α

(1 − α̂)(n + 1)C1C4 − (1 − µ)α
. (3.22)

under that assumption that

µ > µ∗
2 := 1 −

(1 − α̂)(n + 1)C1C4

α
. (3.23)

Now let us discuss the selection of the value of µ. If we select a fixed value for µ and
set β = max{β1, β2}, (3.7) will be obtained. In view of (3.17) and (3.22), the proper
value of β can be reached if and only if

β2(µ) ≤ β1(µ), (3.24)

which is equivalent to

f(µ) := λ1µ
2 + λ2µ + λ3 ≥ 0, (3.25)

8



where






λ1 := α2

(
1

(n + 1)C2γ
− C3

)
−

C1α

γ
,

λ2 := α

(
1

(n + 1)C2γ
− C3

)(
(1 − α̂)(n + 1)C1C4 − α

)

−(n + 1)C1C5α +
2C1α

γ
,

λ3 := (n + 1)C1C5

(
α − (1 − α̂)(n + 1)C1C4

)
−

C1α

γ
.

It can be checked that

f(1) = (1 − α̂)(n + 1)C1C4

(
α

(
1

(n + 1)C2γ
− C3

)
− (n + 1)C1C5

)
> 0. (3.26)

By the continuity of the function f we know that there must exist a constant 0 <

µ∗
3 < 1 such that f(µ∗

3) ≥ 0. Then the value of µ can be selected such that

max{µ∗
1, µ

∗
2, µ

∗
3} < µ < 1.

Thus we have proved (3.7). Since (3.8) is a direct consequence of (3.7), the proof of
the theorem is completed.

For the sake of the proof of the optimal complexity of algorithm AFEM, we
introduce some notation from nonlinear approximation theory, developed in [9, 10,
17, 25]. Let HN be the set of all triangulations T which are obtained by refinement
of a regular initial triangulation T0 and the cardinality of which satisfy N (T ) ≤ N .
For a given triangulation, the associated finite element approximation of the problem
(2.3) is denoted by uT . Next we define the approximation class

Ws :=
{

(u, f) ∈ (H1
0 (Ω), L2(Ω)) : ‖(u, f)‖Ws < +∞

}
. (3.27)

with

‖(u, f)‖Ws := sup
N≥N (T0)

Ns inf
T ∈HN

(
|u − uT |

2
1,Ω + osc2(f, T )

)
.

We say that an adaptive finite element method realizes optimal convergence rates if
whenever (u, f) ∈ Ws, it produces the approximation uk with respect to the triangu-
lation Tk such that

|u − uk|1,Ω ≤ CN (Tk)−s. (3.28)

First, we estimate the number of elements added in one single refinement step.

Lemma 3.6. Let {Vk}k≥0 be a sequence of nested finite element spaces produced
by algorithm AFEM and let {uk}k≥0 be the corresponding sequence of finite element
solutions. Assume that 0 < γ < γ∗,

C1C2α + C3γ <
1

n + 1
, (3.29)

9



and (u, f) ∈ Ws. Then there exists a constant C∗
1 , depending only on the shape

regularity of the initial mesh, the data, the dimension n, the parameters α, θ, γ used
by AFEM, and N (T0), such that

N (Tk+1) −N (Tk) ≤ C∗
1

(
|u − uk|

2
1,Ω + osc2(f, Tk)

)−1/s

(3.30)

with

C∗
1 := C2

0 max
{

(n + 1)C6λ
− 1

s

1 , λ
− 1

s

2

}∥∥(u, f)
∥∥1/s

Ws , (3.31)

where λ1 and λ2 are defined by (3.38) and (3.45), respectively.
Proof. We split the proof into two cases as in the proof of Theorem 3.5. Let

us consider the first case, i.e., osc2(f, Tk) < γη2(uk, Ek). Suppose λ1 ∈ (0, 1) is a
fixed constant to be chosen appropriately in the subsequent analysis. Let T ∗

k be a
triangulation refined from T0 with minimal number of elements such that

|u − uT ∗

k
|21,Ω ≤ λ1

(
|u − uk|

2
1,Ω + osc2(f, Tk)

)
. (3.32)

Then by the definition of the norm ‖ · ‖Ws ,

N (T ∗
k ) ≤ λ

− 1

s

1

(
|u − uk|

2
1,Ω + osc2(f, Tk)

)− 1

s ∥∥(u, f)
∥∥1/s

Ws . (3.33)

Let us choose T ′
k as the refinement of Tk with minimal number of elements such that

V ∗
k ⊂ V ′

k and thus

|u − uT ′

k
|21,Ω ≤ |u − uT ∗

k
|21,Ω ≤ λ1

(
|u − uk|

2
1,Ω + osc2(f, Tk)

)
. (3.34)

Note that by the definition of T ′
k and the property of newest vertex bisection (2.11),

there holds

N (T ′
k) −N (Tk) ≤ C0N (T ∗

k )

≤ C0λ
− 1

s

1

(
|u − uk|

2
1,Ω + osc2(f, Tk)

)− 1

s ∥∥(u, f)
∥∥1/s

Ws .
(3.35)

In the following we shall bound N (Tk+1) − N (Tk) by N (T ′
k) − N (Tk) to obtain

the desired results. In view of Lemma 3.4, there exists a subset F∗
k ⊂ Ek such that

|uk − uT ′

k
|21,Ω ≤ C1η

2(uk,F∗
k ) (3.36)

and

N (F∗
k ) ≤ C6(N (T ′

k) −N (Tk)). (3.37)

Then by the Galerkin orthogonality (3.1), (3.34) and (2.10), we have

η2(uk,F∗
k ) ≥

|uk − uT ′

k
|21,Ω

C1
=

|u − uk|
2
1,Ω − |u − uT ′

k
|21,Ω

C1

≥
(1 − λ1)|u − uk|

2
1,Ω − λ1osc2(f, Tk)

C1

≥
1

C1

[
(1 − λ1)

(n + 1)C2
η2(uk, Ek) −

(
λ1 +

(1 − λ1)C3

C2

)
osc2(f, Tk)

]

≥
η2(uk, Ek)

C1C2

[
1

n + 1
− C3γ − λ1

(
1

n + 1
+ γ(C2 − C3)

)]
.
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then if the value of λ1 is chosen as

λ1 :=
1

n+1 − C3γ − C1C2α
1

n+1 − C3γ + C2γ
. (3.38)

The denominator in (3.38) is positive due to our former assumption C2 ≥ C3. As-
sumption (3.29) leads to λ1 < 1.

With the choice of λ1 (3.38) we get

η2(uk,F∗
k ) ≥ αη2(uk, Ek).

Since in the marking strategy we choose the minimal edge set Fk ⊂ Ek such that
(2.12) holds, then we conclude that

N (Tk+1) −N (Tk) ≤ C0N (Mk) ≤ (n + 1)C0N (Fk) ≤ (n + 1)C0N (F∗
k )

≤ (n + 1)C0C6(N (T ′
k) −N (Tk))

≤ (n + 1)C2
0C6λ

− 1

s

1

∥∥(u, f)
∥∥1/s

Ws

(
|u − uk|

2
1,Ω + osc2(f, Tk)

)− 1

s

.

(3.39)

Next we turn to the case osc2(f, Tk) ≥ γη2(uk, Ek). Similar to the first case,
suppose that λ2 ∈ (0, 1) is a fixed constant and T ∗

k be a triangulation refined from T0

with minimal number of elements such that

osc2(f, T ∗
k ) ≤ λ2

(
|u − uk|

2
1,Ω + osc2(f, Tk)

)
(3.40)

and

N (T ∗
k ) ≤ λ

− 1

s

2

(
|u − uk|

2
1,Ω + osc2(f, Tk)

)− 1

s ∥∥(u, f)
∥∥1/s

Ws . (3.41)

Let T ′
k be the refinement of Tk with minimal number of elements such that V ∗

k ⊂ V ′
k

and then

osc2(f, T ′
k) ≤ osc2(f, T ∗

k ) ≤ λ2

(
|u − uk|

2
1,Ω + osc2(f, Tk)

)
(3.42)

and

N (T ′
k) −N (Tk) ≤ C0λ

− 1

s

2

(
|u − uk|

2
1,Ω + osc2(f, Tk)

)− 1

s ∥∥(u, f)
∥∥1/s

Ws . (3.43)

Let M∗
K := {K|K ∈ Tk;K ∈ T ′

k}. Then by Lemma 2.1, we have

osc2(f, Tk) ≥
1

λ2

(
osc2(f, T ′

k) − λ2|u − uk|
2
1,Ω

)

≥
1

λ2

(
osc2(f, T ′

k) − λ2C1η
2(uk, Ek)

)

≥

(
1

λ2
−

C1

γ

)
osc2(f, T ′

k)

≥

(
1

λ2
−

C1

γ

)
osc2(f,M∗

K)

=

(
1

λ2
−

C1

γ

)(
osc2(f, TK) − osc2(f, TK \M∗

K)
)
.

(3.44)
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then if the value of λ2 is chosen as

λ2 :=
1 − θ

1 + C1(1−θ)
γ

, (3.45)

we get

osc2(f, TK \M∗
K) ≥ θosc2(f, Tk).

Since in the marking strategy we choose the minimal edge set Mk ⊂ Tk such that
(2.13) holds, then we conclude that

N (Tk+1) −N (Tk) ≤ C0N (Mk) ≤ C0N (TK \M∗
K)

≤ C0(N (T ′
k) −N (Tk))

≤ C2
0λ

− 1

s

2

∥∥(u, f)
∥∥1/s

Ws

(
|u − uk|1,Ωa2 + osc2(f, Tk)

)− 1

s

,

(3.46)

which, together with (3.39) implies the desired result.

Now, we can prove the optimality of the algorithm AFEM.

Theorem 3.7. (Optimal complexity of AFEM). Let {Vk}k≥0 be a sequence
of nested finite element spaces produced by algorithm AFEM and let {uk}k≥0 be
the corresponding sequence of finite element solutions. Further assume that 0 < γ <

γ∗, C1C2α + C3γ < 1
n+1 and (u, f) ∈ Ws. Then there exists a constant C∗

2 , such that

|u − uk|
2
1,Ω + osc2(f, Tk) ≤ C∗

2

(
N (Tk) −N (T0)

)−s

(3.47)

with C∗
2 := max{1, β}




C∗

1

„

1−ρ
k
s

«

ρ−
1

s −1




s

.

In addition there exists another constant C∗
3 such that for any ǫ > 0 the following

holds. Let N be the first index such that η(uN , EN ) ≤ ǫ. Then we have

N (TN ) −N (T0) ≤ C∗
3 ǫ−2/s (3.48)

with C∗
3 := C∗

1 min
{

1, 1
β

}− 1

s 1−ρ
N
s

ρ−
1

s −1

(
min

n

1,
C2β

C3

o

(n+1)C2

)− 1

s

.

Proof. In view of (3.30) in Lemma 3.6, for any 0 ≤ i ≤ k, there holds

N (Ti+1) −N (Ti) ≤ C∗
1 min

{
1,

1

β

}− 1

s (
|u − ui|

2
1,Ω + βosc2(f, Ti)

)− 1

s

, (3.49)

together with

(
|u − ui|

2
1,Ω + βosc2(f, Ti)

)− 1

s

≤ ρ
k−i

s

(
|u − uk|

2
1,Ω + βosc2(f, Tk)

)− 1

s

(3.50)
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obtained from (3.7) in Theorem 3.6, we have

N (Tk) −N (T0) =

k−1∑

i=0

(
N (Ti+1) −N (Ti)

)

≤ C∗
1 min

{
1,

1

β

}− 1

s
k−1∑

i=0

(
|u − ui|

2
1,Ω + βosc2(f, Ti)

)− 1

s

≤ C∗
1 min

{
1,

1

β

}− 1

s

(
k−1∑

i=0

ρ
k−i

s

)(
|u − uk|

2
1,Ω + βosc2(f, Tk)

)− 1

s

≤ C∗
1 min

{
1,

1

β

}− 1

s 1 − ρ
k
s

ρ−
1

s − 1

(
|u − uk|

2
1,Ω + βosc2(f, Tk)

)− 1

s

,

(3.51)

which implies (3.47).
The proof of (3.48) is obvious. In fact, the lower bound (2.10) gives

(
|u − uk|

2
1,Ω + βosc2(f, Tk)

)− 1

s

≤




min

{
1, C2β

C3

}

(n + 1)C2





− 1

s

η− 2

s (uk, Ek), (3.52)

then the desired result can be obtained by (3.52) and (3.51).

4. Conclusions. We have presented a new adaptive finite element method,
which is a variant of the algorithm of Morin/Nochetto/Siebert. The difference lies
in the treatment of the data oscillation term, which is only used for refinement if it
is big compared to the error estimator. We have proved geometrical convergence of
the error augmented by the data oscillation term and optimal complexity in the sense
of nonlinear approximation theory. The dependence of our results on all involved
constants is worked out.
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