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aLaboratoire de Mathématiques Appliquées, Université de Pau et des Pays de
l’Adour BP 1155, 64013 PAU Cedex, France

bInstitut für Angewandte Mathematik, Im Neuenheimer Feld 294, 69120
Heidelberg, Germany

Abstract

We consider the calibration of parameters in physical models described by partial
differential equations. This task is formulated in standard way as a constrained
optimization problem with a cost functional of least squares type. The unknown
parameters are calibrated using information obtained by measurements. An impor-
tant issue in the numerical solution of this type of problem is the control of the
errors introduced, first, by discretization of the equations describing the physical
model, and second, by measurement errors or other perturbations.

Our strategy is as follows: First, we suppose that the user defines an interest
functional I which might depend on both the state variable and the parameters
and which represents the goal of the computation. We propose an a posteriori er-
ror estimator which measures the error with respect to this functional. This error
estimator is used in an adaptive algorithm to construct economic meshes by local
mesh refinement. The proposed estimator requires the solution of an auxiliary lin-
ear equation. Second, we apply similar techniques as before to address the question
of sensitivity. For this, we derive quantities which describe the influence of small
changes in the measurements on the value of the interest functional. These num-
bers, which we call relative condition numbers, give additional information on the
problem under consideration.

Finally, we demonstrate our approach at hand of a parameter calibration problem
for a model flow problem.
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1 Introduction

A physical model described by a system of partial differential equations often
involves unknown parameters, which cannot be measured directly, or whose
measurement would require too much effort. This situation appears for ex-
ample in the modeling of material properties or reaction velocities, or in the
formulation of boundary conditions. In such situations, the estimation of un-
known parameters is indispensable for successful simulation and optimization
of the corresponding physical processes. The information required for parame-
ter identification is usually obtained by observations of measurable quantities,
like forces, fluxes, point values of pressure, velocity or concentration.

We distinguish two classes of such problems: parameter identification and
model calibration problems. If the determination of the values of some un-
known parameters is the primary goal of the computation, the problem is
called parameter identification problem. If one is primary interested in the
computation of different physical quantities (quantity of interest) such as drag
or lift coefficients, which only implicit depend on the unknown parameters, we
call this problem a model calibration problem. This distinction is important for
the evaluation of the quality of a simulation. For example, one may think of
the case, where the quantity of interest is not very sensitive with respect to
some of the unknown parameters. Then, there is probably no need to estimate
this parameter with high accuracy. In this paper, we wish to give a rigorous
formulation of this idea.

For the formulation and numerical solution of such a minimization problem,
one has the following two main ingredients: First, one needs measurements,
and second, one has to discretize the state equation in order to obtain a finite-
dimensional system. Both procedures introduce errors: On the one hand we
have measurements errors and on the other hand discretization errors. Both
types of errors lead to inexact computation of the quantity of interest. The aim
of this paper is to analyze the dependency of the computed quantity of interest
on both, the discretization and the measurement errors. We first derive an a
posteriori error estimator, which aims to control the error in the quantity of
interest due to discretization. This error estimator is used in an adaptive mesh
refinement algorithm, producing economical meshes with respect to the quan-
tity of interest. Next, using similar techniques, we describe the computation
of sensitivities of the quantity of interest with respect to the measurements,
allowing to analyze the influence of the measurement errors on the quantity of
interest. This is important for estimating the quality of the computed approx-
imation and should be helpful for designing new experiments/measurements.

In this paper, we consider the problem of parameter calibration formulated
as follows: The state variable u, which represents the vector of all physical
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unknowns, is determined in an appropriate Hilbert space V by a partial dif-
ferential equation (state equation) written weak form:

a(q, u)(φ) = f(φ) ∀φ ∈ V. (1)

Here q denotes the unknown parameters in a Hilbert space Q. The function
a(·, ·)(·) is defined on the Hilbert space Q× V × V and is linear with respect
to argument in the second pair of parenthesis. The partial derivatives of the
form a(·, ·)(·) are denoted by a′u(·, ·)(·, ·), a′q(·, ·)(·, ·) etc.

Further, we have an observation operator C : V → Z, which maps the state
variable u to the Hilbert space of measurements Z. We denote by (·, ·)Z the
scalar product of Z and by ‖ · ‖Z the corresponding norm. Similar notation is
used for the scalar product and norm in the space Q.

The values of the parameters are estimated from a given set of measurements
C̄ ∈ Z using a least squares approach, such that we obtain the constrained
minimization problem with cost functional J : Q× V → R:

Minimize J(q, u) :=
α

2
‖q − q̄‖2

Q +
1

2
‖C(u)− C̄‖2

Z , (2)

under the constraint (1). The cost functional defined in (2) is the sum of the
squared norm of the so called least squares residual defined by

RLS(u) := C̄ − C(u), (3)

and a regularization term involving prescribed α ≥ 0 and q̄ ∈ Q.

The state equation is discretized by the Galerkin method based on a finite-
dimensional space Vh ⊂ V . This space is constructed by finite element func-
tions on a mesh Th. See Section 5 for an example in the context of a two-
dimensional flow problem.

The discretized optimization problem for the discrete state uh ∈ Vh and pa-
rameter qh ∈ Q is formulated as follows:

Minimize J(qh, uh) (4)

under the constraint

a(qh, uh)(φh) = f(φh) ∀φh ∈ Vh. (5)

The quantity of interest is described by a user-specified interest functional
I : Q× V → R. The proposed a posteriori error estimator controls the error

I(q, u)− I(qh, uh)
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and is used in an adaptive algorithm for successive improvement of the accu-
racy by an appropriate local mesh refinement, see Section 3 for details.

In order to analyze the dependency on measurements, we will introduce a
functional î : Z → R, which maps given measurements C̄ to the value of the
quantity of interest for the solution of the corresponding problem (1,2). The
aim of our sensitivity analysis is the computation of relative condition numbers
κi describing the propagation of relative errors.

The outline of the paper is as follows: In the next section, we describe a
typical optimization loop for the solution of the problem under consideration.
In Section 3 we derive our a posteriori error estimator. Section 4 is devoted to
sensitivity analysis. Thereafter, in Section 5 we illustrate our approach at hand
of a flow problem. In the last section we give the proofs for the propositions
formulated in the paper.

For simplicity and clarity of the presentation, we make the following assump-
tions. We suppose that both the control space Q and the measurement space
Z are finite dimensional,

dimQ = nQ, dimZ = nZ , nZ ≥ nQ.

In addition we suppose that the parameter space of the discrete problem is
not reduced, Qh = Q. Further, we do not incorporate constraints on the
parameters. Our considerations are done such that the main results carry over
to these generalizations.

The new contributions of this article are the combination of local mesh re-
finement with sensitivity analysis and a generalization of a posteriori error
estimators established before. Sensitivity analysis of parameter-dependent op-
timization is an active area of research, see in the context of parabolic partial
differential equations e.g. Malanowski [13], Tröltzsch [? ] or Griesse [9]. Con-
cerning a posteriori error estimation we generalize previous work; in [1] we
have chosen as the interest functional the cost functional itselve, and in [6] we
have considered interest functionals depending on the parameters along with
variants of the optimization algorithm. Here, we allow the interest functionals
to depending on the parameters and on the state variable are allowed.

2 Optimization algorithm

In this section, we reformulate the problem under consideration as an uncon-
strained optimization problem and shortly discuss an optimization algorithm
for its solution.
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Throughout the paper we assume that the problem (1,2) admits a (locally)
unique solution. Moreover, we assume the existence of a continuously differen-
tiable solution operator S : Q0 → V in a neighborhood Q0 ⊂ Q of the solution
of this problem. For all q ∈ Q0 we have:

a(S(q), q)(φ) = (f, φ) ∀φ ∈ V. (6)

Using this solution operator S we define the reduced observation operator
c : Q0 → Z by:

c(q) := C(S(q)) (7)

in order to reformulate the problem under consideration as an unconstrained
optimization problem with the reduced cost functional j : Q→ R:

Minimize j(q) :=
1

2
‖c(q)− C̄‖2

Z +
α

2
‖q − q̄‖2

Q, q ∈ Q. (8)

Denoting by G = c′(q) the Jacobian matrix of the reduced observation oper-
ator c, the first-order necessary condition for (8) reads:

G∗c(q) + αq = G∗C̄ + αq̄. (9)

In the following proposition we give a representation of the Jacobian G.

Proposition 1 Let the reduced observation operator c be defined as in (7).
Then its partial derivatives can be computed as follows:

∂ci
∂qj

(q) = Gij = C ′
i(u)(wj), i = 1 . . . nZ , j = 1 . . . nQ,

with u = S(q), Ci and ci denote the components of the observation and the
reduced observation operators respectively. The tangent solution wj ∈ V is
determined by:

a′u(q, u)(wj, φ) = −a′q(q, u)(ej, φ) ∀φ ∈ V, (10)

where ej denotes the j-th vector of the standard orthonormal basis of Q.

Proof: The proof is given in Section 6.

In the sequel we will also need the second derivative of the reduced cost func-
tional. We have

∇2j(q) = G∗G+M + αI, (11)

where the matrix M ∈ RnQ×nQ is defined by

M := −
nZ∑
i=1

c′′i (q)R
LS
i . (12)
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Here, RLS
i denotes the i-th component of the least-squares residual RLS(u)

with u = S(q).

We collect the necessary information for computation of M in the next propo-
sition.

Proposition 2 The entries Mjk of the matrix M defined in (12) can be com-
puted by:

Mjk = −a′′uu(q, u)(wj, wk, z)− a′′uq(q, u)(wk, ej, z)− a′′qq(q, u)(ej, ek, z)

−a′′uq(q, u)(wj, ek, z)− 〈C ′′(u)(wj, wk), R
LS(u)〉Z ,

where u = S(q). Further, wj ∈ V is defined in (10) and z ∈ V is the solution
of the following adjoint equation:

a′u(q, u)(φ, z) = −〈RLS(u), C ′(u)(φ)〉Z . (13)

Proof: The proof is given in Section 6.

The unconstrained optimization problem (8) is solved iteratively. Starting with
an initial guess q0, the next parameter is obtained by qk+1 = qk + δq, where
the update δq is the solution of the problem:

Hk δq = G∗
k rk, (14)

where

rk := C − c(qk), Gk := c′(qk) ,

and Hk is an approximation of the Hessian ∇2j(qk) of the reduced cost func-
tional j. The choice of the matrix Hk ∈ RnQ×nQ leads to different variants
of the optimization algorithm. Typical possibilities are Hk = G∗

kGk leading
to the Gauss-Newton algorithm and Hk = ∇2j(qk), which corresponds to the
Newton method. For convergence theory of these methods see, e.g., Dennis
& Schnabel [8] or Nocedal & Wright [14]. In our practical realization we use
trust-region techniques for improving global convergence, see e.g. Conn, Gould
& Toint [? ].

This optimization algorithm, described above on the continuous level, is car-
ried out for the discretized problem (4,5). To this end, we introduce the dis-
crete solution operator Sh : Q0 → Z and the discrete reduced observation
operator ch(qh) = C(Sh(qh)). Similar to the continuous case, the problem is
reformulated as an unconstrained optimization problem, i.e.

Minimize jh(qh) = J(Sh(qh), qh).

The derivatives of jh are computed similar to Propositions 1 and 2.
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3 A posteriori error estimation

In this section, we derive our a posteriori error estimator for the error with
respect to the quantity of interest. Our aim is to prove the following error
representation:

I(q, u)− I(qh, uh) = η +R,

where η is the a posteriori error estimator, which can in principle be evaluated,
and R is a remainder term due to linearization. This error estimator is used
within the following adaptive algorithm for error control and mesh refinement:
We start on a coarse mesh, solve the discretized optimization problem and
evaluate the error estimator. Thereafter, we refine our current mesh to a new
one guided by the error estimator, which allows us to reduce the error with
respect to the quantity of interest in an efficient way. This procedure is iterated
until the value of the error estimator is below a given tolerance, see [? ] for a
detailed description of this algorithm.

Our approach relies on the techniques for functional-oriented a posteriori er-
ror estimation described in Becker & Rannacher [5]. However, the general-
ized framework developed here requires some substantial additional work. The
same remark is true with respect to other approaches to functional-oriented
a posteriori error estimation as presented in Oden & Prudhomme [15] or
Machiels, Patera & Peraire [12].

We introduce the standard Lagrange L functional by:

L(q, u, z) = J(q, u) + (f, z)− a(q, u)(z). (15)

The first-order necessary conditions for the problem (1,2) are given by the
stationarity of the Lagrangian L. Denoting ξ = (q, u, z) this condition reads:

L′(ξ)(δξ) = 0 ∀δξ ∈ Q× V × V. (16)

For the discretized problem we have a similar first order necessary condition
for ξh = (qh, uh, zh):

L′(ξh)(δξh) = 0 ∀δξh ∈ Vh ×Q× Vh. (17)

For the quantity of interest I, we introduce an additional Lagrangian M:

M(ξ, χ) = I(q, u) + L′(ξ)(χ),

with χ = (v, p, y) ∈ Q × V × V . Let now x = (ξ, χ) be a stationary point of
M. Then there holds:

I(q, u) = M(x). (18)
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This equality, which holds similar also on the discrete level, is the starting
point for our a posteriori error analysis. Moreover, the same equality will be
used for the sensitivity analysis in Section 4.

As in [5? ], we obtain the following error representation:

Proposition 3 Let x = (ξ, χ) ∈ X = (Q × V × V )2 be a stationary point of
M, i.e.

M′(x)(δx) = 0 ∀δx ∈ X. (19)

Further let Xh = (Vh × Q × Vh)
2 ⊂ X be a subspace and xh = (ξh, χh) ∈ Xh

be the corresponding Galerkin solution

M′(xh)(δxh) = 0 ∀δxh ∈ Xh. (20)

Then, there holds the following error representation

I(q, u)− I(qh, uh) =
1

2
M′(xh)(x− x̃h) +R, (21)

where x̃h ∈ Xh is arbitrary and the remainder term R is given by:

R =
1

2

1∫
0

M′′′(xh + s e)(e, e, e)s(s− 1)ds, (22)

with e = x− xh.

Proof: The proof is given in Section 6.

For the application of this result the solution xh = (ξh, χh) is needed. We note,
that ξh = (qh, uh, zh) is a solution of the first order optimality condition (17). It
remains to compute the set of auxiliary variables χh = (vh, ph, yh). At the first
glance, it seems as if it leads to a big coupled system to be solved. However,
this can be avoided using the information available from the last step of the
optimization loop. In the next proposition we describe the computation of χ =
(v, p, y) on the continuous level (for clarity of notation). The corresponding
discrete set χh is obtained in the same way.

Proposition 4 Let ξ = (q, u, z) be a stationary point of L (15). Let moreover,
{wj}1≤j≤nQ

be the set of tangent solutions (10) and H = ∇2j(q) be the reduced
Hessian, both computed in the last step of the optimization algorithm. Then
the auxiliary solution χ = (v, y, p) is given by:

Hp = g, (23)

where the components of g are:

gj = −I ′q(q, u)(ej)− I ′u(q, u)(wj),

8



v =
nQ∑
j=1

wjpj, (24)

and y ∈ V is determined by:

a′u(q, u)(φ, y) = 〈C ′(u)(v), C ′(u)(φ)〉Z − 〈C ′′(u)(φ, v), RLS(u)〉Z (25)

−a′′uu(q, u)(φ, v, z)− a′′uq(q, u)(φ, p, z) + I ′u(q, u)(φ) ∀φ ∈ V.

Proof: The proof is given in Section 6.

From Propositions 3 and 4 we obtain the following result:

Theorem 1 Let ξ = (q, u, z) be a stationary point of the Lagrangian L (15)
and ξh = (qh, uh, zh) be the corresponding discrete solution. Let moreover,
χ = (v, p, y) be defined as in Proposition 4 and χh = (vh, ph, yh) be the corre-
sponding discrete set of auxiliary variables. Then there holds:

I(q, u)− I(qh, uh) =
1

2
{ρu(ξh)(y − ỹh) + ρz(ξh)(v − ṽh)} (26)

+
1

2
{ρv(xh)(z − z̃h) + ρy(xh)(u− ũh)}+R, (27)

where ỹh, ṽh, z̃h, ũh ∈ Vh are arbitrary. The residual functions are given by:

ρu(ξh)(φ) := f(φ)− a(qh, uh)(φ),

ρz(ξh)(φ) := −〈C ′(uh)(φ), RLS(uh)〉Z − a′u(qh, uh)(φ, zh),

ρv(xh)(φ) := −a′q(qh, uh)(ph, φ)− a′u(qh, uh)(vh, φ),

ρy(xh)(φ) := I ′(qh, uh)(φ) + 〈C ′(uh)(vh), C
′(uh)(φ)〉Z − 〈C ′′(uh)(φ, vh), R

LS(uh)〉Z

−a′′uu(qh, uh)(φ, vh, zh)− a′′uq(qh, uh)(φ, ph, zh)− a′u(qh, uh)(φ, yh)

(28)
and R is a cubic remainder term due to linearization, see Proposition 3.

Proof: The proof is given in Section 6.

Remark 1 For practical evaluation of the error estimator, terms like u− ũh

have to be approximated. Since tildeuh is arbitrary, this term corresponds to a
local interpolation error. In our numerical example, we use interpolation of the
computed bilinear finite element solution yh on the space of biquadratic finite
elements on patches of cells, see [4] for details of this procedure. However,
other reasonable procedures are available.

The main computational cost for the a posteriori error estimator described
above is the solution of one auxiliary equation (25). This is cheap, even in
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comparison with only one step of the optimization loop, which includes solu-
tion of the state (nonlinear) and of the several (linear) tangent equations.

4 Sensitivity analysis

In this section we develop first-order sensitivity analysis for the quantity of
interest. Our aim is to investigate the influence of perturbations in the mea-
surements C̄ on the quantity of interest I(q, u). This will be done using similar
techniques as in Section 3. Moreover, we will show, that the quantities com-
puted for a posteriori error estimation may be directly used for our sensitivity
analysis.

Let q ∈ Q be a solution of the problem (8). Then, the hessian matrix ∇2j(q)
of the reduced cost functional is positive semidefinite due to the second-order
necessary optimality condition. Throughout we assume the Hessian ∇2j(q) to
be (strictly) positive definite, which corresponds to the standard second order
sufficient optimality condition. Such a solution is called stable.

For addressing the question of the influence of the perturbations in the mea-
surements on the solution of the problem, we have to ensure the existence of
the solution for the perturbed problem. This is done in the following proposi-
tion.

Proposition 5 Let q be a stable solution of the problem (8) for the measure-
ment vector C̄. Then there exists a neighborhood Z0 ⊂ Z of C̄ and a conti-
nously differentiable function π : Z0 → Q, which maps a given measurement
vector in Z0 to a stable solution of the corresponding problem.

Proof: The result relies on the implicit function theorem.

Without loss of generality, we assume, that π(Z0) ⊂ Q0. For a given measure-
ment vector C̄ the state variable at the optimum is given by S(π(C̄)), where S
is the solution operator defined in (6). This allows us to introduce the reduced
quantity of interest î : Z0 → R as a function of measurements:

î(C̄) = I(S(π(C̄)), π(C̄)).

For derivation of the sensitivities we again make use of equality (18). This
leads to the following result:

Theorem 2 Let q be a stable solution of Problem 8 for the measurement vec-
tor C̄. Moreover let x = (q, u, z, v, p, y) be a stationary point of the Lagrangian
M . Then, for a small perturbation δC̄ of measurements the following error

10



propagation holds:
δî

î(q)
=

nZ∑
l=1

κl
δC̄l

C̄l

+O(‖δC̄‖2
Z),

where
δî = î(C̄ + δC̄)− î(C̄)

and the relative condition numbers κl are given by:

κl = −C ′
l(u)(v)

C̄l

I(q, u)
, l = 1, 2, . . . , nZ .

Proof: The proof is given in Section 6.

The above theorem turns out, that the computation of the relative condition
numbers κl is based on the same auxiliary solution (v, p, y) as the a posteriori
error estimation in the previous section. Therefore, they can be computed
without very few additional computational effort.

Remark 2 The relative condition numbers κl allow also the following repre-
sentation:

κl = −(Gp)l
C̄l

I(q, u)
, l = 1, 2, . . . , nZ ,

where G is the jacobian matrix of the reduced observation operator computed
in the last step of the optimization algorithm.

The relative condition numbers κl describe the relative importance of the mea-
surements for the quantity of interest. They may be used for the assessment
of the error in the quantity of interest due to measurement errors. Moreover,
they give information, which should be helpful by design of new experiments.
The application of this concepts for automatic experiment design is a subject
of future work.

Remark 3 On the discrete level similar considerations can be done, which
leads to discrete relative condition numbers κh,l given by

κh,l = −C ′
l(uh)(vh)

C̄l

I(qh, uh)
, l = 1, 2, . . . , nZ .

Remark 4 The extension of this concept to a general parameter-depended
optimal control problem is straightforward. Let the problem depend on a pa-
rameter σ. Then, due to the fact that x is a stationary point of M there holds:

∂

∂σ
î =

∂

∂σ
M(x).

This gives a possibility to compute the corresponding relative condition num-
bers.
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5 Numerical Example

In this section we discuss numerical results for a model flow problem. We start
with a description of our model configuration. Thereafter, we shortly discuss
finite element discretization of Navier-Stokes equations in our context and
present some computational results illustrating our approach.

5.1 Configuration of the model problem

A typical difficulty in a broad class of CFD problems is the modeling of bound-
ary conditions. We consider a systems of pipes Ω, see Figure 1, with a flow
described by Navier-Stokes equation, where the precise inflow and outflow
boundary conditions are unknown. The circular hole in the lower branch rep-
resents the cross-section of the cylinder and the aim of the computation is a
precise approximation of the drag-coefficient on this cylinder.

Fig. 1. Configuration of the system of pipes with measurement points marked by
black circles

In order to embed this problem in our general setting, we parameterize the
unknown boundary condition and obtain the following system of parameter-
depended state equations for the pressure p and velocity v:

−ν∆v + v · ∇v +∇p = f in Ω,

∇ · v = 0 in Ω,

v = 0 on Γ0,

ν ∂v
∂n
− pn = q1n on Γin,

ν ∂v
∂n
− pn = q2n on Γ1,

ν ∂v
∂n
− pn = 0 on Γ2.

(29)

The unknown parameter q in the boundary conditions is searched for in the
parameter space Q = R2 and n denotes the outward unit normal vector to
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the boundary. This parameterization can be interpreted as follows: The pa-
rameters q1 and q2 describe the pressure difference between Γin and Γ2, and
between Γ1 and Γ2 respectively, cf. Heywood, Rannacher & Turek [11].

We assume the measurements C̄ ∈ Z = R4 to be given by point values of
the velocity at four different point marked by black circles in Figure 1. The
solution of the state equation for the exact parameters q = (0.03, 0.029) is
shown in Figure 2. However, the values of the parameters do not describe
the quantity of physical interest in this application. The quantity we wish to
compute is the drag-coefficient on the cylinder with the boundary denoted by
ΓA.

Fig. 2. Solution of the state equation (horizontal velocity) for the exact parameters
q = (0.03, 0.029) .

This quantity of interest is given by the functional I:

I(u) = c0

∫
ΓA

n · σ · d ds, (30)

where d = (1, 0) is a chosen direction, c0 is a given constant, and σ denotes
the stress tensor given as usual by:

σ =
ν

2
(∇v + (∇v)T )− pI.

5.2 Discretization of the Navier-Stokes equations

The starting point for any finite element discretization of the Navier-Stokes
equations (29) is a variational formulation. The space of test function for the
velocity is

H = {ψ ∈ H1(Ω)2 |ψ = 0 on Γ0}.
We set V = H × L2(Ω) and the form a : Q× V × V → R is defined by:

a(q, u)(φ) = ν(∇v,∇ψ)+(v·∇v, ψ)−(p,∇·ψ)+(∇·v, ξ)−(q1n, ψ)Γin
−(q2n, ψ)Γ1 ,

(31)
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where φ = (ψ, ξ) ∈ V denotes the test functions for velocity and pressure. The
corresponding weak formulation of the state equation reads: Find u = (v, p) ∈
V such that

a(q, u)(φ) = 0 ∀φ ∈ V. (32)

The state equation (32) is discretized using conforming finite elements on
shape-regular quadrilateral meshes Th, see e.g. Ciarlet [7]. However, in order
to ease local mesh refinement we allow a cell to have nodes, which lie on
midpoints of faces of neighboring cells. But at most one such hanging node
is permitted for each face. We use finite elements of equal order for each
component leading to the following finite element space:

Vh = {φh = (ψh, ξh) ∈ V |φh|K ∈ Q̃1(K)3, K ∈ Th},

where Q̃1(K) consists of shape functions obtained via a bilinear transformation
from the space of bilinear functions Q1(K̂) on the reference cell K̂ = (0, 1)2.
We add stabilization terms to the semilinear form a (31) in order to obtain a
stable formulation. The discretization is described in [1].

s(β)(uh, φh) =
∑

K∈Th

{
αK

(
∇(πhph),∇(πhξh)

)
K

+δK
(
β·∇(πhvh), β·∇(πhψh)

)
K

}
,

where the cell-wise coefficients δK and αK are chosen:

δK :=
δ0h

2
K

6ν + hK |β|K
, αK = α0h

2
K/ν.

Here, hK denotes the diameter of the cell K and |β|K is the cell-wise value of
the velocity field β. The parameters δ0 and α0 are usually chosen between 0.2
and 1. The stabilized discrete formulation reads: Find uh = (vh, ph) ∈ V̂h such
that:

a(qh, uh)(φh) + s(vh)(uh, φh) = 0 ∀φh ∈ Vh.

For the analysis of stability and convergence of the described approximation
scheme see Becker & Braack [3]. Similar stabilization techniques for the con-
vective term are analyzed in Guermond [10].

5.3 Computational results

The described problem is solved by the Gauß-Newton method with the initial
guess q0 = (0, 0), which corresponds to the state variable u = 0. The resulting
nonlinear state equations are solved by Newton method and the solution of the
linear subproblems are computed using a multigrid algorithm on locally refined
meshes, see Becker & Braack [2]. With these ingredients, the total numerical
cost for solution on a given mesh behaves like O(N), where N is the number
of nodes. All computations are done on the basis of the package AdmiralSlonik
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for treating optimization problems governed by partial differential equations
and the finite element toolkit Gascoigne3D.

Application of the a posteriori error estimator for the quantity of interest (30)
leads to the sequence of locally refined meshes, see in Figure 3.

Fig. 3. Meshes generated by the adaptive algorithm with 746, 2 170, 5 094 and 11 068
nodes.

The comparison of the error in the quantity of interest (30) for uniform mesh
refinement and the refinement produced by our a posteriori error estimator is
done in Figure 4. It turns out, that the refinement strategy based on the error
estimator for the quantity of interest leads to very efficient meshes.

We compute the relative condition numbers κl for the four point measurements
on sequence of uniformly refined meshes. In Table 1 the results are listed.

This turn out that for example a perturbation of the measurement C̄1 of 10%
would lead only to a perturbation of about 0.69% in the quantity of interest.
However, a similar perturbation of the measurement C̄4 introduces an error in
the quantity of interest of about 5.4%. In table 2 we investigate the quality of
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Fig. 4. Error in the quantity of interest E vs. number of mesh points for uniform
mesh refinement and local refinement resulting from our a posteriori error estimator.

N κ1 κ2 κ3 κ4

300 6.778e-2 -1.640e-2 5.032e-1 5.110e-1

1080 6.870e-2 -1.651e-2 5.268e-1 5.337e-1

4080 6.894e-2 -1.657e-2 5.336e-1 5.415e-1

15840 6.932e-2 -1.667e-2 5.353e-1 5.434e-1

62400 6.941e-2 -1.670e-2 5.358e-1 5.438e-1

247680 6.943e-2 -1.670e-2 5.359e-1 5.439e-1

Table 1
Relative condition numbers for point measurements on sequence of uniformly refined
meshes.

the prediction of the relative error δI/I in the quantity of interest for different
error levels δCl/Cl in measurements.

6 Appendix

In this section we give the proofs of the propositions and theorems formulated
above.
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δC1

C1
· 100%

δI

I
· 100% κ1

δC1

C1
· 100%

10 % 0.6904 % 0.6894%

20 % 1.3824 % 1.3788%

50 % 3.4682 % 3.4470%

δC2

C2
· 100%

δI

I
· 100% κ2

δC2

C2
· 100%

10 % -0.1657 % -0.1657 %

20 % -0.3315 % -0.3314 %

50 % -0.8288 % -0.8285 %

δC3

C3
· 100%

δI

I
· 100% κ3

δC3

C3
· 100%

10 % 5.376 % 5.336%

20 % 10.831 % 10.672%

50 % 27.724 % 26.680%

δC4

C4
· 100%

δI

I
· 100% κ4

δC4

C4
· 100%

10 % 5.460 % 5.415%

20 % 11.007 % 10.830%

50 % 28.185 % 27.075%
Table 2
?????????

Proof of Proposition 1:
Let u = S(q) be a solution of the state equation (1). Taking the derivative of
the equation (6) with respect to q in the direction δq we obtain

a′u(q, u)(δu, φ) + a′q(q, u)(δq, φ) = 0 ∀φ ∈ V, (33)

where δu = S ′(q)(δq). Moreover, there holds:

c′(q)(δq) = C ′(u)(δu),

and we complete the proof by setting δq = ej.

#

Proof of Proposition 2:
Let u = S(q) be a solution of the state equation (1). We obtain using the
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Lagrange functional L defined in (15):

j(q) = J(q, u) = L(q, u, z)

for an arbitrary z ∈ V . Taking the derivative with respect to q in the direction
δq we obtain:

j′(q)(δq) = L′
u(q, u, z)(δu) + L′

q(q, u, z)(δq), (34)

where δu = S ′(q)(δq). Let now z ∈ V be a solution of the adjoint equation (13),
which corresponds to the condition:

L′
u(q, u, z)(φ) = 0 ∀φ ∈ V. (35)

We take derivative of (34) with respect to q in the direction τq and obtain:

j′′(q)(δq, τq) =L′
u(q, u, z)(δ

2u) + L′′
uu(q, u, z)(δu, τu) + L′′

uq(q, u, z)(δu, τq)

+L′′
uz(q, u, z)(δu, τz) + L′′

qu(q, u, z)(δq, τu)

+L′′
qq(q, u, z)(δq, τq) + L′′

qz(q, u, z)(δq, τz),

where δ2u = S ′′(q)(δq, τq), τu = S ′(q)(τq) and τz ∈ V is the derivatives of z
with respect to q in the direction τq. The first term vanishes due to (35) and
moreover there holds:

L′′
uz(q, u, z)(δu, τz)+L′′

qz(q, u, z)(δq, τz) = a′u(q, u)(δu, φ)+a′q(q, u)(δq, φ) = 0,

due to (33). We complete the proof by setting δq = ej, τq = ek and calculating
the second derivatives of L.

#

Proof of Proposition 3:
We note, that ξ = (q, u, z) is a stationary point of L, i.e.

L′(ξ)(δξ) = 0 ∀δξ ∈ Q× V × V (36)

and ξh is the corresponding Galerkin solution

L′(ξh)(δξh) = 0 ∀δξh ∈ Vh ×Q× Vh. (37)

Therefore, we obtain:

I(q, u)− I(qh, uh) = M(x)−M(xh). (38)

We rewrite the right hand side of (38) as follows:

M(x)−M(xh) =

1∫
0

M′(xh + s e)(e)ds, (39)
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approximate the integral by the trapezoidal rule and obtain:

M(x)−M(xh) =
1

2
M′(x)(e) +

1

2
M′(xh)(e) +R, (40)

where the remainder term R is given by

R =
1

2

1∫
0

M′′′(xh + s e)(e, e, e)s(s− 1)ds,

The term M′(x)(e) vanishes, and due to Galerkin orthogonality the term
M′(xh)(e) can be replaced by M′(xh)(x − x̃h) with x̃h ∈ Xh arbitrarily cho-
sen. This completes the proof.

#

Proof of Proposition 4:
We note, that ξ = (q, u, z) is a stationary point of L. Therfore, there holds:

M′
χ(ξ, χ)(δχ) = L′(ξ)(δχ) = 0.

It remains to show that M′
ξ(ξ, χ) = 0. Due to the definition (24) of v there

holds:

M′
z(ξ, χ)(φ) =L′′

uz(ξ)(v, φ) + L′′
qz(ξ)(p, φ)

=
nQ∑
j=1

(
a′u(q, u)(wj, φ) + a′q(q, u)(ej, φ)

)
.

This sum vanishes because of the definition of wj (10). The equation (25) for
y can be rewritten in the following form:

L′′
zu(ξ)(y, φ) = −I ′u(q, u)(φ)− L′′

uu(ξ)(v, φ)− L′′
qu(ξ)(p, φ) ∀φ ∈ V, (41)

which is equivalent to M′
u(ξ, χ) = 0. Finely, we show, that the derivative

M′
q(ξ, χ) vanishes. There holds:

M′
q(ξ, χ)(δq) = I ′q(q, u)(δq) + L′′

uq(ξ)(v, δq) + L′′
qq(ξ)(p, δq) + L′′

zq(ξ)(y, δq).

Using the representation of second derivatives of j(q) from Proposition 2 and
setting δq = ej we have:

M′
q(ξ, χ)(ej) = 〈Hp, ej〉Q + I ′q(q, u)(ej)

−L′′
zq(ξ)(y, ej)− L′′

uu(ξ)(v, wj)− L′′
qu(ξ)(p, wj).
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Due to the definition of wj and the equation (41) we obtain:

M′
q(ξ, χ)(ej) = 〈Hp, ej〉Q + I ′q(q, u)(ej) + I ′u(q, u)(wj).

We complete the proof using the definition of p (23).

#

Proof of Theorem 1:
We apply Proposition 3 and Proposition 4. Due to the choice Qh = Q we may
set x̃h = (ũh, q, z̃h, ṽh, p, ỹh). This completes the proof.

#

Proof of Theorem 2:
There holds:

î(C̄) = M(x).

We take derivatives in respect to C̄ and obtain:

î′(C̄)(δC̄) = M′
C̄(x)(δC̄) +M′

x(δx),

where δx is the derivative of x with respect to C̄ in the direction δC̄. Due to
the fact that x is a stationary point of M there holds:

î′(C̄)(δC̄) = M′
C̄(x)(δC̄) = −〈C ′

l(u)(v), δC̄〉Z .

This completes the proof.

#
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