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Abstract

We derive bounds for the design optimality criteria under the assumption that the
supposed regression model y (xk) = η (xk, θ)+εk ; k = 1, 2, ... does not correspond
to the true one. The investigation is based on the asymptotic properties of the LSE
of θ, and full proofs of these properties are presented under the assumption that
the sequence of design points {xk}∞k=1 is randomly sampled according to a design
measure ξ. The bounds and the asymptotic properties are related to the intrinsic
measure of nonlinearity of the model.

1. Introduction.

In optimal experimental design one often assumes that there are no errors in
the considered model, a condition rarely satisfied in practice. Papers considering
robustness to model errors are usually dealing with linear models, and the main
stress is on bias issues, that is on the term ‖ν (.) − η (., θ)‖ξ in Theorem 1, below

(cf. [6,9,11]). Here we want to show that the situation is different in a nonlinear
regression model

y (xk) = η (xk, θ) + εk ; θ ∈ Θ(1)
1
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with εk i.i.d. random variables, E (εk) = 0, V ar (εk) = σ2 ; k = 1, 2, .... The model
error consists in that the true description of the data is

y (xk) = ν (xk) + εk(2)

where ν (xk) are unknown, and are outside the model (1), i.e. there is no θ ∈ Θ such
that ν (xk) = η (xk, θ) ; k = 1, 2, .... We shall show that changes of the asymptotic
variance of the LS estimators are modified by this misspecification of the model.
The main question to be answered here is ”how far” from the model can be the
values ν (xk) , so as not to influence too much the usual criteria for the design of
the experiment.

Assumptions on models: We take assumptions usual in experimental design the-

ory. The set Θ is a compact subset of R
p having no isolated points, i.e. int(Θ) = Θ.

Each xk is an element of X , the design space, which is a compact subset of an Eu-
clidean space. The function η (x, θ) is continuous on X ×Θ, and its first and second
order derivatives with respect to the components of θ exist, and are continuous on
X× int(Θ). The function ν (x) is continuous on X .

2. The asymptotic properties of the LSE.

The estimator considered is the LSE

θ̂(N) = arg min
θ∈Θ

∥

∥

∥
y(N) − η(N) (θ)

∥

∥

∥

2

where y(N) = (y (x1) , ..., y (xN ))
T

, η(N) (θ) = (η (x1, θ) , ..., η (xN , θ))
T

.The se-

quence of estimators
{

θ̂(N)
}∞

N=1
has no stabilized asymptotic properties, even when

model (1) is true, unless the sequences {η (xk, θ)}∞k=1,
{

∂η(xk,θ)
∂θi

}∞

k=1
,
{

∂2η(xk,θ)
∂θi∂θj

}∞

k=1
have some regularity properties. There are different ways how to formulate these
properties. The classical approach in [5] requires that these sequences has ”finite
tail products”, the book [4] requires assumptions formulated as suprema and in-
fima of very complex terms , the same is true for [2]. Here we start from the point
of view that in the context of experimental design the stress should be on formu-
lating the assumptions in terms of the design measure, which by definition is a
probability measure ξ on X . The standard interpretation of ξ is that the sequence
of frequencies of the design points {xk}∞k=1 must approach ξ (in a certain sense).
Here we restrict our attention to the particular case that {xk}∞k=1 is obtained by
independent random sampling from ξ. This allows to obtain complete proofs of

asymptotic properties of θ̂(N) in a much simpler way than in classical papers on
nonlinear regression, maintaining the main feature of a general approach.

The proofs of the following statements are presented in Section 4.

Lemma 1. If {xk}∞k=1 is randomly sampled from the probability distribution
ξ, then, with probability equal to one, for any real function a (x, ε, θ) defined and
continuous on X × R × Θ, and such that

∫

R

[
∫

X

max
θ∈Θ

|a (x, ε, θ)| ξ (dx)

]

P (dε) < ∞
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the uniform strong law of large numbers (USLLN) holds, i.e.

lim
N→∞

1

N

N
∑

k=1

a (xk, εk, θ) =

∫

R

[
∫

X

a (x, ε, θ) ξ (dx)

]

P (dε)

uniformly over θ ∈ Θ, and a.s. with respect to P and ξ.

Let us denote

‖ν (.) − η (., θ)‖2
ξ =

∫

X

[ν (x) − η (x, θ)]
2
ξ (dx)

Theorem 1. Suppose that the sequence {xk}∞k=1 is randomly sampled from
ξ. Then under the assumptions on the model (2), the sequence of estimators
{

θ̂(N)
}∞

N=1
converges a.s. to the set

Θ̃ξ = arg min
θ∈Θ

‖ν (.) − η (., θ)‖2
ξ

Moreover the usual estimator of σ2

[

s2
](N)

=
1

N − p

N
∑

k=1

[

y (xk) − η
(

xk, θ̂(N)
)]2

converges a.s. to σ2 + minθ∈Θ ‖ν (.) − η (., θ)‖2
ξ .

Remark: According to [5], the estimator θ̂(N) is a measurable function of
xk, εk; k = 1, ..., N, if it is defined uniquely, otherwise, there is a measurable choice

for θ̂(N).

Theorem 2. Suppose that the sequence {xk}∞k=1 is randomly sampled from

ξ. Suppose that Θ̃ξ =
{

θ̃
}

is a one-point set, and that θ̃ ∈int(Θ). Suppose that

M
(

ξ, θ̃
)

is nonsingular, where

M (ξ, θ) =

∫

X

∂η (x, θ)

∂θ

∂η (x, θ)

∂θT
ξ (dx)

and that

Cint

(

ξ, θ̃
)

∥

∥

∥
ν (.) − η

(

., θ̃
)
∥

∥

∥

ξ
< 1(3)

where

Cint (ξ, θ) = max
u∈Rp,u 6=0

∥

∥

∥

[

I − P θ
]

[

∑

i,j ui
∂2η(.,θ)
∂θi∂θj

uj

]
∥

∥

∥

ξ

uT M (ξ, θ) u

is the generalized intrinsic measure of nonlinearity (curvature) of Bates and Watts
(cf. [1]) in model (1), at the point θ, and under the design ξ. Denote

Dν (ξ, θ) =

∫

X

[η (x, θ) − ν (x)]
∂2η (x, θ)

∂θ∂θT
ξ (dx)

Mν (ξ, θ) =

∫

X

[η (x, θ) − ν (x)]
2 ∂η (x, θ)

∂θ

∂η (x, θ)

∂θT
ξ (dx)
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Then M
(

ξ, θ̃
)

+Dν

(

ξ, θ̃
)

, M
(

ξ, θ̃
)

+σ−2Mν

(

ξ, θ̃
)

are nonsingular matrices, and

the sequence
{√

N
(

θ̂(N) − θ̃
)}∞

N=1
converges in distribution to a random vector

distributed normally, N
(

0, σ2J−1
ν

(

ξ, θ̃
))

, where

Jν

(

ξ, θ̃
)

=
[

M
(

ξ, θ̃
)

+ Dν

(

ξ, θ̃
)]

×
[

M
(

ξ, θ̃
)

+ σ−2Mν

(

ξ, θ̃
)]−1 [

M
(

ξ, θ̃
)

+ Dν

(

ξ, θ̃
)]

Remarks: Cf. [7] for a detailed derivation of the intrinsic curvature for the case
of a finite number of design points; the generalization to L2 (ξ) is straightforward.
We denoted by I the identity operator in L2 (ξ), and P θ is an orthogonal projector
in L2 (ξ) defined by

(

P θφ
)

(x) =
∂η (x, θ)

∂θT
M−1 (ξ, θ)

∫

X

∂η (x∗, θ)

∂θ
φ (x∗) ξ (dx∗)

for any φ (.) ∈ L2 (ξ). Notice also that without the assumption of nonsingularity

of M
(

ξ, θ̃
)

we can have irregularities of the distribution of θ̂(N), even when model

(1) is correct (cf. [8]).

3. Bounds for the criteria of optimality.

When model (1) is correct, and θ̃ is the true parameter value, then σ2
[

M
(

ξ, θ̃
)]−1

is the asymptotic variance matrix of θ̂(N). The experimenter designing the experi-
ment does not know that model (1) is wrong, and even if he suspects that, he does
not know the true mean function ν (.). The usual approach consists in taking a
point θ(o) ∈int(Θ), which is supposed to be close to the hypothetical true value of
θ, and applying an optimality criterion Φ on the information matrix M

(

ξ, θ(o)
)

.
One then computes the optimum design in a standard way, still supposing that
model (1) is true. The question is how efficient is the resulting design in model (2)

Any optimality criterion should respect the ordering of information matrices,
hence a standard assumption on optimality criteria is the monotonicity

M ≤ M∗ ⇒ Φ [M ] ≤ Φ [M∗]

where M ≤ M∗ means uT Mu ≤ uT M∗u for every u ∈ R
p. A good design ξ

should thus give a large value of Φ
[

M
(

ξ, θ(o)
)]

. This ordering is opposite to the
standard one in most books and papers on optimum experimental design, but it
is recommended in [10] using information arguments: the criterion should measure
the amount of information contained in the experiment. From this interpretation
other important properties also follow: the positivity of Φ (Φ [M ] > 0), and the
homogeneity of Φ

Φ [kM ] = kΦ [M ] ; k > 0

For example Φ [M ] = det1/p [M ] is a positive homogeneous monotone form of the
criterion of D-optimality.
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A design ξ∗ is called locally Φ-optimal (in the locality of θ(o)) when Φ
[

M
(

ξ∗, θ(o)
)]

=

maxξ Φ
[

M
(

ξ, θ(o)
)]

On the other hand, when model (2) holds, the criterion func-

tion Φ should be applied to Jν

(

ξ, θ̃
)

. Suppose θ̃ = θ(o) and compare both criteria.

The following theorem gives limits for Φ
[

Jν

(

ξ, θ̃
)]

in terms of Φ
[

M
(

ξ, θ̃
)]

Theorem 3. When Φ is positive, monotone and homogeneous, and when the as-

sumptions of Theorem 2 hold, then we have the following bounds for Φ
[

Jν

(

ξ, θ̃
)]

δ2

b
Φ

[

M
(

ξ, θ̃
)]

≤ Φ
[

Jν

(

ξ, θ̃
)]

≤ ∆2Φ
[

M
(

ξ, θ̃
)]

where

δ = 1 − Cint

(

ξ, θ̃
)

∥

∥

∥
ν (.) − η

(

., θ̃
)
∥

∥

∥

ξ

∆ = 1 + Cint

(

ξ, θ̃
) ∥

∥

∥
ν (.) − η

(

., θ̃
)∥

∥

∥

ξ

b = 1 +
maxx∈X

[

ν (x) − η
(

x, θ̃
)]2

σ2

Proof. Denote M = M
(

ξ, θ̃
)

, Mν = Mν

(

ξ, θ̃
)

, Dν = Dν

(

ξ, θ̃
)

, J =

Jν

(

ξ, θ̃
)

, J∗ =
[

M
(

ξ, θ̃
)

+ Dν

(

ξ, θ̃
)] [

M
(

ξ, θ̃
)]−1 [

M
(

ξ, θ̃
)

+ Dν

(

ξ, θ̃
)]

, ν =

ν (.) , η̃ = η
(

., θ̃
)

, C = Cint

(

ξ, θ̃
)

, P = P θ̃. From the definition of θ̃ we have

ν − η̃ = (I − P ) (ν − η̃). So for every u ∈ R
p we have

uT (M + Dν)u = uT Mu

[

1 +
< η̃ − ν, (I − P ) uT ∂2η(.,θ)

∂θ∂θT |θ̃ u >ξ

uT Mu

]

where < a, b >ξ=
∫

X
a (x) b (x) ξ (dx). From the Schwarz inequality

uT (M + Dν)u ≤
(

1 + ‖ν − η̃‖ξ C
)

uT Mu = ∆ uT Mu

uT (M + Dν)u ≥
(

1 − ‖ν − η̃‖ξ C
)

uT Mu = δ uT Mu(4)

Hence, since uT M−1u = maxα

[

(

uT α
)2

/αT Mα
]

(cf. [3]), we have

1

∆
uT M−1u ≤ uT (M + Dν)

−1
u ≤ 1

δ
uT M−1u

Set u = (M + Dν) v, v ∈ R
p, to obtain

1

∆
vT J∗v ≤ vT (M + Dν) v ≤ 1

δ
vT J∗v

which together with (4) gives

δ2vT Mv ≤ vT J∗v ≤ ∆2vT Mv

Since Mν is p.s.d. we have

vT Jv ≤ vT J∗v ≤ bvT Jv
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so that

δ2vT Mv ≤ bvT Jv

∆2vT Mv ≥ vT Jv

Since Φ is monotone and homogeneous it follows that

δ2

b
Φ

[

M
(

ξ, θ̃
)]

≤ Φ
[

Jν

(

ξ, θ̃
)]

≤ ∆2Φ
[

M
(

ξ, θ̃
)]

✷

4. Proofs of asymptotic properties.

Proof of Lemma 1. Denote Z =R×X , and z = (ε, x)
T

the random vector
distributed P × ξ on Z. Take some fixed θ1 ∈ Θ, and consider the set

B
(

θ1, δ
)

=
{

θ ∈ Θ :
∥

∥θ − θ1
∥

∥ ≤ δ
}

Define āδ (z) and a
−δ

(z) as the maximum and the minimum of a (z, θ) over the set

B
(

θ1, δ
)

. We have that E

{
∣

∣

∣

∣

a
−δ

(z)

∣

∣

∣

∣

}

and E {|āδ (z)|} are bounded by

E {maxθ∈Θ |a (z, θ)|} < ∞. Moreover, āδ (z)− a
−δ

(z) is an increasing function of δ.

Hence we can change the order of the limit and the mean to prove that

lim
δց0

[

E {āδ (z)} − E

{

a
−δ

(z)

}]

= E

{

lim
δց0

[

āδ (z) − a
−δ

(z)

]}

= 0

which proves the continuity of E {a (z, θ)} at θ1, and implies

∀β>0∃δ(β)>0 :

∣

∣

∣

∣

E
{

āδ(β) (z)
}

− E

{

a
−δ(β)

(z)

}
∣

∣

∣

∣

<
β

2

Hence we can write for every θ ∈ B
(

θ1, δ (β)
)

1

N

∑

k

a
−δ(β)

(zk) − E

{

a
−δ(β)

(z)

}

− β

2
≤ 1

N

∑

k

a
−δ(β)

(zk) − E
{

āδ(β) (z)
}

≤ 1

N

∑

k

a (zk, θ) − E {a (z, θ)}

≤ 1

N

∑

k

āδ(β) (zk) − E

{

a
−δ(β)

(z)

}

≤ 1

N

∑

k

āδ(β) (zk) − E
{

āδ(β) (z)
}

+
β

2

By the strong law of large numbers we have that ∀γ>0∃N(β,γ)

Prob

{

∀N>N(β,γ)

∣

∣

∣

∣

∣

1

N

∑

k

āδ(β) (zk) − E
{

āδ(β) (z)
}

∣

∣

∣

∣

∣

<
β

2

}

> 1 − γ

2

Prob

{

∀N>N(β,γ)

∣

∣

∣

∣

∣

1

N

∑

k

a
−δ(β)

(zk) − E

{

a
−δ(β)

(z)

}

∣

∣

∣

∣

∣

<
β

2

}

> 1 − γ

2
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Combining with the previous inequality we obtain: ∀γ>0∃N(β,γ)

Prob

{

∀N>N(β,γ) max
θ∈B(θ1,δ(β))

∣

∣

∣

∣

∣

1

N

∑

k

a (zk, θ) − E {a (z, θ)}
∣

∣

∣

∣

∣

< β

}

> 1 − γ

It only remains to cover the compact set Θ by a finite numbers of open sets
B

(

θi, δ (β)
)

; i = 1, ..., n (β). For any α > 0 take γ = α/n (β) , N (β) = maxi Ni (β, γ).
We obtain

Prob

{

∀N>N(β) max
θ∈Θ

∣

∣

∣

∣

∣

1

N

∑

k

a (zk, θ) − E {a (z, θ)}
∣

∣

∣

∣

∣

< β

}

> 1 − α

which completes the proof. ✷

Proof of Theorem 1. For any θ ∈ Θ

1

N

N
∑

k=1

[y (xk) − η (xk, θ)]
2

=
1

N

N
∑

k=1

ε2
k +

2

N

N
∑

k=1

[ν (xk) − η (xk, θ)] εk

+
1

N

N
∑

k=1

[ν (xk) − η (xk, θ)]
2

since εk = y (xk) − ν (xk) . The function (x, θ, ε) → ε2 + 2 [ν (x) − η (x, θ)] ε +

[ν (x) − η (x, θ)]
2

is continuous on X × Θ × R, so the USLLN holds, and

lim
N→∞

1

N

N
∑

k=1

[y (xk) − η (xk, θ)]
2

= σ2 + ‖ν (.) − η (., θ)‖2
ξ(5)

a.s., and uniformly over Θ, since E (ε) = 0. Denote zk = (εk, xk) and take a fixed
sequence z = {zk}∞k=1 such that this limit holds, and denote by θ# (z) a limit

point of
{

θ̂(N) (z)
}∞

N=1
. It exists, since Θ is compact, and there is a subsequence

{

θ̂(Nk) (z)
}∞

k=1
converging to it. Take any θ̃ ∈ Θ̃. By the definition of the LSE we

have

1

Nt

Nt
∑

k=1

[

y (xk) − η
(

xk, θ̃
)]2

≥ 1

Nt

Nt
∑

k=1

[

y (xk) − η
(

xk, θ̂(Nt) (z)
)]2

According to (5), the left hand side converges to σ2 +
∥

∥

∥
ν (.) − η

(

., θ̃
)
∥

∥

∥

2

ξ
while the

right hand side to σ2 +
∥

∥ν (.) − η
(

., θ# (z)
)
∥

∥

2

ξ
, consequently θ# (z) ∈ Θ̃. Hence all

limit points of
{

θ̂(N) (z)
}∞

N=1
, for any sequence z = {zk}∞k=1 which satisfies (5),

are in Θ̃.

The limit value of
[

s2
](N)

then follows from (5). ✷

Proof of Theorem 2.
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For any v ∈ R
p we have by the Schwarz inequality

vT
[

M
(

ξ, θ̃
)

+ Dν

(

ξ, θ̃
)]

v

=
[

vT M
(

ξ, θ̃
)

v
]






1 +

∫

X

[

η
(

x, θ̃
)

− ν (x)
]T [

I − P
(

θ̃
)] [

vT ∂2η(x,θ)
∂θ∂θT |θ̃ v

]

ξ (dx)

vT M
(

ξ, θ̃
)

v







≥
[

vT M
(

ξ, θ̃
)

v
]

[

1 −
∥

∥

∥
η

(

., θ̃
)

− ν (.)
∥

∥

∥

ξ
Cint

(

ξ, θ̃
)

]

≥ 0

hence M
(

ξ, θ̃
)

+ Dν

(

ξ, θ̃
)

is p.d. Evidently Mν

(

ξ, θ̃
)

is p.s.d. hence M
(

ξ, θ̃
)

+

σ−2Mν

(

ξ, θ̃
)

is also p.d.

Take a sequence z = {zk}∞k=1 such that
{

θ̂(N) (z)
}∞

N=1
converges to θ̃. According

to Theorem 1, the probability of sampling such a sequence is equal to one. Denote

JN (θ, z) = 1
N

∑N
k=1 [y (xk) − η (xk, θ)]

2
. By the Taylor formula we have

0 =

[

∂JN (θ, z)

∂θ

]

θ̂(N)(z)

=

[

∂JN (θ, z)

∂θ

]

θ̃

+

[

∂2JN (θ, z)

∂θ∂θT

]

β(N)

[

θ̂(N) (z) − θ̃
]

(6)

with β(N) a point between θ̂(N) (z) and θ̃. We have

−
√

N

[

1

2

∂JN (θ, z)

∂θ

]

θ̃

=
1√
N

N
∑

k=1

[

y (xk) − η
(

xk, θ̃
)]

[

∂η (xk, θ)

∂θ

]

θ̃

=
1√
N

N
∑

k=1

[

εk +
(

ν (xk) − η
(

xk, θ̃
))]

[

∂η (xk, θ)

∂θ

]

θ̃

According to the central limit theorem, the last term converges in distribution to

a random vector distributed N
(

0, σ2M
(

ξ, θ̃
)

+ Mν

(

ξ, θ̃
))

since

E

{

[

ε +
(

ν (x) − η
(

x, θ̃
))]

[

∂η (x, θ)

∂θ

]

θ̃

}

= 0

and

V ar

{

[

ε +
(

ν (x) − η
(

x, θ̃
))]

[

∂η (x, θ)

∂θ

]

θ̃

}

= E

{

[

ε +
(

ν (x) − η
(

x, θ̃
))]2

[

∂η (x, θ)

∂θ

∂η (x, θ)

∂θT

]

θ̃

}

= σ2M
(

ξ, θ̃
)

+ Mν

(

ξ, θ̃
)

Further we have

∂2JN (θ, z)

∂θ∂θT
=

1

N

N
∑

k=1

[ν (xk) + εk − η (xk, θ)]

[

∂2η (xk, θ)

∂θ∂θT

]

+
1

N

N
∑

k=1

[

∂η (xk, θ)

∂θ

∂η (xk, θ)

∂θT

]
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and according to Lemma 1 this expression converges a.s. with respect to xk and
εk, and uniformly with respect to θ to

E

{

[ν (x) + ε − η (x, θ)]

[

∂2η (x, θ)

∂θ∂θT

]}

+ E

{

∂η (x, θ)

∂θ

∂η (x, θ)

∂θT

}

= Dν (ξ, θ) + M (ξ, θ)

Consequently
[

∂2JN (θ,z)
∂θ∂θT

]

β(N)
converges a.s. to Dν

(

ξ, θ̃
)

+ M
(

ξ, θ̃
)

since β(N)

converges a.s. to θ̃. The required result now follows from (6) ✷
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