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The linear and non linear Rayleigh-Taylor instability for the quasi-isobaric profile

We study the stability of the system of the Euler equations in the neighborhood of the stationary solution associated with the quasi isobaric profile in a gravity field. This situation corresponds to a Rayleigh-Taylor type problem with a smooth base density profile which goes from 0 to ρa (of Atwood number A = 1) given by the ablation front model with a thermal conductivity exponent ν > 1. This linear analysis leads to the study of the Rayleigh equation for the perturbation of the velocity at the frequency k:

- d dx (ρ0(x) du dx ) + k 2 [ρ0(x) - g γ 2 ρ ′ 0 (x)]u = 0.
We denote by the terms 'eigenmode and eigenvalue' a L 2 solution of the Rayleigh equation associated with a value of γ. Let L0 > 0 be given. The quasi isobaric profile is ρ0(x) = ρaξ( x L 0 ), where ξ = ξ ν+1 (1 -ξ). We prove that there exists Lm(k), such that, for all 0 < L0 ≤ Lm, there exists an eigenmode u such that the unique associated eigenvalue γ is in [α1, α2], α1 > 0. Its limit when L0 goes to zero is √ gk. We obtain an expansion of γ in terms of L0 as follows:

γ = √ gk 1 + 2(Γ(1 + 1 ν )) -1 ( 2kL 0 ν ) 1 ν + O((kL0) min(1, 2 ν ) )
.

We identify in this paper the expression of the next term of the expansion of γ in powers of L 1 ν 0 . Using the existence of a maximum growth rate Λ and the existence of at least one eigenvalue belonging to ] Λ 2 , Λ[ (thanks to a semiclassical analysis), we perform the nonlinear analysis of the incompressible Euler system of equations using the method introduced by Grenier. This generalizes the result of Guo and Hwang (which was obtained in the case ρ0(x) ≥ ρ l > 0) to the case where ρ0 → 0 when x → -∞ and k0(x) = ρ ′ 0 (x) ρ 0 (x) satisfy k0 regular enough, bounded, and k0ρ

-1 2 0
bounded, which is the case in the model associated with the quasi-isobaric profile, according to ν > 1 2 .

Statement of the problem and main result

In this paper, we study a theoretical system of equations deduced of the fluid dynamics analysis of an ablation front model. Such models have been studied from a physical point of view by many authors (see H.J. Kull and S.I. Anisimov [START_REF] Kull | Anisimov Ablative stabilization in the incompressible Rayleigh-Taylor instabilityPhys[END_REF], V. Goncharov, [START_REF] Goncharov | Self consistent stability analysis of ablation fronts in inertial confinement fusion[END_REF], P. Clavin and L. Masse [START_REF] Clavin | Instabilities of ablation fronts in inertial confinement fusion: a comparison with flames[END_REF]). They can be considered as a generalization in the ablation case of the Rayleigh-Taylor instability, studied in the pioneering works of J.W. Strutt (Lord Rayleigh) [START_REF] Strutt | Lord Rayleigh) Investigation of the character of the equilibrium of an Incompressible Heavy Fluid of Variable Density[END_REF] and G. Taylor [START_REF] Taylor | The instability of liquid surfaces when accelerated in a direction perpendicular to their planes[END_REF].

The Rayleigh equation models the Rayleigh-Taylor instability. It is obtained by considering the linearization of the incompressible 2d Euler equations around the solution (ρ 0 (x), 0, 0, p 0 (x)) (density, velocity, pressure) with dp0 dx + ρ 0 (x)g = 0. The system of equations write

       ∂ t ρ + ∂ x (ρU ) + ∂ z (ρV ) = 0 ∂ t (ρU ) + ∂ x (ρU 2 + P ) + ∂ z (ρU V ) = -ρg ∂ t (ρV ) + ∂ x (ρU V ) + ∂ z (ρV 2 + P ) = 0 ∂ x U + ∂ z V = 0 (1) Write ρ = ρ 0 + σ, U = v 1 , V = v 2 , P = p 0 + p, the linearized system is        ∂ t σ + dρ0 dx v 1 = 0 ρ 0 (x)∂ t v 1 + ∂ x p = -σg ρ 0 (x)∂ t v 2 + ∂ z p = 0 ∂ x v 1 + ∂ z v 2 = 0.
(2) from which one deduces, using v 1 = ũe ikz , the partial differential equation

- ∂ ∂x (ρ 0 (x) ∂ ∂x ∂ 2 t 2 ũ) + k 2 ρ 0 (x)∂ 2 t 2 ũ = gk 2 ρ ′ 0 (x)ũ.
Introduce T (x, z, t) = ρ 0 (x) ρ(x, z, t) , Q(x, z, t) = p(x, z, t)p 0 (x) ρ 0 (x)

the system (1) is equivalent to

   ∂ t T + U .∇T = k 0 (x)uT ∂ t U + ( u.∇) U + T ∇Q + T Qk 0 (x) e 1 = (1 -T ) g div U = 0. (3) 
It is a consequence of the equality T ρ -1 0 ∇p = T ∇Q + k 0 T Q e 1 + T g and of ∂ t T + U .∇T = -ρ -2 (∂ t ρ + U ∇ρ). The associated linearized system in the neighborhood of U = 0, T = 1,

Q = 0 is    ∂ t T = k 0 (x)ũ div ˜ u = 0 ∂ t ˜ u + ρ -1 0 ∇(ρ 0 Q) + T g = 0.
2 Assume that the perturbation is written as (the real part of) a normal mode

e γt e ikz u(x, kL 0 ),

where k is the wavelength of the transversal perturbation and γ is the growth rate in time of this perturbation. We obtain the Rayleigh equation ( 4) (see C. Cherfils, P.A. Raviart and O.L. [START_REF] Cherfils | Asymptotic results for the Rayleigh-Taylor instability[END_REF]):

- d dx (ρ 0 (x) du dx ) + (k 2 ρ 0 (x) - gk 2 γ 2 ρ ′ 0 (x))u(x) = 0. ( 4 
)
We consider a family of density profiles ρ 0 (x) such that ρ 0 (x) = ρ 0 ( x L0 ), where L 0 is a characteristic length of the base solution. In one of the physical applications, namely the case of the ICF, its magnitude is 10 -5 meters, hence allowing us to consider the limit L 0 → 0. We develop here a constructive method for the study of the modes associated with the Kull-Anisimov density profile (see B. Helffer and O.L. [START_REF] Helffer | Lafitte The Semiclassical Regime for Ablation Front Models Arch[END_REF]). The Kull-Anisimov profile ρ 0 is given by

ρ 0 (x) = ρ a ξ( x L 0 ), (5) 
where the function ξ is a non constant solution of ξ = ξ ν+1 (1ξ),

ν is called the thermal conduction index. Note that this equation on the density is NOT obtained from the incompressible Euler equations but from a compressible model with thermal conduction introduced by Kull and Anisimov [START_REF] Kull | Anisimov Ablative stabilization in the incompressible Rayleigh-Taylor instabilityPhys[END_REF] and used for example in [START_REF] Helffer | Lafitte The Semiclassical Regime for Ablation Front Models Arch[END_REF] or in [START_REF] Lafitte | Study of the linear ablation growth rate for the quasi-isobaric model of Euler equations with thermal conductivity Prépublication 2005-29 du LAGA[END_REF]. The Kull-Anisimov profile satisfies lim x→+∞ ρ 0 (x) = ρ a , where ρ a denotes the density of the ablated fluid, and the convergence is exponential, whereas lim x→-∞ ρ 0 (x) = 0 and the convergence is rational ((-x)

1 ν ρ 0 (x) → C 0 > 0 when x → -∞). The associated Atwood number is thus 1. Remark also that all non constant solutions of [START_REF] Goncharov | Self consistent stability analysis of ablation fronts in inertial confinement fusion[END_REF] differ from a translation. This case may be related to the case of the water waves (the density of air being much smaller than the density of water). It is thus a limit case in all the theoretical set-up used for the study of Euler equations for fluids of different densities. Note that, in this case, the self adjoint operator associated with the equation ( 4) is not coercive in H 1 (R). The methods of [START_REF] Cherfils | Asymptotic results for the Rayleigh-Taylor instability[END_REF], [START_REF] Helffer | Lafitte Asymptotic growth rate for the linearized Rayleigh equation for the Rayleigh-Taylor instability Asympt[END_REF] cannot be used directly. Moreover, the properties of ρ 0 do not allow us to apply [START_REF] Guo | On the dynamical Rayleigh-Tayor instability Arch[END_REF], because it relies on ρ 0 (x) ≥ ρ l > 0. However, consider k 0 (x) = ρ ′ 0 (x) ρ0(x) introduced in the abstract. In our case, it is equal to L -1 0 ξ ν (1ξ), hence it is a continuous bounded function which admits a maximum L -1 ef f , and, for ν > 1 2 , k 0 ρ -1 2 0 is bounded. These properties are (for a more general profile) what is needed to obtain the nonlinear result.

Remarks Define the function r(t, ε) through:

1 ε (ξ(- t ε )) ν (1 -ξ(- t ε )) = 1 νt + ε 1 ν t -1-1 ν r(t, ε). (7) 
There exists t 0 > 0 and ε 0 > 0 such that r(t, ε) is bounded for t ≥ t 0 , 0 ≤ ε ≤ ε 0 , and has a C ∞ expansion in ε, ε

1 ν . Define S through ε 1 ν S ′ (t, ε) = ε -1 ξ ′ (-t ε ) ξ(-t ε ) - 1 νt , lim t→+∞ S(t, ε) = 0.
We have the identity

ξ(- t ε )( νt ε ) 1 ν exp(ε 1 ν S(t, ε)) = 1 (8) 
which implies that there exists a function r bounded for t ≥ t 0 and ε ≤ ε 0 such that exp(-νε

1 ν S(t, ε)) = 1 + ε 1 ν t -1 ν r(t, ε).
Let u(y) = u(L 0 y). The Rayleigh equation rewrites

- d dy (ξ(y) du dy ) + (ε 2 ξ(y) -λεξ ′ (y))u(y) = 0, (9) 
where ε = kL 0 and λ = gk γ 2 . We will consider this equation from now on. We shall introduce two equivalent versions of this equation, which are: 1. the system on (U + , V + ) such that U + (y, ε) = u(y, ε)e εy and V + (given by the first equation of the system below), v(y, ε) = V + (yε)e -εy :

dU+ dy = ε(1 -λ)U + + ε ξ(y) V + dV+ dy = ε(λ + 1)V + + ε(1 -λ 2 )ξ(y)U + , (10) 
2. if we introduce w = v ξ(y) , the system on (u, w) is

du dt = λu -w dw dt = (λ 2 -1)u -λw + ( 1 νt + ε 1 ν S ′ (t, ε))w. (11) 
The first part of the main result of this paper was presented in [START_REF] Lafitte | Sur la phase linéaire de l'instabilité de Rayleigh-Taylor Séminaire à l'Ecole Polytechnique[END_REF], and the case where ξ(y) = ξ(1)(y + 1) -1 ν for y ≥ 0 was solved in [START_REF] Cherfils | Asymptotic results for the Rayleigh-Taylor instability[END_REF]. The case of the global ablation system was treated in [START_REF] Lafitte | Study of the linear ablation growth rate for the quasi-isobaric model of Euler equations with thermal conductivity Prépublication 2005-29 du LAGA[END_REF] and is published [START_REF]Study of the linear ablation growth rate for the quasi-isobaric model of Euler equations with thermal conductivity accepted for[END_REF]. We finally recall that, if there exists a solution in L 2 (R) of ( 9), then λ satisfies the inequality (see [START_REF] Helffer | Lafitte Asymptotic growth rate for the linearized Rayleigh equation for the Rayleigh-Taylor instability Asympt[END_REF])

1 λ ≥ max(1, ε (ν + 1) ν+1 ν ν ). ( 12 
)
The main result of the first part of this paper is

1 It is a consequence of max( ξ ξ ) = ν ν (ν+1) ν+1
Theorem 1

1. There exists ε 0 > 0, and C 0 > 0 such that, for all ε ∈]0, ε 0 [ there exists λ(ε) ∈ [ 1 2 , 3 2 ] such that the Rayleigh equation ( 9) admits a bounded solution u for λ = λ(ε), which corresponds to the eigenmode u and the eigenvalue γ(k, ε) = gk λ(ε) , and λ(ε) satisfies

|λ(ε) -1| ≤ C 0 ε 1 ν (Γ(1 + 1 ν )) -1 + o(ε 1 ν ) . (13) 
Note that, in this case, the order of magnitude of γ -√ gk is not in kL 0 as in [START_REF] Cherfils | Asymptotic results for the Rayleigh-Taylor instability[END_REF], but the result of [START_REF] Helffer | Lafitte Asymptotic growth rate for the linearized Rayleigh equation for the Rayleigh-Taylor instability Asympt[END_REF], based on ρ 0ρ a 1 x>0 ∈ L ν+θ ′ for all θ ′ > 0 is pertinent. We have also a result for k going to infinity, which can be stated as Proposition 1 a) Any value λ(ε) such that (9) has a L 2 non zero solution satisfies kg

(λ(ε)) 2 ≤ Λ 2 , where Λ 2 = g L ef f . b) Any sequence k → λ(k) k satisfies the following lim k→+∞ λ(ε) k = L ef f = min y ξ(y) ξ ′ (y) L 0 .
It is proven in [START_REF] Helffer | Lafitte Asymptotic growth rate for the linearized Rayleigh equation for the Rayleigh-Taylor instability Asympt[END_REF].

Remark that formula [START_REF] Lafitte | Sur la phase linéaire de l'instabilité de Rayleigh-Taylor Séminaire à l'Ecole Polytechnique[END_REF] and Proposition 1 are not in contradiction. They lead to two different stabilizing mechanisms induced by the transition region: one is a low frequency stabilization when L 0 → 0 and the other one is a high frequency stabilizing mechanism when k → +∞. It is important to notice that Propositions 2 and 3 below allow us to construct an (exact) solution u(y, λ(ε), ε) of the Rayleigh equation hence giving an unstable mode

ũ(x, z, t) = e ikz u( x L 0 , kL 0 , λ(ε))e √ gk √ λ(ε)
t solution of the linearized Euler equations. Moreover, from Proposition (1), one has the following: There exists k ≥ 1, λ(ε) and u(y) such that ε = kL 0 , u solution of (9), γ(k, ε)

= gk λ(ε) , Λ 2 < γ(k, ε) < Λ, ||u(y)|| L 2 = 1, u(0) > 0.
From the construction of this particular solution, we deduce a nonlinear result. For simplicity, in what follows, we will denote by γ(k) the eigenvalue γ(k, L 0 ). From u, one deduces a solution

U = ℜ[(u 1 , v 1 , Q 1 , T 1 )e ikz+γ(k)t ] = ℜ[(u(x), - 1 ik u ′ (x), - γ(k) k 2 u ′ (x), k 0 (x) γ(k) u(x))e ikz+γ(k)t ]
of the linearized system. We thus consider a function

V N = (0, 0, p0 ρ0 , 1)(L 0 x) + N j=1 δ j V j (x, y, t) satisfying (Emod)(V N ) = δ N +1 R N +1 , V N (x, z, 0)-(0, 0, p0 ρ0 , 1)(L 0 x) = δU (x,
z, 0). We also construct the solution V (x, y, t) of the Euler system such that Emod(V ) = 0 and V (x, z, 0) = (0, 0, p0 ρ0 , 1)(L 0 x) + δU (x, y, 0). Introduce finally V d (x, y, t) = V (x, y, t) -V N (x, y, t). This procedure constructs a solution of the nonlinear system. We have the Theorem 2

1. There exists two constants A and C 0 , depending only on the properties of the Euler system, on the stationary solution and on the solution û(x), such that, for all θ < 1, for all t ∈]0, 1 γ(k) ln θ δC0A [, one has the control of the approximate solution V N in H s , namely

||T N -1|| H s + || u N || H s + ||Q N -q 0 || H s ≤ C δAC 0 e γ(k)t 1 -δAC 0 e γ(k)t
and the leading order term of the approximate solution is the solution of the linear system as follows

||T N -1|| L 2 ≥ δ||T 1 (0)|| L 2 e γ(k)t -AC 2 0 C 3 e γ(k)t 1 -δAC 0 e γ(k)t
2. There exists N 0 such that for any N ≥ N 0 , the function V d is well defined for t < 1 γ(k) ln 1 δ and satisfies the inequality

||V d || ≤ δ N +1 e (N +1)γ(k)t , ∀t ∈ [0, 1 γ(k) ln 1 δ [.

We have the inequality, for

ǫ 0 < C 0 A || u( 1 γ(k) ln ε 0 C 0 Aδ )|| L 2 ≥ ε 0 2 || u 1 (0)|| L 2 .
This paper is organized as follow. The sections 1, 2, 3 study the linear system and identify the behavior of the growth rate γ(k) when L 0 → 0 by constructing the Evans function, and Section 4 constructs an approximate solution of the nonlinear system of Euler equations. We identify in a first section the family of solutions of (9) which are bounded when y → +∞ and we extend such solutions, for (ε, λ) in a compact B, on [ξ -1 (εR), +∞[, where R is a constant depending only on B (Proposition 2). In the second section, for all t 0 > 0, we calculate a solution of (9) which is bounded on ] -∞, -t0 ε ] (Proposition 3). A solution u of (9) which is in L 2 (R) goes to zero when y → +∞ as well as when y → -∞. Moreover, as ρ 0 (x) is a C ∞ function on R, any solution u of ( 4) is also in C ∞ . Notice that lim ε→0 (-εξ -1 ((εR)

1 ν )) = 1
νR , from which one deduces that there exists t 0 such that 0 < t 0 < 1 2 lim ε→0 (-εξ -1 ((εR)

1 ν )). The regions ] -∞, -t0 ε ] and [ξ -1 ((εR) 1 ν ), +∞[ overlap and [ξ -1 ((εR) 1 ν ), - t 0 ε ] ⊂ [- 3 4ενR , - 1 2ενR 
].

Hence the solution u belongs to the family of solutions described in proposition 2 (of the form C * u + (y, ε)) and belongs to the family of solutions described in proposition 3 (of the form C * * U (-εy, ε)), that is

u(y) = C * u + (y, ε), y ≥ ξ -1 ((εR) 1 ν ) u(y) = C * * U (-εy, ε), y < -t0 ε
From the continuity of u and of u ′ , one deduces that, for all

y ⊥ ∈ [-3 4ενR , -1 2ενR ] (corresponding to t ⊥ = -εy ⊥ ∈ [ 1 2νR , 3 4νR ]), we have C * u + (y ⊥ , ε) = C * * U (t ⊥ , ε), C * d dy u + (y ⊥ , ε) = -C * * εU ′ (t ⊥ , ε).
Introduce the Wronskian (where ε -1 has been added for normalization purposes)

W(y) = ε -1 (u + (y, ε) d dy (U (-εy, ε)) - d dy (u + (y, ε))U (-εy, ε)).
It is zero at y ⊥ = -εt ⊥ . Conversely, if λ and ε are chosen such that the Wronskian is zero (in particular at a point y ⊥ = -t ⊥ ε ), the function

ũ(y) = C * * U (-εy, ε), y ≤ y ⊥ C * * U(-εy ⊥ ,ε) u+(y ⊥ ,ε) u + (y, ε), y ≥ y ⊥ (14) 
is, thanks to the Cauchy-Lipschitz theorem, a solution of (4). Moreover, it belongs to L 2 (R) owing to the properties of u + and of U .

In Section 3, we compute the function W. As U and u + are solutions of the Rayleigh equation, which rewrites

d 2 dy 2 (u + (y, ε)) = - ξ ′ (y) ξ(y) du + dy + (ε 2 -ελ ξ ′ (y) ξ(y) )u + (y, ε) the function W is solution of d dy W = -ξ ′ (y)
ξ(y) W, which implies the equality ξ(y)W(y) = ξ(y 0 )W(y 0 ) for all y, y 0

This Wronskian can be computed for y ⊥ ∈ [-3 4ενR , -1 2ενR ] using the expressions obtained for U and u + . We prove that it admits a unique root for 0 < ε < ε 0 and λ in a fixed compact, and we identify the expansion of this root in ε, hence proving Theorem 1. Precise estimates of this solution are given in Section 3. In Section 4, after proving a H s result on a general solution of the linear system (taking into account a mixing of modes), we calculate all the terms V j of the expansion of the approximate solution, the perturbation of order δ being an eigenmode with a growth rate γ ∈] Λ 2 , Λ[, where Λ 2 = maxk 0 (x) g L0 .

1 Construction of the family of bounded solutions in the dense region.

The system (10) writes d dy U + = εM 0 (ξ(y), λ) U + . When y → +∞, the matrix converges exponentially towards M 0 (1, λ), which eigenvalues are 0 and 2, of associated eigenvectors (1, λ -1) and (1, λ + 1).

It is classical that

Lemma 1 There exists a unique solution (U + , V + ) of ( 10) which limit at y → +∞ is (1, λ -1). Moreover, there exists ξ 0 > 0 such that this solution 2 admits an analytic expansion in ε for ξ(y) ∈ [ξ 0 , 1[. The proof of this result is for example a consequence of Levinson [START_REF] Levinson | The asymptotic nature of solutions of linear systems of differential equations Duke Math[END_REF]. The aim of this section is to express precisely the coefficients of this expansion when ξ(y) → 0 and to deduce that one can extend the expression obtained for ξ ∈ [ξ(εR), ξ 0 ]. We consider, in what follows, the change of variable

ζ = ε ξ(y) ν . ( 16 
)
We prove in this section the Proposition 2 Let K be a compact set and λ ∈ K. There exists ε 0 > 0 and R > 0 such that, for 0 < ε < ε 0 , the family of solutions of (10) which is bounded when y → +∞ is characterized 3 , for y such that ξ(y) ≥ (εR)

1 ν , by U + (y, ε) = 1 + (1-ξ(y))(1-λ) ξ(y) ζA(ζ, ε) V + (y, ε) = λ -1 + (1 -λ)(1 -ξ)ζB(ζ, ε).
The associated solution of ( 9) is u + (y, ε) = U + (y, ε)e -εy .

2 It can also be shown that there exists a unique solution ( Ũ , Ṽ ) such that ( Ũ , Ṽ )e -2εy → (1, λ + 1)

3 a general solution is

K + (U, V ) where K + is a constant
Proof of Proposition 2 We write the analytic expansion in ε:

U = 1 + j≥1 ε j u j , V = λ -1 + j≥1 ε j v j .
We deduce, in particular,

du1 dy = λ-1 ξ(y) (1 -ξ(y)) dv1 dy = (λ 2 -1)(1 -ξ(y))
hence assuming u 1 , v 1 → 0 when ξ → 1 (which is equivalent to dividing the solution by its limit when ξ → 1) we get

u 1 = 1-λ ν+1 1-ξ ν+1 ξ ν+1 v 1 = 1-λ 2 ν 1-ξ ν
ξ ν . The following recurrence system for j ≥ 1 holds:

duj+1 dy = 1 ξ (v j -(λ -1)ξu j ) dvj+1 dy = (λ + 1)(v j -(λ -1)ξu j ). ( 17 
)
Usual methods for asymptotic expansions lead to the estimates (which are not sufficient for the proof of Proposition 2)

|u j (y)| + |v j (y)| ≤ M A j ξ (ν+1)j 0 .
However, using the relation 1ξ = ξ ξ ν+1 , we obtain the following estimates: Lemma 2 Let ξ 0 > 0 given. For all j ≥ 1, introduce a j and b j , such that

u j (y) = (1 -ξ(y))(1 -λ) ξ νj+1 a j (ξ(y)), v j (y) = (1 -ξ(y))(1 -λ) ξ νj b j (ξ(y)).
The functions a j and b j are bounded, analytic functions of ξ, for ξ ∈ [ξ 0 , 1]. They satisfy

|a j (ξ)| ≤ AR j , |b j (ξ)| ≤ AR j , (18) 
where R depends only on λ.

We prove Lemma 2 by recurrence. Assume that this relation is true for j. We have the relations

duj+1 dy = (1 -λ)(b j -(λ -1)a j ) ξ ξ ν(j+1)+2 dvj+1 dy = (1 -λ)(λ + 1)(b j -(λ -1)a j ) ξ ξ ν(j+1)+1
from which we deduce, using the limit 0 at ξ → 1

u j+1 (y) = (1 -λ) ξ(y) 1 b j (η) -(λ -1)a j (η) η ν(j+1)+2 dη and v j+1 (y) = (1 -λ)(λ + 1) ξ(y) 1 b j (η) -(λ -1)a j (η) η ν(j+1)+1 dη
We thus deduce that ξ ν(j+1) v j+1 (y) and ξ ν(j+1)+1 u j+1 (y) are bounded functions when ξ ∈]0, 1]. Moreover, if we assume |b j | ≤ AR j and |a j | ≤ AR j , then

|u j+1 | ≤ AR j |1 -λ|(|λ -1| + 1) 1 ξ dη η ν(j+1)+2 |v j+1 | ≤ AR j |1 -λ||λ + 1|(|λ -1| + 1) 1 ξ dη η ν(j+1)+1 .
We end up with

|u j+1 | ≤ |λ -1|AR j (|λ-1|+1) ξ ν(j+1)+1 1-ξ ν(j+1)+1 ν(j+1)+1 , |v j+1 | ≤ |λ -1|AR j |λ + 1| (|λ-1|+1) ξ ν(j+1) 1-ξ ν(j+1) ν(j+1) . As 1-ξ a a ≤ 1 -ξ, ξ ∈ [0, 1], we get |u j+1 | ≤ |λ -1|AR j (|λ-1|+1)(1-ξ(y)) ξ ν(j+1)+1 , |v j+1 | ≤ AR j |λ -1||λ + 1| (|λ-1|+1)(1-ξ(y)) ξ ν(j+1)
. Consider

R λ = (|λ -1| + 1)max(1, |λ + 1|). ( 19 
)
The previous inequalities become

|u j+1 | ≤ AR j+1 λ (1 -ξ(y))|λ -1| ξ ν(j+1)+1 , |v j+1 | ≤ AR j+1 λ (1 -ξ(y))|λ -1| ξ ν(j+1) ,
hence we proved the inequality for j + 1.

The inequality is true for j = 1, hence the end of the proof of Lemma 2, where we may choose the value of R for λ ∈ [ 1 2 , 3 2 ] as R = 15 4 . Finally we have the equalities, for all y such that ξ(y) ≥ ξ 0 :

         U + (y, ε) = 1 + (1-ξ(y))(1-λ) ξ(y) j≥1 a j (ξ(y))( ε (ξ(y)) ν ) j = 1 + (1-ξ(y))(1-λ) ξ(y) ( ε (ξ(y)) ν ) j≥0 a j+1 (ξ(y))( ε (ξ(y)) ν ) j V + (y, ε) = λ -1 + (1 -λ)(1 -ξ(y)) j≥1 b j (ξ(y))( ε (ξ(y)) ν ) j = λ -1 + (1 -λ)(1 -ξ(y))( ε (ξ(y)) ν ) j≥0 b j+1 (ξ(y))( ε (ξ(y)) ν ) j .
Using the estimates [START_REF] Poncet | Nonlinear instability of the two-dimensional striation model about smooth steady states accepted for[END_REF] and the change of variable [START_REF] Levinson | The asymptotic nature of solutions of linear systems of differential equations Duke Math[END_REF], for ζ < R -1 the series

a j ( ε 1 ν ζ 1 ν
)ζ j is normally convergent and the following functions are well defined

Ũ(y, ε) = 1 + (1-λ)(1-ξ(y)) ξ(y) ζA(ζ, ε) Ṽ (y, ε) = λ -1 + (1 -λ)(1 -ξ(y))ζB(ζ, ε).
It is straightforward to check that Ũ and Ṽ solve system [START_REF] Helffer | Lafitte Asymptotic growth rate for the linearized Rayleigh equation for the Rayleigh-Taylor instability Asympt[END_REF] and that we have, for ξ(y

) ≥ ξ 0 , ζ(ξ) ≤ ε ξ ν 0 , hence for 4 ε < ε 0 = ξ ν 0 2R
and ξ(y) ≥ ξ 0 we have Ũ(y, ε) = U + (y, ε) and Ṽ (y, ε) = V + (y, ε). We extended the solution constructed for ξ(y) ∈ [ξ 0 , 1[ to the region ζ < 1 R . This proves Proposition 2.

2 The solution in the low density region

Construction of the bounded solution

In this section, we obtain the family of solutions of (9) bounded by |y| A e εy when y → -∞, that is in the low density region ξ → 0. Introduce the new variable t = -εy. Commonly, I call this solution the hypergeometric solution, because it has been observed that, in the model case ρ 0 (x) = (-x -1) -1 ν studied in [START_REF] Cherfils | Asymptotic results for the Rayleigh-Taylor instability[END_REF] as well as in [START_REF] Goncharov | Self consistent stability analysis of ablation fronts in inertial confinement fusion[END_REF], the Rayleigh equation rewrites as the hypergeometric equation. Introduce

τ (s, ε) = - d ds (ξ(- s ε ))(ξ(- s ε )) -1 = ξ ν ε (1 -ξ) = 1 νs + ε 1 ν S ′ (s, ε).
We define the operators R ε , K ε and Kλ

ε through R ε (g)(s) = [ ∞ s τ (y, ε)e -2y (ξ(- y ε )) -λ g(y, ε)dy]e 2s (ξ(- s ε )) λ , (20) 
K ε (g)(t) = (1 -λ) Kλ ε (g)(t) = 1 -λ 2 4 +∞ t τ (s, ε)R ε (g)(s, ε)ds. ( 21 
)
These operators rewrite

R ε (g)(s, ε) = +∞ s ( 1 νy +ε 1 ν S ′ (y, ε))e -2(y-s) s -λ ν y λ ν exp(ε 1 ν λ(S(y)-S(s)))g(y, ε)dy. K ε (g)(t, ε) = 1 -λ 2 4 +∞ t ( 1 νs + ε 1 ν S ′ (s, ε))R ε (g)(s, ε)ds.
We have the inequalities, for g uniformly bounded, (and λ < ν, which implies

ξ(-s ε ) ν-λ ≤ ξ(-t ε ) ν-λ for t ≥ s) |R ε (g)(s)| ≤ ||g|| ∞ [ +∞ s 1 ε ξ ν-λ (1 -ξ)e -2y dy]e 2s ξ λ ≤ ||g|| ∞ ξ ν ε (22) |K ε (g)(t)| ≤ |λ 2 -1| 4 ||g|| ∞ ∞ t τ (s, ε) ξ ν ε ds ≤ |λ 2 -1| 4ν ||g|| ∞ ξ ν ε . (23) 
Moreover, the following inequality is true:

|g(s, ε)| ≤ C p ( ξ ν ε ) p ⇒ |K ε (g)(t, ε)| ≤ |λ 2 -1| 8ν(p + 1) C p ( ξ ν ε ) p+1 . ( 24 
)
In a similar way, we introduce

K λ 0 (g)(t) = 1-λ 2 4 +∞ t 1 νs R λ 0 (g)(s)ds R λ 0 (g)(s) = +∞ s 1 νy e -2(y-s) s -λ ν y λ ν g(y)dy.
Let ε 0 > 0 be fixed and 0 < ε < ε 0 . Under suitable assumptions on g (we can for example consider g in C ∞ ([t 0 , +∞[) such that |∂ p g| ≤ C p y α-p for all p), the operators K ε , R ε , K 0 , R 0 are well defined. Moreover, one proves that

g(t, λ, ε) = n≥0 K (n) ε (1)(t, ε) (25) 
g 0 (t, λ) = n≥0 K (n) 0 (1)(t) (26) 
are normally converging series on [t 0 , +∞[, and that we have:

g = 1 + K ε (g), g 0 = 1 + K 0 (g 0 ). ( 27 
)
Moreover, we know that g is defined on R, because the series

(|λ 2 -1|A) p p! ( ξ ν ε ) p converges and is majorated by exp(|λ 2 -1|A ξ ν ε )
, from the inequality (24). We obtain the inequalities

|g 0 (t, λ)| ≤ exp( |λ 2 -1| 4ν 2 t ), |g(t, λ, ε)| ≤ exp( |λ 2 -1| 8ν ζ -1 ). ( 28 
)
We cannot thus consider the limit ζ → 0 in the equalities containing g as ( 28). We shall assume that λ belongs to a compact set and that λ ≥ 1 2 . We prove Proposition 3 Let g be defined through (25). The family of solutions of the system (11) on (u, w) which is bounded by |y| A e εy when y → -∞ is given by

u(y, ε) = C(F (t, λ, ε)+G(t, λ, ε)), ξ(y)w(y, ε) = v(y, ε) = Cξ(y)[(λ-1)F (t, λ, ε)+(λ+1)G(t, λ, ε)]
where C is a constant, t ∈ [t 0 , +∞[, t = -εy and F and G are given by equalities (30) and (31) below. We have the estimates, for t ∈ [t 0 , ε[

|g(t, λ, ε) -g 0 (t, λ)| ≤ C 0 ε 1 ν |g 0 (t, λ)| |u(- t ε , ε) -u 0 (- t ε , ε)| ≤ C 0 ε 1 ν |u 0 (- t ε , ε)| |v(- t ε , ε) -v 0 (- t ε , ε)| ≤ C 0 ε 1 ν |v 0 (- t ε , ε)|
proof The system [START_REF] Helffer | Lafitte The Semiclassical Regime for Ablation Front Models Arch[END_REF] rewrites on F and G given by Proposition 3:

F ′ (t, λ, ε) = F (t, λ, ε) -1 2 ( 1 νt + ε 1 ν S ′ (t, ε))[(λ -1)F (t, λ, ε) + (λ + 1)G(t, λ, ε)] G ′ (t, λ, ε) = -G(t, λ, ε) + 1 2 ( 1 νt + ε 1 ν S ′ (t, ε))[(λ -1)F (t, λ, ε) + (λ + 1)G(t, λ, ε)].
(29) A non exponentially growing solution of the system (29) is obtained through the following procedure. We denote by g(t, λ, ξ) the function

g(t, λ, ε) = G(t, λ, ε)e t (ξ(-t ε )) λ+1 2 ( ε ν ) -λ+1 2ν = G(t, λ, ε)e t t -1+λ 2ν exp(-ε 1 ν 1+λ 2 S(t, ε)). (30) 
We first get, from the fact that F is bounded when t → +∞, that

F (t, λ, ε)e -t t λ-1 2ν e ε 1 ν λ-1 2 S(t,ε) = F (t, λ, ε)e -t (ξ(-t ε )) 1-λ 2 ( ε ν ) λ-1 2ν = λ+1 2 +∞ t ( 1 νs + ε 1 ν S ′ (s, ε))s λ-1 2ν e ε 1 ν λ-1 2 S(s,ε) e -s G(s, λ, ε)ds = -λ+1 2 +∞ t ξ -1 d ds (ξ)g(s, λ, ε)e -2s ξ -λ ( ε ν ) λ ν ds = -λ+1 2 +∞ t ξ -1 d ds (ξ)ξ 1-λ 2 ( ε ν ) λ-1 2ν ds.
(31) We deduce from the system (29) the equality

d dt (G(t, λ, ε)e t t -1+λ 2ν exp(-ε 1 ν 1 + λ 2 S(t, ε))) = λ -1 2 ( 1 νt +ε 1 ν S ′ )e t t -1+λ 2ν exp(-ε 1 ν 1 + λ 2 S(t, ε))F (t, λ, ε).
Under the assumptions g bounded and satisfies the condition

lim t→∞ g(t, λ, ε) = 1 (32)
one gets the equality

g(t, λ, ε) -1 = K ε (g)(t, ε). ( 33 
)
Using the usual Volterra method and inequalities (23), ( 24) and ( 28), we deduce that the only solution of (33) satisfying assumptions (32) is given through (25).

One gets G through (30) then F thanks to

F (t, λ, ε)e -t ξ 1-λ 2 ( ε ν ) λ-1 2ν = ( ε ν ) λ ν λ + 1 2 ∞ t τ (s, ε)e -2s ξ -λ g(s, λ, ε)ds. ( 34 
)
The first part of Proposition 3 is proven. Denote by (u 0 , w 0 ) the leading order term in ε of (u, w) when t and λ are fixed. Introduce F 0 (t, λ) and G 0 (t, λ) through the equalities

u 0 (t, λ) = F 0 (t, λ) + G 0 (t, λ), w 0 (t, λ) = (λ -1)F 0 (t, λ) + (λ + 1)G 0 (t, λ). The functions (F 0 (t, λ), G 0 (t, λ)) are solution of dF0 dt (t, λ) = F 0 (t, λ) -λ-1 2νt F 0 (t, λ) -λ+1 2νt G 0 (t, λ) dG0 dt (t, λ) = -G 0 (t, λ) + λ-1 2νt F 0 (t, λ) + λ+1 2νt G 0 (t, λ).
The second part of Proposition 3 comes from the following estimates on the operators R ε and K ε , valid for ε ≤ ε 0 and t ≥ t 0 > 0:

|R ε (f ) -R λ 0 (f )| ≤ C 1 ε 1 ν |R λ 0 (f )|, |K ε (g) -K λ 0 (g)| ≤ C 2 ε 1 ν |K λ 0 (g)|, (35) 
from which we deduce the uniform estimates for g given by (30) solution of ( 33)

|g(t, λ, ε) -g 0 (t, λ)| ≤ C 3 ε 1 ν |g 0 (t, λ)|, t ≥ t 0 , ε ≤ ε 0 (36)
because the Volterra series associated with K 0 is normally convergent in [t 0 , +∞[. This ends the proof of Proposition 3.

Note that the previous estimates, as well as the behavior of the solution and the operator R 0 , are valid only for t 0 > 0, because, for example, R λ 0 (1)(s) ≃ 1 when s → 0. The integral defining K λ 0 is nevertheless convergent at +∞, because for t ≥ t 0 we have the equality

2νsR λ 0 (1)(s) = 1 - ∞ s 1 y ( y s )
1 ν e -2(y-s) dy.

Construction of the hypergeometric solution for ε = 0

We prove in this Section Lemma 3 The solution (F 0 (t, λ), G 0 (t, λ)) constructed through (30), ( 33), (34) for ε = 0 is given by

F 0 (t, λ) = e -t (U 0 (t, λ) + 1 2 dU0 dt (t, λ)) G 0 (t, λ) = e -t (U 0 (t, λ) -1 2 dU0 dt (t, λ)) where U 0 (t) = 2 -λ+1 2ν U (-1+λ 2ν , -1 ν , 2t
) the function U (a, b, T ) being the Logarithmic Kummer's solution of the confluent hypergeometric equation (see [START_REF] Abramovitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF]). This allows to obtain the limit of the (F 0 (t, λ), G 0 (t, λ)) for t → 0. The equation satisfied by

U 0 (t, λ) = u 0 (t)e t is tU ′′ 0 -(2t + 1 ν )U ′ 0 + λ + 1 ν U 0 = 0. ( 37 
)
Introducing T = 2t, we recognize (see [START_REF] Abramovitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF]) the equation for hypergeometric confluent functions for b = -1 ν and a = -1+λ 2ν :

T d 2 U 0 dT 2 -( 1 ν + T ) dU 0 dT + 1 + λ 2ν U 0 = 0.
The family of solutions of this Kummer's equation is generated by two functions M (a, b, T ) and U (a, b, T ). Note that

T 1-b M (1 + a -b, 2 -b, T
) is also a solution of (37), independant of M (a, b, T ), hence U (a, b, T ) can be expressed using M (a, b, T ) and T 1-b M (1 + ab, 2b, T ). The family of solutions of (37) which go to zero when T → +∞ is generated by U (a, b, T ), called the logarithmic solution. It is the subdominant solution of the hypergeometric equation.

The expression of the subdominant solution U (a, b, T ) is the following:

U (a, b, T ) = π sin πb [ M (a, b, T ) Γ(1 + a -b)Γ(b) -T 1-b M (1 + a -b, 2 -b, T ) Γ(a)Γ(2 -b) ]
where Γ is the usual Gamma function (Γ(s) = ∞ 0 t s e -t dt). The relation between U (a, b, 0) and U ′ (a, b, 0) characterize the subdominant solution of the ordinary differential equation, and this particular solution has been chosen through the limit 5 when z → +∞:

U (a, b, 0) = Γ(1 -b) Γ(1 + a -b) , lim z→+∞ z a U (a, b, z) = 1. ( 38 
)
As we imposed that g(t, ε) → 1 when t → +∞, we get that G 0 (t, λ)e t t -λ+1 2ν → 1 when t → +∞ and that there exists a constant C such that F 0 (t, λ)e t t 1-λ+1 2ν → C when t → +∞. Hence

(F 0 (t, λ) + G 0 (t, λ))e t t -λ+1 2ν → 1. As T a U (a, b, T ) → 1, we get that t -1+λ 2ν U (-1+λ 2ν , -1 ν , 2t) → 2 λ+1 2ν .
We thus obtain the equality

t -1+λ 2ν U 0 (t, λ) = t -1+λ 2ν e t (F 0 (t, λ) + G 0 (t, λ)) = 2 -λ+1 2ν t -1+λ 2ν U (- 1 + λ 2ν , - 1 ν , 2t), hence U 0 (t, λ) = 2 -λ+1 2ν U (- 1 + λ 2ν , - 1 ν , 2t). ( 39 
) Introduce C 0 (λ) = U (- 1 + λ 2ν , - 1 ν , 0) = - π sin π ν Γ(-1 ν )Γ(1 + λ-1 2ν ) = Γ(1 + 1 ν ) Γ(1 + λ-1 2ν ) . (40) 
We get that u 0

(t) = 2 -λ+1 2ν U (-1+λ 2ν , -1 ν , 2t)e -t . As w 0 = λu 0 -du0 dt = ((λ + 1)U 0 -dU0 dt )e -t one deduces G 0 (t, λ) = (U 0 (t, λ) - 1 2 dU 0 dt (t, λ))e -t , F 0 (t, λ) = (U 0 (t, λ) + 1 2 dU 0 dt (t, λ))e -t .
(41) Using [START_REF] Abramovitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF] and (37), we finally obtain

G 0 (t, λ) → 2 -λ+1 2ν C 0 (λ), F 0 (t, λ) → 2 -λ+1 2ν C 0 (λ) when t → 0. ( 42 
)
We deduce the equality

U 0 (0, λ) = 2 1-λ+1 2ν Γ(1 + 1 ν ) Γ(1 + 1-λ 2ν )
,

lim t→+∞ t -1 ν -λ-1 2ν U 0 (t, λ) = 2 1 ν + λ-1 2ν .
Note that we can deduce the expressions of F 0 + G 0 and of G 0 . We thus check that

(F 0 + G 0 )(t, λ)e t = C 0 (M (- 1 + λ 2 , - 1 ν , 2t) -C * (2t) 1 ν +1 M (1 + 1 -λ 2ν , 2 + 1 ν , 2t)) (43) 5 Γ(1-b) Γ(1+a-b) = π sin πbΓ(b)Γ(1+a-b) e t G 0 (t, λ) = C 0 ((M -M ′ )(-1+λ 2 , -1 ν , 2t) -C * (2t) 1 ν +1 (M -M ′ )(1 + 1-λ 2ν , 2 + 1 ν , 2t)) -C 0 C * 2 1 ν (1 + 1 ν )t 1 ν M (1 + 1-λ 2ν , 2 + 1 ν , 2t)). (44) We note that (M -M ′ )(-1+λ 2 , -1 ν , 0) = 1-λ 2 .
We deduce that e t (F 0 +G 0 )(0, λ) = 2 1-1+λ 2ν C 0 (λ) and e t G 0 (0, λ) = 2 -1+λ 2ν C 0 (λ)(1-λ), hence (λ-1)e t (F 0 +G 0 )(0, λ)+ 2e t G 0 (0, λ) = 0. In the next Section, we combine the results of Section 1 and of Section 2.

Precise calculus of the Evans function.

The Wronskian is related to a function independant of the variable t, called the Evans function, introduced below in (45) and denoted by Ev(λ, ε). In the present Section, we shall identify the leading order term in ε of the Evans function, and all the terms of the form ε 1 ν (λ -1) of the Evans function. We shall finish by the calculation of the term of the form ε 2 ν . More precisely, we prove Lemma 4 The function

Ev(λ, ε) = ξ(y 0 )W(y 0 ) (45) is independant of y 0 . It is analytic in λ and in ε 1 ν , ε. Moreover, one has Ev(1, ε) = 2( ε ν ) 1 ν and ∂ λ Ev(1, 0) = 2 1-1 ν Γ(1 + 1 ν ).
This function is called the Evans function of the equation [START_REF] Grenier | On the nonlinear instability of Euler and Prandtl Equations[END_REF].

Using the expressions of d dy (U (-εy, ε)) and d dy u + , we have

εW(y, ε) = u + (y, ε)(-ελU (-εy, ε) + εW (-εy, ε)) -U (-εy, ε)(-ελu + (y, ε) + ε ξ(y) v + (y, ε)) = ε ξ(y) (ξ(y)u + (y, ε)W (-εy, ε) -U (-εy, ε)v + (y, ε)).
Hence we have the following constant function to study, which depends only on λ, ε:

Ev(λ, ε) = ξ(y)W(y) = [ξ(y)u + (y, ε)V (-εy, ε) -ξ(y)v + (y, ε)U (-εy, ε)].
We shall use the equalities, valid for all y 0 (and t 0 ) such that both solutions are defined (which means

y 0 ∈ [-3 4ενR , -1 2ενR ]) Ev(λ, ε) = ξ(y 0 )W(y 0 ) = (ξW)(- t 0 ε ).
We begin with the Lemma 5 The Evans function has an analytic expansion in λ, which coefficients depend analytically on ε and ε

1 ν .
For the precise study of the different terms of Ev(λ, ε), we introduce

ξ = ξ(- t ε ), ζ = ε ξ ν , ζ 0 = νt = ζ(t, 0), for t ≥ t 0 > 0.
We check that the function Ev(λ, ε) is analytic in λ and has an analytic expansion in ε 1 ν and ε thanks to the equality

[ν] p=0 1 ξ ν+1-p + 1 1 -ξ + 1 -ξ ν-[ν] ξ ν-[ν] (1 -ξ) = 1 ξ ν+1 (1 -ξ)
which implies that the relation between t and ζ is analytic in ε and ε 1 ν . Assume from now on λ ≥ 1 2 and ν > 2 and replace ξ(y) by ε

1 ν ζ -1 ν .
Using this Lemma, there exists two functions B 0 (ε) and C 0 (λ, ε) such that

Ev(λ, ε) = Ev(1, ε) + B 0 (ε)(λ -1) + C 0 (λ, ε)(λ -1) 2 .
(46)

Direct relations Considering the limit in (52) for ε = 0, we obtain

Ev(λ, 0) = (λ -1)e t (F 0 + G 0 )(t, λ)[-1 + (1 -λ)νtA(νt, 0) + νtB(νt, 0)].
As this quantity is independant of t, we consider the limit when t → 0, hence we deduce that

Ev(λ, 0) = -(λ -1)2 1-λ+1 2ν C 0 (λ). (47) 
Remark that this implies the identity

(λ-1)e t (F 0 +G 0 )(t, λ)[-1+(1-λ)νtA(νt, 0)+νtB(νt, 0)] = -2 1-λ+1 2ν C 0 (λ)(λ-1) (48) which rewrites e t (F 0 + G 0 )(t, λ)[-1 + (1 -λ)νtA(νt, 0) + νtB(νt, 0)] = -2 1-λ+1 2ν C 0 (λ).
In a similar way, we check that, for λ = 1, U + = 1 and V + = 0, and g(t, 1, ε) = 1, which implies

G(t, 1, ε) = e -t ( ν ε ) -1 ν ξ -1 = e -t ( ζ ν ) 1 ν (49) 
from which one deduces

Ev(1, ε) = 2e t G(t, 1, ε)ξ = 2( ε ν ) 1 ν . (50) 
From ( 46), the unique root λ(ε) of Ev(λ, ε) in the neighborhood of λ = 1 satisfies

λ(ε) -1 = - Ev(1, ε) B 0 (ε) + C 0 (λ(ε), ε)(λ(ε) -1)
.

The two first terms of the expansion of λ(ε) -1 in terms of ε 1 ν under the assumption ν > 2 are thus given through

λ(ε) -1 = - Ev(1, ε) B 0 (ε) + C 0 (1, 0)(λ(ε) -1) + o(ε 2 ν ). As λ(ε) -1 = -Ev(1,ε) B0(0) + o(ε 1 ν ), we write λ(ε) -1 = - Ev(1,ε) B0(ε)-C0(1,0)(B0(0)) -1 Ev(1,ε) + o(ε 2 ν ) = -Ev(1,ε) B0(ε) -C 0 (1, 0)(B 0 (0)) -3 (Ev(1, ε)) 2 + o(ε 2 ν ). ( 51 
)
One is thus left with the calculus of C 0 (1, 0) and of B 0 (ε) up to the order 1. For the computation of B 0 (ε), we need the behavior of the solutions of the overdense system for λ = 1.

As in Section 1, we introduce a j (ξ) = a 0 j + ξa

1 j + O(ξ 2 ) and b j (ξ) = b 0 j + ξb 1 j + O(ξ 2 ). We recall that ζA(ζ, ε) = ∞ j=1 a j (ξ)ζ j and ζB(ζ, ε) = ∞ j=1 b j (ξ)ζ j . Introduce u(ζ) = j≥1 ζ j-1 b 0 j , v(ζ) = j≥1 ζ j-1 jb 1 j , w(ζ) = j≥1 ζ j-1 ja 0 j , k(ζ) = j≥1 ζ j-1 ja 1 j .

Lemma 6

The following relations are true

e t (F + G)(t, 1, ε) -e t (F 0 + G 0 )(t, 1) = -ε 1 ν ν-1 + O(ε 2 ν ) 2e t G(t, 1, ε) -2e t G 0 (t, 1) = -2 ε 1 ν ν-1 + O(ε 2 ν ) ζ(t, ε) -ζ 0 (t) = -ξ ν ν-1 ζ ζA(ζ, ε)(1 -ξ(y)) -ζ 0 A(ζ 0 , 0) = ξζ[k(ζ) -w(ζ) -ν ν-1 (ζw ′ (ζ) + w(ζ))] + O(ε 2 ν ) ζB(ζ, ε)(1 -ξ(y)) -ζ 0 B(ζ 0 , 0) = ξζ[v(ζ) -u(ζ) -ν ν-1 (ζu ′ (ζ) + u(ζ))] + O(ε 2 ν )
For the computation of C 0 (1, 0), one has

C 0 (1, 0) = -lim λ→1,t→0 e t (F 0 + G 0 )(t, λ) -e t (F 0 + G 0 )(t, 1) λ -1 .
From these two results, one obtains the following

Proposition 4 Introduce the function R 0 (t) = 1 2ν ln t -K1 0 (1)(t) -1 2 B 0 (0)t -1 ν
, where K1 0 (1) has been introduced in (21)and note that the terms B 0 and C 0 which have been introduced in (46) are calculated through

B 0 (0) = -2 +∞ 0 s 1 ν e -2s ds = -2 -1 ν Γ(1 + 1 ν )
We have

B 0 (ε) = B 0 (0) + ε 1 ν ν -1 + 2( ε ν ) 1 ν lim t→0 R 0 (t), and 
C 0 (1, 0) = +∞ 0 s 1 ν e -2s ds -2 ν +∞ 0 ln se -2s ds + 1 ν +∞ 1 s 1 ν -1 e -2s K1 0 (1)(s)ds + B0(0) 2ν 1 0 1-e -2s s ds + 1 ν 1 0 s 1 ν -1 e -2s [ 1 2ν ln s -R 0 (s)]ds
Let us begin with the proof of Proposition 4. We rewrite the Evans function as

Ev(λ, ε) = [(λ -1)e t (F + G)(t, λ, ε) + 2e t G(t, λ, ε)](ξ(y) + (1 -λ)(1 -ξ)ζA(ζ, ε)) -e t (F + G)(t, λ, ε)(λ -1 + (1 -λ)(1 -ξ(y))ζB(ζ, ε)).
(52) Remember that we have

(λ -1)[B 0 (ε) + C 0 (λ, ε)(λ -1)] = Ev(λ, ε) -Ev(1, ε).
We thus deduce the equality

B 0 (ε) + C 0 (λ, ε)(λ -1) = ξ(y) 2e t G(t,λ,ε)-2e t G(t,1,ε) λ-1 -(1 -ξ(y))[e t (F + G)(t, λ, ε)(1 -ζB(ζ, ε)) + 2e t G(t, λ, ε)ζA(ζ, ε)] +(1 -λ)(1 -ξ(y))ζA(ζ, ε)e t (F + G)(t, λ, ε) Recall that G(t, λ, ε)e t = ( ζ ν )
λ+1 2ν g(t, λ, ε) and use g(t, 1, ε) = 1. We use also the relation (34) to get

(F + λ+1 2λ G)(t, λ, ε)e -t ( ζ ν ) λ-1 2ν = 2 ∞ t ξ -λ ( ε ν ) λ ν e -2s g(s, λ, ε)ds -λ+1 2λ ∞ t ξ -λ ( ε ν ) λ ν e -2s [ dg ds -2(g -1)
]ds (53) Note that we need two terms of G and of F + G, and that we use

dg ds = (1 -λ) d ds ( Kλ ε (g)), g -1 = (1 -λ) Kλ ε (g).
This will contribute to the term in C. Rewrite the first term of (52) as

ξ(y) 2e t G(t, λ, ε) -2e t G(t, 1, ε) λ -1 = 2( ε ν ) 1 ν [ ( ζ ν ) λ-1 2ν -1 λ -1 -( ζ ν ) λ-1 2ν Kλ ε (g)].
Its limit when λ goes to 1 is 2( ε ν )

1 ν [ 1 2ν ln( ζ ν ) -K1 ε (1) 
]. Hence we get the identity

B 0 (ε) = -(1 -ε 1 ν ζ -1 ν )[e t (F + G)(t, 1, ε)(1 -ζB 1 (ζ, ε)) + 2e t G(t, 1, ε)ζA 1 (ζ, ε)] +2( ε ν ) 1 ν [ 1 2ν ln( ζ ν ) -K1 ε (1) 
] (54) and the right hand side is independant on t. Using Lemma 6, we obtain

B 0 (ε) = 2( ε ν ) 1 ν [ 1 2ν ln( ζ ν ) -K1 ε (1)(t)] +(1 -ε 1 ν ζ -1 ν )(-ε 1 ν ν-1 )(1 -ζB 1 (ζ, 0) + 2ζA 1 (ζ, 0) + o(ε 1 ν )) +(1 -ε 1 ν ζ -1 ν )[e t (F 0 + G 0 )(t, 1)(1 -ζB 1 (ζ, ε)) + 2e t G 0 (t, 1)ζA 1 (ζ, ε)] (55) from which one deduces B 0 (ε) = 2( ε ν ) 1 ν [ 1 2ν ln( ζ ν ) -K1 ε (1)] -ε 1 ν ν-1 (1 -ζB 1 (ζ, 0) + 2ζA 1 (ζ, 0) + o(ε 1 ν )) -(1 -ε 1 ν ζ -1 ν )B 0 (0) -[e t (F 0 + G 0 )(t, 1)(ζ(B 1 (ζ, 0) -B 1 (ζ, ε)) + 2e t G 0 (t, 1)ζ(A 1 (ζ, ε) -ζA 1 (ζ, 0))].
Using the relations G 0 (t, 1) = ( ζ0 ν )

1 ν e -t and F 0 (t, 1) = 2e t +∞ t s 1 ν e -2s ds, one deduces that G 0 (t, 1)and F 0 (t, 1) goes to a constant when t → 0. Hence one gets

B 0 (ε) = B 0 (0) + ( ε ν ) 1 ν lim t→0 [ 1 ν ln t -2 K1 0 (1)(t) -t -1 ν B 0 (0))]. ( 56 
)
The second part consists in the calculus of C 0 (1, 0). Considering now ε = 0 in (52), one obtains the two identities

B 0 (0) = -e t (F + G)(t, 1, 0)(1 -ζ 0 B 1 (ζ 0 , 0)) -2e t G(t, 1, 0)ζ 0 A 1 (ζ 0 , 0), ζ 0 = νt. B 0 (0) + C 0 (λ, 0)(λ -1) = -e t (F 0 + G 0 )(t, λ)(1 -ζ 0 B(ζ 0 , 0)) -2e t G 0 (t, λ)ζ 0 A(ζ 0 , 0)) -(λ -1)ζ 0 A(ζ 0 , 0)e t (F 0 + G 0 )(t, λ).
Hence

C 0 (λ, 0)(λ -1) = -(λ -1)ζ 0 A(ζ 0 , 0)e t (F 0 + G 0 )(t, λ) +e t (F 0 + G 0 )(t, 1)(ζB(ζ, 0) -ζB 1 (ζ, 0)) +(1 -ζ 0 B(ζ 0 , 0))(e t (F 0 + G 0 )(t, 1) -e t (F 0 + G 0 )(t, λ)) +2e t G 0 (t, 1)(ζA 1 (ζ, 0) -ζA(ζ, 0)) +ζ 0 A(ζ 0 , 0)(2e t G 0 (t, 1) -2e t G 0 (t, λ)).
We get (as we work for ε = 0, we should write ζ 0 but we drop this notation and we use

ζ = νt) C 0 (λ, 0) = -ζA(ζ, 0)e t (F 0 + G 0 )(t, λ) -e t (F 0 + G 0 )(t, 1)ζ B1(ζ,0)-B(ζ,0) λ-1 -(1 -ζB(ζ, 0)) e t (F0+G0)(t,λ)-e t (F0+G0)(t,1) λ-1 -2e t G 0 (t, λ)ζ A(ζ,0)-ζA1(ζ,0) λ-1
-ζA(ζ, 0) 2e t G0(t,λ)-2e t G0(t,1) λ-1

.

In this equality, one only needs the value for λ → 1, and it is independant of ζ.

We thus consider the limit when λ → 1 and ζ → 0, hence one obtains

C 0 (1, 0) = -lim ζ→0,λ→1 e t (F 0 + G 0 )(t, λ) -e t (F 0 + G 0 )(t, 1) λ -1 .
Equality (53) rewrites

(F + λ+1 2λ G)(t, λ, ε)e -t ( ζ ν ) λ-1 2ν = -λ+1 2λ ∞ t (ε λ ν ν -λ ν ξ -λ ) d ds [e -2s g(s, λ, ε)]ds +(λ -1) 1+λ 2λ ∞ t (ε λ ν ν -λ ν ξ -λ ) d ds [ Kλ ε (g)e -2s
]ds Hence, considering the limit ε → 0, one obtains

(F 0 + λ+1 2λ G 0 )(t, λ)e -t ( ζ ν ) λ-1 2ν = -λ+1 2λ ∞ t ( ζ ν ) λ ν d ds [e -2s ]ds +(λ -1) 1+λ 2λ ∞ t ( ζ ν ) λ ν d ds [ Kλ 0 (g 0 )e -2s ]ds 20 
The value for λ = 1 is thus (

F 0 + G 0 )(t, 1)e -t = 2 +∞ t ( ζ ν )
1 ν e -2s ds. Hence

e -t [( 1-λ 2λ G 0 )(t, λ)( ζ ν ) λ-1 2ν + (F 0 + G 0 )(t, λ)( ζ ν ) λ-1 2ν -(F 0 + G 0 )(t, 1)] = λ+1 λ ∞ t ( ζ ν ) 1 ν (( ζ ν ) λ-1 ν -1)e -2s ds +(λ -1) 1+λ 2λ ∞ t ζ λ ν d ds [ Kλ 0 (g 0 )e -2s ]ds
Dividing by λ -1, one deduces

e -t [-1 2λ G 0 (t, λ)( ζ ν ) λ-1 2ν + (F0+G0)(t,λ)-(F0+G0)(t,1)
λ-1

( ζ ν ) λ-1 2ν + (F 0 + G 0 )(t, 1) ( ζ ν ) λ-1 2ν -1 λ-1 ] = λ+1 λ ∞ t ( ζ ν ) λ ν -1 λ-1 e -2s ds + 1+λ 2λ ∞ t ( ζ ν ) λ ν d ds [ Kλ 0 (g 0 )e -2s ]ds
We consider the limit when λ → 1, and recalling that for ε = 0 one has ζ ν = s, denoting by H(t, λ) = (F0+G0)(t,λ)-(F0+G0)(t,1) λ-1

, we obtain

e -t [-1 2 G 0 (t, 1) + H(t, 1) + (F 0 + G 0 )(t, 1) 1 2ν ln ζ ν ] = 2 ∞ t ln se -2s ds + ∞ t s 1 ν d ds [ K1 0 (1)e -2s ]ds
Using again the integration by parts on the last term hence one gets

e -t [-1 2 G 0 (t, 1) + H(t, 1) + (F 0 + G 0 )(t, 1) 1 2ν ln ζ ν ] = 2 ∞ t ln se -2s ds -t 1 ν K1 0 (1)(t)e -2t - ∞ t d ds (s 1 ν ) K1 0 (1)e -2s ds
We notice that the function R 0 (t) = -1 ν ln t + 2 K1 0 (1)(t) + t -1 ν B 0 (0) has a finite limit when t goes to zero, according to (56). We have the equality K1

0 (t) = 1 2 R 0 (t) + 1 2ν ln t -1 2 B 0 (0)t -1 ν . We deduce that 1 t d ds (s 1 ν ) K1 0 (1)e -2s ds = 1 t d ds (ζ 1 ν )[ 1 2 R 0 (s) + 1 2ν ln s -1 2 B 0 (0)s -1 ν ]e -2s ds = ν 1 ν -1 1 t s 1 ν -1 [ 1 2 R 0 (s) + 1 2ν ln s -1 2 B 0 (0)s -1 ν ]e -2s ds
In this last term, the only term which matters when t → 0 is the term

- 1 2 B 0 (0)ν 1 ν -1 1 t s -1 e -2s ds = - 1 2 B 0 (0)ν 1 ν -1 [ 1 t e -2s -1 s ds -ln t]. Note that B 0 (0) = -2 +∞ 0 s 1 ν e -2s ds. One obtains B 0 (0) = - ∞ 0 ( a 2 ) 1 ν e -a da = -2 -1 ν Γ(1 + 1 ν ).

Reduction of the Evans function

Lower order terms Recall that the operator K1 ε (1) is defined through (21). We prove the following lemma of reduction:

Proof of Lemma 6 It is enough to prove that the relation giving ζ is

- t ε = C - 1 νξ ν - 1 (ν -1)ξ ν-1 -ξ 2-ν R(ξ) hence we deduce t = -Cε + ζ ν + ξ ζ ν -1 -R(ξ)ξ 2 ζ.
We thus obtain t = ζ0 ν , hence

ζ 0 -ζ ν = ξ ζ ν -1 + O(ξ 2 )ζ. We deduce that w(ζ) -w(ζ 0 ) = (ζ -ζ 0 )w ′ (ζ 0 ) + O((ζ -ζ 0 ) 2 ), hence w(ζ) - w(ζ 0 ) -(ζ -ζ 0 )w ′ (ζ 0 ) = 0(ε 2 ν ) and w(ζ) -w(ζ 0 ) -(ζ -ζ 0 )w ′ (ζ) = 0(ε 2 ν ). We use e t G(t, λ, ε) = ( ε ν ) λ+1 2ν ξ -λ+1 2 g(t, λ, ε), hence for λ = 1 we obtain e t G(t, 1, ε) = η -1 .
The equality giving F (t, 1, ε) being

e -t F (t, 1, ε) = +∞ t τ (s, ε)e -2s η(s, ε) -1 ds = -e -2t η(t, ε) -1 +2
+∞ t e -2s η(s, ε) -1 ds, one obtains

e t (F + G)(t, 1, ε) -e t (F 0 + G 0 )(t, 1) = 2e 2t ∞ t e -2s ( 1 η(s, ε) - 1 η(s, 0) )ds. Similarily e t (2G(t, 1, ε) -2G 0 (t, 1)) = 2 η(s, ε) [1 - η(s, ε) η(s, 0) ].
Using the relation

1 η(t, ε) ν (1 + ν ν -1 ε 1 ν η(t, ε) + O(ε α )) = 1 η(t, 0) ν one obtains η(t, ε) η(t, 0) -1 = 1 ν -1 ε 1 ν η(t, 0) + O(ε α ).
This gives directly the two equalities of Lemma 6.

Limit for large k of the growth rate

Recall that was proven in [START_REF] Helffer | Lafitte Asymptotic growth rate for the linearized Rayleigh equation for the Rayleigh-Taylor instability Asympt[END_REF] the following estimate on any value of γ such that there exists a solution of ( 9) associated with λ = gk γ 2 and ε = kL 0 :

γ → Λ = g L 0 ν ν (ν + 1) ν+1 when k → +∞.
If we compare with [START_REF] Lafitte | Sur la phase linéaire de l'instabilité de Rayleigh-Taylor Séminaire à l'Ecole Polytechnique[END_REF], one may see the difference between the result for L 0 → 0 when k is fixed and the result for L 0 > 0 fixed and k → +∞. Note for example that the limit of √ gk

1 + ( kL0 ν ) 1 ν Γ(1 + 1 ν )
when k → +∞ is +∞ because ν > 1. This is not surprising because we did not get the lower order terms up to the order ε of the expansion of λ. Remark that the term in ε comes from the terms in ε in the functions A(ζ, ε) and B(ζ, ε).

We have the following result (according to [10])

Lemma 7 There exists k * > 0 such that, for all k ≥ k * , there exists a real γ(k) and a non zero solution u(x)e iky+γ(k)t of the Rayleigh equation ( 4) such that

Λ 2 < γ(k) < Λ.
We have the following behavior of the eigenmode

||ρ 1 2 0 u|| + ||ρ 1 2 0 u ′ || + ||u|| + ||u ′ || + ||u ′′ || < +∞
As the result of this Lemma is important for the nonlinear analysis, we rewrite an idea of the proof, based on Remark 8.1 of [START_REF] Helffer | Lafitte Asymptotic growth rate for the linearized Rayleigh equation for the Rayleigh-Taylor instability Asympt[END_REF]. We denote by L 2

ρ 1 2 0
the space of functions u such that ρ 1 2 0 u ∈ L 2 (IR). Finding γ is equivalent to finding 0 as an eigenvalue (in

L 2 (IR)) of - 1 k 2 ρ -1 2 0 d dx (ρ 0 d dx ρ -1 2 0 ) + 1 - g γ 2 k 0 (x).
This operator rewrites -

1 k 2 d 2 dx 2 + 1 -g γ 2 k 0 (x) + k -2 W 0 (x) where W 0 (x) = 1 2 k ′ 0 (x) + 1 4 (k 0 (x)) 2 , which is bounded when ρ ′′ 0 ρ0 is bounded (or equivalently when k ′ 0 is bounded). We introduce the operator Q = -1 k 2 ρ -1 2 0 d dx (ρ 0 d dx ρ -1 2 
0 )+1, which is coercive, thanks to the Poincare estimates, for k large enough. The eigenvalue problem rewrites

γ 2 g ∈ σ p (Q -1 2 k 0 Q -1 2 ).
Under the (natural) hypothesis that k 0 has a nondegenerate minimum L 0 , one deduces that for k large enough one has at least a value of γ(k) such that L 0 < g (γ(k)) 2 < 4L 0 using usual results on semiclassical Schrodinger operators which potential has a well. We thus constructed v ∈ L 2 (IR) and γ(k) such that v is the eigenvector of

Q -1 2 k 0 Q -1 2 associated with the eigenvalue (γ(k)) 2 g .
To v is associated a solution of (4) which is u = ρ

-1 2 0 Q -1 2 v, u ′ ∈ L 2 ρ 1 2 0 , u ∈ L 2 ρ 1 2 0
.

Remembering that u solves

-u ′′ + k 2 u -k 0 (x)u ′ - gk 2 (γ(k)) 2 u = 0,
multiplying this equation by u and integrating, one gets

(k 2 u 2 + (u ′ ) 2 )dx = k 0 (x)ρ -1 2 0 u.[ gk 2 (γ(k)) 2 ρ 1 2 0 u + ρ 1 2 0 u ′ ]dx hence, using the hypothesis ρ ′ 0 ρ -3 2 0 ≤ M
one obtains (the norm on the Sobolev space

H 1 is ||u|| 2 1 = (u ′ ) 2 + k 2 u 2 dx) ||u|| 1 ≤ M [ gk 2 (γ(k)) 2 ||ρ 1 2 0 u|| + ||ρ 1 2 0 u ′ ||]
hence a control on the H 1 norm of u (instead of having the weight ρ

1 2 0 ). Moreover, as u ′′ = gk 2 (γ(k)) 2 k 0 (x)u + k 0 (x)u ′ -k 2 u, one deduces that u ′′ ∈ L 2
, and we have iteratively the control of u in H s (s ≤ s max , according to the number of derivatives of k 0 that we consider).

Towards a non linear analysis

We show in this Section that the result of Guo and Hwang [START_REF] Guo | On the dynamical Rayleigh-Tayor instability Arch[END_REF] can be extended in our set-up, even if the density profile ρ 0 (x) does not satisfy the coercivity assumption (3) of [START_REF] Guo | On the dynamical Rayleigh-Tayor instability Arch[END_REF]. The quantity k 0 (x) = ρ ′ 0 (x) ρ0(x) plays a crucial role. It has a physical interpretation, being the inverse of a length: it is called the inverse of the density gradient scalelength. We need the assumptions

(H) k 0 (x) bounded , k 0 (x)ρ -1 2 0 bounded.
Note that k 0 bounded is fulfilled in the case studied by Guo and Hwang (where ρ 0 is bounded below), and in the case of the striation model (studied by R. Poncet [START_REF] Poncet | Nonlinear instability of the two-dimensional striation model about smooth steady states accepted for[END_REF]) but is not automatically fulfilled by a profile such that ρ 0 (x) → 0 when x → -∞. However, for the particular case of the ablation front profile, we have k 0

(x) = L -1 0 ξ( x L0 ) ν (1 -ξ( x L0 
)), hence it is bounded and belongs to [0, L -1

0 ν ν (ν+1) ν+1 ].
Before starting the proof of Theorem 2, which is rather technical, let us describe our procedure. Firstly, we prove that the linear system reduces to an elliptic equation on the pressure, from which we obtain a general solution. We identify a normal mode solution of this system using the first part of the paper. Once this normal mode solution U is constructed, with suitable assumptions on the growth rate, one introduces a perturbation solution of the nonlinear system, which initial condition is δU | t=0 and an approximate solution V N of the non linear system which admits an expansion in δ N up to the order N with the same initial condition. Using the Duhamel principle for the construction of the j-th term of the expansion in δ of V N , one obtains a control of all the terms of V N . The natural energy inequalities are on the quantities ρ

1 2 0 u j , ρ 1 2 0 v j , ρ -1 2 0 p j , ρ -1 2 0 ρ j .
We verify that the properties of ρ 0 (x) imply that we can deduce inequalities on u j , v j , ρ -1 0 p j and T j . Note that we have, as a consequence of the method that we chose, a control in t s e Λt of the H s norm of all solutions of the homogeneous linear system (with any initial condition U (x, y, 0)), and a control by e jγ(k)t (with no additional power in t) of the H s norm of the j-th term of the expansion.

Remark 1 When an initial value mixes eigenmodes, the H s norm of the solution behaves as t s e Λt . If one starts from a pure eigenmode with Λ 2 < γ(k) < Λ the exponential behavior comes at most from the growth of the pure eigenmode.

Obtention of a solution of the linear system

Consider the system        ∂ t σ + ρ ′ 0 v 1 = f 0 ρ 0 ∂ t v 1 + ∂ x p = σg + f 1 ρ 0 ∂ t v 2 + ∂ y p = f 2 ∂ x v 1 + ∂ y v 2 = 0
We know that the relevant quantities are ρ

1 2 0 v 1,2 , ρ -1 2
0 σ, and we denote these three quantities by X, Y, τ . To have the same behavior when ρ 0 → 0, consider ψ such that, once ψ is obtained, we revert to v 1 and v 2 using v 1 = -∂ y (ρ

-1 2 0 ψ), v 2 = ∂ x (ρ -1 2 0 ψ). Introduce b = ρ -1 2 0 [∂ y (ρ 0 v 1 ) -∂ x (ρ 0 v 2 )].
(57)

The system on v 1 , v 2 , σ, p implies the two equations

∂ t b = g∂ y τ + ρ -1 2 0 (∂ y f 1 -∂ x f 2 ) ∂ t τ + k 0 (x)X = ρ -1 2 0 f 0 . (58) We obtain ψ from b through the elliptic equation ∆ψ -( 1 2 k ′ 0 + 1 4 k 2 0 )ψ = -b. (59) 
We then revert to X through the equality X = -∂ y ψ. Finally, the pressure p is obtained through the elliptic equation

ρ 0 ∂ x (ρ -1 0 ∂ x p) + ∂ 2 y 2 p = ρ 1 2 0 [ρ 1 2 0 ∂ x (ρ -1 2 0 τ )g + ρ 1 2 0 ∂ x (ρ -1 0 f 1 ) + ρ -1 2 0 f 2 ] which rewrites ∆p -k 0 ∂ x p = ρ 1 2 0 [∂ x τ g - 1 2 k 0 τ g) + ρ -1 2 0 (div f -k 0 f 1 )] ( 60 
)
Hence we solve the system

             ∂ t τ = k 0 ∂ y ψ(b) + ρ -1 2 0 f 0 ∂ t b = g∂ y τ + ρ -1 2 0 (∂ y f 1 -∂ x f 2 ) τ (0) = τ 0 (x, y), b(0) = b 0 (x, y) ∆ψ -( 1 2 k ′ 0 + 1 4 k 2 0 )ψ = -b ∆p -k 0 ∂ x p = ρ 1 2 0 [∂ x τ g -1 2 k 0 τ g) + ρ -1 2 0 (div f -k 0 f 1 )] ( 61 
)
which has the same properties as the system (13) of [START_REF] Guo | On the dynamical Rayleigh-Tayor instability Arch[END_REF], the Poincare estimate being still valid. From b and τ , one reverts to X and Y , hence a solution of the system. Moreover, one checks that (X, Y ) ∈ L 2 (IR) (according to the energy equality), hence X ∈ H 1 (IR) under the assumption k 0 bounded.

Proposition 5 Under the hypotheseses (H), and under the hypothesis

h j ∈ L 2 , j = 0, 1, 2, the functions u 1 , v 1 , T 1 , p 1 solution of        ∂ t T 1 -k 0 u 1 = h 0 ρ 0 ∂ t u 1 + ∂ x p 1 + ρ 0 gT 1 = h 1 ρ 0 ∂ t v 1 + ∂ y p 1 = h 2 ∂ x u 1 + ∂ y v 1 = 0 satisfies u 1 (t), v 1 (t), T 1 (t) ∈ L 2 when it is true for t = 0. Moreover, one has ρ -1 0 p 1 (t) ∈ L 2 (IR 2 ).
Proof The proof of this result follows two steps: first of all the assumption k 0 bounded implies that ρ

1 2 0 u 1 , ρ 1 2 0 v 1 , ρ -1 2 0 ∇p 1 , ρ 1 2
0 T 1 belong to L 2 . We thus multiply the equality

∂ t u 1 + ρ -1 0 ∇p 1 + T 1 g = h by ∇(ρ -1 0 p).
We get, integrating in x, y:

(∇q 1 ) 2 + k 0 (x)q 1 ∇q 1 . e 1 + T 1 g∇q 1 = h∇q 1
from which one deduces

||∇q 1 || ≤ max(k 0 ρ -1 2 0 )||ρ 1 2 0 q 1 || + g||T 1 || ∞ + || h||.
It is then enough to use the Poincare estimate between ρ

1 2
0 q 1 and ρ

-1 2
0 ∇p 1 to obtain the estimate on ∇q 1 , from which one deduces the estimate on q 1 . Finally, from the estimate on q 1 and on ∇q 1 , multiplying the equation on the velocity by u 1 and integrating, we get the Gronwall type inequality

d dt || u 1 || ≤ C||q 1 || H 1 + || h|| + g||T 1 || ∞
hence a control on || u 1 || on [0, T ] for all t as soon as it is true for t = 0. The system writes

   ∂ t T + u.∇T = uT k 0 (x) ∂ t u + ( u.∇) u + T ∇Q + T Qk 0 (x) e 1 = (1 -T ) g div u = 0 (62)
In the system (62), appear only quadratic terms. When one wants to deduce the term of order N in the system, plugging in the expansions T N , u N , v N and Q N one obtains source terms of the form

S N = N -1 j=2 u j T N -j k 0 (x) -u j ∂ x T N -j -v j ∂ y T N -j R 1,N = - N -1 j=2 u j ∂ x u N -j + v j ∂ y u N -j + T j ∂ x Q N -j + T j Q N -j k 0 (x) R 2,N = - N -1 j=2 u j ∂ x v N -j + v j ∂ y v N -j + T j ∂ y Q N -j and the system rewrites        ∂ t T N -u N k 0 (x) = S N ∂ t u N + ∂ x Q N + Q N k 0 (x) + gT N = R 1,N ∂ t v N + ∂ y Q N = R 2,N ∂ x u N + ∂ y v N = 0. ( 63 
)
Higher order Sobolev regularity (preparatory equality) One of the main tools that we have to use is the divergence free condition, in order to get rid of the pressure p or of the reduced pressure Q when obtaining the energy inequality. Recall that the system (63) rewrites

   ∂ t T N -u N k 0 (x) = S N ρ 0 ∂ t u N + ∇(ρ 0 Q N ) + gρ 0 T N e 1 = ρ 0 R N div u N = 0 where R N = (R 1,N , R 2,N ). Denote by G N = ρ 0 ∂ t R N -gρ 0 S N e 1 . Applying the operator ∂ t ∂ n
x n to equation on the velocity and using the equation on the specific volume, one obtains

∂ n x n (ρ 0 ∂ 2 t 2 u N ) + ∇∂ t ∂ n x n (ρ 0 Q N ) + g∂ n x n (ρ 0 k 0 u N ) = ∂ n x n ( G N ). (64) 
One deduces the Lemma 8 For all n, one has the estimate

||ρ 1 2 0 ∂ 2 t 2 ∂ n x n u N || ≤ C n ( p≤n ||ρ 1 2 0 ∂ p x p u N || + ||ρ 1 2 0 ∂ p x p G N ||).
Moreover, as the coefficients of the system depend only on x, this inequality is also true with the same constants when ∂ n x n is replaced by ∂ n x n ∂ q y q for all q ≥ 0.

Proof One notices that (64) writes

ρ 0 ∂ 2 t 2 ∂ n x n u N +∇(∂ t ∂ n x n (ρ 0 Q))+ gk 0 (x)ρ 0 ∂ n x n u N = G N - n-1 p=0 C p n ρ (n-p) 0 ∂ p x p ∂ 2 t 2 u N -g n-1 p=0 C p n ρ (n-p+1) 0 ∂ p x p u N .
Multiplying by ∂ 2 t 2 ∂ n x n u N and integrating, using the recurrence hypothesis that

||ρ 1 2 0 ∂ 2 t 2 ∂ p x p u N || ≤ C p ( m≤p-1 ||ρ 1 2 0 ∂ 2 t 2 ∂ m x m u N ||)+2g 2 Λ 2 ( m≤p-1 ||ρ 1 2 0 ∂ m x m u N ||)+||G N n-1 ||
as well as the inequalities

|k 0 (x)g| ≤ Λ 2 , |ρ -1 0 ρ (p) 0 | ≤ Λ p
(which are true as soon as k 0 is a C ∞ function which derivatives are bounded, because ρ ′ 0 = k 0 ρ 0 ) one obtains the inequality

||ρ 1 2 0 ∂ 2 t 2 ∂ n x n u N || ≤ C n ( m≤n ||ρ 1 2 0 ∂ 2 t 2 ∂ m x m u N ||).
Lemma 8 is proven.

The energy equalities

Note that the system for the leading term of the perturbation is the system (63) with a null source term. Owing to this remark, we shall treat the general case and apply the equality to the particular cases. Multiplying (64) by ∂ t ∂ n x n u N and integrating, using the divergence free relation, one obtains

∂ n x n (ρ 0 ∂ 2 t 2 u N ).∂ n x n ∂ t u N dxdy + g∂ n x n (ρ 0 k 0 u N + ρ 0 S N 1 ) e 1 .∂ t ∂ n x n u N dxdy = ∂ n x n (ρ 0 ∂ t S N ).∂ t ∂ n x n u N dxdy.
In this equality, we can consider (for Sobolev inequalities) the term containing the largest number of derivatives of u N . We obtain, denoting by

R N n = ∂ n x n (ρ 0 ∂ 2 t 2 u N ) -ρ 0 ∂ n x n ∂ 2 t 2 u N B N n = ∂ n x n (ρ 0 k 0 u N ) -ρ 0 k 0 ∂ n x n u N the equality ρ 0 ∂ n x n ∂ 2 t 2 u N .∂ n x n u N dxdy + gρ 0 k 0 ∂ n x n u N .∂ t ∂ n x n u N dxdy + R N n .∂ n x n ∂ t u N dxdy + gB N n .∂ t ∂ n x n u N dxdy = ∂ n x n (ρ 0 ∂ t R N ).∂ t ∂ n x n u N dxdy -g∂ n x n (ρ 0 S N ) e 1 .∂ t ∂ n x n u N dxdy.
The terms R N n and B N n contain only derivatives of order less than n -1, hence it will appear as a source term in the application of the Duhamel principle later on. The two first terms of the previous equality are the exact derivative in time of

E N n (t) = 1 2 [ ρ 0 (∂ n x n ∂ t u N ) 2 dxdy + gρ 0 k 0 (∂ n x n u N ) 2 dxdy].
The energy equality is thus

E N n (t) = E N n (0) + t 0 g N n (s)ds where g N n (t) = ∂ n x n (ρ 0 ∂ t R N ).∂ t ∂ n x n u N dxdy -g∂ n x n (ρ 0 S N ) e 1 .∂ t ∂ n x n u N dxdy = -( R N n .∂ n x n ∂ t u N dxdy + gB N n .∂ t ∂ n x n u N dxdy). Note that this source term satisfies |g N n (t)| ≤ ||ρ 1 2 0 ∂ n x n ∂ t u N || L 2 K N n (t) (65) 
where one has

K N n (t) ≤ ||ρ -1 2 0 R N n || + ||ρ -1 2 0 ∂ n x n (ρ 0 ∂ t S N )|| +|g|[||ρ -1 2 0 B N n || + ||∂ n x n (ρ 0 S N 1 )||]. (66) 
We are ready to prove the Duhamel inequality associated with this problem, using gk 0 (x) ≤ Λ 2 .

The Duhamel principle

Two versions of the behavior of the semi group will be deduced. The first one corresponds to the general case for the terms in δ 2 at least. We consider the (general) system

ρ 0 (x)∂ 2 t 2 w + ∇(ρ 0 ∂ t Q) + gk 0 ρ 0 w e 1 = M 0 , div w = 0. ( 67 
)
with the initial conditions

w| t=0 = 0, ∂ t w| t=0 = 0. ( 68 
)
Note that this system is easily deduced from the system obtained for the N th term of the expansion in δ of the solution.

Proposition 6 Assume that there exists two constants K and L, with L > Λ, sich that ||ρ

-1 2 0 M || ≤ Ke Lt . ( 69 
)
The unique solution of the linear system (67) with initial Cauchy conditions (68) satisfies the estimate

           ||ρ 1 2 0 w|| ≤ 2K L(L-Λ) (1 + Λ 2 (L-Λ) 2 ) 1 2 e Lt ≤ 2K (L-Λ) 2 e Lt ||ρ 1 2 0 ∂ t w|| ≤ 2K L-Λ (1 + Λ 2 (L-Λ) 2 ) 1 2 e Lt ||ρ 1 2 0 ∂ 2 t 2 w|| ≤ K(1 + 2Λ 2 (L-Λ) 2 )e Lt
Proof We begin by multyplying the equation (67) by ∂ 2 t 2 w and integrate in space. One deduces that ||ρ

1 2 0 ∂ 2 t 2 w|| ≤ Λ 2 ||ρ 1 2 0 w|| + Ke Lt .
We will make use of this equality later. Let us multiply the equation (67) by ∂ t w. We obtain the identity

d dt ( 1 2 ρ 0 (∂ t w) 2 dxdy + 1 2 k 0 ρ 0 k 0 w 2 dxdy = M (x, y, t)∂ t wdxdy.
Integrating in time and using the initial condition (68) as well as the estimate (69), we obtain the inequality

ρ 0 (∂ t w) 2 dxdy ≤ Λ 2 1 2 k 0 ρ 0 w 2 dxdy + 2K t 0 e Ls ||ρ 1 2 0 ∂ t w||(s)ds. Let us introduce now u(t) = t 0 ||ρ 1 2 0 ∂ t w||(s)ds. We obtain, considering d dt ρ 0 w 2 dxdy, that ||ρ 1 2 0 w||(t) ≤ t 0 ||ρ 1 2 0 ∂ t w||(s)ds that is ||ρ 1 2 0 w||(t) ≤ u(t). Hence the inequality (u ′ (t)) 2 ≤ Λ 2 (u(t)) 2 + t 0 2Ke Ls u ′ (s)ds.
From this inequality, we deduce that

(u ′ (t)) 2 ≤ Λ 2 (u(t)) 2 + 2Ke Lt u(t) hence u ′ (t) ≤ Λu(t) + 2Ke Lt u(t).
Introduce h such that u(t) = (h(t)) 2 e Λt . We obtain the inequality

2hh ′ e Λt ≤ √ 2Khe L+Λ 2 t hence h ′ (t) ≤ 1 2 √ 2Ke L-Λ 2 t
that is

h(t) ≤ √ 2K L -Λ e L-Λ 2 t which leads to u(t) ≤ 2K (L -Λ) 2 e Lt
The estimate on u ′ (t) follows, using (u ′ ) 2 ≤ Λ 2 u 2 + 2Ke Lt u. We thus, by integration, deduce another estimate on u. The estimate on ρ 0 ∂ 2 t 2 w is the consequence of [START_REF] Guo | On the dynamical Rayleigh-Tayor instability Arch[END_REF]. If one wants a general formulation of the Duhamel principle (taking into account non zero initial values), one states the following proposition, which will lead to the result of proposition 8, hence allowing a mixing of modes and a weak nonlinear result. The mixing of modes is not our purpose here, but we shall not speak of weak nonlinear results. See Cherfils, Garnier, Holstein [START_REF] Garnier | Holstein Statisticial analysis of multimode weakly nonlinear Rayleigh-Taylor instability in the presence of surface tension[END_REF] for more details.

Proposition 7 The solution of

1 2 d dt ( (ρ 0 (∂ t u N ) 2 -g ρ ′ 0 ρ 0 ρ 0 (u N ) 2 )dxdy) = g(t, x, ∂ t u N )
with initial condition ∂ t u N (0), u N (0), with the assumption

|g(t, x, ∂ t u N )| ≤ K(t)||ρ 1 2 0 ∂ t u n || L 2
where K is a positive increasing function for t ≥ 0 satisfies the inequalities

||ρ 1 2 0 u N || 1 2 ≤ [C 1 + t 0 K(s)e -Λs ds]e Λ 2 t ||ρ 1 2 0 ∂ t u N || ≤ [C 1 + t 0 K(s)e -Λs ds] 2 e Λt
where C 1 depends on the initial data.

Proof We deduce from the energy equality the following inequality:

ρ 0 (x)(∂ t u N ) 2 dxdy-g k 0 (x)ρ 0 (x)u 2 N dxdy ≤ C 0,+ +2 t 0 K(s)||ρ 1 2 0 ∂ t u N || L 2 (s)ds
where C 0 = ρ 0 (x)(∂ t u N ) 2 (0)dxdyg k 0 (x)ρ 0 (x)u 2 N (0)dxdy and C 0,+ = max(C 0 , 0). Consider now the function u(t) = ||ρ

1 2 0 u N (0)||+ t 0 ||ρ 1 2 0 ∂ t u N (s)||ds = ||ρ 1 2 0 u N (0)|| + t 0 ||ρ 1 2 0 ∂ t u N ||(s)ds. We notice that u ′ (t) = ||ρ 1 2 0 ∂ t u N ||(t) hence u ′ (t) ≥ 0. Recall that gk 0 (x) ≤ Λ 2 . The inequality implies (u ′ (t)) 2 ≤ Λ 2 (u(t)) 2 + C 0,+ + 2 t 0 K(s)u ′ (s)ds ≤ Λ 2 (u(t)) 2 + C 0,+ + 2K(t)u(t) ≤ (Λu + K(t) Λ ) 2 + C 0,+ -K(t) 2 Λ 2 .
Use now the inequality (a 2 + b 2 + c 2 )

1 2 ≤ a + b + c for positive numbers a, b, c to obtain u ′ (t) ≤ Λu(t) + C 0,+ + 2K(t)u(t).
Introducing v(t) = u(t)e -Λt which satisfies v(t) ≥ u(0)e -Λt , we deduce v ′ (t) ≤ C 0,+ e -Λt + 2K(t)e -Λt v(t).

• Assume u(0) > 0. We obtain, denoting by h(t) = v(t)

2hh ′ ≤ C 0,+ e -Λt + 2K(t)e -Λt h(t) hence 2h ′ ≤ ( C 0,+ u(0) ) 1 2 e -Λt 2 + 2K(t)e -Λt .
We deduce the inequality

h(t) ≤ h(0) + Λ -1 ( C 0,+ u(0) ) 1 2 (1 -e -Λt 2 ) + 1 √ 2 t 0 K(s)e -Λs ds.
which imply that there exists A and B such that u(t) ≤ (A 2 e Λt + B 2 e Λt ( t 0 K(s)e -Λs ds) 2 ).

• Assume u(0) = u ′ (0) = 0. As C 0,+ = 0, we have the inequality

u ′ (t) ≤ Λu(t) + 2K(t)u(t)
from which one deduces, with the same notations as above, that

h ′ (t) ≤ 1 2 K(t)e -Λt
hence with h(0) = 0 one obtains h(t) ≤ t 0 1 2 K(s)e -Λs ds.

• Assume finally u(0) = 0 and u ′ (0) > 0. We obtain v ′ (t) ≤ C 0,+ e -Λt + 2K(t)e -Λt v(t).

Introduce ṽ(t) = v(t) -C 0,+ 

0 u N || ≤ ||ρ 1 2 0 ∂ t u N || = u ′ (t)
we get ||ρ

1 2
0 u N || ≤ u(t)u(0). These are the two estimates of Proposition 7. Of course, the proof is much simpler in the case we are interested in, that is ∂ t u N = 0, u N = 0, where (using the notations of this paragraph, C 0 = C 0,+ = u(0) = u ′ (0) = 0), where one deduces easily u(t)e -Λt ≤ t 0 2 -1 2 K(s)e -Λs ds.

H s estimates for a general solution of the linearized system

The H s inequalities for the solution of the homogeneous system We consider the system satisfied by the leading order term of the perturbation of the Euler system (which is the system (62), particular case of (63) for N = 1. We prove in this section the analogous of the Proposition 1 of [START_REF] Guo | On the dynamical Rayleigh-Tayor instability Arch[END_REF], with a slightly better estimate which shows essentially that the relevant growth rate is, up to polynomial terms, Λ: from which one deduces

((u 1 1 ) ′ (t)) 2 ≤ (Λu 1 1 + M D 0 Λ e Λt ) 2 + C 0 -( M D 0 Λ ) 2 e 2Λt hence (u 1 1 ) ′ (t) ≤ Λu 1 1 (t) + M D 0 Λ e Λt + C 0 that is d dt (u 1 1 e -Λt ) ≤ M D 0 Λ + C 0 e -Λt
from which one deduces

u 1 1 (t) ≤ Λ -1 ( C 0 + M D 0 t + Λu 1 1 (0))e Λt .

Greater order term:

We prove thus by recurrence that there exists A n and B n such that

u 1 n (t) ≤ (A n + B n t) n e Λt ,
according to the inequality

d dt (u 1 n (t)e -Λt ) ≤ C n e -Λt + (A n-1 + tB n-1 ) n-1 2Λ .
One deduces the same inequality for d dt u 1 n (t). 4. In the derivative D n,p , the only term which matters for the order of the power of t is n, hence one deduces that n+p=s (||ρ

1 2 0 D n,p u N || + ||ρ 1 2 0 D n,p ∂ t u N ||) ≤ (C s + tD s ) s e Λt
Proposition 8 is proven. Note that this improvement does not change the behavior of the approximate solution we intend to construct, because for a normal mode solution u(x, y, t) = û(x)e iky+γ(k)t , where γ(k) has been calculated and where û(x) is solution of the Rayleigh equation, one has the following equalities:

||ρ 1 2 0 D m,p u 1 (t)|| = ||ρ 1 2 0 D m,p u 1 (0)||e γ(k)t ||D m,p T 1 (t)|| = ||T 1 (0)||e γ(k)t ||ρ 1 2 0 D m,p Q 1 (t)|| = ||ρ 1 2 0 D m,p Q 1 (0)||e γ(k)t . (70)
Remark that, according to Lemma 7, and to the equality ikQ 1 (x, y, t) = γ(k) ik ∂ x u 1 (x, y, t), we have also the relations

||D m,p u 1 (t)|| = ||D m,p u 1 (0)||e γ(k)t ||D m,p Q 1 (t)|| = ||D m,p Q 1 (0)||e γ(k)t . ( 71 
)
from which one deduces the inequality

d dt ||ρ 1 2 0 T 2 || ≤ M ||ρ 1 2 0 u 2 || + ||ρ 1 2 0 S 2 1 || ≤ (M M 0 + C 2 1 )e 2γ(k)t
hence the estimate

||ρ 1 2 0 T 2 (t)|| ≤ ||ρ 1 2 0 T 2 (0)|| + C 2 1 + M M 0 2γ(k) (e 2γ(k)t -1).
As for the estimate on Q 2 , one deduces

∂ x (ρ -1 0 ∂ x (ρ 0 Q 2 )) + ∂ 2 y 2 Q 2 + g∂ x T 2 = div S 2
which imply estimates on Q 2 .

Case N ≥ 3.

We start with the induction hypothesis that, for j ≤ N -1, there exists C 0 and A such that

||ρ 1 2 0 u j ||+||ρ 1 2 0 ∂ x u j ||+||ρ 1 2 0 ∂ y u j ||+||ρ 1 2 0 ∂ x T j ||+||ρ 1 2 0 ∂ y T j ||+||ρ 1 2 0 T j || ≤ A j-1 C j 0 e jγ(k)t
and that the derivative in time of all quantities is bounded by jγ(k)A j-1 C j 0 e jγ(k)t . Thus there exists M (independant on the number of terms which appear in the source term and which depends only on the coefficients of the system) such that the source term of (66) for n = 0 is bounded by:

K N 0 (t) ≤ M A N -2 C N 0 N 2 γ(k)e N γ(k)t . (73) 
Note that in this estimate the N 2 term comes, one from the number of the terms in the expansion N -1 j=0 A j B N -j and a second one6 from the derivative in time which appears in the source term ∂ t S N . We thus obtain, using

h N (t) ≤ t 0 2K N 0 (s)e -Λs ds the inequality h N (t) ≤ 2M A N -2 C N 0 N 2 γ(k) t 0 e (N γ(k)-Λ)s ds which yields h n (t) 2 ≤ A N -1 C N 0 e (N γ(k)-Λ)t 8M N 2 γ(k) (N γ(k) -Λ) 2 A .
The choice of A is thus induced by 8MN 2 γ(k) (N γ(k)-Λ) 2 A ≤ 1 for all N (forgetting that we have to be more precise to obtain estimates not only on u N but also on T

N ) hence the simplest choice is A = 8Mγ(k) γ(k)-Λ 2
. The value of C 0 is thus given by the norm of the leading term (T 1 , u 1 , v 1 , Q 1 ). The final estimate is ||ρ

1 2 0 u N || ≤ C N 0 A N -1 e N γ(k)t
We proved the assumption (73). We use this result and the estimates for a normal mode solution (on which no powers of t appear for the norms of the derivatives). We obtain

h(t) ≤ h(0) + Λ -1 ( C 0,+ u(0) ) 1 2 + N C 1 2 N γ(k) 1 2 t 0 e N γ(k)-Λ 2 s ds hence as N γ(k) > Λ one gets h(t) ≤ h(0) + Λ -1 ( C 0,+ u(0) ) 1 2 + N N γ(k) -Λ C 1 2 N γ(k) 1 2 e N γ(k)-Λ 2 t .
We deduce the inequality (using

(a + b) 2 ≤ 2(a 2 + b 2 )) u(t) ≤ 2(h(0) + u(0)) + Λ -1 ( C 0,+ u(0) ) 1 2 
)

2 e Λt + 2( N N γ(k) -Λ ) 2 C N γ(k)e N γ(k)t .
Remark If the system has a cubic source term, at each stage of the construction one gets N 1 2 M N -1 C N as estimate, hence the convergence of the infinite series is not ensured by these estimates.

Estimates for the approximate solution

In this paragraph, we derive estimates on the global approximate solution. We shall use throughout what follows the Moser estimates, that we recall here

||D α (f g)|| L 2 ≤ C(||f || ∞ ||g|| s + ||g|| ∞ ||f || s ) (74) and ||D α (f g) -f D α g|| L 2 ≤ C(||Df || ∞ ||g|| s-1 + ||g|| ∞ ||f || s ) (75) 
and the Sobolev embedding

||f || ∞ ≤ C||f || s for s > d 2 and ||∇f || ∞ ≤ C||f || s for s > d 2 + 1.
More precisely, we prove that Proposition 10 For all θ < 1 and for all t < 1 γ(k) ln θ δC0A , we have

||T N -1|| H s + || u N || H s + ||Q N -q 0 || H s ≤ C δAC 0 e γ(k)t 1 -δAC 0 e γ(k)t ||T N -1|| L 2 ≥ ||T 1 (0)|| L 2 δe γ(k)t -AC 2 0 C 3 δ 2 e γ(k)t 1 -δAC 0 e γ(k)t ||u N || L 2 ≥ ||u 1 (0)|| L 2 δe γ(k)t -AC 2 0 C 3 δ 2 e γ(k)t 1 -δAC 0 e γ(k)t ||v N || L 2 ≥ ||v 1 (0)|| L 2 δe γ(k)t -AC 2 0 C 3 δ 2 e γ(k)t 1 -δAC 0 e γ(k)t .
We have also the following estimates for the remainder terms

|| R N || H s + ||S N || H s ≤ M δ N +1 (N + 1) 2 A N -1 C N +2 0 δ N +1 e (N +1)γ(k)t .
Proof We have proven the H s estimates for all the terms of the expansion u j , v j , T j , Q j . It is this easy to deduce, using (73), the estimate for the remainder terms. This comes from the inequality (1 ≤ j ≤ N -1)

||D α (u j ∂ 1 u N -j )|| ≤ C(||u j || ∞ ||u N -j || H |α|+1 + ||u j || |α| ||∂ 1 u N -j || ∞ )
(and subsequent inequalities), the Solobev embedding ||f || ∞ ≤ ||f || 2 and the H s estimate for s = 2, 3 for all the terms of the expansion, using also that the norm H s of the terms of the expansion in δ j of order less than N is bounded by C j 0 A j-1 e jγ(k)t . We thus deduce that

|| N j=1 T j || H s ≤ N j=1 CA j-1 C j 0 δ j e jγ(k)t = CC 0 δe γ(k)t 1 -(C 0 Aδ) N -1 e (N -1)γ(k)t 1 -C 0 Aδe γ(k)t . When t < T θ δ = 1 γ(k) ln θ δC0A , we obtain 1 -C 0 Aδe γ(k)t ≥ 1 -θ, hence we deduce the estimate ||T N -1|| H s = || N j=1 T j || H s ≤ CC 0 1 -θ δe γ(k)t .
Moreover, one has

||T N -1|| L 2 ≥ δ||T 1 || L 2 - N j=2 δ j ||T j || hence using N j=2 δ j ||T j || L 2 ≤ N j=2 δ j ||T j || L 2 ≤ C 2 0 AC 1 -θ δ 2 e 2γ(k)t one obtains ||T N -1|| L 2 ≥ δ||T 1 (0)|| L 2 e γ(k)t - C 2 0 AC 1 -θ δ 2 e 2γ(k)t .
One may thus consider

C 3 = C 1-θ We thus deduce that, for t < 1 γ(k) ln ||T1(0)|| L 2 (1-θ) CAC 2 0 , we obtain ||T N -1|| L 2 ≥ 1 2 δ||T 1 (0)|| L 2 e γ(k)t .
Similar estimates hold for || u N || L 2 . Note that this proves that the first term of the expansion is the leading term of the approximate total solution.

For all what follows, we introduce

I(t) = AC 0 e γ(k)t 1 -δAC 0 e γ(k)t
(76)

I N +1 (t) = N 2 A N -1 C N +1 0 e (N +1)γ(k)t . ( 77 
)

Estimates of the (nonlinear) solution

We constructed in the previous section a solution

T N , u N , Q N such that    ∂ t T N + u N ∇T N -k 0 (x)u N T N = S N ∂ t u N + u N .∇ u N + T N ρ -1 0 ∇(ρ 0 Q N ) = g + R N div u N = 0 (78)
with the following properties for the remainder terms:

||ρ 1 2 0 ∂ n x n R N j || + ||ρ 1 2 0 ∂ n x n S N || ≤ C n δ N +1 I N +1 (t) (79) ||∂ n x n R N j || + ||∂ n x n S N || ≤ C n δ N +1 I N +1 (t) (80) 
the constant C n depending on the Sobolev norm with weight ρ 1 2 0 of the initial value of the normal mode solution and of the characteristic constants of the problem. We deduced from this equality and the additional assumption k 0 ρ -1 2 0 bounded that we have identical estimates on R N and S N :

||∂ n x n R N j || + ||∂ n x n S N || ≤ C n δ N +1 I N +1 (t) (81) 
We study in this Section the global solution of the Euler system (62) to obtain Sobolev estimates on the difference between the approximate solution and the full solution. Let

T d = T -T N , u d = u -u N , Q d = Q -Q N .
We have the following system of equations:

   ∂ t T d + u N ∇T d + u d ∇T N = k 0 (uT d + u d T N ) -S N ρ 0 (∂ t u d + u d ∇ u + u N ∇ u d ) + T ∇(ρ 0 Q) -T N ∇(ρ 0 Q N ) = -ρ 0 R N div u d = 0. (82) 
Before stating the results on the difference quantities according to the system, we use the properties of T

N -1, u N , Q N : Lemma 10 Let t ∈ [0, T θ δ ]. For all α, there exists a constant C(|α|) such that ||D α ( u d .∇ u N )|| ≤ C(|α|)|| u d || |α| CC0δ 1-θ e γ(k)t ||D α (T d (∇Q N + k 0 Q N ))|| ≤ C(|α|)||T d || |α| CC0δ 1-θ e γ(k)t ||D α (k 0 u d (T N -1))|| ≤ C(|α|)|| u d || |α| CC0δ 1-θ e γ(k)t ||D α (T N -1)(∇Q d + k 0 Q d e 1 )|| ≤ C(|α|)||Q d || |α|+1 CC0δ 1-θ e γ(k)t
The proof of this Lemma comes from the fact that

D α (f g N ) = C β α D β f D α-β g N
and we use the estimate ||D α-β g N || ∞ ≤ C||g N || 2+|α|-|β| , as well as the H s result on any term of the form g N = N j=1 δ j g j , where g j = u j , v j , T j , Q j to conclude for any term studied in the Lemma. Moreover, we use the Moser estimates to obtain

||D α ( u.∇f ) -u.∇D α f || ≤ C(||∇ u|| ∞ ||∇f || |α|-1 + ||∇f || ∞ || u|| |α| ) hence, using u = u N + u d , one deduces ||D α ( u.∇f )-u.∇D α f || ≤ C(||∇ u d || ∞ ||f || |α| +δI(t)||f || |α| +||∇f || ∞ || u|| |α| +||∇f || ∞ δI(t))
and, similarily

||D α ( u.∇f )|| ≤ C(δI(t)(||∇f || ∞ + ||f || |α|+1 ) + || u d || ∞ ||f || |α|+1 + || u d || α ||∇f || ∞ , ||D α (T ∇Q d )-T ∇D α Q d || ≤ C(δI(t)||Q d || |α| +||∇T d || ∞ ||∇Q d || |α|-1 +||∇Q d || ∞ ||T d || |α| according to the equality D α (T ∇Q d ) -T ∇D α Q d = D α ((T -1)∇Q d ) -(T - 1)∇D α Q d .
We shall also use the following estimates We can decompose W 1 α -D α (k 0 uT d ) into two parts, the one with u N , the other one with u d , denoted respectively by W α and W N α . It is clear that In what follows, we introduce

||W N α -D α (k 0 uT d ) + D α ( u d .∇T N ) -D α k 0 u d T N )
G α N = D α (T N ∇Q d )-T N ∇D α Q d +D α (T N Q d k 0 e 1 )+D α (T d ∇Q N +k 0 T d Q N e 1 )+D α R N , G α = D α (T d ∇Q d ) -T d ∇D α Q d + D α (T d Q d k 0 e 1 ).
The equation on D α u d is

∂ t D α u d + D α ( u d .∇ u d ) + D α R N + G α + G α N + T ∇D α Q d = 0.
When one multiplies by ∇D α Q d , one uses the divergence free condition on D α u d to get the estimate

2 3 ||∇D α Q d || ≤ ||D α ( u d .∇ u d )|| + ||D α R N || + || G α || + || G α N ||.
We use For δ < 1 and (N + 1)γ(k) > 17C, denoting by T δ 0 = 1 γ(k) ln 1 δ , one has ∀t ∈ [0, T δ 0 ], h(t) ≤ δ N +1 e (N +1)γ(k)t .

|| G α N || ≤ C(
Proof The inequality we start with is d dt h(t) ≤ C(1 + h(t)) 4 h(t) + Cδ N +1 e (N +1)γ(k)t .

We consider N such that (N + 1)γ(k) > 17C. We study the interval where h(t) ∈ [0, 1], knowing that h(0) = 0. Consider t 0 the first time (if it exists) where h(t 0 ) = 1. If it does not exist, then h(t) ≤ 1 for t ∈ [0, T δ 0 ] and we have, for all t ∈ [0, T δ 0 ] the inequality h ′ (t) ≤ 16Ch(t) + Cδ N +1 e (N +1)γ(k)t .

from which one deduces h(t) ≤ Cδ N +1 (N + 1)λ -16C e (N +1)γ(k)t < δ N +1 e (N +1)γ(k)t hence h(T δ 0 ) < 1. If t 0 exists, we have, for all t ∈ [0, t 0 ], the inequality d dt (h(t)e -16Ct ) ≤ -C(1h(t))h(t)R(h(t))e -16Ct + Cδ N +1 e (N +1)γ(k)t-16Ct
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 1 ||D α ( u d .∇ u d )|| ≤ C(|α|)|| u d || 4 || u d || |α|+1(83)||D α ( u d .∇ u d )u d .∇D α u d || ≤ C(|α|)|| u d || 4 || u d || |α| .(84)These equalities come respectively from (74) and (75).Introduce in what followsV = u d .∇ u N + u N .∇ u d , W = V +T d ρ -1 0 ∇(ρ 0 Q N ).We have the estimates||D α V || ≤ M |α| I(t)δ|| u d || |α|+1 ||D α W || ≤ M |α| I(t)δ(|| u d || |α|+1 + ||T d || |α| ), ∀α ||D α (T d ∇Q d ) -T d ∇D α Q d || ≤ C(||T d || 3 ||Q d || 2 + ||T d || 4 ||Q d || 1 ) for |α| = 2 ||T d ρ -∇(ρ 0 Q N )|| ≤ δI(t)||T d ||5.1 Estimates on the densityThe equation on the density yield∂ t T d + u.∇T dk 0 uT d = k 0 u d T Nu d .∇T N -S N .Apply the operator D α and denote byW 1 α = D α ( u.∇T d )u.∇D α T d . This equation rewrites ∂ t D α T d + u.∇D α T d + W 1 α -D α (k 0 uT d ) + D α ( u d .∇T N ) -D α (k 0 u d T N ) = 0.

  In all the previous cases, we deduced the inequality u(t) ≤ [C 1 +

				1-e -Λt Λ	. We have
	ṽ′ (t) ≤ 2K(t)e -Λt (ṽ(t) + C 0,+	1 -e -Λt Λ	) ≤ 2K(t)e -Λt (ṽ(t) +	C 0,+ Λ	)
	from which one deduces the inequality		
	2 ṽ +	C 0,+ Λ	≤ 2		C 0,+ Λ	+	0	t	2K(s)e -Λs ds.
	Using finally the relation							t 0	K(s)e -Λs ds] 2 e Λt .
		d dt	||ρ	1 2				

  || ≤ Cδ(|| u d || |α| + ||T d || |α| ).it is also clear that, using Moser estimates,||W α || ≤ C(||∇ u d || ∞ ||T d || |α| + || u d || |α| ||T d || ∞ ).One is thus left with the inequalityd dt ||D α T d || ≤ ||W α || + ||D α S N || + CδI(t)(|| u d || |α| + ||T d || |α| ).We have thus the estimated dt ||D α T d || ≤ C(||∇ u d || ∞ ||T d || |α| + || u d || |α| ||T d || ∞ ) + δ N +1 I N +1 M +CδI(t)(|| u d || |α| + ||T d || |α| ).5.2 Estimates on the pressureWe obtained the relations||∇Q d || ≤ M 1 (|| u d .∇ u d || + δI(t)(|| u d || 1 + ||T d ||) + δ N +1 I N +1 (t)). ||∇D α Q d || ≤ M 2 ( |α|=1 ||D α ( u d .∇ u d )|| + δI(t)[|| u d || 2 + ||T d || 1 ] +δ N +1 I N +1 (t) + (1 + δI(t) + ||T d || 3 )(|| u d .∇ u d || +δI(t)(||T d || + || u d || 1 ) + δ N +1 I N +1 (t))Using the fact that t ≤ T δ , one obtains||∇Q d || ≤ M 1 (|| u d .∇ u d || + || u d || 1 + ||T d || + δ N +1 I N +1 (t)). ||∇D α Q d || ≤ M 2 ( |α|=1 ||D α ( u d .∇ u d )|| + || u d || 2 + ||T d || 1 +(1 + ||T d || 3 )(|| u d .∇ u d || + ||T d || + || u d || 1 ) + δ N +1 I N +1 (t))

|α=1 |α=1

  1 + t) |α|+3 (||Q d || |α| + ||T d || |α| + || u d || |α|+1 )δI(t)and|| G α || ≤ C(||∇T d || ∞ ||Q d || |α| + ||T d || |α| ||∇Q d || ∞ + ||T d || ∞ ||Q d || |α| ).Hence we obtain (and it is pertinent for |α| > 2)||∇D α Q d || ≤ C ′ (||D α ( u d .∇ u d )|| + ||D α R N ||) + CδI(t)(||Q d || |α| + ||T d || |α| + || u d || |α|+1 ) +C(||T d || 3 ||Q d || |α| + ||T d || |α| ||Q d || 3 ).For |α| = 2, we will obtain ||Q d || 3 , which is important. We use the equality, for |α| = 2|| G α || = ||D α T d ∇Q d + 0<β<α D β T d ∇D α-β Q d C β α ||which leads to the inequality|| G α || ≤ D 0 (||T d || 4 ||Q d || 1 + ||T d || 3 ||Q d || 2 ).Replacing this estimate in the inequality for α such that |α| = 2, one gets||D α ∇Q d || ≤ C 1 (||D α ( u d .∇ u d )||+||T d || 2 +|| u d || 3 +(1+||T d || 3 )||Q d || 2 +||T d || 4 ||Q d || 1 +δ N +1 I N +1 (t).Using the inequalities on ||Q d || 1 and ||Q d || 2 , one gets||Q d || 1 ≤ M 1 (|| u d .∇ u d || + || u d || 1 + ||T d || + δ N +1 I N +1 (t)) ||Q d || 2 ≤ M 2 (|| u d .∇ u d || 1 +|| u d || 2 +||T d || 1 +δ N +1 I N +1 (t)(1+||T d || 3 )+(1+||T d || 3 )(1+||T d ||+|| u d .∇ u d ||)) ||Q d || 3 ≤ M 3 (|| u d .∇ u d || 2 + || u d || 3 + ||T d || 2 + (1 + ||T d || 2 3 + ||T d || 4 )|| u d .∇ u d || + (1 + ||T d || 3 )|| u d || 2 +||T d || 4 || u d || + δ N +1 I N +1 (t)(1 + ||T d || 4 + (1 + ||T d || 3 ) 2 ))We use then the inequalities||∇D α Q d || ≤ C(||D α ( u d .∇ u d )|| + ||D α R N || + ||Q d || |α| +||T d || |α| (1 + ||Q d || 3 ) + || u d || |α|+1 + (1 + ||T d || 3 )||Q d || |α| )from which one obtains||Q d || |α|+1 ≤ M |α|+1 (|| u d .∇ u d || |α| + || u d || |α|+1 + δ N +1 I N +1 (t) +||T d || |α| (1 + ||Q d || 3 ) + ||Q d || |α| (1 + ||T d || 3 )).Note that we have the estimate|| u d .∇ u d || |α| ≤ C|| u d || 3 || u d || |α|+1 .(85)hence||Q d || |α|+1 ≤ M |α|+1 ((1 + || u d || 3 )|| u d || |α|+1 + δ N +1 I N +1 (t) +||T d || |α| (1 + ||Q d || 3 ) + (1 + ||T d || 3 )||Q d || |α|(86)End of the proof We thus know that, for t ≤ T δ , we have δ N +1 I N +1 (t) ≤ 1 hence an inequality of the form )s+1 = T 1 , one obtains H(t) ≤ 1. The set of points t such that t > 0 and H(t) ≤ 1 is not empty. Once this set is not empty (and once we proved that the solution exists for a time T 1 ), we obtain Lemma 11 Let h be a function such that

	d dt	H(t) ≤ C((1 + (H(t)) 4 )H(t) + 1)
	where H(t) = (||T d || 2 4 + || u d || 2 4 ) As we have H(0) = 0, one deduces that 1 2 .
		0	H(t)	ds (1 + s 4 )s + 1	≤ Ct.
	H 0 For H(t) ≥ 1, one deduces Ct ≥ ds (1+s 4 )s+1 is a bijection from [0, +∞[ onto [0, The function H → 1 0 ds (1+s 4 )s+1 , hence for t < 1 C 0 1	+∞ 0 (1+s 4 (1+s 4 )s+1 [. ds ds

dh dt ≤ C(1 + h(t)) 4 h(t) + Cδ N +1 e (N +1)γ(k)t , h(0) = 0.

Note that these inequalities depend on a given arbitrary ξ 0 > 0.

Note also that if we consider a cubic model, the number of terms in the source term is N (N -1), hence adding a derivative in time we get N 3 in the estimate. As we can see in the following lines, this gives a less efficient estimate

Proposition 8 Let T 1 (t), u 1 (t) be the solution of the modified linearized Euler system (62). There exists a constant C s depending only on the characteristics of the system, that is of k 0 and g, such that

Note that in these inequalities (which are general) a power of t appears in the bound for the norm H s . This is the general case. Note that similar estimates were obtained independantly by R. Poncet [START_REF] Poncet | Nonlinear instability of the two-dimensional striation model about smooth steady states accepted for[END_REF]. An important feature of this result takes in consideration an initial condition which is not an eigenmode of the Rayleigh equation, and which is a combination of different eigenmodes. As we shall see in what follows, the interaction of these different eigenmodes lead to a linear growth of the form (1 + t) s e Λt for the H s norm of the solution.

Proof We prove in a first stage the H s inequality result for the system satisfied by (T 1 , u 1 , v 1 , Q 1 ). We use the pressure p 1 in the analysis. The system imply the equation

We apply the operator D m,p to this equation. The energy inequality deduced from (65) and from the inequality (66) is

where we have the estimate

principal term

The inequation on ||ρ

derivative of the principal term

In the inequality obtained for D 1,p u 1 , the source term g 1 is bounded by M D 0 e Λt ||D 1,p ∂ t u 1 || because it contains only derivatives of order n-1 = 0. We have thus the inequality

4.5 The H s inequalities for the linearized system

We consider the system (63). We apply the operator D m,p = ∂ m x ∂ p y . This system becomes

(72) We notice that this system writes as the system (63) with a source term involving derivatives of the solution at a lesser order of derivatives in x. We introduce

We are now ready to study the behavior of the lower order terms of the expansion, assuming that we found a γ(k) such that Λ 2 < γ(k) < Λ. We have to deal in a second part with terms of the form u N n , where N ≥ 2. In this set-up one has to use Proposition 7, because we cannot obtain the sharpest inequality using the estimate

Inequalities for the following terms of the expansion

Recall that from Lemma 7 (proven in [START_REF] Helffer | Lafitte Asymptotic growth rate for the linearized Rayleigh equation for the Rayleigh-Taylor instability Asympt[END_REF]), there exists a normal mode solution of the linearized system of the form û(x, k)e iky+γ(k)t where Λ 2 ≤ γ(k) < Λ. With this normal mode solution one constructs an approximate solution of the nonlinear system, of the form

There is an important Lemma, which depends on Hypothesis (H):

The proof of this Lemma is a consequence of Proposition 5, which will lead to the control of the source term of the linear system on T N , u N , v N , Q N . We shall use the estimates of Cordier, Grenier and Guo [START_REF] Cordier | Two stream instabilites in plasmas Methods[END_REF], and the method of Guo and Hwang [START_REF] Guo | On the dynamical Rayleigh-Tayor instability Arch[END_REF] to give an

We prove in this section the H s estimate u N in the weighted norm ||ρ bounded, we deduce estimates in H s for u N . The first result reads as Proposition 9 There exists constants C p 0 and A p , depending only on the characteristics of the system (namely g, k 0 (x) and its derivatives) and on the H p norm of the initial data such that

Remark 2 This estimate relies heavily, as in [START_REF] Desjardins | On Nonlinear Rayleigh-Taylor Instabilities[END_REF], on the quadratic structure of the nonlinearity, and that we give the precise estimate on the constant C j which appears in ( 13) of [START_REF] Desjardins | On Nonlinear Rayleigh-Taylor Instabilities[END_REF]. This estimate could not be obtained in the set-up of Guo and Hwang [START_REF] Guo | On the dynamical Rayleigh-Tayor instability Arch[END_REF] because the nonlinearity was written using ρ u.∇ u, hence a cubic nonlinearity.

A second comment is the following: the inequality 2γ(k) > Λ allows us to forget the coefficient (1 + t) s in the H s estimate for a general solution of the linear system (obtained in Proposition 8). This is a consequence, as we shall see below, of the relation

(to be compared with the relation e Λt t 0 e (Λ-Λ)s ds ≤ te Λt ). Case N = 2

Recall that we have the following system

We have thus the estimates

This means that K 2 0 (t) ≤ D 2 e 2γ(k)t , hence

We need to derive estimates for the terms T 2 and Q 2 . For the term T 2 , one has

It is then enough to use a recurrence argument to control the norm of Q d in H s+1 using the control of the norm of Q d in H s . For the control on u d , let us rewrite the equation on D α u d . We introduce

We have the estimates

Using the relation

thanks to the divergence free condition, as well as

one obtains the estimate

hence the inequality

For |α| ≥ 3, this inequality is an a priori inequality. We have to state the identical inequalities for |α| = 0, 1, 2. We have the following inequalities:

(89) and

(90) We thus deduce an estimate of the form

from which one deduces an estimate of the form

where R(x) = (1 + x) 3 + 2(1 + x) 2 + 4(1 + x) + 8, from which one deduces that

hence h(t 0 ) < 1, contradiction. We thus deduce that h(t) ≤ 1 for t ∈ [0, T δ 0 ], hence

We have thus the inequalities

e 2γ(k)t 1 -C 0 δAe γ(k)tδ N +1 e (N +1)γ(k)t .

Choose t = T δ 1 = 1 γ(k) ln θ C0Aδ . We have

We thus check that there exists ε 0 ≤