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Estimating the Control Error in discretized PDE-constrained

Optimization

Roland Becker ∗

10th April 2006

Abstract — In this article we develop an a posteriori error estimator for discretized optimal control
problems. We are interested in estimating the error in the control variable, measured in a natural norm.
We prove an error representation formula involving only quantities at hand in a second-order optimiza-
tion iteration, supposing a strong form of second-order sufficient condition. Possible generalization to
the control-constrained case is indicated.
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1. INTRODUCTION

We consider an abstract optimal control problem with a partial differential equation
written in weak form as the state equation. Let Q and V be Hilbert spaces for the
control variable q and the state variable u. They are coupled by the nonlinear state
equation:

Find u ∈V such that a(q,u)(v) = l(v) ∀v ∈V, (1.1)

where a : Q×V ×V → R is a smooth function which is linear with respect to the
third argument v representing the test function. We adopt the convention that the
dependency with respect to the variables in the second pair of parenthesis is linear.
Further, in (1.1) l ∈V ∗ represents fixed data.

From an optimization point of view (1.1) defines a constraint which has to be
fulfilled, when minimizing the smooth functional

J : Q×V → R. (1.2)

In addition, in order to formulate constraints on the control variable, we intro-
duce a closed convex set

Qad ⊂ Q, (1.3)

and the abstract optimization problem reads:

inf
q∈Qad

J(q,u) subject to (1.1). (1.4)
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We will throughout suppose that (1.4) admits a unique solution which is stable in
the sense that a continuous second-order condition, which will be formulated later
on (see (H1) and (H2) below), holds.

When a finite element method is used to discretize (1.1), V is replaced by a
finite-dimensional subspace Vh; h denotes a generic discretization parameter such
as mesh size. The state equation, for given q ∈ Q, is accordingly changed to:

Find uh ∈Vh such that a(q,uh)(vh) = l(vh) ∀vh ∈Vh. (1.5)

In general, any solution of (1.5) leads to an inadmissible state in the sense of the
continuous optimization problem (1.4). Therefore, when discussing approximate
solutions of the optimization problem it is necessary to consider approximations of
the whole optimization problem. Further the task of computing such an approximate
solution requires the definition of an error measure which might be or might not be
intrinsic to the optimization problem. In this article, we are interested in estimating
the error in the control variable, measured in a natural norm. Estimation of the con-
trol error can be of independent interest, for example when one is only interested in
determining the best control. It can also be a step to further error estimation, since
an estimate of the error in state variable is implied under appropriate assumptions
on the state operator.

In addition to discretization of the state space we consider discretization of
the control space. We therefore introduce another finite-dimensional space Qh ⊂ Q

using the same generic paramater h (which could for example represent two dif-
ferent meshes: one for the state and another for the control space) and define
Qad,h := Qh ∩Qad . The discrete optimization problem reads:

inf
qh∈Qad,h

J(qh,uh) subject to (1.5). (1.6)

Error in the control variable is generated by both approximations: First the con-
trol space is discretized by Qh ⊂ Q, and second, the discretization of the state equa-
tion introduces another source of error. We try to separate the influence of these
approximations in order to give an a posteriori error estimate which could yield a
basis for adapting the parameters underlying the two discrete spaces individually.

In order to separate difficulties, we first consider the case of unconstrained op-
timization Qad = Q in Section 3. We derive an a posteriori error estimator which
can be implemented in a two-mesh iteration and then only uses quantities already
present in a second-order optimization iteration.

Section 4 deals with the case that the controls are searched in a closed convex
subset of the control space. The considered framework covers a number of challeng-
ing problems as the obstacle problem and bound constrained distributed or boundary
control. These problems require different functional analytic settings and sophisti-
cated finite element tools as special interpolation operators, see the recent work in
these fields. It is not possible to give a precise treatment here. Instead, we are in-
terested in a formal generalization of the error estimate for the unconstrained case
which might serve as a guideline in concrete applications.
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The crucial questions for an adaptive algorithm are: First, when do we accept
the discrete solution as a sufficiently accurate approximation? Second, how can we
adapt the discretization parameters efficiently in an iterative way? These questions
are at the heart of a posteriori error estimation for finite element discretizations of
elliptic partial differential equations, see [1,9,20]. There, the error is usually mea-
sured in the energy norm. In the context of optimal control problems, the question of
what error measure should be chosen largely depends on the application. In previ-
ous work, we have developed an a posteriori error estimator for the value of the cost
functional itself as the error measure [2]. An extension to the case of error control
with respect to a functional of the control has been developed in [3].

In this paper, we present an a posteriori error estimator for the control error
measured in a natural norm:

‖q−qh‖Q 6 η(qh,uh). (1.7)

We call this norm natural since it is related to a second-order sufficient condition
for the continuous optimization problem. This condition does not directly rely on
a coercivity assumption on the state operator. As a matter of fact, the estimator η
in (1.7) depends on two continuous auxiliary equations. These equations turn out to
be the state and adjoint equations corresponding to the computed fixed control. We
propose to approximate their solutions by a two-level algorithm. Then, the necessary
information can be computed in the first step of the optimization iteration on the next
finer mesh.

The analysis of approximate optimization problems is a classical subject of op-
timization theory, see for example [17]. The new contribution of our work is the
derivation of an estimator which allows for local mesh refinement, which is prac-
tically important in the presence of singularities. For such an estimator local infor-
mation about the influence of the local residuals of the partial differential equation
on the error in the objective functional is the crucial information. Singularities may
be caused either by the differential operator, the domain, or other components of the
optimization problem as the cost functional. They lead to different asymptotic be-
havior of the residuals due to reduction of regularity of the solution (state, control,
or Lagrange multiplier). For example, a usual feature of inverse problems is the oc-
currence of point measurements, which lead to singularities in the adjoint variable.

A posteriori error estimators for finite element discretizations of optimal control
problems have also been proposed in [13,12]. There, specific optimal control prob-
lems involving elliptic second-order partial differential equations are considered and
the coercivity of the state operator is used; the structure of the a posteriori error es-
timator is different from ours since it involves the sum of squares of the residuals
of the different equations. In contrast to this, the estimator discussed here containes
the product of residuals from the primal and dual equations; see below for details.

1.1. Notation.

We denote by (·, ·)Q the scalar product and by ‖ · ‖Q its induced norm in the Hilbert
space Q, and similarly for V . The dual space of Q is denoted as Q∗. If no confusion
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is caused, we suppress the subscript in (·, ·)Q. However, in general, (u,v) denotes the

L2(Ω) scalar product. For a differentiable function f : Q → R, we define as usual
its gradient and Hessian via the Ritz identification: f ′(q)(p) = (∇ f (q), p)Q and

f ′′(q)(p1, p2) = (∇2 f (q)p1, p2)Q . We denote the partial derivatives of a function
of two variables f (q, p) by f ′p(q, p) and f ′q(q, p); the partial gradients are denoted

by ∇p f (q, p) and ∇q f (q, p).

2. HYPOTHESIS AND STRUCTURE OF THE OPTIMISATION PROBLEM

We suppose that the continuous minimization problem (1.4) admits a unique local
solution (q,u). Further, we suppose that there exists a neighborhood U of q such
that the state equation is uniquely solvable for all p ∈U . This leads to the definition
of the solution operator:

S : U →V : q 7→ u, u is the solution of (1.1) for given q. (2.1)

This operator inherits its smoothness properties from a. Now we can eliminate the
constraint defined through the state equation by introduction of the reduced func-

tional:
j : U → R j(q) := J(q,S(q)). (2.2)

The minimization problem (1.4) is now changed into:

j(q) → inf, q ∈ Qad . (2.3)

The first-order necessary condition for this minimization problem relies on the con-
vexity of Qad and reads:

j′(q)(p−q) > 0 ∀p ∈ Qad . (2.4)

In addition, we require the following second-order condition to be verified: There
exist γ > 0 and ξ > 0 such that for all p ∈ Bξ (q)

j′′(p)(δq,δq) > γ‖δq‖2
Q ∀δq ∈ Q. (H1)

The condition (H1) is stronger then standard sufficient second-order conditions
[5,15]. First, we do not exploit the (convex) constraints in order to weaken the re-
quirement. Second, we impose uniformity of the coercivity condition. Note how-
ever, that in case of a quadratic functional j, we precisely assume that the smallest
eigenvalue γ of the symmetric positive operator ∇ j2(q) is bounded away from zero.
In this case we also have ξ = +∞.

In the following we present some examples in order to illustrate condition (H1).

Example 2.1. We consider a linear-quadratic problem of the form

Au = f +Bq, J(q,u) =
1

2
‖Cu−d‖2

Z +
α

2
‖q‖2

Q, (2.5)
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where A : V →V ∗, B : Q →V ∗ are linear continuous operators and A is an isomor-
phism. In addition C : V → Z is a linear continuous observation operator and d ∈ Z

represents given observations. We find the reduced functional to be the quadratic
functional

j(q) =
1

2
‖Gq− d̃‖2

Z +
α

2
‖q‖2

Q, (2.6)

where G := CA−1B is the control-to-observation map and d̃ := d −CA−1 f . The
reduced functional is quadratic with gradient and Hessian given by:

∇ j(q) = (G∗G+αI)q−G∗d̃, ∇2 j(q) = G∗G+αI, (2.7)

where I denotes the identity operator and we use the identification described at the
end of the introduction. Hypothesis (H1) amounts to defining γ by

γ := λmin(G
∗G)+α. (2.8)

Especially, no regularization is needed (α = 0) in the finite-dimensional case, if G

has no zero singular value.

Example 2.2. As a special case of Example 2.1 we consider the following dis-
tributed control problem. The state equation is the Poisson equation on a bounded
domain Ω ⊂ R

2 with homogenous Dirichlet boundary conditions:

−∆u = q in Ω, u = 0 on ∂Ω. (2.9)

The cost functional is defined with a given function d ∈ L2(Ω)2 by

J(q,u) :=
1

2

∫

Ω
|∇u−d|2 dx+

α

2
‖q‖2

Q. (2.10)

It is now clear that Hypothesis (H1) is related to the choice of the space Q. We
choose Q = H−1(Ω), α = 0 and find, since

‖q‖H−1(Ω) = sup
v∈H1

0 (Ω)

q(v)

‖v‖H1
0 (Ω)

= sup
v∈H1

0 (Ω)

(∇S(q),∇v)

‖v‖H1
0 (Ω)

= ‖S(q)‖H1
0 (Ω), (2.11)

that

j′′(q)(p, p) = ‖p‖2
H−1(Ω) (γ = 1). (2.12)

For illustration of the estimator we introduce two additional variants of Example 2.1.

Example 2.3. We present a variant of Example 2.2. The state equation is again
the Poisson equation on a bounded domain Ω ⊂ R

2 with homogenous Dirichlet
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boundary conditions (2.9). The cost functional is defined with a given function d ∈
L2(Ω) by

J(q,u) :=
1

2

∫

Ω
|u−d|2 dx+

α

2
‖q‖2

Q. (2.13)

We choose Q = L2(Ω) and well-posedness of the problem requires now α > 0, since
G : Q → V is a compact operator. We obtain a variant with control constraints by
setting Qad = {q ∈ Q : q 6 q(x) 6 q a.e. in Ω} with real numbers q 6 q.

For illustration of the estimator we introduce two further variants of Example 2.1.

Example 2.4. Let Q = H1
0 (Ω) and V = /0. Let us define for given f ∈ L2(Ω)

J(q,u) :=
1

2
‖q‖2

Q − ( f ,q). (2.14)

Since the constraint is trivial we end up with the Dirichlet problem for the control,

−∆q = f in Ω, q = 0 on ∂Ω. (2.15)

Here the choice of norms is trivial and we have γ = 1 again. This example shows
that the estimator to be developed is a generalization of the classical energy error
estimator for the Ritz projection.

Let ψ be a smooth function satisfying ψ|∂Ω 6 0. Choosing Qad = {q ∈ Q : q >

ψ} leads to the obstacle problem with obstacle ψ . We will later consider the case
of bilateral constraints, Qad = {q ∈ Q : q 6 q(x) 6 q a.e. in Ω} with real numbers
q 6 0 6 q.

Example 2.5. We define V = (H1
0 (Ω))n, n denoting the space dimension, and

Q = L2(Ω)/R. We consider the state equation

−∆u+∇q = f , (A = −∆,B = ∇), (2.16)

where the control is used to minimize the cost functional

J(q,u) :=
1

2
‖divu‖2

L2(Ω). (2.17)

This minimization problem leads to the Stokes equations for a Lipschitz domain Ω

(since we can impose divu = 0). From the analysis of the Stokes problem we know
that the operator G = CA−1B = div(−∆)−1∇ is spectrally equivalent to the identity
operator in Q, see [10].

Next, we consider the approximation of the infinite-dimensional minimization
problem (1.4) by the Galerkin method (1.6), where the unknowns qh and uh are
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sought in finite-dimensional subspaces Vh ⊂ V and Qh ⊂ Q. We suppose existence
of the discrete solutions qh,uh and existence of the discrete solution operator:

Sh : U ∩Qh →Vh : qh 7→ uh uh the solution of (1.5). (2.18)

In analogy to the continuous level we define the discrete reduced functional:

jh : U ∩Qh → R : jh(qh) := J(qh,Sh(qh)). (2.19)

The discrete constraints set Qad,h is supposed to satisfy Qad,h ⊂ Qad ∩Qh. The dis-
crete optimal control qh ∈ Qad,h is solution of the variational inequality

j′h(qh)(ph −qh) > 0 ∀ph ∈ Qad,h. (2.20)

Our next hypothesis is that the discrete optimal control is not too far from to the
continuous solution in order (H1) to be applicable. We therefore require that

‖q−qh‖Q 6 ξ (ξ is defined in (H1)). (H2)

We remark that for linear-quadratic problems, (H2) is void.
We have the following abstract error bound, which reflects a basic result of

convex analysis.

Proposition 2.1. Let assumptions (H1) and (H2) be satisfied. Then, the differ-

ence between a solution q of (2.4) and a solution qh of (2.20) can be estimated by

γ

2
‖q−qh‖

2
Q 6 j(qh)− j(q). (2.21)

Proof. Let qs := (1− s)q + sqh for 0 6 s 6 1 and define the smooth function
ϕ(s) := j(qs)+(1−s) j′(qs)(qh−q). We find that ϕ ′(s) = (1−s) j′′(qs)(qh−q,qh−
q). Therfore

γ

2
‖q−qh‖

2
Q 6

∫ 1

0
ϕ ′(s)ds = ϕ(1)−ϕ(0)

= j(qh)− j(q)− j′(q)(qh −q) 6 j(qh)− j(q).

In the last step we have used that qh ∈ Qad,h ⊂ Qad and j′(q)(qh − q) > 0 due to
(2.4). �

Proposition 2.1 tells us that the error can be bounded by the difference in the value
of the continuous reduced functional. In the context of Example 2.4 we recover the
well-known fact that for a Galerkin discretization the error in energy norm can be
bounded by the difference in energy.

Any approximation of j(q), e.g. the value of the cost functional corresponding
to better approximation spaces Vh′ ⊃ Vh and Qh′ ⊃ Qh leads to an error estimator,
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which can be used as a stopping criterion (supposed the stability constant γ has
been estimated correctly). However, such an error estimator does not tell us how to
improve the approximation spaces. Before going to such an estimator, we present
a variant of Proposition 2.1. Using the local convexity of the reduced funtional, we
derive the following alternative estimate:

Proposition 2.2. Let assumptions (H1) and (H2) be satisfied. Then, the differ-

ence between a solution q of (2.4) and a solution qh of (2.20) can be estimated by

γ

2
‖q−qh‖

2
Q 6 j′(qh)(qh −q). (2.22)

Proof. It is sufficient to recall that for a smooth convex function there holds:

j(q) > j(p)+ j′(p)(q− p),

and choose p = qh. �

Estimate (2.22) can be used to define a stopping criterion for an iteration as before.
In addition, it can be related to the residual of the equations defining q and qh.

We end up this section with the computation of the first and second derivatives
of the reduced functional. We introduce the Lagrange functional of the optimization
problem:

L (q,u,z) := J(q,u)+ f (z)−a(q,u)(z). (2.23)

We will use the well-known fact that the gradient and Hessian of the reduced func-
tional can be computed by means of the Lagrange functional. These relations are
usually used in second-order optimization algorithms. They also form the basis for
our approach to a posteriori error estimation. For completeness and preparation of
the error estimation, we give the proofs of these facts.

Proposition 2.3. Suppose a and J are differentiable. Let the state equation (1.1)

and the following adjoint equation be satisfied:

Find z ∈V such that a′u(q,u)(v,z) = J′u(q,u)(v) ∀v ∈V. (2.24)

Then the gradient of the reduced functional is related to the Lagrangian by

j′(q)(p) = L
′

q(q,u,z)(p). (2.25)

Proof. Let to q(ε) = q + ε p correspond the state u(ε) = S(q(ε)). For arbitrary
z we have that

j(q(ε))− j(q) = L (q(ε),u(ε),z)−L (q,u,z)

= ε{L ′
q(q,u,z)(p)+L

′
u(q,u,z)(u′(0))}+o(ε),
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where u′(0) denotes the derivative of ε 7→ u(ε) for ε = 0. If z satisfies (2.24), the
second term in braces vanishes, and we obtain the stated result. �

By Proposition 2.3 the necessary first-order condition for the constrained minimiza-
tion problem (1.4) is the system of equations consisting of (1.1,2.24) and the varia-
tional inequality

L
′

q(q,u,z)(p−q) > 0 ∀p ∈ Qad .

This system is called optimality system.

Proposition 2.4. Suppose a and J are twice differentiable. Let u and z satisfy

equations (1.1) and (2.24), respectively. In addition let w and y be the solution of

the following system:






a′u(q,u)(w,v) = −a′q(q,u)(p,v) ∀v ∈V,
a′u(q,u)(v,y) = −a′′qu(q,u)(p,v,z)−a′′uu(q,u,z)(v,w,z)

−J′′qu(q,u)(p,v)− J′′uu(q,u)(w,v) ∀v ∈V.
(2.26)

Then the Hessian of the reduced functional is related to the Lagrangian by

j′′(q)(p,r) = L
′′

qq(q,u,z)(p,r)+L
′′

qu(q,u,z)(r,w)+L
′′

qz(q,u,z)(r,y). (2.27)

Proof. We introduce the following auxiliary functional:

M (q,u,z,w,y) := L
′

q(q,u,z)(p)+L
′

u(q,u,z)(w)+L
′

z (q,u,z)(y). (2.28)

From Proposition 2.3 we know that M (q,u,z,w,y) = j′(q)(p) if ∇(w,y)M = 0. We

apply the same proposition again to obtain that j′′(q)(p,r) = M ′
q(q,u,z,w,y)(r) if

∇(u,z,w,y)M = 0. The equations corresponding to ∇(w,y)M = 0 define u and z. The
equations corresponding to ∇(u,z)M = 0 read:

{

L ′′
uu(q,u,z)(w,v)+L ′′

zu(q,u,z)(y,v) = −L ′′
qu(q,u,z)(p,v),

L ′′
uz(q,u,z)(w,v)+L ′′

zz(q,u,z)(y,v) = −L ′′
qz(q,u,z)(p,v).

(2.29)

First we note that L ′′
zz = 0 since the Lagrangian is linear with respect to z. Further-

more, the cost functional J does not depend on z. We solve first the second equation
in (2.29) which is the first equation of (2.26). The first equation of (2.29) becomes
the second equation of (2.26). �

3. THE CASE WITHOUT CONSTRAINTS

In this section we consider the discretized optimization problem
{

inf
q∈Qh

J(q,u) subject to:

a(q,uh)(vh) = l(vh) ∀vh ∈Vh.
(3.1)
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We suppose that Qad = Q and Qad,h = Qh. In order to measure how well the three
equations forming the optimality system are satisfied, we introduce the residual
functional ρ ∈ (Q×V ×V )∗ defined by

ρ(p,y,w) := L
′

q(qh,uh,zh)(p)+{l(y)−a(qh,uh)(y)}

+{J′u(qh,uh)(w)−a′u(qh,uh)(zh,w)}.
(3.2)

The following result is motivated by the aim to derive local mesh refinement
criteria. Only the residuals of the state and adjoint equations and the first-order opti-
mality condition are involved. They are weighted by projection errors of additional
functions.

Theorem 3.1. Suppose a and J are three-times differentiable. Let assumptions

(H1) and (H2) be satisfied and suppose that Qad = Q and Qad,h = Qh. Let ũ ∈ V

and z̃ ∈V be solutions of the following auxiliary problems at fixed control:

{

a(qh, ũ)(v) = l(v) ∀v ∈V,

a′u(qh, ũ)(z̃,v) = J′u(qh, ũ)(v) ∀v ∈V.
(3.3)

Further, we set for abbreviation

δu := ũ−u, δ z := z̃− z. (3.4)

Then, the difference between a solution q of (1.4) and a solution qh of (3.1) can be

estimated by:

γ ‖q−qh‖
2
Q 6 inf

(ph,yh,wh)∈Qh×Vh×Vh

ρ(ph −q,δ z− yh,δu−wh)+R, (3.5)

with the residual functional ρ defined in (3.2) and a cubic remainder term R de-

pending on the third derivatives of J and a.

In addition, there is a constant C such that the following lower bound holds:

inf
(ph,yh,wh)∈Qh×Vh×Vh

ρ(ph −q,δ z− yh,δu−wh) 6 C‖q−qh‖
2
Q +R, (3.6)

with a cubic remainder term R depending on the third derivatives of J and a.

Proof. First, by Proposition 2.1 we have

γ

2
‖q−qh‖

2
Q 6 j(qh)− j(q) = { j(qh)− jh(qh)}−{ j(q)− jh(qh)}

= {ϕ(1)−ϕ(0)}−{ψ(1)−ψ(0)},

supposed we define (with qs := qh + s(q−qh), ũs := uh + s(ũ−uh), etc.)

ϕ(s) := L (qh, ũs, z̃s), ψ(s) := L (qs,us,zs).
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We then use the trapezoidal rule to find that

γ

2
‖q−qh‖

2
Q 6

∫ 1

0
{ϕ ′(s)−ψ ′(s)}ds

=
1

2
{ϕ ′(1)+ϕ ′(0)−ψ ′(1)−ψ ′(0)}+R,

with R := sup06s61 |ϕ
′′′(s)−ψ ′′′(s)|. Let us now examine the different terms. First,

we have
ϕ ′(1) = L

′
u(qh, ũ, z̃)(ũ−uh)+L

′
z (qh, ũ, z̃)(z̃− zh) = 0,

due to the definition of ũ and z̃ as solutions to (3.3). Similarly we find

ψ ′(1) = L
′
(q,u,z)(q,u,z)(q−qh,u−uh,z− zh) = j′(q)(q−qh)

due to Proposition 2.3. The continuous optimality condition yields ψ ′(1) = 0. Next
we have

ϕ ′(0) = L
′

u(qh,uh,zh)(ũ−uh)+L
′

z (qh,uh,zh)(z̃− zh),

where the test functions uh and zh can be replaced by any discrete function. Finally
we have

ψ ′(0) = L
′

q(qh,uh,zh)(q−qh)+L
′

u(qh,uh,zh)(u−uh)+L
′

z (qh,uh,zh)(z− zh).

The same remark concerning the test functions, including this time qh applies and
we find (3.5).

For the lower bound, we remark that by convexity j(q) > j(qh)+ j′(qh)(q−qh).
Therefore, we have:

1

2
ρ(q− ph,δ z− yh,δu−wh) 6 j(qh)− j(q)+R

6 j′(qh)(qh −q)− j′(q)(qh −q)+R.

Let C be the Lipschitz constant of ∇ j in a neighborhood containing q and qh. Since
j′(qh)(q−qh)− j′(q)(q−qh) 6 C‖q−qh‖

2, we find (3.6). �

We remark that there are two possible reasons for the weights δ z− yh and δu−wh

to be small: first z̃ is close to z (ũ is close to u), and second, the interpolation error
is small.

Under appropriate assumptions on the state equation, Theorem 3.1 leads to an
error estimate for all unknowns of the optimization problem. To this end we make
the following regularity and continuity assumptions. We suppose that there exist
α > 0 and C such that

sup
v∈V\{0}

a(q,u1)(v)−a(q,u2)(v)

‖v‖V

> α ‖u1 −u2‖V , (3.7)

a(q1,u)(v)−a(q2,u)(v) 6 C‖q1 −q2‖Q‖v‖V , (3.8)

a(q,u1)(v)−a(q,u2)(v) 6 C‖u1 −u2‖V‖v‖V . (3.9)
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We define the residual functional for the state equation ρstate ∈V ∗ by

ρstate(v) := l(v)−a(qh,uh)(v). (3.10)

Theorem 3.2. In addition to the assumptions of Theorem 3.1, suppose that

(3.7,3.8) are satisfied. Set for abbreviation

ηq := inf
(ph,yh,wh)∈Qh×Vh×Vh

√

|ρ(ph −q,δ z− yh,δu−wh)|,

ηu := sup
v∈V

inf
vh∈Vh

ρstate(v− vh)

‖v‖V

.
(3.11)

Then we have the following error bound

‖q−qh‖Q +‖u−uh‖V 6 C (ηq +ηu)+R, (3.12)

with a cubic remainder term R and a constant C depending on α and γ .

Suppose in addition (3.9). Then there exists a constant C such that

ηq +ηu 6 C (‖q−qh‖Q +‖u−uh‖V )+R, (3.13)

with a cubic remainder term R.

Proof. First we note that by (3.7)

α‖ũ−uh‖ 6 sup
v∈V

a(qh, ũ)(v)−a(qh,uh)(v)

‖v‖V

= sup
v∈V

inf
vh∈Vh

l(v− vh)−a(qh,uh)(v− vh)

‖v‖V

= sup
v∈V

inf
vh∈Vh

ρstate(v− vh)

‖v‖V

.

Next, we have using (3.8)

a(q, ũ)(v)−a(q,u)(v) = a(q, ũ)(v)−a(qh, ũ)(v) 6 C‖q−qh‖Q‖v‖V ,

such that again by (3.7)

α‖ũ−u‖ 6 sup
v∈V

a(q, ũ)(v)−a(q,u)(v)

‖v‖V

6 C‖q−qh‖Q.

For the lower bound, we first remark that by Theorem 3.1 ηq 6 C‖q−qh‖Q. Next,
since ρstate(v) = a(q,u)(v)−a(qh,uh)(v) = a(q,u)(v)−a(qh,u)(v)+a(qh,u)(v)−
a(qh,uh)(v), we have with (3.9):

ρstate(v) 6 C‖q−qh‖Q‖v‖V +C‖u−uh‖V‖v‖V .

The estimate (3.13) follows by the definition of ηu. �
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The result of Theorem 3.2 is different from the estimates presented in [13], since the
error in the Lagrange multiplier z is not involved in the right-hand side of the lower
bound (3.13). This might be of interest in cases where regularity estimates for z are
difficult to obtain.

The following corollaries are simple consequences of Theorem 3.1. They il-
lustrate how the estimator may be used to control the two spaces individually. For
brevity, we skip the statements of the corresponding lower bounds.

Corollary 3.1. (discrete control) Let the assumptions of Theorem 3.1 be ful-
filled. In addition, assume that Qh = Q. Then we have the error estimate:

{

γ‖q−qh‖
2
Q 6 {l(δ z− yh)−a(qh,uh)(δ z− yh)}

+{J′u(qh,uh)(δu−wh)−a′u(qh,uh)(zh,δu−wh)}+R,
(3.14)

with arbitrary wh,yh ∈ Vh and a cubic remainder term R depending on the third
derivative of J and a.

Corollary 3.2. (discrete state) Let the assumptions of Theorem 3.1 be fulfilled.
In addition, assume that Vh = V . Then we have the error estimate:

γ‖q−qh‖
2
Q 6 L

′
q(qh,uh,zh)(q− ph)+R, (3.15)

with arbitrary ph ∈ Qh and a cubic remainder term R depending on the third deriva-
tive of J and a.

Remark 3.1. Let us write the error estimate (3.15) in the case of the Poisson
problem (Example2.4). Since γ = 1 and R = 0, we obtain

‖q−qh‖
2
H1

0 (Ω) 6 L
′

q(qh)(q− ph) = 〈∆qh + f ,q− ph〉H−1(Ω)×H1
0 (Ω) (3.16)

Now the techniques developed for a posteriori error estimation as residual error es-
timators or hierarchical estimators can be used to bound, respectively, approximate
the term ‖∆qh + f‖H−1(Ω).

The error estimator presented in Theorem 3.1 requires the unknown variables u, z,
as well as the solution of the continuous problem (3.3). In the algorithm we develop
below, we approximate these functions by solutions of the same equations on a finer
mesh, which we choose as a global refinement of the given one. We remark that
the work required for solution of the additional equations (3.3) is low, since they
correspond to the solution of the state and co-state equations on the new mesh with
interpolated control. In an outer loop of mesh adaptation, they are computed in the
first step of the inner optimization iteration on the new mesh.

Let us be more precise concerning the construction of the spaces. Let Vk ⊂
Vk+1 ⊂ . . . be the sequence of finite-element spaces to be generated. For each space
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Vk we define a finer space Wk which is obtained from Vk by global refinement. We
end up with the following sequence of spaces on which the discrete optimization
problem is solved

. . . Vk Vk+1 Vk+2 . . .
↓ ր ↓ ր

. . . Wk Wk+1 Wk+2 . . . ,

where the north-east arrow at step k correponds to a local refinement step based
on information from the nested spaces Vk ⊂ Wk. Vk+1 is obtained from Vk by local
refinement, such that in general Wk 6⊂Vk+1.

This scheme can be implemented in the following way. Depending on whether
the iteration counter is even or odd, we perform a global refinement step (corre-
sponding to Vk →Wk) or do a local refinement of the one but last mesh using infor-
mation from the last step (corresponding to Vk →Vk+1).

In order to evaluate the error estimator, we define approximations ũk ∈ Wk and
z̃k ∈Wk of ũ and z̃ appearing in (3.5). They are available without extra computation
from the first step of the Newton iteration. We approximate the weighting function
δu−wh in (3.5) by (I − IVk

)(ũk − uk) with a local interpolation interpolator IVk
:

Wk →Vk, and similar for δ z− yh.
The same procedure is applied to the sequence of control spaces {Qk}.
A typical algorithm reads as follows:

1. Let V0 and Q0 be first finite-element spaces and q0 ∈ Q0. Set k = 1.

2. Use a stopping criterion based on (2.21) or (2.22).

3. Solve the optimization problem on space Vk by a Newton iteration:

(a) set q0
k = qk−1, l = 0,

(b) compute the gradient ∇ j(ql
k) (by Proposition 2.3 this requires solution

of the state and adjoint equations),

(c) solve the system

∇2 j(ql
k)δ

l = −∇ j(ql
k) (3.17)

by a conjugate gradient iteration. By Proposition 2.4 this requires solu-
tion of the linear equations (2.26).

(d) Set ql+1
k = ql

k + δ l , increase l and go to (b), unless a stopping criterion
is satisfied.

4. Use the conjugate gradient iteration in 3(c) to estimate γk = λmin(∇
2 jk(qk)).

Stop the iteration if γk → 0 is detected.

5. Set qk = qL+1
k where L is the number of Newton iterations. If k is odd do a

global mesh refinement. Otherwise evaluate the error estimator and perform
a local mesh refinement step. Increase k and go to 2.
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The purpose of step (4) is to prevent that γk → 0. In practice, we need stopping
criteria in order to minimize the number of Newton steps and the number of inner
CG iterations.

We remark that the algorithm can be modified in order to separate adaptation of
the discrete spaces Qh and Vh, based on corollaries 3.1 and 3.2.

Convergence of such type of automatic adaptive algorithms is far from obvious.
We remark that if no coarsening is allowed, convergence can in general be ensured
by a priori error analysis. However, proving optimal speed of convergence - that
is the asymptotic behavior of error with respect to the number of unknowns - is a
difficult task; see [8] for such an analysis for linear-quadratic optimal control prob-
lems discretized by wavelets, and [4] for the Poisson problem discretized by finite
elements on triangular meshes.

4. THE CASE OF CONTROL CONSTRAINTS

We discuss generalization of the a posteriori error estimate of Theorem 3.1 to the
case of control constraints q ∈ Qad . Our aim is again to outline an approach on the
abstract level.

We now consider the constrained minimization problem:

{

inf
q∈Qad

J(q,u) subject to:

a(q,u)(v) = l(v) ∀v ∈V.
(4.1)

Since Qad is closed and convex, there exists the projection operator P : Q → Qad

defined by ‖Pq − q‖Q 6 ‖p − q‖ for all p ∈ Qad . Unless Qad is a closed linear
subspace, P is not differentiable; however, generalized differentiability properties
of projectors are well-studied, see for example [11] and [14] for application of a
generalized mean-value theorem to a priori error analysis of constrained optimal
control problems.

We suppose that there exists an operator P′(q) such that a necessary first-order
condition for (4.1) reads:

j′(q)(P′(q)p) = 0 ∀p ∈ Qad . (4.2)

Condition (4.2) is closely related to the variational inequality

j′(q)(p−q) > 0 ∀p ∈ Qad (4.3)

in case P′(q)p is the directional derivative of P at q in direction p. To this end, we
recall that (4.3) is equivalent to the equation

q−P(q−α∇ j(q)) = 0 (4.4)

for any α > 0. In order to see the equivalence of (4.3) with (4.4), multiply (4.3) by
α > 0 and add (p−q, p−q) > 0 to get:

(p− (q−α∇ j(q)), p−q) > 0 ∀p ∈ Qad . (4.5)
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A variational characterization of P reads (p− r, p−P(r)) > 0 for all p ∈ Qad , and
we obtain (4.4).

Next we note that q = P(q). Then (4.4) becomes for α > 0

P(q)−P(q−α∇ j(q))

α
= 0,

and α → 0 leads to (4.2), supposed (P(q)−P(q−α∇ j(q))−αP′(q)(∇ j(q)))/α →
0 in a suitable topology.

We consider discretization of (4.1) by

{

inf
qh∈Qad,h

J(qh,uh) subject to:

a(qh,uh)(v) = l(v) ∀v ∈V.
(4.6)

A solution to (4.6) satisfies the discrete variational inequality:

j′h(qh)(ph −qh) > 0 ∀ph ∈ Qad,h. (4.7)

In order to deal with the constraints, we use a special interpolation operator. We say
that an interpolation operator Ih : Q → Qh respects the constraints if

Ihq ∈ Qad,h and (I −P′(q))(q− Ihq) = 0 ∀q ∈ Qad . (4.8)

In the following we summarize our results for a posteriori error estimation.

Theorem 4.1. Same assumptions as Theorem 3.1, beside that Qad ⊂ Q is now

a closed convex set with projector P. Suppose that (4.2) holds with an appropriate

operator P′. Furthermore, we suppose that Qad,h ⊂ Qad and that there exists an

interpolation operator Ih that respects the constraints.

Then, the difference between a solution q of (4.1) and a solution qh of (4.6) can

be estimated by:

γ ‖q−qh‖
2
Q 6 inf

(yh,wh)∈Vh×Vh

ρ(P′(q)(Ihq−q),δ z− yh,δu−wh)+R, (4.9)

with the residual functional ρ defined in (3.2) and a cubic remainder term R de-

pending on the third derivatives of J and a.

Proof. First we note that by the proof of Proposition 2.1 we have

γ

2
‖q−qh‖

2
Q 6 j(qh)− j(q)− j′(q)(qh −q). (4.10)

On the other hand the proof of Theorem 3.1 reveals that with arbitrary yh,wh ∈Vh

j(qh)− j(q)−
1

2
j′(q)(qh −q) = ρ(qh −q),δ z− yh,δu−wh)+R. (4.11)



Estimating the Control Error in discretized PDE-constrained Optimization 17

Using the variational inequality (4.3) and its discrete analogon, we find:

γ

2
‖q−qh‖

2
Q 6 j(qh)− j(q)−

1

2
j′(q)(qh −q)−

1

2
j′(q)(qh −q)

6 ρ(qh −q),δ z− yh,δu−wh)+R

= ρ(ph −q),δ z− yh,δu−wh)+ j′h(qh)(qh − ph)+R

6 ρ(ph −q),δ z− yh,δu−wh)+R.

It remains to choose ph = Ihq and to use (4.8) in order to obtain the estimate (4.9).
�

Remark 4.1. The additional assumptions on the projector and interpolation op-
erator are not necessary, if we are only interested in the upper bound

γ ‖q−qh‖
2
Q 6 inf

(ph,yh,wh)∈Qh×Vh×Vh

ρ(ph −q,δ z− yh,δu−wh)+R. (4.12)

This estimate is however not optimal since it does not use the constraints: residuals
have also be evaluated on the ’active set’ where (in case Qad is defined by inequali-
ties) the inequality constraints become equalities.

In the following we consider briefly application of the estimate of Theorem 4.1 to
the case of box-constraints Qad := {q ∈ Q : q 6 q 6 q}. Since the topology of Q is
of great importance, we distinguish three further cases.

The first case is Q = R
n. We denote by q(i) the i-th component of q ∈ Q. We

have P(q)(i) = max(min(q(i),q),q). The inactive and active sets are defined as the

set of indices Iq := {i ∈ {1, . . . ,n} : q < q(i) < q} and Aq := {1, . . . ,n}\ Iq. Finally

we set P′(q)p(i) = p(i) if i ∈ Iq and P′(q)p(i) = 0 otherwise. It is immediate to
see that the variational inequality (4.3) implies (4.2). Let Qh = R

m with m < n. The
construction of an interpolation operator which satisfies (4.8) is trivial.

The second case is Q = L2(Ω), see Example 2.3. Now P is defined by P(q)(x) =
max(min(q(x),q),q). The inactive and active sets are defined by Iq := {x ∈ Ω : q <

q(x) < q} and Aq := Ω \ Iq. We set P′(q)(p) = χIq
p where χA is the characteristic

function of the set A ⊂ Ω. Again, (4.2) is satisfied. However, the construction of
an interpolation operator respecting the constraints is more technical and largely
depends on the choice of Qh and Qad,h. We note that (4.8) reads in this case:

x ∈ Aq =⇒ Ihq(x) = q(x). (4.13)

For related questions in the context of a priori error analysis for constrained optimal
control problems see [6,18].

The third case is the bilateral obstacle problem of Example 2.4. This allows us to
compare our approach with the recent development of a posteriori error analysis for
the obstacle problem, see [7,16,19] and the literature cited therein. Let q̃∈H1

0 (Ω) be
the solution of the Poisson problem without obstacle, −∆q̃ = f . Then, the obstacle
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problem is equivalent to minimization of ‖q− q̃‖2
Q; therefore q is the projection of

q̃ in the H1
0 (Ω) scalar product on Qad . We use the same definition of inactive and

active sets as in the last example. In the context of the obstacle problem, the active
set is called contact set. An appropriate candidate for P′(q) is the projector on the
linear subspace Qq := {q ∈ Q : q(x) = 0 a.e. x ∈ Aq}. The equation defining this
linear projector reads: For given p̃ ∈ Q find p = P′(q)p̃ ∈ Qq such that

(∇p,∇δ ) = (∇ p̃,∇δ ) ∀δ ∈ Qq. (4.14)

The construction of an appropriate interpolation operator again leads to (4.13).

We rewrite now the estimator of Theorem 4.1:

j′(qh)(P
′(q)(q− Ihq)) = (qh − q̃,P′(q)(q− Ihq))Q

= −〈∆qh + f ,P′(q)(q− Ihq)〉H−1(Ω)×H1(Ω).

The last identity could now be used to obtain a residual error estimator which van-
ishes on the contact set. There are similarities to the a posteriori error estimator of
[19], which however deals in addition with variable obstacles, the case Qad,h 6⊂ Qad ,
and does not use knowledge about the position of the continuous contact zone.

5. NUMERICAL EXAMPLE

We consider a linear-quadratic model problem. The cost is searched for in Q =
H1(Ω), Ω =]−3,3[×]−6,6[\]−1,1[×]−2,2[, and the cost functional is given by

J(q,u) =
1

2

4

∑
i=1

|u(xi)− ūi|
2 +

α

2
‖q‖2

Q, (5.1)

with α = 10−4, {xi} = {(−2,−4),(−2,−2),(−2,2),(−2,4)}, and ūi = 0.5 for 1 6

i 6 4. The partial differential equation to be solved is:

−∆u = −q in Ω, u|∂Ω = 0. (5.2)

The value of the cost functional at the optimum of this largely underdetermined
problem is J ≈ 5.9e−04.

The problem is interesting since its solution suffers from different singularities:
first the domain has re-entrent corners such that u 6∈ H2(Ω). The same singularity
deteriorates the regularity of the Lagrange multiplier z. In addition, since z is the
solution of

−∆z =
4

∑
i=1

|u(xi)− ūi|δxi
in Ω, z|∂Ω = 0, (5.3)

the Dirac measures on the right-hand side of (5.3) lead to additional singularities.
However, due to the smallness of α they have small coefficients.



Estimating the Control Error in discretized PDE-constrained Optimization 19

Figure 1. Optimal solution: u, q, and z.

For simplicity we use bilinear finite elements for the discretization of all three
variables on the same mesh.

Pictures of the optimal displacement u, right-hand side q and Lagrange multi-
plier z are shown in Figure 1. We use this example to compare the error estimator
developed in this paper with a possibly more direct error estimator which measures
the residuals of each equation separately.

We next describe some details of the employed algorithm. As explained be-
fore, we use two nested meshes - which lead to two finite element spaces Vh

and Vh/2 (corresponding to Vk and Wk in the description of the algorithm in Sec-
tion section:NoConstraints) of dimension approximately N and 4N (in two space
dimensions)- in order to evaluate the estimator (3.5). We define the residual vectors
as

ρu(i) := l(ϕi)−a(qh,uh)(ϕi) ϕi ∈Vh/2,

ρz(i) := J′(qh,uh)(ϕi)−a′(qh,uh)(zh,ϕi) ϕi ∈Vh/2,

ρq(i) := L
′

q(qh,uh,zh)(ϕi) ϕi ∈Vh/2.

In order to obtain an approximation for δu and δ z defined in (3.4) we take the
difference between uh/2 (the final iterate of the optimization algorithm on Vh/2) and
the solution of the state equation corresponding to control qh on mesh Vh/2 (the
first iterate of the optimization algorithm on Vh/2). Further more we subtract its
interpolation on Vh. Let us denote by du and dz the resulting vectors. In order to
obtain dq we subtract the coarse grid interpolation from the optimal control qh/2.
Now we define the estimator η by

η(i) := |ρu(i)dz(i)+ρz(i)du(i)+ρq(i)dq(i)|. (5.4)

Next the vector is sorted and we generate a new mesh such that at least 90% of the
total amount of corresponding vertices are flagged to be refined. A typical sequence
of meshes generated in this way is shown in Figure 2.
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Figure 2. Meshes obtained with estimator η (N = 2934,5588,9948).

Figure 3. Meshes obtained with estimator η̃ (N = 2810,4500,6652).
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Figure 4. Error decay for the two estimators η (solid line) and η̃ (dashed line) (log-log-scale).

As a competitor we consider the estimator η̃ defined by

η̃(i) := |ρu(i)du(i)|+ |ρz(i)dz(i)|+ |ρq(i)dq(i)|. (5.5)

Note that the first two terms correspond to an energy estimator of the state and of
the adjoint equation, respectively. We use the same procedure for mesh refinement,
except that values η(i) are replaced by η̃(i). A sequence of meshes (iterates 6,7,8
in the mesh refinement iteration) generated by η̃ is shown in Figure 3. As compared
to Figure 2, it is clear that η̃ is much more attracted by the corner singularities of
the state equation, whereas the refinement according to η emphasizes the points of
evaluation. Changing the position of the absolute values in (5.5) or suppressing the
term involving ρq did not lead to any remarkable change.

Finally, the numerical efficiency of the two estimators is compared in Figure 4,
where the dependence of estimated error on the number of unknowns is shown in
log-log scale. The estimated error is the difference to a solution on the finest acces-
sible grid using alternatively local and global refinement, measured in the L2-norm.
The adaptive refinement seems to cure the loss of regularity, since the error behaves
close to a second-order method (e ∼ N−1 in two dimensions).

6. CONCLUSIONS

We have developed an a posteriori error estimator for the control of the error in
the control variable measured in a norm which is related to a strong form of a suf-
ficient second-order conditions, hypothesis (H1). In addition, we have required the
discrete solution to be close enough to the continuous one, hypothesis (H2). This as-
sumption is automatically fulfilled in the convex case, for example linear-quadratic
problems. Under these conditions we have derived an a posteriori error estimator,
including the case of control constraints, which requires only marginal extra cost in
an adaptive optimization algorithm. It has been shown that an additional assump-
tion on the state operator leads to an a posteriori error estimate for the state variable,
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too. Generalization of the error estimate to the control constrained case has been
outlined.
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