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In this paper, we study a linear system related to the 2d system of Euler equations with thermal conduction in the quasi-isobaric approximation of . This model is used for the study of the ablation front instability, which appears in the problem of inertial confinement fusion. The heat flux Q is given by the Fourier law T -ν Q proportional to ∇T , where ν > 1 is the thermal conduction index, and the external force is a gravity field g = -g ex. This physical system contains a mixing region, in which the density of the gaz varies quickly, and one denotes by L0 an associated characteristic length. The fluid velocity in the denser region is denoted by Va.

The system of equations is linearized around a stationary solution, and each perturbed quantity ũ is written using the normal modes method ũ(x, z, t) = ℜ(ū(x, k, γ)e ikz+γ √ gkt ) in order to take into account an increasing solution in time. The resulting linear system is a non self-adjoint fifth order system. Its coefficients depend on x and on physical parameters α, β, α and β being two dimensionless physical constants, given by αβ = kL0 and α β = gL 0 V 2 a (introduced in [START_REF] Cherfils | Asymptotic results for the Rayleigh-Taylor instability[END_REF]). We study the existence of bounded solutions of this system in the limit α → 0, under the condition β ∈ [β0, 1 β 0 ], and the assumption ℜγ ∈ [0, 1 β 0 ], |γ| ≤ 1 β 0 (regime that we studied for a simpler model in [START_REF] Cherfils | Asymptotic results for the Rayleigh-Taylor instability[END_REF]) calculating the Evans function Ev(α, β, γ) associated with this linear system. Using rigorous constructions of decreasing at ±∞ solutions of systems of ODE, we prove that, for β ∈ [β0, 1 β 0 ], ℜγ ∈ [0, 1 β 0 ], |γ| ≤ 1 β 0 , there exists α1 > 0 such that there is no bounded solution of the linearized system for 0 < α ≤ α1.

Introduction

This paper is devoted to the precise calculus of the Evans function Ev(α, β, γ) of the normal mode formulation of the linearized system of equations associated with the quasi-isobaric (low Mach number) model. The calculus of this Evans function is not classical, because the matrix of the differential system has singular coefficients,and because these coefficients do not behave exponentially in the spatial variable. However, usual techniques of ordinary differential equations and introduction of a Fuchsian problem allow us to calculate this Evans function under certain assumptions on the parameters α, β, γ introduced in the Abstract.

In this Introduction, we first describe the physical model [START_REF] Cherfils | Asymptotic results for the Rayleigh-Taylor instability[END_REF], define what is called a linear growth rate of the linearized system associated with a stationary solution of this physical model, then finally describe the contents of each step of the proof of the main Theorem (Theorem 4).

Physical model

We consider a compressible fluid characterized by its density ρ, its velocity (u, v) and its temperature T in a gravity field g = -|g| e x . We assume that this fluid has the following properties: a) when x goes to +∞, for all z we have ρ → ρ a , (u, v) → (-V a , 0) and T → T a .

b) the functions (ρ, u, v, p, T ), where p is linked to the pressure in the fluid, satisfy the system of the Euler equations in two dimensions (x, z) with thermal conduction in the quasi-isobaric approximation for a perfect gaz: div(C p ρT u + Q) = 0, [START_REF] Abramovitz | Handbook of mathematical functions Dover Publications[END_REF] where C p is the calorific capacity of the fluid, the heat conduuction flux Q being given by the Fourier law

Q = -k(T )∇T, (2) 
the thermal conduction law is

k(T ) = K 0 T ν , (3) 
where ν is the thermal conduction indice. We introduce a characteristic length L 0 associated with the thermal properties of the fluid

L 0 = K 0 T ν a C p ρ a V a . (4) 
Physical values of L 0 for the case of the ICF are of order 10 -5 meters. Under a quasi-isobaric assumption, the system modelizing the ablation model was given by H.J. Kull [START_REF] Kull | Theory of the Rayleigh-Taylor instability[END_REF] and appears for example in P. L. Lions [START_REF]Lions Mathematical topics in fluid mechanics I (Incompressible models[END_REF]. It states

           ∂ t ρ + div(ρ u) = 0 ∂ t (ρ u) + div(ρ u ⊗ u + p) = ρ g ρT = ρ a T a Q = -k(T )∇T div(C p ρT u + Q) = 0.
(

) 5 
This model can be derived either from the low Mach approximation (Majda [START_REF] Majda | Sethian The derivation and numerical solution of the equations for zero Mach number combustion[END_REF], Dellacherie [START_REF] Dellacherie | On a diphasic low mach number system Mathematical Modelling and Numerical Analysis[END_REF]) or the quasi-isobaric approximation (Kull [START_REF] Kull | Theory of the Rayleigh-Taylor instability[END_REF], Kull-Anisimov [START_REF] Kull | Anisimov Ablative stabilization in the incompressible Rayleigh-Taylor instabilityPhys[END_REF], Masse [START_REF] Masse | Etude linéaire de l'instabilité du front d'ablation en fusion par confinement inertiel These de doctorat de l'IRPHE[END_REF]). See a short analysis in Section 1. A stationary laminar solution of the system ( 5) is (ρ 0 (x), u 0 (x), 0, p 0 (x), T 0 (x)), where we introduce a function ξ such that

ρ 0 (x) = ρ a ξ( x L 0 ), u 0 (x) = - ρ a V a ρ 0 (x) = - V a ξ( x L0 )
, T 0 (x) = ρ a T a ρ 0 (x) = T a ξ( x L0 ) and p 0 (x) satisfies

p 0 (x) + ρ 2 a V 2 a ρ 0 (x) + g x x0 ρ 0 (s)ds = p 0 (x 0 ) + ρ 2 a V 2 a ρ 0 (x) .
The function ξ is the solution of the differential equation

dξ dy = ξ ν+1 (1 -ξ) (6) 
such that ξ(0) = ν+1 ν+2 . Note that, in this case p 0 (L 0 y) = p 0 (0 

) + ν + 2 ν + 1 ρ a V 2 a -ρ a V 2 a [ 1 ξ(y) + gL 0 V 2
The system of unknowns that we consider is

Ũ =       ρu ρu 2 + p ρuv Z(ρ) u -L 0 V a ∂ x (Z(ρ))       .
From Ũ , we recover ρ from Z(ρ), u = ρu ρ , v = ρuv ρu and p = p + ρu 2 -(ρu) 2 ρ . For this choice of unknowns, we introduce F 1 ( Ũ ) = Ũ. There exists three explicit functions F 0 , F 2 and F 3 such that the system [START_REF] Cherfils | Asymptotic results for the Rayleigh-Taylor instability[END_REF] is equivalent to the system on Ũ

∂ t F 0 ( Ũ ) + ∂ x F 1 ( Ũ ) + ∂ z (F 2 ( Ũ , ∂ z Ũ)) = F 3 ( Ũ ) T = ρaTa Z -1 ( Ũ4) (8) 
A stationnary laminar solution U 0 of this system depending only on x is U 0 (x) such that d dx (F 1 (U 0 (x))) = F 3 (U 0 (x)).

The identity F 1 ( Ũ ) = Ũ is the natural choice when one studies a basic solution depending only on the variable x.

Definition of a linear growth rate

We linearize [START_REF] Evans | Nerve axon equations I, II, III[END_REF] around U 0 (x). Denote by U the unknowns Ũ -U 0 (x). The linearized system writes (∇ 1 and ∇ 2 denotes the gradient of F 2 with respect to the first and second set of variables Ũ and ∂ z Ũ ):

∂ x U +∇F 0 (U 0 (x))∂ t U +∇ 1 F 2 (U 0 (x), 0)∂ z U +∇ 2 F 2 (U 0 (x), 0)∂ 2 z 2 U = ∇F 3 (U 0 (x))U (9) 
which can be rewritten M (x, ∂ x , ∂ z , ∂ 2 z 2 , ∂ t )U = 0. Note that its coefficients depend on x through the stationnary solution.

We are now ready to introduce the definition of a linear growth rate for a non linear system around a laminar solution:

Definition 1 Let M (x, ∂ x , ∂ z , ∂ 2
z 2 , ∂ t )U = 0 be the linearized system We call a linear growth rate of this system for the wave number k a value of σ (depending on k) such that ℜσ ≥ 0 and there exists a non-trivial solution U (x, k, σ) of the system M (x, d dx , ik, -k 2 , σ)U (x, k, σ) = 0 [START_REF] Guo | On the dynamical Rayleigh-Tayor instability Arch[END_REF] such that U is bounded and going to 0 when x goes to ±∞. The function U (x, k, σ)e ikz e σt is called a normal mode solution of the system.

The normal mode system associated with [START_REF] Goncharov | Self consistent stability analysis of ablation fronts in intertial confinement fusion[END_REF] is

dV dx + ∇F 0 (U 0 (x))σV + ik∇ 1 F 2 (U 0 (x), 0)V -k 2 ∇ 2 F 2 (U 0 , 0)V = ∇F 3 (U 0 (x))V.
(11) The scope of this paper is to find bounded non trivial solutions of [START_REF] Ph | Ordinary Differential Equations Classics in Applied Mathematics[END_REF], and associated values of σ if any. If such a solution exist, it will lead to a normal mode solution of the linearized system. Note that, in the set-up we described, different physical parameters appear, namely k, L 0 , V a , g. As the classical growth rate of Rayleigh is equal to ( ρ2-ρ1 ρ2+ρ1 gk)

1 2
for the discontinuity model [START_REF] Strutt | Lord Rayleigh) Investigation of the character of the equilibrium of an Incompressible Heavy Fluid of Variable Density[END_REF], and as we proved ( [START_REF] Cherfils | Asymptotic results for the Rayleigh-Taylor instability[END_REF], [START_REF] Helffer | Lafitte Asymptotic growth rate for the linearized Rayleigh equation for the Rayleigh-Taylor instability Asympt[END_REF]) that this value was the limit of the growth rate when kL 0 goes to zero, we are led to introducing the following quantities

ε = kL 0 , F r = V 2 a gL 0 (12) 
and

α = ε F r , β = √ εF r, γ = σ √ gk . ( 13 
)
The aim of this paper is to study the existence of a growth rate γ, ℜγ ≥ 0, in the limit L 0 → 0 when the Froude number F r is of order 1 L0 , which means that α → 0, β > 0.

Remark Other regimes rely on different assumptions on α and β: we refer to [START_REF] Helffer | The semiclassical regime for ablation front models[END_REF] for the results that can be obtained for this model in the high frequency regime k → +∞. In this other regime the scaling writes ε large, ε 3 F r ≤ C ′ , where C ′ is a constant. In the first section, we study the physical origin of the model and derive the properties of the stationary solution, where the associated density profile satisfies:

   ρ 0 (x) → 0 when x → -∞ ρ 0 (x) -ρ a ≃ Ce -x L 0 , x → +∞ ρ 0 (x)|x| 1 ν → ρ a ( L0 ν ) 1 ν , x → -∞.
We then derive the linearized system, which is a fifth order differential system whose coefficients depend on ρ 0 (x) and are singular when ρ 0 (x) go to zero. Note that this is not a classical case for the study of such systems and that this leads to rather tricky methods. In the second section, we recall the general set-up for the calculation of the Evans function of the linearized system, and we give the induced differential systems in Λ n (K 5 ) for n = 2, 3. Note that the field K is IR for real values of γ and K = C | for complex values of γ. This Evans function is (related to) the vectorial product of the normalized solution in Λ 2 (K 5 ) which has the greatest decay when x → +∞ and of the normalized solution in Λ 3 (K 5 ) which has the greatest decay at x → -∞. In the third section, we identify the solutions of the system in Λ 2 (K 5 ) deduced from [START_REF] Guo | On the dynamical Rayleigh-Tayor instability Arch[END_REF] for x → +∞. In this region, we use the exponential behavior of the profile to obtain the classical analytic expansion of the normalized solution of the system in Λ 2 (K 5 ). There exists ξ 0 ∈]0, 1[ (corresponding to y 0 ∈ R through ξ(y 0 ) = ξ 0 ) such that this analytic expansion is valid for ξ( x L0 ) ≥ ξ 0 , that is x ≥ L 0 y 0 . Note that, however, the expansion of this solution cannot be obtained by the techniques developed in Zumbrun et al [START_REF] Benzoni-Gavage | Alternate Evans functions and viscous shock waves[END_REF], because the Gap lemma assumptions are not fulfilled. A general feature in the calculation of the Evans function is to obtain an overlapping region of definition between the solution well behaved at +∞ and the solution well behaved at -∞. A first step to achieve this overlap is then to prove that there exists α 0 > 0 and R > 0 such that, for all

α < ζ < 1 R the solution obtained for x ≥ L 0 y 0 can be extended in [X * (α, ζ), L 0 y 0 ] where ξ( X * (α, ζ) L 0 ) = α 1 ν ζ -1 ν .
This is the aim of the fifth section. The behavior of the solution in the region [α

1 ν ζ -1 ν 0 , ξ 0 ]
when α → 0 is different from the classical analytic expansion in α for y ∈ [y 0 , +∞[ and it is the aim of Sections 3.3 and 3.4. Once this extension is done, an easy calculus is the calculus of a growth rate associated with the following stationnary solution, characterized by its density profile, for a ζ 0 such that ζ 0 < 1 R :

ρ * (x) = ρ a ξ( x L0 ), x ≥ X * (α, ζ 0 ) ρ a α 1 ν ζ -1 ν 0 . ( 14 
)
This calculus is an improvement of the discontinuity model of Piriz, Sanz and Ibanez [START_REF] Piriz | Rayleigh-Taylor instability of steadystate fronts: the discontinuity model revisited[END_REF] and it is the aim of Section 4. When the profile is not constant in the region ] -∞, X * (α, ζ 0 )] (that is for the full model), the system leads to a fuchsian problem in the region x → -∞, and we use the hypergeometric equation (see [START_REF] Lafitte | Sur la phase linéaire de l'instabilité de Rayleigh-Taylor Séminaire à l[END_REF]). The solution of the system in Λ 3 (K 5 ) deduced from [START_REF] Guo | On the dynamical Rayleigh-Tayor instability Arch[END_REF] is identified in any region of the form x L0 ∈]-∞, -t0 αβ ] for every t 0 , which means that x ∈] -∞, -t0 k ]. The results of the analysis of these solutions is summarized in Theorem 1. The study of the roots of the Evans function is the aim of Section 6 and we summarize the method here. From the relation ξ(y)|y|

1 ν → ν -1 ν when y → -∞, we deduce that -αβX * (α) → βζ0
ν > 0 when α → 0. Hence for all < 0α ≤ α 0 there exists t 0 > 0 such that the regions ] -∞, -t0 αβ ] and [ X * (α) L0 , y 0 ], where ξ(y 0 ) = ξ 0 , overlap. We then express the Evans function Ev(α, β, γ) of the system at a point of [-t0 αβ , X * (α) L0 ]. The limit when α → 0 and t 0 small exists and we write its expression in terms of r = γ β , β and t 0 > 0. As it does not depend on t 0 we study the limit when t 0 → +∞, hence proving that the only positive value of r which is admissible is r = 1. We deduce a contradiction, proving that there is no growth rate ( of positive real part) for the system. This can be stated as Theorem Let M be given. There exists α * > 0 such that, for 0

< α < α * , β ∈ [ 1 M , M ], the Evans function Ev(α, β, γ) of the system has no root for |γ| ≤ M , ℜγ ∈ [0, M ].
1 Derivation of the quasi-isobaric model

The physical approximations

The general equations are the thermal hydrodynamic equations, written in a non conservative form:

   ∂ t ρ + div(ρ u) = 0 ∂ t (ρ u) + div(ρ u ⊗ u + p) = ρ g ρ(∂ t + u.∇)h -(∂ t + u.∇)p = -div( Q + J l ). ( 15 
)
where C p and C v are the classical tehrmodynamic calorific capacities at constant pressure and at constant volume, h is the enthalpy h = C p T , the pressure and the density being given by the equation of state p = (C p -C v )ρT , Q = -k(T )∇T , J l = 0 (in our assumption the energy given to the system is 0). The quasi-isobaric approximation writes

C p -C v C v δp p << δT T .
Following L. Masse [START_REF] Masse | Etude linéaire de l'instabilité du front d'ablation en fusion par confinement inertiel These de doctorat de l'IRPHE[END_REF], this relies on the two hypotheses

M 2 << 1, M 2 F r << 1. ( 16 
)
Hence the quasi-isobaric model relies on a low Mach hypothesis. The equation of the energy rewrites

div u + 1 ρh div Q = - (∂ t + u.∇)(ρh -p) ρh .
This equation is approximated by (1) as we will see below. What follows is a formal derivation of the quasi-isobaric model under a low mach hypothesis. It is closely related to the method given by Majda [START_REF] Majda | Sethian The derivation and numerical solution of the equations for zero Mach number combustion[END_REF], Dellacherie [START_REF] Dellacherie | On a diphasic low mach number system Mathematical Modelling and Numerical Analysis[END_REF].

Adimensionnalization and low Mach expansion

Use the reference density ρ a , the reference velocity V a , and the reference pressure p s associated with the sound velocity c s such that c 2 s Cp Cv ρ a = p s . The Mach number is thus M = Va cs . Write ρ = ρ a ρ ′ , u = V a u ′ , p = p s p ′ . The system of equations [START_REF] Kull | Anisimov Ablative stabilization in the incompressible Rayleigh-Taylor instabilityPhys[END_REF] rewrites

     V -1 a ∂ t ρ ′ + div(ρ ′ u ′ ) = 0 V -1 a ∂ t (ρ ′ u ′ ) + div(ρ ′ u ′ ⊗ u ′ + γ p ′ M 2 ) = g V 2 a ρ ′ div u ′ + V -1 a 1 CpρT div Q = - (V -1 a ∂t+ u ′ .∇)p p
If we assume that all the quantities have an asymptotic expansion in M , in particular p ′ = p ′ 0 (x, z, t) + M 2 p(x, z, t, M ) we have the following relations from the momentum equations

∂ x p ′ 0 = 0, ∂ z p ′ 0 = 0 hence p ′
0 depends only on t. This is the same result as in the analysis of Dellacherie [START_REF] Dellacherie | On a diphasic low mach number system Mathematical Modelling and Numerical Analysis[END_REF]. In this model, we assume that the pressure p ′ 0 is constant, because we assume that the ground state for the equations is stationnary.

Replacing the relation p ′ (x, z, t, M ) = p ′ 0 + M 2 p in the energy equation we obtain

div u ′ + V -1 a C p -C v C p (p ′ 0 + M 2 p) div Q = -M 2 (V -1 a ∂ t + u ′ .∇)p p ′ 0 + M 2 p Finally, using Q = K 0 ( p ′ 0 +M 2 p (Cp-Cv )ρ ′ ) ν ∇ p ′ 0 +M 2 p (Cp-Cv )ρ ′ , we deduce that Q = K 0 ( p ′ 0 C p -C v ) ν+1 ∇Z(ρ) + O(M 2 )
hence the formal analysis leads to the equation

div(V -1 a u ′ + L 0 ∇Z(ρ)) = O(M 2 )
where we used

p ′ 0 
Cp-Cv = ρaTa ps deduced from the relation p = (C p -C v )ρT . The resulting equation can be written div(C p ρT u + Q) = 0, ρT = ρ a T a hence (1). Finally, in the momentum equations, rewriting p ′ M 2 = p ′ 0 M 2 + p and using p ′ 0 constant, we obtain the equations

V -1 a ∂ t (ρ ′ u ′ ) + div(ρ ′ u ′ ⊗ u ′ + pId) = g L 2 a ρ ′ .
Note finally that the relation (1) and the relation ρT = ρ a T a lead to the equation on ρ:

(∂ t + u.∇)Z(ρ) -(ν + 1)L 0 V a Z(ρ)∆Z(ρ) = 0. ( 17 
)

Study of the stationnary solution

The resulting system of equations that models our phenomenon is thus

   ∂ t ρ + div(ρ u) = 0 ∂ t (ρ u) + div(ρ u ⊗ u + pId) = ρ g div( u + L 0 V a ∇Z(ρ)) = 0. (18) 
A stationnary laminar solution satisfies

   ρ 0 (x)u 0 (x) = -ρ a V a d dx (ρ 0 (x)u 0 (x) 2 + p 0 (x)) = -ρ 0 (x)g d dx (u 0 (x) -L 0 V a Z(ρ 0 (x))) = 0.
where the first relation is a consequence of the mass conservation equation, the constant ρ 0 u 0 being identified through its limit at x → +∞. Hence u 0 (x) = -ρaVa ρ0(x) leading to the equation on ρ 0 :

- V a ρ a ρ 0 (x) + L 0 V a dρ 0 (x) dx ρ 0 (x) -ν-2 ρ ν+1 a = C 0 .
As y = x L0 this equation rewrites

dξ dy = C 0 V a ξ ν+2 + ξ ν+1 .
If C 0 = 0, the equation becomes d dy (ξ -ν ) = -ν, hence ξ -ν = D 0νy hence ξ is not defined for y > D0 ν . We cannot consider this solution.

If C 0 > 0, ξ is increasing, hence if it is majorated, it has a limit l > 0 when y → +∞, this limit l satisfies l ν+1 + C0 Va l ν+2 = 0, which is impossible. We deduce that C 0 < 0, hence the equation is

dξ dy = ξ ν+1 (1 - |C 0 | V a ξ)
hence from the resolution of the equation we deduce ξ → Va |C0| , and as ξ → 1, |C 0 | = V a and the resulting equation is [START_REF] Dellacherie | On a diphasic low mach number system Mathematical Modelling and Numerical Analysis[END_REF].

This equation has a unique constant solution ξ = 1. The low Mach approximation of S. Dellacherie [START_REF] Dellacherie | On a diphasic low mach number system Mathematical Modelling and Numerical Analysis[END_REF] for a bubble model uses this stationnary solution as base solution. When we consider a non constant solution, we have the following Lemma which gives the behavior of the solution when x goes to -∞. Introduce the function

h {ν} such that h {ν(ξ)} = ξ 0 1 η ν-[ν] (1-η) , and let n = [ν], ν+1 ν+2 = ξ * and y * = n p=0 1 ν-p ξ ν-p * -h {ν} (ξ * ).
Lemma 1 There exists t * > 0 such that for 0 ≤ t ≤ t * there exists a unique continuous function g(t), g(0) = 1 solution of

(g(t)) ν = -t ν g(t) ν (h ν (tg(t)) + y 0 ) + n p=0 t p (g(t)) p ν ν -p .
The function g has a Taylor expansion at t = 0.

1. Behavior when y → -∞ For y ≤ -ν (t * ) ν , we have the identity

ξ(y) = (- 1 νy ) 1 ν g((- 1 νy ) 1 ν ).
There exists a function r(t, ε) such that

1 ε (ξ(- t ε )) ν = 1 νt + ε 1 ν t -1-1 ν r(t, ε). (19) 
There exists t 0 > 0 and ε 0 > 0 such that r(t, ε) is bounded for

t ≥ t 0 , 0 ≤ ε ≤ ε 0 2. Auxiliary function at -∞: We introduce S(t, ε) = - +∞ t
s -1-1 ν r(s, ε)ds. This function satisfies S(t, ε)t 1 ν uniformy bounded for t ≥ t 0 and 0 ≤ ε ≤ ε 0 .

Behavior when y → +∞

We have

1 -ξ(y) = C(y)e -y , with C(y) → exp(y 0 -1 ν -.. -1 ν-n + 1 0 (1-η ν-n )dη η ν-n (1-η) ).
The proof of this Lemma uses the following relation

- n p=0 1 ν -p ξ -ν+p + h {ν} (ξ) = y -y *
The equality yields

y = - 1 νξ ν [ n p=0 ν ν -p ξ p -νξ ν (h {ν} (ξ) + y * )].
Introduce ξ = tg and t = (-1 νy )

1 ν , such that y = -1 νt ν . We obtain the equality

g ν = n p=0 ν ν -p t p g p -νt ν g ν [h {ν} (tg) + y * ].
We introduce Ψ(t, g) = g νn p=0 ν ν-p t p g pνt ν g ν [h {ν} (tg) + y 0 ]. We have Ψ(0, 1) = 0 and ∂ g Ψ(0, 1) = ν > 0 hence by the implicit function theorem, there exists a unique solution of Ψ(t, g) = 0 in the neighborhood of [START_REF] Abramovitz | Handbook of mathematical functions Dover Publications[END_REF]0).

The behavior of the solution is more classical in the neighborhood of +∞, thanks to the equality

ln(1 -ξ) = y 0 - n p=0 1 (ν -p)ξ ν-p + ξ 0 dη(1 -η ν-n ) η ν-n (1 -η) -y hence 1 -ξ(y) = e C(y) e -y
with C(y) → y 0 -

n p=0 1 (ν-p) + 1 0 dη(1-η ν-n ) η ν-n (1-η) when y → +∞.
The Lemma is proven.

The particular case ν = 2.5 In this case, explicit calculations lead to the following implicit relation

y -C = ln 1 + √ ξ 1 - √ ξ - 2 5ξ 5 2 (1 + 5 3 ξ + 5ξ 2 ).
Hence, for y = -t ε and ξ = ηε (1 + ε

2 5 η + ε 4 5 η 2 ) -εC -ε ln 1 + ε 1 5 √ η 1 -ε 1 5 √ η .
We write η(ε, t) = ( 5t 2 ) -2 5 g(t, ε). Considering the limit, for t > 0 fixed, in the previous equality we obtain lim ε→0 g(t, ε) = 1 and we construct step by step the expansion of g(t, ε) in ε.

Physical interpretation of the model

We insist finally on the fact that this system of equations is only a theoretical model: the equation satisfied by p 0 is

dp 0 dy = -ρ a V 2 a [ 1 F r ξ(y) + ξ ν-1 (1 -ξ)]
hence the pressure is not bounded. The total pressure writes

P (x) = (C p -C v )ρ a T a + M 2 p 0 (L 0 x)
which leading order term is constant and low order term in Mach is not bounded. Hence a good way of calling this model could be to call it a relative isobaric model or a relative low mach model. See Majda and Sethian [START_REF] Majda | Sethian The derivation and numerical solution of the equations for zero Mach number combustion[END_REF], Embid [START_REF] Embid | Well-posedness of the nonlinear equations for zero mach number combustion[END_REF], or P.L. Lions [START_REF]Lions Mathematical topics in fluid mechanics I (Incompressible models[END_REF] for other remarks on this modelling.

Introduce the function

M (y) such that M 2 (y) = | u(y)| 2 C 2 s (y)
, where C s (y) is the sound velocity at a point of the fluid given by C s (y) 2 = Cp Cv p(y) ρ(y) , that we still call the Mach number. We have Lemma 2 The Mach number of the stationnary solution is bounded for ν ≥ 2 and y ≤ -C.

Proof As M 2 (y) = ρ 2 a V 2 a ξ(y)C 2 s (y) = ρaV 2 a γp(y)ξ(y) = ρaV 2 a (Cp-Cv)ρaTaξ(y)+M 2 p0(y)ξ(y)M 2
which has a finite limit when y → -∞ under the condition ν > 2. Moreover, as p 0 (y) → -∞ when y → +∞, there exists a point where the pressure vanishes. There exists a constant C such that P (y) is bounded below ε 0 > 0 on ] -∞, -C] and -C is a positive constant of order ( ρaTa M 2 ) ν ν-1 . The low Mach number assumption is relevant (in particular when looking at the temperature of ablation and the density in the ablated fluid).

Linearisation of the equations

To simplify the notations of what follows, we denote by f a quantity appearing in the Euler system of equations, by f 0 its stationnary leading order term, and by f the perturbation of order 1 normalized by the physical quantity ρ a for the density, ρ a V a for the impulsion, and ρ a V 2 a for a pressure term. In the normal mode study in the vicinity of a profile depending on x, it is pertinent to linearize the variables on which acts the derivative d dx , that is ρũ, ρ(ũ) 2 + p and ρũṽ, which writes

   ρũ = -ρ a V a + ρ a V a x 1 ρ(ũ) 2 + p = p 0 (x) + ρ 0 (x)(u 0 (x)) 2 + ρ a V 2 a x 2 ρũṽ = -iρ a V 2 a x 3 (20) 
The coupling with the equations of the energy is made through the perturbation of density ρ. Introduce

τ = ũ -L 0 V a ∇(Z(ρ 0 )) -L 0 V a ∇(Z(ρ) -Z(ρ 0 )).
The thermal perturbed quantities are

x 4 = Z(ρ 0 ) -Z(ρ), x 5 = 1 V a (τ 1 + V a ). ( 21 
)
With the choice of unknowns (x 1 , x 2 , x 3 , x 4 , x 5 ) (which corresponds to the unknowns ρu, ρu 2 + p, ρuv, -Z(ρ), τ 1 ), denoting by

Z -1 the inverse function of Z, Z -1 (f ) = ρ a ((ν + 1)f ) 1 ν+1
, the non linear system ( 18) is equivalent to:

                   V -1 a ∂ t (Z -1 (Z(ρ 0 ) -x 4 )) + ρ a ∂ x x 1 + i∂ z (Z -1 (Z(ρ 0 ) -x 4 ) x3 1-x1 ) = 0 V -1 a ∂ t x 1 + ρ a ∂ x x 2 -iρ a ∂ z x 3 = -g V 2 a (Z -1 (Z(ρ 0 ) -x 4 )) + g V 2 a ρ 0 (x) V -1 a ∂ t (Z -1 (Z(ρ 0 ) -x 4 ) x3 1-x1 ) -ρ a ∂ x x 3 +ρ a ∂ z (x 2 + x 2 3 (1-x1) 2 Z -1 (Z(ρ0)-x4) ρa + ρa ρ0(x) -ρa(-x1) 2 Z -1 (Z(ρ0)-x4) ) = 0 L 0 ∂ x x 4 + ρa(1-x1) Z -1 (Z(ρ0)-x4) -ρa ρ0(x) -x 5 = 0 ∂ x x 5 + ∂ z (L 0 ∂ z x 4 + i x3 1-x1 ) = 0. ( 22 
)
In the system [START_REF] Levinson | The asymptotic nature of solutions of linear systems of differential equations Duke Math[END_REF], one needs to obtain the linearization of ρṽ and of p + ρ(ṽ) 2 in terms of

x 1 , x 2 , x 3 . It is a consequence of ṽ = iV a x 3 1 -x 1 , ρ = ρ a (ξ + ρ), p = x 2 - (1 -x 1 ) 2 ξ + ρ + 1 ξ , ũ = - V a ξ + ρ)
hence the approximations (dropping the terms of order 2 at least)

ṽ = iV a x 3 , p = p 0 + ρ a V 2 a (x 2 + 2 ξ x 1 + ρ ξ 2 ), ũ = u 0 + V a ξ 2 ρ.
Moreover, the identity

x 4 = Z(ρ a ξ) -Z(ρ a (ξ + ρ)) leads to x 4 = -Z ′ (ρ 0 )ρ a ρ + O(ρ 2 ), hence x 4 = ρ ξ ν+2 + O( ρ 2 ξ ν+4 ).
Moreover, as

τ 1 = ũ -u 0 -V a -L 0 V a ∂ x (Z(ρ a (ξ + ρ)) -Z(ρ a ξ)) one deduces x 5 = V -1 a (ũ -u 0 ) -ρ a L 0 ∂ x (Z ′ (ρ a ξ)ρ). The linearized system is                V -1 a ∂ t ρ + ∂ x x 1 + ξ∂ z (ix 3 ) = 0 V -1 a ∂ t x 1 + ∂ x x 2 -∂ z (ix 3 ) = g V 2 a ρ V -1 a ∂ t (iξx 3 ) -∂ x (ix 3 ) + ξ -1 ∂ z (2x 1 -ξ -1 ρ) = 0 ρ = -(ρ a Z ′ (ρ a ξ)) -1 x 4 L 0 ∂ x (ρ a Z ′ (ρ a ξ)ρ) + x 5 + Va ξ 2 ρ = 0 ∂ x x 5 + ∂ z (L 0 ∂ z x 4 + ix 3 ) = 0 (23)
Using the new variable y such that x = L 0 y, one deduces the relation

x 5 = ∂ y x 4 + ρ + ξ(y)x 1 ξ(y)(ξ(y) + ρ) = ∂ y x 4 + ξ ν x 4 + x 1 ξ(y) + O( x 1 ρ + ρ 2 ξ 2 ).
Write the following normal mode expression:

      x 1 x 2 ix 3 x 4 x 5       = ℜ(       x 1 x 2 ix 3 x 4 x 5       e ikz+γ √ gkt ). ( 24 
) Assume       x 1 x 2 ix 3 x 4 x 5       e ikz+γ √
gkt is a solution of the linearized system. This rewrites as a system of ordinary differential equations on

      x 1 x 2 ix 3 x 4 x 5       . If       x 1 x 2 ix 3 x 4 x 5      
is solution of this linear system of ODE, then (x 1 , x 2 , ix 3 , x 4 , x 5 ) t is solution of [START_REF] Taylor | The instability of liquid surfaces when accelerated in a direction perpendicular to their planes[END_REF]. Note that, in this case ix 3 is real.

Remark on complex growth rates Note that, if γ is complex, the solution

      x 1 x 2 ix 3 x 4 x 5      
is also complex and depend on y, k, γ. More precisely, introduce y j , z j such that x j = y j + iz j . We have thus

ℜ(       x 1 x 2 ix 3 x 4 x 5       e ikz+γ √ gkt )| t=0 = (       y 1 cos kz -z 1 sin kz y 2 cos kz -z 2 sin kz -z 3 cos kz -y 3 sin kz y 4 cos kz -z 4 sin kz y 5 cos kz -z 5 sin kz      
and y j and z j are known through the decomposition of the initial perturbation in the even part and the odd part in z.

Hence, from a complex solution (x 1 , ..., x 5 ) t (x, k, γ) of the normal mode system, one deduces a solution of the perturbation system with a known initial condition.

Normal modes system

The equations for the normal modes associated with the mass conservation and the momentum equation are

     αγρ + dx1 dy + αβξx 3 = 0 dx2 dy -αβx 3 + αγx 1 + α β ρ = 0 dx3 dy -αγξx 3 + αβ(x 2 + 2 ξ x 1 + ρ ξ 2 ) = 0. ( 25 
)
The normal mode formulation of the linearized energy equation is

dx 5 dy + iαβ(-ix 3 + iαβx 4 ) = 0.
Let X be given by

X =       x 1 x 2 x 3 x 4 x 5      
.

The linearized system on X is

dX dy + M 0 (ξ, α, β, γ)X = 0 (26) 
where the matrix M 0 is given by

M 0 (ξ, α, β, γ) =       0 0 αβξ αγξ ν+2 0 αγ 0 -αβ α β ξ ν+2 0 2αβ ξ αβ -αγξ αβξ ν 0 1 ξ 0 0 ξ ν -1 0 0 αβ -α 2 β 2 0       . ( 27 
)
From now on, we will call this system the Kull-Anisimov system. The eigenvalues of -M 0 are given by the classical result1 (see [START_REF] Kull | Theory of the Rayleigh-Taylor instability[END_REF], [START_REF] Piriz | Rayleigh-Taylor instability of steadystate fronts: the discontinuity model revisited[END_REF]), and help us to study the solution at ±∞:

Proposition 1 • The eigenvalues of -M 0 are λ 0 (ξ) = αγξ, λ a,+ = αβ, λ a,-= -αβ, λ + (ξ), λ -(ξ) (28) 
where (the square root is chosen of positive real part)

λ ± (ξ) = - ξ ν 2 ± ξ 2ν 4 + αγξ ν+1 + α 2 β 2 (29) 
The eigenvalues λ 0 , λ a,± are called the hydrodynamic modes, the eigenvalues λ ± (ξ) are called the thermal modes.

• For ℜγ ≥ 0, one has ℜλ 0 (ξ) ≥ 0, ±ℜ(λ ± (ξ)) > 0, and for ℜγ > 0 one has ℜλ 0 (1) > 0. The matrix -M 0 (ξ) has three eigenvalues of positive real part, and two eigenvalues of negative real part.

• The associated eigenvectors are given by

E 0 (ξ) = βi -2βi 2 -γξi 3 E a,+ (ξ) = -βi + (β + γξ)i 2 + βi 3 E a,-(ξ) = -βi + (β -γξ)i 2 -βi 3 (30) 
If we introduce

R0 =       γξ 2 ξ 2 β β 0 0       , T 0 =       ξ(γ 2 ξ 2 -β 2 ) β 2 -γ 2 ξ 2 + γξ 3 β -ξ 2 0 0      
the eigenvectors F ± associated with λ ± (ξ) are given by

F ± = i 4 + α R0 + α 2 λ ± -αγξ T 0 + α 3 ξ 2 (λ ± -αγξ) 2 E 0 (ξ). ( 31 
)
The proof of this Proposition is straightforward, except for the sign of the real part of λ ± (ξ). For this, we use

(λ + ξ ν 2 ) 2 = ξ 2ν 4 + α 2 β 2 + αξ(ℜγ + iℑγ) = (A + iB) 2
where A > 0 (if A < 0 one uses (A + iB) 2 = (-A -iB) 2 , and A = 0 leading to (iB) 2 = -B 2 is not possible when ℜγ ≥ 0). Hence one obtains

A 2 -B 2 = ξ 2ν 4 + α 2 β 2 + αξℜγ, A 2 + B 2 = (( ξ 2ν 4 + α 2 β 2 + αξℜγ) 2 + α 2 ξ 2 (ℑγ) 2 ) 1 2 As λ ± (ξ) = -ξ ν 2 ± (A + iB), ℜ(λ + (ξ)λ -(ξ)) = (-ξ ν 2 + A)(-ξ ν 2 -A) + B 2 , and ℜλ + (ξ)ℜλ -(ξ) = ℜ(λ + (ξ)λ -(ξ)) -B 2 = -αξ ν+1 ℜγ -α 2 β 2 -B 2 <
0, one obtains that the product ℜλ + (ξ)ℜλ -(ξ) is strictly negative, hence the real parts are of opposite sign, hence ℜλ + (ξ) = -ξ ν 2 + A. This calculus also defines uniquely in the case ℜγ > 0 the eigenvalues λ + (ξ) and λ -(ξ). Note also A 0 (α, β, γ) and B 0 (α, β, γ) the quantities such that A 0 (α, β, γ) > 0 and (A 0 (α, β, γ)

+ iB 0 (α, β, γ)) 2 = 1 4 + α 2 β 2 + αγ. Using dξ dy = ξ ν+1 (1 -ξ),
we also introduce a new system of unknowns :

Y = T X =       x 1 -αγξx 4 x 2 -α β ξx 4 x 3 -αβx 4 ξ 1-ξ αβx 4 x 5       (32) 
and the system on Y , equivalent to (26) is

               dy1 dy -αγy 1 + αβξy 3 + α(1 -ξ)(β 2 -γ 2 β )z 4 + αγξx 5 = 0 dy2 dy + α(γ -1 β )y 1 -αβy 3 + α(1 -ξ)( γ 2 β -γ β 2 -β ξ )z 4 + α ξ β x 5 = 0 dy3 dy + αβ ξ y 1 + αβy 2 -αγξy 3 + α(1 -ξ)( 1 β γ(1-ξ) ξ )z 4 + αβx 5 = 0 dz4 dy + αγz 4 αβ 1-ξ (y 1 -ξx 5 ) = 0 dx5 dy + αβy 3 = 0, namely dY dy + αB(ξ, β, γ)Y = 0 ( 33 
)
where

             Bi 1 = -γi 1 + (γ -1 β )i 2 + β ξ i 3 + β 1-ξ i 4 Bi 2 = βi 3 Bi 3 = βξi 1 -βi 2 -γξi 3 + βi 5 Bi 4 = (1 -ξ)[(β -γ 2 β )i 1 + ( γ β (γ -1 β ) -β ξ )i 2 + ( 1 β + γ 1-ξ ξ )i 3 ] + γi 4 Bi 5 = γξi 1 + ξ β i 2 + βi 3 -βξ 1-ξ i 4 .
The next section is devoted to the statement of the methods used to find the solutions at infinity for systems of ODE which coefficients depend on y, and of the general set-up to find solutions bounded at ±∞. [START_REF] Alexander | Jones A topological invariant arising in the stability analysis of travelling waves[END_REF] Evans functions and application to the Kull-Anisimov system

General framework

This section recalls results of the paper of Alexander, Gardner et Jones [START_REF] Alexander | Jones A topological invariant arising in the stability analysis of travelling waves[END_REF], as well as the methods developed by K. Zumbrun [START_REF] Benzoni-Gavage | Alternate Evans functions and viscous shock waves[END_REF], D. Serre [START_REF] Serre | Viscous and inviscid stability of multidimensional planar shock fronts[END_REF], S. Benzoni-Gavage [START_REF] Benzoni | Gavage Linear stability of propagating phase boundaries in capillary fluids[END_REF] and other authors. Its purpose is to study solutions with a prescribed behavior at infinity of an ordinary linear system of differential equations. It is used in particular to identify solutions going to 0 as y → ±∞.

In the general case, we consider the ordinary differential system

dy dt = A(t, α)y, ( 34 
)
when A is a regular matrix (for example analytic in α).

We notice that the vectorial product y 1 ∧ y 2 of two solutions y 1 and y 2 of (34) is solution of a new differential system on Λ 2 (K n ) which matrix is denoted by

A (2) , because d dt (y 1 ∧ y 2 ) = (Ay 1 ∧ y 2 + y 1 ∧ Ay 2 ).
Similarily y 1 ∧y 2 ∧...∧y k is solution of an ordinary differential system on Λ k (IR n ) whose matrix is denoted by A (k) . The matrix A (k) is given by

A (k) (e i1 ∧ e i2 ... ∧ e i k ) = k l=1 e i1 ∧ .. ∧ Ae i l ∧ ..e i k . (35) 
When the matrix A is diagonalizable, with eigenvalues λ 1 ≤ λ 2 < ... ≤ λ d then A (k) is diagonalizable and its eigenvalues are i∈I,I⊂{1,...,d},Card(I)=k

λ i .
The largest eigenvalue of A (k) is k p=1 λ d+1-p , and its smallest eigenvalue is k p=1 λ p . Under the hypothesis that λ d-k < λ d+1-k , the largest eigenvalue of A (k) is simple. Its associated eigenvector is the vectorial product of the eigenvectors associated with (e d+1-k , .., e d ).

Recall that the space Λ (d) (IR d ) is of dimension 1, hence the matrix associated with A (d) is a number, which is equal to Tr(A(t, α)). The associated differential equation is

d dt (y 1 ∧ ... ∧ y d ) = Tr(A(t, α))(y 1 ∧ ... ∧ y d ).
Hence the vectorial product of d solutions of (34) satisfies

y 1 ∧ y 2 ∧ .. ∧ y d (t, α) = y 1 ∧ y 2 ∧ .. ∧ y d (t 0 , α)exp( t t0
Tr(A(s, α))ds).

(36

)
whose solution is the Wronskian of d solutions of the system.

Notations for the Kull-Anisimov system

Remark that, when γ is complex, one has to replace IR by K = C | but nothing will change as what is important is that we study objects on a field, which can be IR when γ is real, and which is C | when γ is complex.

In the set-up of this paper, the matrix -M 0 admits three eigenvalues of positive real part, which may be associated with the solutions going to 0 when y goes to +∞, and has two eigenvalues of negative real part, which help to understand the solutions going to 0 when y goes to +∞.

It is in general hard to compute the solutions associated with an eigenvalue of the matrix -M 0 . However, we may compute the solution for the matrix M

(2) 0 associated with the smallest eigenvalue λ a,-+ λ -(ξ), and the solution for the matrix M

(3) 0 associated with the largest eigenvalue λ 0 (ξ) + λ + (ξ) + λ a,+ . We introduce from now on the base vectors in Λ 2 (K 5 ) which take into account the role of 1 1-ξ in B:

f 1 = i 1 ∧ i 4 , f 2 = i 2 ∧ i 4 , f 3 = i 3 ∧ i 4 , f 4 = i 4 ∧ i 5 g 1 = i 1 ∧ i 2 , g 2 = i 1 ∧ i 3 , g 3 = i 1 ∧ i 5 g 4 = i 2 ∧ i 3 , g 5 = i 2 ∧ i 5 , g 6 = i 3 ∧ i 5 (37) 
To these vectors are associated the following vectors in Λ 3 (K 5 ) such that

f i ∧ f ⊥ i = i 1 ∧ i 2 ∧ i 3 ∧ i 4 ∧ i 5 = g j ∧ g ⊥ j , ∀i, j. We have f ⊥ 1 = i 2 ∧ i 3 ∧ i 5 , f ⊥ 2 = -i 1 ∧ i 3 ∧ i 5 , f ⊥ 3 = i 1 ∧ i 2 ∧ i 5 , f ⊥ 4 = i 1 ∧ i 2 ∧ i 3 g ⊥ 1 = i 3 ∧ i 4 ∧ i 5 , g ⊥ 2 = -i 2 ∧ i 4 ∧ i 5 , g ⊥ 3 = -i 2 ∧ i 3 ∧ i 4 g ⊥ 4 = i 1 ∧ i 4 ∧ i 5 , g ⊥ 5 = i 1 ∧ i 3 ∧ i 4 , g ⊥ 6 = -i 1 ∧ i 2 ∧ i 4 .
(38) Note that we shall use in the sequel the eigenvector of the matrix M 

W + = F -(1) ∧ E a,-(1) = βf 1 + (γ -β)f 2 + βf 3 -βf 4 + G ( 39 
)
where G belongs to the space generated by g j , j = 1..6, and

W +,1 = β, W +,2 = γ -β, W +,3 = β, W +,4 = -β. We also introduce µ(α) = -β + γ+αβ 2 λ-(1) such that λ -(1) -αβ = -1 + αµ(α). (40) 
We notice that µ

(α) = -β -γ+αβ 2 1 2 +A0+iB0 , hence ∀α ∈ [0, α 0 ], β ∈ [β 0 , β -1 0 ], |γ| ≤ β -1 0 , ℜγ ≥ 0, |µ(α)| ≤ 2α 0 β -2 0 + 3β -1 0 . (41)
We construct a solution of the system dX (2) dy + M

(2) 0 X (2) = 0 (42) which belongs to the family of its most decreasing solutions when y goes to +∞. Similarily, we construct a solution of the system

dX (3) dy + M (3) 0 X (3) = 0 (43)
belonging to the family of its most decreasing solution when y goes to -∞.

It is useful to introduce the following transformation for the study of the solution when y → +∞:

Y (2) = T (2) X (2) ( 44 
)
where Lemma 3 Let x j i j and t j i j be two solutions of (26). Ve denote by

X (2) = v 1 f 1 +v 2 f 2 +v 3 f 3 +v 4 f 4 + 6 j=1 w j g j a solution of (33). The associated solution Y (2) = T (2) X (2) writes Y (2) = Z 1 f 1 + Z 2 f 2 + Z 3 f 3 + Z 4 f 4 + 6 j=1 M j g j with                      Z j = αβ ξ 1-ξ v j M 1 = α β ξv 1 -αγξv 2 + w 1 M 2 = αβv 1 -αγξv 3 + w 2 M 3 = αγξv 4 + w 3 M 4 = αβv 2 -α β ξv 3 + w 4 M 5 = α β ξv 4 + w 5 M 6 = αβv 4 + w 6 .
For the construction of the solutions when y → -∞, we use the following transformation of the unknowns

ξz 1 = x 1 , z 4 = αβx 4 .
(45

)
The system deduced from ( 26) is thus

             dz1 dy + ξ ν (1 -ξ)z 1 + αβx 3 + γ β ξ ν+1 z 4 = 0 dx2 dy + αγξz 1 -αβx 3 + 1 β 2 ξ ν+2 z 4 = 0 dx3 dy + 2αβz 1 + αβx 2 -αγξx 3 + ξ ν z 4 = 0 dz4 dy + αβz 1 + ξ ν z 4 -αβx 5 = 0 dx5 dy + αβx 3 -αβz 4 = 0 (46) 
Introduce t = -αβy.

We have

Lemma 4 Let Z 1 (t, α), Z 2 (t, α), Z 3 (t, α) be three solutions of (46). Write

Z (3) (t, α) = Z 1 (t, α)∧Z 2 (t, α)∧Z 3 (t, α) = 4 j=1 f j (t, α)f ⊥ j + 6 p=1 g p (t, α)g ⊥ p . ( 47 
)
The solution of (43) associated with Z (3) is

w (3) (y, α) = f 1 (-αβy, α)f ⊥ 1 + ξ(y) 4 j=2 f j (-αβy, α)f ⊥ j + 1 αβ [ 3 p=1 g p (-αβy, α)g ⊥ p + ξ 6 p=4 g p (-αβy, α)g ⊥ p ]
. The proof of these two lemmas is straightforward.

Construction of the Evans function for the Kull-Anisimov system

Recall that the Evans function is characterized by the vectorial product of five solutions of the system. As it writes X (2) ∧ w (3) , we notice that, from Lemma 3 and Lemma 4, we have

αβξX (2) ∧ w (3) = ξ(M 1 g 1 + M 2 g 2 + M 3 g 3 ) + ξ 2 (M 4 g 4 + M 5 g 5 + M 6 g 6 ) +(1 -ξ)[Z 1 (f 1 -ξ β 2 g 1 -g 2 ) + ξZ 2 (f 2 + γ β g 1 -g 4 ) +ξZ 3 (f 3 + γ β g 2 -ξ β 2 g 4 ) + ξZ 4 (f 4 -γ β g 3 -ξ β 2 g 5 -g 6 )]. ( 48 
)
Let C 0 be the limit of (1ξ(y))e y when y → +∞. To ensure uniqueness for the systems (42) and (43) and to adapt the constant in the system on Z, M , we consider the solution w

(2) + of the system (42) such that w

+ (y)e (αβ-λ-(1))y (49) converges to W + C0 αβ when y → +∞. Similarily, we consider the solution w

(3) -of the system (43) such that

w (3) -(- t αβ , α)e 2t+ γ β t t * ξ(-s αβ )ds → 2f ⊥ 1 +f ⊥ 2 +f ⊥ 3 -g ⊥ 1 -g ⊥ 2 -2g ⊥ 3 -g ⊥ 5 -g ⊥ 6 = S.
(50) Let B (2) be given by

                                                                             B (2) f 1 = (γ -1 β )f 2 + β ξ f 3 +(1 -ξ)[( γ 2 β -β ξ -γ β 2 )g 1 +( 1 β + γ 1-ξ ξ )g 2 ] B (2) f 2 = γf 2 + βf 3 +(1 -ξ)[( γ 2 β -β)g 1 +( 1 β + γ 1-ξ ξ )g 4 ] B (2) f 3 = βξf 1 -βf 2 + γ(1 -ξ)f 3 -βf 4 +(1 -ξ)[(-β + γ 2 β )g 2 +( β ξ + γ β 2 -γ 2 β )g 4 ] B (2) f 4 = -γξf 1 -ξ β f 2 -βf 3 + γf 4 +(1 -ξ)[(β -γ 2 β )g 3 +(-β ξ -γ β 2 + γ 2 β )g 5 +( 1 β + γ 1-ξ ξ )g 6 ] B (2) g 1 = -β 1-ξ f 2 -γg 1 + βg 2 -β ξ g 4 B (2) g 2 = -β 1-ξ f 3 -βg 1 -γ(1 + ξ)g 2 + βg 3 +(γ -1 β )g 4 B (2) g 3 = β 1-ξ (-ξf 1 + f 4 ) + ξ β g 1 + βg 2 -γg 3 +(γ -1 β )g 5 + β ξ g 6 B (2) g 4 = -βξg 1 -γξg 4 + βg 5 B (2) g 5 = -βξ 1-ξ f 2 -γξg 1 + βg 4 + βg 6 B (2) g 6 = -βξ 1-ξ f 3 -γξg 2 + βξg 3 -ξ β g 4 -βg 5 -γξg 6 .
(51) The system on Y (2) is dY (2) dy

+ αB (2) Y (2) = 0 ( 52 
)
The Evans function that we shall use is given by:

Definition 2 Introduce Ev(α, β, γ) = αβw (2) 
+ (y) ∧ w It is easy to derive the Proposition 2 The complex number γ is an instability growth rate according to Definition 1 if and only if

Ev(α, β, γ) = 0.
The proof of Proposition 2 is to be found in [START_REF] Alexander | Jones A topological invariant arising in the stability analysis of travelling waves[END_REF].

Reduction of the Evans function

We deduce from the systems (42) and ( 43) that w = w

(2)

+ ∧ w (3) 
-is solution of (36). From TrM 0 = -αγξ + ξ ν = -αγξ + ξ ξ + ξ 1-ξ we deduce that the derivative of w(y)e -y 0 (αγξ(y

′ )-(ξ(y ′ )) ν )dy ′ is zero, hence ξ 1 -ξ w(y)e -y 0 αγξ(y ′ )dy ′ constant.
Using (48), we obtain

Ev(α, β, γ) = [Z 1 (f 1 -ξ β 2 g 1 -g 2 ) + ξZ 2 (f 2 + γ β g 1 -g 4 ) +ξZ 3 (f 3 + γ β g 2 -ξ β 2 g 4 ) + ξZ 4 (f 4 -γ β g 3 -ξ β 2 g 5 -g 6 ) +ξ M1g1+M2g2+M3g3 1-ξ +ξ 2 M4g4+M5g5+M6g6 1-ξ ]e -y 0 αγξ(y ′ )dy ′ 1-ξ(0) ξ(0) . (53)

Statement of the principal tools for the study of the Evans function

The aim of this paper is to compute the Evans function through the calculation2 of w

+ and w

-.

Theorem 1 • For all ξ 0 > 0, there exists α 0 > 0,

β 0 > 0 such that, for α ≤ α 0 , β ∈ [β 0 , 1 β0 ], γ ∈ [0, 1 β0 
] and y such that ξ(y) ∈ [ξ 0 , 1] there exists a unique solution w

(2) + of (42) satisfying (49).

• Let

w = T (2) w (2) + (y) exp(-αµ(α)y) -(W +,1 f 1 + W +,2 f 2 + W +,3 f 3 + W +,4 f 4 ). (54)
The function w is analytic in (y, α) for ξ(y) ∈ [ξ 0 , 1[ and for α ≤ α 0 . For all α 0 > 0 and for all ξ 0 ∈]0, 1[ there exists a constant C(ξ 0 , α 0 ) such that

∀y, ξ(y) ∈]ξ 0 , 1[, | w(y)| ≤ C(ξ 0 , α 0 )(1 -ξ(y)).
• There exists α 1 ≤ α 0 and R > 0, depending only on ξ 0 , such that for ζ 0 < 1 R , w admits an analytic extension for y such that y ∈ [( α ζ0 )

1 ν , ξ 0 ]. • For α 0 > 0 and β 0 > 0 given, and for all α ≤ α 0 , β ∈ [β 0 , 1 β0 ], γ ∈ [0, 1 β0 ], there exists t 0 > 0 such that there exists a unique solution w 

-t αβ 0 (λ + + α(β + γξ(y ′ )))dy ′ ) -W 0 (t)e 2t t -1 2ν = O(α 1 ν ) (55) uniformly for t ∈ [t 0 , +∞[.
We see in this theorem the division in three regions for the computation of the solutions of (42) and of (43). The first region ξ(y) ∈ [ξ 0 , 1[ is the aim of Section 3, the second region (which extends the result of [ξ 0 , 1[) is studied in Section 3.3, and the solution in the neighborhood of -∞ is characterized in Section 5. In the next paragraph, we describe the systems that we shall use in what follows. One of the main problems is that the problem to solve is not a Cauchy problem, but we have informations at ±∞ for the solution of (26) that we want to study. Let us say a word on this system. As ξ goes to 0 when y goes to -∞, we notice that the matrix M 0 is singular when y goes to -∞. Moreover, the term α β prevents us to have a result which is uniform when β goes to 0. A possible choice to overcome this difficulty is the choice β ∈ [β 0 , 1 β0 ]. Finally, even if we remove the singularity of M 0 at y → -∞ by whatever method, another problem is induced by the behavior of ξ when y goes to -∞, because ξ goes to 0 as |y| -1 ν . This will lead to a fuchsian problem (Section 5). Note that in the theorem 1 we defined unique solutions of the problems (42) and (43) with the prescribed behavior at infinity. The behavior of the solutions induced by the theorem 1 lead to another expression of the Evans function of relation (53). Assume that y < 0 and denote by t = -αβy. We introduce the functions L p (t, α), R j (t, α) given by the equalities

g p (t, α)e 2t+ γ β t t 0 ξ(-t ′ αβ )dt ′ t -1 2ν = L p (t, α), 1 ≤ p ≤ 6 f j (t, α)e 2t+ γ β t t 0 ξ(-t ′ αβ )dt ′ t -1 2ν = R j (t, α), 1 ≤ j ≤ 4. (56) 
The corrective factor e

2t+ γ β t t 0 ξ(-t ′ αβ )dt ′ t -1 2ν
is induced by the relation (55). Similarily, we introduce z j (y, α) = Z j (y, α)e -αµ(α)y , m p (y, α) = M p (y, α)e -αµ(α)y .

(57)

We obtain the relation

Ev(α, β, γ) = e -(2+ µ(α) β )t t 1 2ν exp(- - t 0 αβ 0 αγξ(y ′ )dy ′ ) [z 1 (R 1 -ξ β 2 L 1 -L 2 ) + ξz 2 (R 2 + γ β L 1 -L 4 ) +ξz 3 (R 3 + γ β L 2 -ξ β 2 L 4 ) + ξz 4 (R 4 -γ β L 3 -ξ β 2 L 5 -L 6 ) +ξ m1L1+m2L2+m3L3 1-ξ +ξ 2 m4L4+m5L5+m6L6 1-ξ ] 1-ξ(0) ξ(0) . (58) 
In what follows we shall describe the functions R, L, and z, m.

3 Calculus of the solution in the overdense region

The aim of this section is to obtain w

+ , which is the unique solution of the system (42) under the condition (49) in the region [y 0 , +∞[ for all y 0 . The first idea would be to try to apply the Gap Lemma. However, the eigenvalue of smallest real partof -M Remark As the coefficients of the differential system behave as 1e -y when y goes to +∞, one may obtain Y (2) through a Volterra expansion as Y (2) (y) = Ae (λ-(1)-αβ)y + e -y r(y, α, β, γ) r being a remainder term. We prove that the result that we obtain is analytic in α for β, γ in a certain compact set. Once we know that, we identify w (deduced from Y (2) and obtained also through a Volterra expansion) and we express it with an expansion in powers of α, which is bounded by a geometric series for ξ(y) ∈ [ξ 0 , 1]. We then plug this developement in the differential system and we identify the terms. We check that the coefficient of α j in the expansion in α of the solution is of the form 1 ξ νj+2 X j (ξ), the radius of convergence of the series depends on ξ(y 0 ). The aim of the explicit calculus is to deduce a new region of convergence of the series using the behavior in α j ξ νj+2 X j (ξ). In this new region of convergence, we have a converging series, which coincides with the original one for ξ ∈ [ξ(y 0 , 1[. Hence it is the extension of our solution in the new region of convergence. This is an important feature, because it helps to have an overlapping region between the most decreasing solution at -∞ and the most decreasing solution at +∞. We introduce z j and m p through T (2) where µ(α) has been given in (40). We recall that z j → W +,j and m j → 0 when y → +∞. The following Theorem summarizes the results of this section. Let us introduce ξ 0 > 0.

Theorem 2

1. The functions z j and m j have a normally convergent expansion in powers of α of the form:

z 1 (y, α) = j≥1 α j ξ νj a 1,j (ξ) + W +,1 z k (y, α) = j≥1 α j ξ νj+1 a k,j (ξ) + W +,k , k = 2, 3, 4 m l (y, α) = j≥1 α j ξ νj+1 b l,j (ξ), l = 1, 2, 3 m p (y, α) = j≥1 α j ξ νj+2 b p,j (ξ), p = 4, 5, 6. We introduce δ 1 = 0, δ 2 = δ 3 = δ 4 = d 1 = d 2 = d 3 = 1, d 4 = d 5 = d 6 = 2.
Let K be a compact subset of IR * + × IR. There exists R > 0 and α 1 (ξ 0 ) such that for β, γ in K and α < α 1 (ξ 0 ) we have for ξ ∈ [ξ 0 , 1]

| d dξ ( a k,j (ξ) 
ξ νj+d k )| ≤ R j ξ ν j+d k +1 |a k,j (ξ)| ≤ R j (1 -ξ), | d dξ ( b l,j (ξ) ξ νj+δ l )| ≤ R j ξ νj+δ l +1 , |b l,j (ξ)| ≤ R j (1 -ξ).
Assume this theorem is proven. We show that, for all ξ 0 , there exists α 0 (ξ 0 ) such that, for α < α 0 (ξ 0 ) the power series is convergent for ξ ∈ [ξ 0 , 1]. Consider now α ξ ν R < 1 and α ξ ν M < 1. The power series j≥1 a p,j (ξ) α j ξ νj+δp defines an analytic function which is the analytic extension of the sum of the normally convergent series j≥1 α j ξ νj+dc a p,j (ξ) for α < α 1 (ξ 0 ) and ξ ∈ [ξ 0 , 1]. A similar result holds for the series j≥1 b l,j (ξ) α j ξ νj+δ l . The proof of item 1) of the theorem is in Annex 7. We calculate in the first subsection of the present section the first order terms of z and m. In the second subsection, we prove by recurrence the structure of the j-th term of the expansion of z and m, which is a consequence of the structure of the system. We deduce the precise estimates wich help us to extend the expansion.

A new formulation of the system

We introduce Z j , 1 ≤ j ≤ 4 and m p , 1 ≤ p ≤ 6 given by

1 αβ T (2) w (2) 
+ (y, α) = y (59) The relation w

(2)
+ e y e -αµ(α)y → F -(1) ∧ E a,-(1) = W + imply that z j → W +,j because ξ (1-ξ)e y → 1 when y → +∞. The system on Z, M writes

dZ dy + α ξ J 0 Z + αB(ξ)Z + αβ 1-ξ (L 0 + ξL 1 )M = 0 dM dy + α ξ K 0 M + αD(ξ)M + α 1-ξ ξ C(ξ)Z = 0. ( 60 
)
that is where

                                                     1 α dZ1 dy + βξZ 3 -γξZ 4 -βξM3 1-ξ = 0 1 α dZ2 dy + (γ -1 β )Z 1 + γZ 2 -βZ 3 -ξ β Z 4 -β(M1+ξM5) 1-ξ = 0 1 α dZ3 dy + β ξ Z 1 + βZ 2 + γ(1 -ξ)Z 3 -βZ 4 -β(M2+ξM6) 1-ξ = 0 1 α dZ4 dy -βZ 3 + γZ 4 + βM3 1-ξ = 0 1 α dM1 dy -γM 1 -βM 2 + ξ β M 3 + ξ(-βM 4 -γM 5 ) +(1 -ξ)[( γ 2 β -γ β 2 -β ξ )Z 1 + γ 2 -β 2 β Z 2 ] = 0 1 α dM2 dy +βM 1 -γ(1 + ξ)M 2 + βM 3 -γξM 6 +(1 -ξ)[( 1 β + γ 1-ξ ξ )Z 1 + γ 2 -β 2 β Z 3 ] = 0 1 α dM3 dy +βM 2 -γM 3 + βξM 6 + (1 -ξ) β 2 -γ 2 β Z 4 = 0 1 α dM4 dy -β ξ M 1 + (γ -1 β )M 2 -γξM 4 + βM 5 -ξ β M 6 +(1 -ξ)[Z 2 ( 1 β + γ 1-ξ ξ ) + Z 3 ( β ξ + γ β 2 -γ 2 β )] = 0 1 α dM5 dy +(γ -1 β )M 3 + βM 4 -βM 6 + (1 -ξ)Z 4 (-β ξ + γ β (γ -1 β )) = 0 1 α dM6 dy + β ξ M 3 + βM 5 -γξM 6 + (1 -ξ)Z 4 ( 1 β + γ 1-ξ ξ ) = 0. ( 61 
U t = (Z 1 , Z 2 , Z 3 , Z 4 , m 1 , m 2 , m 3 , m 4 , m 5 , m 6 ).
The system on (z, m) is deduced from (62) by replacing the matrix βK(r, ξ(y)) by βK(r, ξ(y)) + µ(α)I.

We verify that m p → 0 when y → +∞. In what follows, we describe the analytic expansion of the solution in α when α is in a neighborhood of 0.

First terms of the expansion in α

From

z j → W +,j , m j → 0 (63) we obtain z 0 j = W +,j , m 0 p = 0, that is z 0 1 = β, z 0 2 = γ -β, z 0 3 = β, z 0 4 = -β.
We replace in the system these relations to obtain the system on the term z 1 j and m 1 j . We get

                                             dz 1 1 dy + µ(0)z 0 1 + βξz 0 3 -γξz 0 4 = 0 dz 1 2 dy + µ(0)z 0 2 + (γ -1 β )z 0 1 + γz 0 2 -βz 0 3 -ξ β z 0 4 = 0 dz 1 3 dy + µ(0)z 0 3 + β ξ z 0 1 + βz 0 2 + γ(1 -ξ)z 0 3 -βz 0 4 = 0 dz 1 4 dy + µ(0)z 0 4 -βz 0 3 + γz 0 4 = 0 dm 1 1 dy + (1 -ξ)[( γ 2 β -γ β 2 -β ξ )z 0 1 + γ 2 -β 2 β z 0 2 ] = 0 dm 1 2 dy + (1 -ξ)[( 1 β + γ 1-ξ ξ )z 0 1 + γ 2 -β 2 β z 0 3 ] = 0 dm 1 3 dy + (1 -ξ) β 2 -γ 2 β z 0 4 = 0 dm 1 4 dy + (1 -ξ)[z 0 2 ( 1 β + γ 1-ξ ξ ) + z 0 3 ( β ξ + γ β 2 -γ 2 β )] = 0 dm 1 5 dy + (1 -ξ)z 0 4 (-β ξ + γ β (γ -1 β )) = 0 dm 1 6 dy + (1 -ξ)z 0 4 ( 1 β + γ 1-ξ ξ ) = 0 As µ(0) = -β -γ we deduce                                              dz 1 1 dy -β(β + γ)(1 -ξ) = 0 dz 1 2 dy + ξ -1 = 0 dz 1 3 dy + β 2 (1-ξ) ξ + γβ(1 -ξ) = 0 dz 1 4 dy = 0 dm 1 1 dy + (1 -ξ)[( γ 2 β -γ β 2 -β ξ )β + γ 2 -β 2 β (γ -β)] = 0 dm 1 2 dy + (1 -ξ)[( 1 β + γ 1-ξ ξ )β + γ 2 -β 2 β β] = 0 dm 1 3 dy -(1 -ξ) β 2 -γ 2 β β = 0 dm 1 4 dy + (1 -ξ)[(γ -β)( 1 β + γ 1-ξ ξ ) + β( β ξ + γ β 2 -γ 2 β )] = 0 dm 1 5 dy -β(1 -ξ)(-β ξ + γ β (γ -1 β )) = 0 dm 1 6 dy -β(1 -ξ)( 1 β + γ 1-ξ ξ ) = 0 We obtain          z 1 1 = β(β + γ) ξ ν -1 νξ ν z 1 2 = ξ ν -1 νξ ν z 1 3 = γβ 1-ξ ν νξ ν + β 2 ν+1 1-ξ ν+1 ξ ν+1
z 1 4 = 0 and the following system on m 1 j :

                       dm 1 1 dy + ξ ξ ν+2 [(γ 2 ξ -γ β ξ -β 2 ) + γ 2 -β 2 β (γ -β)ξ] = 0 dm 1 2 dy + ξ ξ ν+2 [ξ + γβ(1 -ξ) + (γ 2 -β 2 )ξ] = 0 dm 1 3 dy -ξ ξ ν+1 (β 2 -γ 2 ) = 0 dm 1 4 dy + ξ ξ ν+2 [(γ -β)( ξ β + γ(1 -ξ)) + (β 2 + γ β ξ -γ 2 ξ)] = 0 dm 1 5 dy -ξ ξ ν+2 (-β 2 + γξ(γ -1 β )) = 0 dm 1 6 dy -ξ ξ ν+2 (ξ + γβ(1 -ξ)) = 0
Hence we obtain the expansion of the solution for ξ ≥ ξ 0

       z 1 = β -α νξ ν (1 -ξ ν )β(β + γ) + O(α 2 ) z 2 = γ -β -α νξ ν (1 -ξ ν ) + O(α 2 ) z 3 = β + α (ν+1)ξ ν+1 β 2 (1 -ξ ν+1 ) + α νξ ν γβ(1 -ξ ν ) + O(α 2 ) z 4 = -β + O(α 2 )
The next subsection is dedicated to the precise study of the behavior of w (2) + , which depends on inverse powers of ξ and cannot be extended directly to ξ → 0.

Uniform estimates of the solution w

(2)

+ for ξ ∈ [ ζ 0 α 1 ν , 1] We write z = W +,1 f 1 + W +,2 f 2 + W +,3 f 3 + W +,4 f 4 + u. ( 64 
)
We introduce the constant matrices J 0 , L 0 and K 0 such that J = J 0 +ξB(ξ), L = L 0 + ξL 1 , K = K 0 + ξD(ξ). The system (9) yields

dz dy + αµ(α)z + α ξ Jz + αβ 1-ξ Lm = 0 dm dy + αµ(α)m + α ξ Km + α 1-ξ ξ Cz = 0 (65)
The aim of this paragraph is to find a simpler formulation for the unique solution of this system.

As the solution going to 0 at infinity of

df dy = 1-ξ ξ is f (y) = 1 ν+1 (1 -1 ξ ν+1
), direct estimates of the behavior in ξ of a coefficient u j or m j of (65) lead to a multiplying factor of the form

α ξ ν+1 .
The behavior of α j+1 u j+1 or of α j+1 m j+1 in ξ is then given by α j+1 ξ (ν+1)j for the next coefficient. However, the structure of the system allows us to obtain a lower inverse power of ξ ν in the expansion in α. For this purpose, we introduce the new unknowns a p,j , b q,j such that

           z 1 = W +,1 + N j=1 α j ξ νj a 1,j (ξ) + z N +1 1 (α, ξ) z p = W +,p + N j=1 α j ξ νj+1 a p,j (ξ) + z N +1 p (α, ξ), p = 2, 3, 4 m k = N j=1 α j ξ νj+1 b k,j (ξ) + m N +1 k (α, ξ), k = 1, 2, 3 m l = N j=1 α j ξ νj+2 b l,j (ξ) + m N +1 l (α, ξ), l = 4, 5, 6 (66) 
The previous quick analysis would suggest that a p,j+1 is of order 1 ξ when every a k,j , b l,j is bounded when ξ goes to 0. This is not the case, and the crucial equality states as follows. We introduce the diagonal matrix T such that

T                 a 1 a 2 a 3 a 4 b 1 b 2 b 3 b 4 b 5 b 6                 =                 a 1 ξ -1 a 2 ξ -1 a 3 ξ -1 a 4 ξ -1 b 1 ξ -1 b 2 ξ -1 b 3 ξ -2 b 4 ξ -2 b 5 ξ -2 b 6                 .
There exists a matrix Ĉ(ξ, β, γ), polynomial in ξ, such that

1 ξ J β 1-ξ L 1-ξ ξ C 1 ξ K T = T Ĉ. ( 67 
)
We shall make use of the following fundamental Lemma, noting that at each step we solve an equation of the form

df dy = A(ξ)(1 -ξ) ξ α where α = νj + d, d = 0, 1, 2.
Lemma 5 The unique solution going to 0 when ξ goes to 1 of

df dy = A(ξ)(1 -ξ) ξ α is f (y) = 1 ξ A(η)
η α+ν+1 dη. We have the estimate

|f (y)| ≤ 1 -ξ ξ ν+α ||A|| ∞ .
Proof From

1 ξ ν+1+α = d dξ ( 1 ν+α (1 -1 ξ ν+α )), we deduce |f (y)| ≤ ||A|| ∞ 1 ξ d dξ ( 1 ν + α (1 - 1 η ν+α ))dη = ||A|| ∞ 1 -ξ ν+α (ν + α)ξ ν+α . The equality ξ ν+α -1 ξ-1 = 1 0 (ν + α)(1 + t(ξ -1)) ν+α-1 dt implies |ξ ν+α -1| ≤ (ν + α)(1 -ξ). (68) 
hence the lemma. The indices defined in Theorem 2 will express the weight of each coordinate of the vector U defined in (62)

T 1 ξ νj a j b j = ap,j ξ νj+δ j
bq,j ξ νj+dq .

In the system (66), write

z m = W + 0 + j≥1 α j ξ νj T a j b j
we get, for the term in α j+1 :

d dy ( 1 ξ ν(j+1) T a j+1 b j+1 )+µ j W + 0 + j l=1 µ j-l ξ νl T a l b l + 1 ξ νj T C a j b j = 0.
This system of equations becomes, for j ≥ 2:

   d dy ( ap,j+1 ξ δp +ν(j+1) ) + ( j l=0 µ l a p,j-l ξ νl )+(C11aj +C12 b j 1-ξ ))p ξ δp +νj + µ j-1 W +,p = 0 d dy ( bp,j+1 ξ dp +ν(j+1) ) + ( j l=0 µ l b p,j-l )+C21(1-ξ)aj +C22bj ) ξ δp +ν(j+1) = 0 (69) 
and the equality for j = 1

   d dy ( ap,j+1 ξ δp +ν(j+1) ) + ( j l=0 µ l a p,j-l ξ νl )+(C11aj +C12 b j 1-ξ ))p ξ δp +νj + (1 -ξ)h p = 0 d dy ( bp,j+1 ξ dp +ν(j+1) ) + ( j l=0 µ l b p,j-l )+C21(1-ξ)aj +C22bj ) ξ dp+ν(j+1) + (1 -ξ)h 4+p = 0. (70) 
We have the identity C 12 (1)b ′ j (1) = h j (1) + µ j-1 W +,j , which is necessary to obtain that the source term in the equation on a p,j+1 vanishes at ξ = 1.

Behavior of the terms of the expansion

The regularity of the quantities a p,j , b q,j is given by the following proposition, which gives precise estimates on the functions provided that β and γ stay in a compact set:

Proposition 3 Assume that β, γ are in a compact set K of IR * + × C | , namely β 0 ≤ β ≤ 1 β 0 , |γ| ≤ 1 β 0 , ℜγ ≥ 0.
Assume that ξ 0 ∈]0, 1[ is given and that there exists α 0 (ξ 0 ) such that the analytic expansion of the solution of (65) is valid for α < α 0 (ξ 0 ) and ξ(y) ∈ [ξ 0 , 1[. There exists R and M depending only of α 0 and β 0 such that, forall p = 1, 2, 3, 4, forall q = 1, ..., 6, for all j ≥ 1 we have the estimates

|a p,j (ξ)| ≤ R j (1 -ξ) |b q,j (ξ)| ≤ R j (1 -ξ)
If we introduce α j = a j (0) and β j = b j (0) we have

|a j (ξ) -α j (1 -ξ)| ≤ M j ξ(1 -ξ) |b j (ξ) -β j (1 -ξ)| ≤ M j ξ(1 -ξ).
Proof of Proposition 4 Let ξ 0 ∈]0, 1[ be given. There exists α 0 (ξ 0 ) such that, for α ≤ α 0 (ξ 0 ), the solution satisfies the conclusions of the gap lemma (which means that the solution of the system (65) is analytic in the region α ≤ α 0 (ξ 0 ) for ξ ∈ [ξ 0 , 1]).

Moreover, from proposition 3, for all ξ 0 there exists R depending only on β 0 such that for ζ < 1 R the functions A p (ζ, α) and the functions B q (ζ, α) given in Proposition 4 are analytic through their expansion in

α for ζ < 1 R . Introduce α 1 (ξ 0 ) = min(α 0 (ξ 0 ), ξ ν 0 R ). For α < α 1 (ξ 0 ) and ζ < 1 R , ξ = ( α ζ ) 1 ν ≥ ξ 0 . This means that (w +,p + ( ζ α ) δp ν A p (( α ζ ) 1 ν , α), ( ζ α ) dq ν B q (( α ζ ) 1 ν , α))
is solution of the system (65) for α ≤ α 0 (ξ 0 ) when y is given by ξ(y) = ( α ζ )

1 ν by construction of the analytic solution given by the gap lemma.

By uniqueness of the solution which is analytic in α, we check that this function is also solution of the system (65) for α < α 1 (ξ 0 ) and ξ(y) ∈ [(αR) 1 ν , ξ 0 ], because the analytic expansion defining the solution in the set-up of the gap lemma can be rearranged and the remainder term is regular enough (and uniformly bounded), and because the two solutions are equal at the point ỹ such that ξ(ỹ) = 1+ξ0 2 . Hence we extended the solution for ξ in the interval [(αR)

1 ν , 1]. Proposition 4 is thus a consequence of Proposition 3.

Proof of Proposition 3

We prove by recurrence the inequalities (71), ( 72), (73) below:

| d dξ ( a p,j ξ δp+νj )| ≤ R j ξ νj+1+δp . ( 71 
) | d dξ ( b q,j ξ dq+νj )| ≤ R j ξ νj+1+dq . ( 72 
) | d dξ ( b q,j ξ dq+νj )(ξ) - d dξ ( b q,j ξ dq+νj )(1)| ≤ R j (1 -ξ) ξ νj+1+dq . (73) 
We assume that (β, γ)

∈ K ⊂ [β 0 , 1 β0 ] × {γ, |γ| ≤ β -1 0 , ℜγ ≥ 0}.
First step: From the identity

a p,j (ξ) ξ -1 = ξ δp+νj ξ 1 d dξ ( a p,j ξ δp+νj )(1 + s(ξ -1))ds
and from the same identity on b j , relying on the fact that a j and b j are 0 at ξ = 1 we deduce the inequality

|a p,j (ξ)| ≤ R j ξ δp+νj 1 ξ (1 -ξ)ds (1 + s(ξ -1)) νj+1+δp .
We use (68) to obtain

|a p,j (ξ)| ≤ R j (1 -ξ), or | a p,j (ξ) 1 -ξ | ≤ R j (74) | b q,j (ξ) 1 -ξ | ≤ R j (75) 
and of course

| db p,j dξ (1)| = | d dξ ( b p,j ξ dp+νj )(1)| ≤ R j . (76) 
We assume that (71), ( 72), (73) are true for l ≤ j. We deduce the inequalities (74), ( 75), (76).

The equation on a p,j+1 rewrites

ξ ν+1 (1 -ξ) d dξ ( ap,j+1 ξ δp +ν(j+1) ) + 1 ξ νj+δp [C 11 (ξ)a j (ξ) + j l=0 µ l ξ νl a p,j-l +(C 12 bj 1-ξ + C 12 (1)b ′ j (1))].
Recall that we have the equality

-µ(α) = β + 2 γ + αβ 2 1 + 1 + 4α(γ + αβ 2 )
hence for (β, γ) in the compact K, the function µ(α) admits a DSE at α = 0, of radius of convergence greater than θ 0 = min(1, β0 8 ). Moreover, denoting by

C 0 = ∞ l=0 |µ l |θ l 0 , we have ∞ l=0 |µ l |θ l ≤ C 0 .
Using the norm of the matrices C 11 + µ 0 I, C 12 , C 21 and C 22 + µ 0 I (with 0 ≤ ξ ≤ 1) and the inequalities (74), ( 75), (76) we obtain

| d dξ ( ap,j+1 ξ δp +ν(j+1) )| ≤ 1 ξ ν(j+1)+1+δp [ j l=1 µ l R j-l ξ νl + (3|γ| + 6β + 2|γ| 2 +3 β + |γ| β 2 )R j ] ≤ R j ξ ν(j+1)+1+δp [C 0 + 3|γ| + 6β + 2|γ| 2 +3 β + |γ| β 2 ]
as soon as

R -1 ≤ min(1, β 0 8 ). ( 77 
)
We have the same type of estimates for b q,j+1 :

| d dξ ( b q,j+1 ξ dq+ν(j+1) )| ≤ R j ξ ν(j+1)+1+dq [C 0 + 3|γ| + 6β + 2|γ| 2 + 3 β + |γ| β 2 ].
Hence there exists a constant D(β 0 ) depending only on the compact set K, such that for R satisfying (77) and assuming (71), (72), (73) at the order j, we obtain the estimates

| d dξ ( a p,j+1 ξ δp+ν(j+1) )| ≤ R j D(β 0 ) ξ ν(j+1)+1+δp | d dξ ( b q,j+1 ξ dq+ν(j+1) )| ≤ R j D(β 0 ) ξ ν(j+1)+1+dq .
The last estimate that we need is based on the difference of derivatives and we use the identity

f (ξ) ξ α (1 -ξ) + f ′ (1) = 1 ξ α 1 0 (f ′ (1) -f ′ (1 + s(ξ -1)))ds - f ′ (1) ξ α (1 -ξ α ) for f (1) = 0 and f ∈ C 1 . Assume the inequalities |f ′ (ξ) -f ′ (1)| ≤ C (1-ξ) ξ β+1 and |f ′ (1)| ≤ C. We obtain | f (ξ) ξ α (1 -ξ) + f ′ (1)| ≤ (1 -ξ)C(1 + α) ξ α+β .
We apply this estimate for f (ξ) = b p,j-l ξ dp+νl and α = ν + 1 (β = d p + ν(jl)) to obtain the inequality

| b p,j-l (1 -ξ)ξ ν(j-l)+dp+ν+1 +b ′ p,j-l (1)| ≤ 1 ξ ν+1 R j-l (1 -ξ ν(j-l)+dp ) (ν(j -l) + d p )ξ ν(j-l)+dp +R j-l (ν+1) 1 -ξ ξ ν+1 .
We thus deduce the estimate

| d dξ ( b q,j+1 ξ dq+ν(j+1) )(ξ) - d dξ ( b q,j+1 ξ dq+ν(j+1) )(1)| ≤ R j D(β 0 )(1 -ξ) ξ ν(j+1)+1+dq .
We use the estimate for j = 1, for which there exists a constant D 1 (β 0 ) such that

| d dξ ( a p,1 ξ δp+ν )| ≤ D 1 (β 0 ) ξ ν+1+δp , | d dξ ( b q,1 ξ dq+ν )| ≤ D 1 (β 0 ) ξ ν+1+dq | d dξ ( b q,1 ξ dq+ν )(ξ) - d dξ ( b q,1 ξ dq+ν )(1)| ≤ D 1 (β 0 )(1 -ξ) ξ ν+1+dq .
It is then enough to consider

R = max(1, 8 β 0 , D(β 0 ), D 1 (β 0 ))
to obtain the inequalities (71), ( 72), (73) for all j. We write each term a p,j = α p,j + ξc p,j , b q,j = β q,j + ξc q,j , and we have similar inequalities for the terms c p,j and d q,j , with a coefficient M depending only on the compact set K. To obtain the estimate of the rest (versus the leading order term), we denote by c j and d j the functions such that a j,p (ξ) = (1ξ)(α j,p + ξc j,p (ξ)), b q,j (ξ) = (1ξ)(β j,q + ξd q,j (ξ)). We prove in a similar fashion the inequalities

| d dξ ( c p,j (ξ) ξ δp+νj )| ≤ M j ξ νj+δp (78) | d dξ ( d j,q (ξ) ξ dq )| ≤ M j ξ νj+dq (79) | d dξ ( d j,q (ξ) ξ dq )(ξ) + d ′ j,q (1)| ≤ M j (1 -ξ) ξ νj+dq . ( 80 
)
This ends the proof of Proposition 3.

The simplest discontinuity model

Before studying the coupling between the hypergeometric region and the overdense region, we shall in this section study a simple model where the profile of density is

ξ(y) = ξ(y 0 ), y ∈] -∞, y 0 ] ξ(y), y ∈]y 0 , +∞[.
It is a slightly better model than the discontinuity model (see [START_REF] Piriz | Rayleigh-Taylor instability of steadystate fronts: the discontinuity model revisited[END_REF]) for two reasons: i) we assume that the density profile is continuous, ii) it corresponds to a simple form of the energy equation. The stationary associated quantities ρ * and u * are solution of:

   ρ * (x)u * (x) = -ρ a V a d dx (ρ * (x)u * (x) 2 + p * (x)) = -ρ * (x)g d dx (u 0 (x) -L 0 V a d dx (Z(ρ * (x)))) = -V a Z ′ (ρ a ζ 0 )ρ a ξ ′ (y 0 )δ x-y0L0 coming from    ∂ t ρ + div(ρ u) = 0 ∂ t (ρ u) + div(ρ u ⊗ u + pId) = ρ g div( u + L 0 V a ∇Z(ρ)) = V a 1-ξ0 ξ0 δ x-y0L0 . (81) 
It is easy to see that the stationary solution is thus given by

u 0 (y) = -Va ξ0 , y ∈] -∞, y 0 ] -Va ξ(y) , y ∈]y 0 , +∞[ p 0 (y) = - ρaV 2 a ξ0 -ρ a gξ 0 L 0 (y -y 0 ), y ∈] -∞, y 0 ] - ρaV 2 a ξ(y) -ρ a g y y0 ξ(s)ds, y ∈ [y 0 , +∞[ We have

Solution in the hypergeometric region

In this section, we identify the solution when y goes to -∞. We show a result for t ≤ t 0 finite. As the coefficients behave as |y| -1 ν , we call this problem a Fuchsian problem, and, as the leading term of the equation leads to a hypergeometrical equation, we call this the hypergeometrical set-up. We introduce

η(t) = ξ(-t αβ ) α 1 ν , p(t) = α 1 ν γ β η(t). (82) 
Let

h(p) = p k=1 ν ν -k ( β γ )) k p k-1 -ν( β γ ) ν p ν-1 [h {ν} ( βp γ ) + y 0 ]. ( 83 
)
Note that h is a complex valued function because p is complex, but as pγ -1 and γh(p) are real, ph(p) is also real. From lemma 1, we deduce

(η(t)) ν β = 1 νt (1 + ph(p)). (84) 
The system of equations on

Z =       z 1 x 2 x 3 z 4 x 5       obtained from (46) is              -dz1 dt + η ν β (1 -α 1 ν η)z 1 + x 3 + α 1 ν γ β 2 η ν+1 z 4 = 0 -dx2 dt + pz 1 -x 3 + α 2 ν 1 β 2 η ν+2 z 4 = 0 -dx3 dt + 2z 1 + x 2 -px 3 + η ν β z 4 = 0 -dz4 dt + z 1 + η ν β z 4 -x 5 = 0 -dx5 dt + x 3 -z 4 = 0. ( 85 
)
Introduce the matrices

M 0 (p) =       0 0 1 0 0 p 0 -1 0 0 2 1 -p 0 0 1 0 0 0 -1 0 0 1 -1 0       , N Z =       z 1 0 z 4 z 4 0       .
Using the equalities

η ν β = 1 νt + α 1 ν (νt) 1+ 1 ν γ β β 1 ν h(p)(1 + ph(p)) 1 ν α 1 ν η ν+1 β = α 1 ν (νt) 1+ 1 ν (1 + ph(p)) 1+ 1 ν β 1 ν -1 α 2 ν 1 β 2 η ν+2 = p γ α 1 ν η ν+1 β
there exists a regular matrix M(p, β, γ) such that (85) rewrites

- dZ dt + M 0 (p)Z + 1 νt N Z + α 1 ν (νt) 1+ 1 ν M(p, β, γ)Z = 0.
It is then natural to introduce We associate with the system (85) the model system

d Z dt = M 0 (0) Z + 1 νt N Z (86)
and the model system of the vectorial product of three solutions of (86)

d Ẑ dt = M 0 (0) (3) Ẑ + 1 νt N (3) Ẑ. ( 87 
)
We need the following Lemma 6 The matrix M 0 (p) has three eigenvalues -p, 1, -1. The eigenvector asociated with λ 0 (p) = -p is e 0 (p) = (1, -2, -p, 0, 1). The eigenvectors associated with the eigenvalue of multiplicity 2 λ -= -1 are e -(p) = (1, -1p, -1, 0, 1) and f -= 1 2 (0, 0, 0, 1, 1). The eigenvectors associated with the eigenvalue of multiplicity 2 λ + = 1 are e + (p) = (1, p-1, 1, 0, 1) and f + = 1 2 (0, 0, 0, 1, -1).

We notice that

N e 0 (p) = N e + (p) = N e -(p) = i 1 = e + (p) + e -(p) -e 0 (p) + f + -f - and N f + = N f -= 1 2 (i 3 + i 4 ) = 1 4 (e -(p) -e + (p)) + 1 2 (f + + f -).
We also introduce the function

ψ 0 (t) = γ β α 1 ν t t0 η(s)ds. (88) 
which is the integral of p and corresponds to the eigenvalue of largest real part of -M

0 . This eigenvalue is associated with the eigenvector P (p) such that e 0 (p) ∧ e -(p) ∧ f -= 1-p 2 P (p) and we find

P (p) = (2 + p)f ⊥ 1 + f ⊥ 2 + f ⊥ 3 -g ⊥ 1 -g ⊥ 2 -(2 + p)g ⊥ 3 -g ⊥ 5 -g ⊥ 6 . (89) 
The aim of this section is to prove the Theorem 3 1) There exists a unique solution U 0 (t, α) of the system (85) and t 0 > 0 such that there exists C > 0 such that, for all t ≥ t 0 we have

|U 0 (t, α)e 2t+ψ0(t,α) | ≤ Ct 1 2ν . lim t→+∞ U 0 (t, α)e 2t+ψ0(t,α) t -1 2ν = P (0), (90) 
Of course, we notice that

M (1) jk (U k ) -n jk U k = (M jk -N jk )U k + 1 νt M jm T (m) k (U k ) = O(α 1 ν t -1 ν ) (102)
hence its contribution is a regularizing operator. The scheme of the proof is the same for all the terms of the vector U . At each stage, we obtain the system

1 ≤ j ≤ m -e dU j dt = λ j (p)U j + 1 νt m-e k=1 M (e) jk (U k ) (103) 
where

M (e) jk (U k ) = M (e-1) jk (U k ) + 1 νt M (e-1) jm-e+1 T (m-e+1) k (U k ). ( 104 
)
The operator T (m-e) of the following step is given by the solution T (m-e) (f ) going to 0 at +∞ of the equation

dU me dt = λ m-e (p)U m-e (t) + 1 νt M (e-1) m-em-e (U m-e )(t) -f (t)
and the operators T

(m-e) k , 1 ≤ k ≤ m -e -1 are given by T (m-e) k (U k ) = -νtT (m-e) [ 1 νt M (e) m-ek (U k )]. (105) 
The construction of the formal solution is done. We end up with the remaining equation on U 1 , to which we cannot apply the previous method because the associated eigenvalue is 0. This system writes

d dt (t -N 11 ν U 1 (t)) = 1 νt t -N 11 ν (M (m-1) 11 -N 11 )U 1 . (106) 
We deduce that there exists a constant A such that

U 1 (t) -At N 11 ν = -t N 11 ν +∞ t 1 νs s -N 11 ν (M (m-1) 11 -N 11 )(U 1 )(s)ds. ( 107 
)

Proof of the convergence of the previous Volterra series

The resolution ends up with the construction of the solution of (107). For this construction, it is necessary to study the regularity of all the operators T (m-e) (and of all the induced operators T jk ). For a given function ψ, such that ψ(t) is increasing, going to +∞ at +∞, we introduce

Λ K ψ (t 0 ) = {f ∈ C ∞ ([t 0 , +∞[), ∃C, |f (t)| ≤ Ct K e ψ(t) }.
We say that ψ ∈ L ε0 m-e (t 0 ) if we have

ψ ∈ C ∞ ([t 0 , +∞[), ψ ′ (t)-ℜφ ′ m-e (t) ≤ -ε 0 < 0, t ≥ t 0 , t 2 |ψ ′′ (t)| bounded on [t 0 , +∞[.
These notations being introduced, we consider the operator

K (1) (f ) = -t N 11 ν +∞ t 1 νs s -N 11 ν (M (m-1) 11 -N 11 )(f )(s)ds.
The equation that we intend to solve is

U 1 -At N 11 ν = t N 11 ν K (1) (U 1 ). We notice that 1 νs s -N 11 ν (M (m-1) 11 -N 11 )(f ) ∈ L 1 ([t 0 , +∞[) as soon as f ∈ Λ 0 N 11 ν
(t 0 ). Moreover, for t 0 0 given, there exists a constant C 0 such that

| 1 νs s -N 11 ν (M (m-1) 11 -N 11 )(f ) ≤ C 0 α 1 ν s -1-1 ν max l∈[s,+∞[ (|f (l)l -N 11 ν ).
Hence we get the inequality

|A -1 K (1) (At N 11 
ν )| = |K (1) (t N 11 
ν )| ≤ α 1 ν C 0 +∞ t s -1-1 ν ds = C 0 να 1 ν t -1 ν .
Assume α ≤ α 0 given. There exists a value of t 0 , given by t 0 = max(t 0 , (2C 0 ν) ν α 0 ) such that for t ≥ t 0 we have

|K (1) (t N 11 
ν )| ≤ 1 2 t N 11 ν .
Hence, by induction, we get that

|(K (1) ) (l) (t N 11 
ν )| ≤ 1 2 l t N 11 ν , t ≥ t 0 (108) 
from which we deduce the convergence of the series (K

(1) ) (l) (t N 11 
ν ) and its bound by 2t N 11 ν . More precisely, we have, for all α ≤ α 0

|(K (1) ) (l) (t N 11 ν )| ≤ 1 2 l ( α α 0 ) l t N 11 ν , t ≥ t 0 (109) 
hence the behavior when α → 0.

The instability growth rate

This section relies on the relation (58) that we obtained in the third section. The scope of the present section is to derive a limit, when α → 0 of the Evans function Ev(α, β, γ). As the right hand side of (58) depends on t, and the left hand side of (58) is independant of t, we will study, for a given (suitable) t > 0, the limit when α → 0 of the right hand side of (58). This corresponds to the calculus of the limit when α → 0 of the functions z 1 , ξ(y)z p (p = 2, 3, 4), ξ(y)m l , (l = 1, 2, 3), ξ 2 (y)m l , l = 4, 5, 6 and R j (t, α), L k (t, α) for y = -t αβ . Recall that we restrict ourselves to the regime α → 0, β, γ in a fixed compact set. In all what follows, we introduce r = γ β .

(110)

Calculus in the overlapping region

Introduce t * > 0 given such that

νt * β < 1 2R . We introduce ζ(t, α) = ζ(ξ(-t αβ ), α) = α (ζ(ξ(-t αβ )) ν . We have ξ(- t αβ ) = α 1 ν (ζ(t, α)) -1 ν .
The equation on ξ gives ζ + O(α

1 ν ) = νt β , hence ζ(t, 0) = νt β . (111) 
Hence we get (and it is the same for all other quantities)

lim α→0 z 1 (- t αβ , α) = ζ(t, 0) Ā1 (ζ(t, 0), 0).
We have, moreover exp(-

- t 0 αβ 0 αγξ(y ′ )dy ′ ) = exp(α 1 ν t0 0 γ β (ζ(s, α)) 1 ν ds)
hence the limit when α → 0 of this quantity is 1. For β 0 given and ξ 0 = 1 2 , we identify α 0 such that, for α ≤ α 0 and ζ < 1 R , the asymptotic series defining z j , m p converges to an analytic function. As The coefficients A p,j , B q,j are the coefficients in the expansion in ε(ξ(y)) -ν of H, where ξ(y) -ν = νy. The vector

ζ(t * , 0) = νt * β , if one chooses 0 < νt * β < 1 2R , that is 0 < t * < β 2νR , there exists α 1 > 0 such that, for α ≤ α 1 , ζ(t * , α) ≤ 3 4R < 1 R . For t ∈ [ t *
(ζ Ā0 p , ζ B0 q ) is equal to H( βζ νε ) for ζ = ξ(y) -ν .
We need to obtain the relation with the asymptotic expansion in αβ of Section 3. For this purpose, we introduce t = εy. We consider the following function, which will be tentatively a solution of (118)

       Z 1 (y) = ∞ j=1 A ′
1,j ε j (ξ(y)) -νj Z p (y) = j≥1 A ′ p,j ε j (ξ(y)) -νj-1 , p = 2, 3, 4 M q (y) = j≥1 B ′ q,j ε j (ξ(y)) -νj-1 , q = 1, 2, 3 M l (y) = j≥1 B ′ l,j ε j (ξ(y)) -νj-2 , l = 4, 5, 6.

(120)

Consider for example the first equation of (120). It rewrites With these two relations, we obtain the recurrence relation ν(j + 1)A ′ 1,j+1 = (A ′ 3,j -rA ′ 4,j -B ′ 3,j ), j ≥ 1.

The same method applies to all the equations. If we impose the initial conditions:

A ′ 1,1 = -r+1 ν , A ′ 2,1 = A ′ 4,1 = 0, A ′ 3,1 = 1 ν+1 , B ′ 1,1 = -1 ν+1 , B ′ 2,1 = r ν+1 , B ′ 3,1 = B ′ 4,1 = B ′ 5,1 = B ′ 6,1 = 0 (123)
which corresponds to the source term F 0 (y) given by (119), we have the identity A p,j = A ′ p,j , B q,j = B ′ q,j , ∀j ≥ 1, ∀p = 1, 2, 3, 4, ∀q = 1, 2, 3, 4, 5, 6

where (A ′ p,j , B ′ q,j ) are the coefficients of the expansion in ε of the solution of (118) with the source term (119) whereas (A p,j , B q,j ) are the coefficients of the expansion in ζ of ( Ā0 p , B0 q ). Lemma 7 is proven.

Reduction of the problem Let us study the matrix B 0 . Its eigenvalues are 0, 1, and -1 and that associated eigenvectors are e 0 = (ξ, -2, 0, 0, 1), e 1 = (1r, -1 ξ , 0, 1, 0), F 1 = (ξ, -1, 1, 0, 1), e -1 = (r + 1, -1 ξ , 0, -1, 0), F -1 = (ξ, -1, -1, 0, 1).

The inverse matrix is given by

           2i 1 = e 1 + e -1 + 1 ξ (F 1 + F -1 -2e 0 ) 2i 2 = F 1 + F -1 -2e 0 2i 3 = F 1 -F -1
2i 4 = (1 + r)e 1 + (r -1)e -1 + r ξ (F 1 + F -1 -2e 0 ) 2i 5 = F 1 + F -1ξ(e 1 + e -1 ).

We rewrite a solution V of dV dy = εB 0 V as

V = V 0 e 0 + V 1 e 1 + W 1 F 1 + V -1 e -1 + W -1 F -1 .
We obtain 

dV
-2 (V 1 +V -1 )i 2 ,
hence the associated system is

               dV0 dy = ε dξ dy [ξ -1 (V 0 + W 1 + W -1 ) + ξ -2 (V 1 + V -1 )] dV1 dy = εV 1 -ε 1 2 dξ dy (V 0 + W 1 + W -1 ) dW1 dy = εW 1 -ε 1 2 dξ dy [ξ -1 (V 0 + W 1 + W -1 ) + ξ -2 (V 1 + V -1 )] dV-1 dy = -εV -1 -ε 1 2 dξ dy (V 0 + W 1 + W -1 )
dW-1 dy

= -εW -1 -ε 1 2 dξ dy [ξ -1 (V 0 + W 1 + W -1 ) + ξ -2 (V 1 + V -1 )]. (124) 
As we seek positive values of r, the factor e (r+1)t * goes to infinity when t * → +∞, hence this limit is necessarily 0. The two possible values of r are thus r = 1 and r = -1 ν+1 , hence r = 1.

We also check that, for r = 1, the projection of F 0 (y) on the space associated with the eigenvalue +1 of B

(2) 0 , space generated by e 1 ∧ e 0 and F 1 ∧ e 0 , is ( 1 ν ξ -ν-1 + 1 2(ν+1) ξ -ν-2 )e 1 ∧ e 0 . We have the relations e 1 ∧ e 0 ∧ S = 0, F 1 ∧ e 0 ∧ S = 0 because e 1 ∧e 0 = -ξf 1 +2f 2 +f 4 +g 1 -1 ξ g 5 and F 1 ∧e 0 = -ξg 1 -ξg 2 +2g 4 +g 5 +g 6 . The leading order term of the projection on this space is 0. We get e 1 ∧e -1 ∧S = -4i 1 ∧ i 2 ∧ i 3 ∧ i 4 ∧ i 5 because e 1 ∧ e -1 = -2f 1 + 2 ξ f 2 + 2 ξ g 1 , and similarily e 1 ∧ F -1 ∧ S = 0, e -1 ∧ F 1 ∧ S = -2i 1 ∧ i 2 ∧ i 3 ∧ i 4 ∧ i 5 , F 1 ∧ F -1 ∧ S = 0. As the vector F 0 (y) has the following projection on the eigenspace associated with the eigenvalue 0 P r(F 0 (y)) = -1 2ν ξ -ν (2e

1 ∧ e -1 + 1 ξ e -1 ∧ F 1 -1 ξ e 1 ∧ F -1 ) + 1 ν+1 (e -1 ∧ F 1 + 1 ξ e -1 ∧ F 1 + (1 -1 ξ )e 1 ∧ F -1 ) (127) 
the associated leading order term gives a non-zero contribution, hence a contradiction. The main theorem is proven.

7 Annex: Volterra type expansions of solutions of differential systems

We consider a solution of (33) associated with the growth rate λ -(1)αβ, which is the eigenvalue of smallest real part -M

(2) 0 (+∞). We recall that there exists a regular function µ(α) such that λ -(1)αβ = -1 + αµ(α).

(128)

We will prove that there exists a unique solution w

+ of (33) satisfying (49). In order to prove the existence and uniqueness of w As U d is bounded, the limit of U d e -λ d y is zero, otherwise U d would not be bounded. Integrating from y to y 0 and letting y 0 go to infinity, we have 

  associated with the eigenvalue -αβ + λ -(1):

-

  (y)e -y 0 (αγξ(y ′ )-(ξ(y ′ )) ν )dy ′ . This function, independant of y, is called the Evans function of the problem.

-

  (y, α) of (43) for -αβy ∈ [t 0 , +∞[ satisfying (50). Moreover we have w

  is λ min = λ -(1)αβ, and the next eigenvalue is λ * = λ -(1) + αγ. As λ *λ min = α(γ + β), the difference between two eigenvalues of M

  is not uniformly bounded below for α ∈]0, α 0 [. Hence the hypotheseses of the Gap lemma theorem are not fulfilled.

  w

z j f j + 6 p=1m

 6 p g p )e αµ(α)y

4 j=1Z j f j + 6 p=1M 4 j=1 z j f j + 6 p=1m

 4646 p g p = e αµ(α)y ( p g p ).

  -rA ′ 4,j -B ′ 3,j )ξ -νj ε j ) hence dξ dy j=0 ν(j+1)A ′ 1,j+1 ε j+1 (ξ(y)) -ν(j+1)-1 = j≥1 ε j+1 (ξ(y)) -νj (A ′ 3,j -rA ′ 4,j -B ′ 3,j ).If we want to obtain (A ′ p,j , B ′ q,j ) independant on ξ(y), it is a natural choice to writedξ dy = ξ ν+1(121)and, up to a change of origin in y, we obtainξ(y) -ν = νy. (122)Even with this equation, there will still be an additional term in the relation, related with j = 0. The resulting equation on Z 1 (y) given in (120) isd dy [Z 1 (y) -εA ′ 1,1 (ξ(y)) -ν ] = ξZ 3 -rξZ 4 -ξM 3 .

Proposition 6 0 = λ 1 < 1 k=1( 1 1 k=1e

 61111 Let U be the solution going to (1, 0, ..., 0) at +∞ of the model system:dU j dy = λ j U j + (1ξ(y)) d k=1 N jk (ξ(y))U k (y), 1 ≤ j ≤ dwhere the properties of the complex numbers λ j and of the functions N jk are the following|N jk (ξ)| ≤ M 0 , ξ ≥ ξ 0 ℜλ 2 ... ≤ ℜλ d-1 , N dd = 0. The function U is given by U (y) = (1, 0, ...., 0) + (1ξ(y))w(y).Note that, in the hypothesis, N dd = 0 is only there for simplicity purposes and is obtained by considering in the last equation (in which we should have (1-ξ)N dd = ξ ′ N dd ξ ν+1 ) the conjugation by the exponential of the primitive of N dd ξ ν+1 .Construction by recurrence of the Volterra operators We prove Proposition 6 by recurrence. Consider the last equation (line d of the previous system).We havedU d dy = λ d U d + d-ξ(y))N dk U j (y).This equation is equivalent to d dy (U d e -λ d y ) = d--λ d y (1ξ(y))N dk U j (y).

( 1

 1 s) -1)N dk (ξ(s))e -λ d s U j (s)ds,dj (U ) = (1ξ(y)) -1 e λ d y +∞ y (ξ(s) -1)N dj (ξ(s))e -λ d s U (s)ds(129)we obtainU d (y) = (1ξ(y)) U such that, for ξ ≥ ξ 0 (and y 0 such that ξ 0 = ξ(y 0 )) we have the estimate ∃N, C, ∀y ≥ y 0 , |U (y)| ≤ C(1ξ(y)) N . (131)We obtain easily the estimate (thanks to λ d-p ≥ 0) ∀y ≥ y 0 , |K ξ(y)) N .

A change of unknowns (that is a general X = R(y)X) lead to a different set of eigenvalues, however if the matrix R(y) depend only on ξ(y) and is a C 1 function of ξ ∈ [0, 1] then the limit of the eigenvalues when y → ±∞ is the same as the limit of the eigenvalues described above.

Note that the techniques of differential equations allow us only to compute the solution of a differential system with non constant coefficients only when this solution is associated with the largest eigenvalue of the matrix in the neighborhood of -∞ and with the smallest eigenvalue of the matrix in the neighborhood of +∞.

ν t -1 ν R mm )U mf

From this proposition we deduce the Proposition 4 Under the same hypothesis as the proposition 3, i) there exists α 1 (ξ 0 ) such that, for α < α 1 (ξ 0 ), the functions

the functions u p (y, α) = W +,p + ξ -δp A p ( α (ξ(y)) ν , α), v q (y, α) = ξ -dq B q ( α (ξ(y)) ν , α) are solution of the system (65) and extend the gap lemma solution.

3) Introduce

The functions Ãp and Bq are analytic for ζ < 1 M , and we have the inequalities

We deduce, for α ≤ α 1 (ξ 0 ) and ζ ≤ 1 M , the equalities

Proposition 5 The linear growth rate associated with the system (81) in the case y 0 fixed independant of α in the regime α → 0 and β, γ fixed is

We recall that for all ξ c : E0(ξc)∧Ea,+(ξc)∧F+(ξc) γξc-β

Note that the leading order term in α comes from the coefficient of i 4 and of T 0 . As the leading order term in α of the solution in the region [y 0 , +∞[ in the case where y 0 is independant of α is given by the leading order term of

, we find

= W + as leading order term. The Evans function is

The theorem 5 is proven.

Remark This result is somewhat surprising: in fact when ξ 0 → 0 the limit of the growth rate disappears because it becomes negative: in the previous equality ξ 0 must verify

). We may thus conclude that this model is not relevant according to the physical results.

the vector P (0) being given by (89). Note that this condition is equivalent to (50).

2) There exists a unique solution of the system (87) such that

when t → +∞.

3) For all t 0 > 0, there exists C(t 0 ) > 0 such that for t ≥ t 0 the estimate

In a first paragraph, me make a reduction of the system to simplify its resolution.

Reduction of the system

The system (85) rewrites

where M 0 (p) are analytic functions of p for p ≤ p 0 and N is a constant matrix.

The system satisfied by the vectorial product of three solutions of (85) is

to which we associate its model system (87).

Introduce the eigenvalue of smallest real part of M 0 (p) (3) , (which is λ 1 (p) = -2p). Consider the matrix Λ(p) = M 0 (p) (3) λ 1 (p)I as well as the unknown Y * (t) = Y (3) e -t t 0 λ1(p(s))ds . We obtain the system

associated with the model system

The aim of what follows is to identify the family of solutions of (GS) such that Y * (t) ≃ ct M E 0 when t → +∞, where M = N11 ν and E 0 is the eigenvector associated with λ 1 (p).

Remark The result that we obtain here depends heavily on the fact that the non zero eigenvalues of Λ(p) denoted by λ i (p) satisfy

The first transformation uses Λ(p) = (P (p)) -1 D(p)P (p), where P (p) is a transfer matrix and D(p) is the matrix of eigenvalues of λ(p), such that D ii (p) = λ i (p), λ i (p) ≤ λ i+1 (p) and all the eigenvalues are positive. We introduce U (t, α) = P (p)Y * . The system is

and using the relation

we end-up with the system

where the matrix M writes

, with the following estimate on R:

On each eigenspace of D(p) we assume that N is diagonal. We denote by E i the eigenspaces of D(p), 1 ≤ i ≤ m, E 1 and E m being of dimension 1. The unknowns U are written

The aim of the next paragraph is to construct iteratively the solution of the system (96). We use the methods of Levinson [18] and Hartmann [START_REF] Ph | Ordinary Differential Equations Classics in Applied Mathematics[END_REF].

Formal solution of the system

It is necessary to begin with the computation of U m , solution of

We consider the differential equation

As we want to obtain a bounded solution of (96), if we introduce φ m (t) = t t0 λ m (p(s))ds, this differential equation becomes

If the function U m (t)e -φm(t) t -Nmm ν goes to a non zero finite limit when t goes to +∞, then U m (t) goes to infinity when t goes to infinity under the sufficient condition ℜφm(t) ln t → +∞ for t → +∞, which is contradictory with the fact that we seek a bounded solution. Hence it is necessary (but not sufficient) that U m (t)e -φm(t) t -Nmm ν goes to 0 when t goes to infinity. The system rewrites

We introduce the operator

Hence the equation on U m leads to the necessary relation

with

We replace this equality in the system satisfied by (U j ) 1≤j≤m . We obtain

where M

(1)

3. Moreover, for t ≥ t * 2 there exists C( t * 2 ) such that (91) holds. Hence for t ∈ [ t * 2 , t * ] we have the limit of the functions R p and L k when α → 0. We are now ready to prove our main Theorem:

Theorem 4 Let M be given. There exists α * > 0 such that, for 0 < α < α * , β ∈ [ 1 M , M ] and |γ| ≤ M, ℜγ ≥ 0, the Evans function of the system Ev(α, β, γ) does not vanish.

Proof Recall that we proved that

The value of Ev 0 (β, γ) (which is expressed through (112), (114)) does not depend on t * . Letting the leading order term of Ev 0 (β, γ) go to 0 when t * → +∞ (which gives, of course, the value of Ev 0 (β, γ) because it does not depend on t * ) yields r = 1 as only possible positive solution for Ev(0, β, γ) = 0 (see (126)). However, for r = 1 the remaining leading order term in t * of Ev(0, β, γ) is not zero (see (127)), hence a contradiction. The system of Kull-Anisimov has no bounded complex growth rate γ when F r = O( 1 ε ) in the limit ε → 0. To be more precise, recall that

We proved in Section 3 that the solution w

+ of (42) which behaves as e (λ-(1)-αβ)y when y → +∞, satisfying the condition (49) is given through the relation (59)

+ , where (z j , m p ) are given by Proposition 4 through

Equality (58) for a t such that ζ(t, α) < 1 R , along with ξ = α

We proved in Section 5 that the unique solution U 0 (t, α) of the system (85) satisfying the uniqueness condition (90)is

g q (t, α)g ⊥ q and the functions R j and L p given by (56) satisfy the estimates

Note that the limit of the quantities R 0 j (as well as R j when t → +∞) is known. We now consider the equality on Ev(α, β, γ) when α → 0. The right hand side is independant of t because the left hand side is independant of t. Hence its value can be considered at t * . Once t * is fixed, we get the limit by taking α = 0, hence, using µ(0) β = -r -1

Ev(0, β, γ) = e (r-1)t * t

where the relations are written at t = t * and at ζ = ζ(t * , 0) = νt * β . Let A p,j and B q,j being given through

By keeping only the leading order term in ξ(y) for each equation in the system (61) (which means that we consider the order of each quantity Z p and M q ), we obtain the recurrence system (117):

ν(j + 1)A 1,j+1 = A 3,j -rA 4,j -B 3,j (ν(j + 1) + 1)A 2,j+1 = rA 2,j -A 3,j -B 1,j -B 5,j (ν(j + 1) + 1)A 3,j+1 = A 1,j + A 2,j + rA 3,j -A 4,j -B 2,j -B 6,j (ν(j + 1) + 1)A 4,j+1 = -A 3,j + rA 4,j + B 3,j (ν(j + 1) + 1)B 1,j+1 = -rB 1,j -B 2,j -B 4,j -rB 5,j -A 1,j + (r 2 -1)A 2,j (ν(j + 1) + 1)B 2,j+1 = B 1,j -rB 2,j + B 3,j -rB 6,j + rA 1 1, j + (r 2 -1)A 3,j (ν(j + 1) + 1)B 3,j+1 = B 2,j -rB 3,j + B 6,j + (1r 2 )A 4,j (ν(j + 1) + 2)B 4,j+1 = -B 1,j + B 5,j + rA 2,j + A 3,j (ν(j + 1) + 2)B 5,j+1 = B 4,j -B 6,j -A 4,j (ν(j + 1) + 2)B 6,j+1 = B 3,j + B 5,j + rA 4,j .

(117) It is easy from this system to deduce that, under the hypothesis |r| ≤ M -2 , there exists a constant C > 0 such that

, hence ensuring that the analytic expansions defining Ā0

p and B0 q are extendible for all ζ. The study of this recurrence system is the aim of the next paragraph.

Behavior of the equivalent solution

In what follows, we study the recurrence system. Consider B 0 (ξ, r) given by

associated with the differential equation dY 0 dt = B 0 (ξ, r)Y 0 . It is easy to check that B

(2) 0 is associated with the system (118), obtained from (61) by taking into account the behavior of Z p and M q that we obtained in Section 3:

We introduce

From the relation

we deduce a new basis of Λ 2 (IR 5 ) in which the coefficients are

The source term (119) in the basis of Λ 2 (R 5 ) associated with e 0 , e ±1 , F ±1 we find

End of the proof The coefficient of e 1 ∧ F 1 in the source term is thus

The theory of Fuchsian systems (see Hartmann [START_REF] Ph | Ordinary Differential Equations Classics in Applied Mathematics[END_REF]) shows that there exists a constant α * such that the projection of H(y) on e 1 ∧ F 1 behaves as -1 4 t α * e 2t ( r+1 ν -1 ν+1 )e 1 ∧ F 1 . The leading order term in t * of the Evans functions Ev(0, β, γ) writes Ev(0, β, γ) = e (r+1)t * t

. Hence, as

and the limit of (R 0 p , L 0 q ) when t * → +∞ is given by (50), the limit of

Replacing (130) in the d -1 first equations of the differential system of Proposition 6, we obtain

jk (U k )

where N

(1)

We get the estimate, under the assumption (131) on U y ≥ y 0 , |N

). The procedure proceeds as follows:

Let p be an element of 0..d -2. We write the sequence of operators

where

and the operators K This can be written, using g(y) = V (y)e -λ d-p y , under the form

Hence we may write, for f satisfying (131)

Construction of the solution The last step of this recurrence is to construct the solution U 1 . The equation on U 1 writes then

where

satisfy the relations of Proposition 7. This is equivalent to

(U 1 )(s)ds.

Using the limit U 1 (y 0 ) → 1 when y 0 → +∞, we obtain

(U 1 )(s)ds.

We introduce the operator K 1 such that U 1 = 1 + K 1 (U 1 ). For g satisfying the estimate (131), a consequence of proposition 7 is that

Introduce U 0 1 (y) = 1, and the sequence

). It is straightforward to show the inequality for y ≥ y 0

hence as the series

is normally convergent and is the only solution going to 1 as y goes to +∞ of (140). We have the estimate

which is of the form (131) for N = 0. ). Replacing in the equality (133) for p = d -3 the inequality on U 1 and on U 2 we deduce that

End of the construction

By recurrence on p we obtain the inequalities on U j for j = 1, which proves Proposition 6.

Estimates We prove in this Section the following 

This is a consequence of the more precise proposition 

)) and

We prove the second proposition by recurrence. The first estimate that we have to deduce from the recurrence assumption on N (p) jk is the estimate on K

d-p,k . To obtain this result, we have to study the behavior of K d-p through the estimate on N (p) jk . We have, for f satisfying (131) for all N , the inequality

Note that we increase the power of (1ξ(y)) in the result.

The second estimate is based on the expression of T d-p obtained through (138).

For N ≥ 1 and f satisfying (131), we have

The estimate on K d-p , deduced from the recurrence hypothesis is If V e -λ d-p y has a limit, then this is in contradiction with the fact that V is bounded for ℜλ d-p > 0, and this argument is no longer valid if λ d-p = 0. Hence this proves that the recurrence stops at p such that λ d-p = 0 hence p = d -1. The estimates of Proposition 7 are valid for N (p+1) jk

, hence the recurrence proceeds till ℜλ d-p > 0. This recurrence processus stops for λ d-p = 0 because we cannot assert that the equation ( 136) has bounded solutions going to a constant for y → +∞.