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Abstract

We study the stability of the system of the Euler equations in the
neighborhood of the stationary solution associated with the quasi isobaric
profile in a gravity field. This situation corresponds to a Rayleigh-Taylor
type problem with a smooth base density profile which goes from 0 to
pa (of Atwood number A = 1) given by the ablation front model with a
thermal conductivity exponent v > 1. This linear analysis leads to the
study of the Rayleigh equation for the perturbation of the velocity at the
frequency k:

2 po(@) ) + Klpo(@) = Zoph () =0,

We denote by the terms ’eigenmode and eigenvalue’ a L? solution of the
Rayleigh equation associated with a value of 7. Let Lo > 0 be given. The
quasi isobaric profile is po(z) = pa€(75), where £ =¢"(1—¢€). We prove
that there exists Lp,(k), such that, for all 0 < Lo < L, there exists an
eigenmode u such that the unique associated eigenvalue v is in [aq, asg],
a1 > 0. Its limit when Lo goes to zero is v/gk. We obtain an expansion
of v in terms of Lo as follows:

- Vo |
V142004 )1 () 4 O(k)™ 0B

We identify in this paper the expression of the next term of the expansion
1

Y

of 7 in powers of L .

Using the existence of a maximum growth rate A and the existence of at
least one eigenvalue belonging to ]%, A[ (thanks to a semiclassical analy-
sis), we perform the nonlinear analysis of the incompressible Euler system
of equations using the method introduced by Grenier. This generalizes the
result of Guo and Hwang (which was obtained in the case po(z) > p; > 0)

to the case where pg — 0 when x — —oo and ko(z) = Z:(:Ez; satisfy ko

_1
regular enough, bounded, and kop, * bounded, which is the case in the
model associated with the quasi-isobaric profile, according to v > %
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0 Statement of the problem and main result

In this paper, we study a theoretical system of equations deduced of the fluid
dynamics analysis of an ablation front model. Such models have been studied
from a physical point of view by many authors (see H.J. Kull and S.I. Anisimov
[E], V. Goncharov, [ﬂ], P. Clavin and L. Masse [E]) They can be considered as
a generalization in the ablation case of the Rayleigh-Taylor instability, studied
in the pioneering works of J.W. Strutt (Lord Rayleigh) [Ld] and G. Taylor [2d].
The Rayleigh equation models the Rayleigh-Taylor instability. It is obtained by
considering the linearization of the incompressible 2d Euler equations around the
solution (po(z),0,0,po(x)) (density, velocity, pressure) with C;LIO + po(z)g = 0.
The system of equations write

Oep + 05 (pU) + 0:(pV) =0

0t (pU) + 95 (pU? + P) + 0. (pUV) = —pg (1)
O (pV) + 05 (pUV) + 9:(pV? + P) = 0

0, U+0,V=0

Write p =po + 0, U =v1,V = v, P = pg + p, the linearized system is

8t0 + id%’l)l =0

Po(z)atvl + 0:p = —o0g (2)
po(x)0ve + 0,p =0

Ozv1 + 0,09 = 0.

from which one deduces, using v; = @e’*?, the partial differential equation

0 o . _ ) i
— 5= (o) 503 ) + K po (1) 0t = gh” pfy ().
Introduce

T(x,z,t) = M,Q(x,z,t) _ p(:2,¢) — po(x)

p(SC,Z,t) po(l‘)
the system ([]) is equivalent to
T + UNT = ko(z)uT
80 + (@)U + TVQ + TQko(x)é, = (1 — T)§ (3)

divU = 0.

It is a consequence of the equality Tp51Vp = TVQ + kgT' Qe + TG and of
6tT + UVT = —p72(6tp + va)

The associated linearized system in the neighborhood of U =0, T =1, Q =0
is

8tT~: ko(l‘)’a
di\jﬁ =0
04t + py ' V(poQ) + TG = 0.



Assume that the perturbation is written as (the real part of) a normal mode
eVte**y(x, kL),

where k is the wavelength of the transversal perturbation and + is the growth
rate in time of this perturbation. We obtain the Rayleigh equation (f]) (see C.
Cherfils, P.A. Raviart and O.L. ):
d du gk?

— @) T + (Kpo(a) = 5 ph(au(e) = 0. (4)
We consider a family of density profiles po(x) such that po(z) = pO(LiO), where
Ly is a characteristic length of the base solution. In one of the physical applica-
tions, namely the case of the ICF, its magnitude is 10~° meters, hence allowing
us to consider the limit Ly — 0.
We develop here a constructive method for the study of the modes associated
with the Kull-Anisimov density profile (see B. Helffer and O.L. [L1]). The Kull-
Anisimov profile pg is given by
x
— 5
) )

where the function £ is a non constant solution of

E=¢M1-9, (6)

v is called the thermal conduction index.

Note that this equation on the density is NOT obtained from the incompress-
ible Euler equations but from a compressible model with thermal conduction
introduced by Kull and Anisimov [[J] and used for example in [[(] or in [[I4].
The Kull-Anisimov profile satisfies lim,_, oo po(2) = pa, where p, denotes the
density of the ablated fluid, and the convergence is exponential, whereas

pO(-T) = Paf(

lim,—, —sopo(z) =0

and the convergence is rational ((—z)7 po(z) — Co > 0 when & — —oc). The

associated Atwood number is thus 1. Remark also that all non constant solu-

tions of (E) differ from a translation.

This case may be related to the case of the water waves (the density of air

being much smaller than the density of water). It is thus a limit case in all the

theoretical set-up used for the study of Euler equations for fluids of different

densities.

Note that, in this case, the self adjoint operator associated with the equation

(H) is not coercive in H'(R). The methods of [{], [L0] cannot be used directly.

Moreover, the properties of pg do not allow us to apply [f], because it relies on

po(z) > pr > 0.

However, consider ko(z) = 2o (2)
po(x)

equal to Ly Lev(1 =€), hence it is a continuous bounded function which admits

introduced in the abstract. In our case, it is

_1
a maximum L;flf, and, for v > %, kopy ? is bounded. These properties are (for
a more general profile) what is needed to obtain the nonlinear result.



Remarks Define the function r(¢,e) through:

SED A - 2) = oo B (), 7

9 9

There exists tg > 0 and g > 0 such that r(¢,€) is bounded for ¢t > ¢(,0 < ¢ < &,
and has a '™ expansion in ¢, ev. Define S through

1 TG ! .
v 9’ =22 T limy o =0.
evS'(t,e)=¢ e imy4005(t,e) =0
We have the identity
t vt 1 1
62D exp(etS(t,e)) = 1 )

which implies that there exists a function r bounded for ¢t > tg and € < &g such
that ) L
exp(—vev S(t,e)) =1+evt™vr(t,e).

Let u(y) = u(Loy). The Rayleigh equation rewrites

- d%(«s(y)j—z) 1 (22E(y) — At (y))uly) = 0, (9)

where € = kLy and A\ = Z—’;. We will consider this equation from now on.
We shall introduce two equivalent versions of this equation, which are:

1. the system on (U, V,) such that Ui (y,e) = u(y,e)e®¥ and V, (given by
the first equation of the system below), v(y,e) = Vi (ye)e Y:

{ T = (1= Uy + 55V

AW _ o+ D)V +e(1 - VU 10)

{ = , (11)
dw — (X2 —Du— Mo+ (& +ev S (te)w.

The first part of the main result of this paper was presented in [E], and the
case where £(y) = £(1)(y + 1)~ » for y > 0 was solved in [B]. The case of the
global ablation system was treated in [[4] and is published [[L3].

We finally recall that, if there exists a solution in L?(R) of (f), then )\ satisfies
the inequality (see [[L0])!

(I/ + 1)1/+1

A > max(1,¢e
VV

)- (12)

The main result of the first part of this paper is

Y

1Tt is a consequence of rnax(%) = GFnoAT



Theorem 1 1. There exists g > 0, and CY > 0 such that, for all € €]0, ]

there exists \(e) € [%,3] such that the Rayleigh equation ([§) admits a

bounded solution u for X = A(g), which corresponds to the eigenmode u

and the eigenvalue v(k,e) = 4/ )\g(lz), and \(€) satisfies

A(e) — 1] < CO%v.
2. We have the estimate
Ae) =1+2(

with o = min(1, 2).
3. We have the expansion
Co(1,0)
(Bo(0))?

where Bo(0) = =2 [ sve 2 ds = —2_%1"(1—1—%) and Cy(1,0) is calculated
below in Proposition .

1—A(e) = 2 +o(z7)),

R1™

)# (Bo(0) ML +2(5)*

This result is a result, for k fixed, in the limit Ly — 0. It writes also, for k fixed
and for Lo < % as

_ gk
! \/1+2<2—5>i<r<1+%>>1+o<ei>'
Note that, in this case, the order of magnitude of v —+/gk is not in kLg as in [E],

but the result of [[[d], based on pg — palss0 € L+ for all @ > 0 is pertinent.
We have also a result for k£ going to infinity, which can be stated as

(13)

Proposition 1 a) Any value \(€) such that ({]) has a L? non zero solution

satisfies (/\?# < A?, where A?> = %ff.

b) Any sequence k — % satisfies the following
: Ae) &)
Ui oo ol = [ pr = Lo.
UM — + k ff miny, 5’(y) 0

It is proven in [[L{].

Remark that formula (1) and Proposition [] are not in contradiction. They
lead to two different stabilizing mechanisms induced by the transition region:
one is a low frequency stabilization when Ly — 0 and the other one is a high
frequency stabilizing mechanism when k — +oco. It is important to notice that
Propositions P and ] below allow us to construct an (exact) solution u(y, A(¢), )
of the Rayleigh equation hence giving an unstable mode

. T N
w(x,z,t) = e’kzu(L—, kLo, A(g))e vV @
0




solution of the linearized Euler equations. Moreover, from Proposition (EI), one
has the following: There exists & > 1, A(e) and u(y) such that ¢ = kLo, u

solution of ({), (k. €) = /545, & <(k,e) <A, [[u(y)]lz2 = 1, u(0) > 0.

From the construction of this particular solution, we deduce a nonlinear result.
For simplicity, in what follows, we will denote by (k) the eigenvalue v(k, Lo).
From wu, one deduces a solution

ko(z)

U = R[(ur,v1,Q1, T1)e** 70 = R[(u(z), L u'(z), _(k) U (z), —Lu(z)) et

ik k2 (k)

of the linearized system. We thus consider a function V¥ = (0,0, Bo, 1) (Loz) +

SN 09V (w,y, t) satisfying (Emod)(VN) = 6N FLRN+L VN (2, 2,0)—(0,0, 22, 1)(Lox) =

0U (z,z,0). We also construct the solution V(z,y,t) of the Euler system splolch
that Emod(V) = 0 and V(z,2,0) = (0,0, 82, 1)(Lox) + 0U(z,y,0). Introduce
finally V4(z,y,t) = V(z,y,t) — VN (z,y,t). This procedure constructs a solu-
tion of the nonlinear system.

We have the

Theorem 2 1. There exists two constants A and Cy, depending only on
the properties of the Fuler system, on the stationary solution and on the
solution G(x), such that, for all < 1, for all t €]0, ﬁ In ﬁ[, one has

the control of the approzimate solution VN in H®, namely

51461)6706))5

N_ . ™| s N _ D Ot —
I =l + 117 e+ 11QY = ol < O35

and the leading order term of the approximate solution is the solution of
the linear system as follows

e (k)

N k)t 2
TN = 1|2 > 6[|T1(0)]] 267 ™ *ACOCBW

2. There exists Ny such that for any N > Ny, the function V% is well defined
fort< ﬁ 1n% and satisfies the inequality

11
V|| < gNFLeWHD (Rt i € [0, — In <.
IV [ ) 5[

3. We have the inequality, for eg < CoA

1 1501}

N €0, >
HU(W In m)”m > §0||U1(0)||L2-

This paper is organized as follow. The sections 1, 2, 3 study the linear system
and identify the behavior of the growth rate v(k) when Ly — 0 by constructing



the Evans function, and Section 4 constructs an approximate solution of the
nonlinear system of Euler equations.

We identify in a first section the family of solutions of () which are bounded
when y — +o0o and we extend such solutions, for (¢,A) in a compact B, on
[€71(eR), +oo[, where R is a constant depending only on B (Proposition ). In
the second section, for all ¢y > 0, we calculate a solution of (E) which is bounded
on ] — oo, — ] (Propomtlonﬂ

A solutlon w of (fl) which is in L2(R) goes to zero when y — +oo as well as
when y — —oo. Moreover, as po(z) is a C* function on R, any solution u of
({) is also in C>°.

Notice that lim_o(—££1((eR)*)) = —=, from which one deduces that there
exists to such that 0 < ¢y < %lime_,o(—af_l((ER)%)).

The regions ] — oo, —%2] and [€7((eR)¥), 400 overlap and

1 to 3 1
€M R, -2 C o )
Hence the solution u belongs to the family of solutions described in proposition

B (of the form C.uy(y,e)) and belongs to the family of solutions described in
proposition ] (of the form C..U(—ey, ¢)), that is

{U(y)ZC*qu(y, 2y > € H(eR)Y)
u(y) = CoulU(—ey,e),y < -1

From the continuity of u and of v/, one deduces that, for all y, € [ 25, — 507

(corresponding to t; = —ey, € [QVR’ 125=]), we have Coug (yo,e) = CoU(t L, €),
C* dyu-i-(yJJ ) - C**EU (tLa )

Introduce the Wronskian (where e ~! has been added for normalization purposes)

W(y) = e (g (3, s>d4‘;(v(fey,e» - d%m@, NU(—cy.2)).

It is zero at y; = —et;. Conversely, if A and ¢ are chosen such that the
Wronskian is zero (in particular at a point y; = f—) the function

a( )_ C**[U]( €Y, ¢ ) y<yl_

(14)
is, thanks to the Cauchy-Lipschitz theorem, a solution of (E) Moreover, it
belongs to L?(R) owing to the properties of uy and of U.

In Section , we compute the function W. As U and u, are solutions of the
Rayleigh equation, which rewrites

d? {(y) duy

(.9 = )

+ ( eA €(y) >u+(y7€)

£(y) dy
the function W is solution of %W = —%W, which implies the equality
§WIW(y) = £(yo)W(yo) for all y, yo (15)



This Wronskian can be computed for y, € [— ﬁ, fﬁ] using the expressions
obtained for U and u4. We prove that it admits a unique root for 0 < € < gg
and A in a fixed compact, and we identify the expansion of this root in &, hence
proving Theorem ﬂ Precise estimates of this solution are given in Section 3.

In Section 4, after proving a H?® result on a general solution of the linear system
(taking into account a mixing of modes), we calculate all the terms V; of the
expansion of the approximate solution, the perturbation of order § being an

eigenmode with a growth rate v €]4, A[, where A% = maxko(z) £

1 Construction of the family of bounded solu-
tions in the dense region.

The system ([[q) writes %lﬁr = eMy(£(y), \)Uy. When y — 400, the matrix
converges exponentially towards Mp(1,\), which eigenvalues are 0 and 2, of
associated eigenvectors (1, A — 1) and (1, A + 1).

It is classical that

Lemma 1 There exists a unique solution (Uy,V4) of @) which limit at y —
+00 is (1, A\ — 1). Moreover, there exists £y > 0 such that this solution® admits
an analytic expansion in € for £(y) € [&o, 1].

The proof of this result is for example a consequence of Levinson [E]
The aim of this section is to express precisely the coefficients of this expansion
when £(y) — 0 and to deduce that one can extend the expression obtained for

€ € [E(ER)a 60]

We consider, in what follows, the change of variable

¢= . (16)

We prove in this section the

Proposition 2 Let K be a compact set and A € K. There exists g > 0 and
R > 0 such that, for 0 < € < gq, the family of solutions of (@) which is bounded
1

when y — +o00 is characterized®, for y such that £(y) > (eR)v, by

{ Up(y,e) = 1+ L=80DON cq (¢ o)

(y)
Vi(y,e) = A =1+ (1 =XM1 -&C¢B((e).

The associated solution of (H) is uy(y,e) = Uy (y,e)e™ %Y.

2Tt can also be shown that there exists a unique solution (U, V) such that (U, V)e=2¥ —
(1,2 +1)
3a general solution is K4+ (U, V) where K is a constant



Proof of Proposition E We write the analytic expansion in e:

U:1+Z€juj,V:)\—1+Zsjvj.
j=>1 ji>1
We deduce, in particular,
d’LL1 — A—
= Wé(l —&)
G =W =11 =¢()

hence assuming uq,v; — 0 when £ — 1 (which is equivalent to dividing the
solution by its limit when £ — 1) we get

1= 1_£l/+1
{ Ul = 31 gt

1-X%2 1-¢¥
V1 = — 55 .

The following recurrence system for 7 > 1 holds:

du;
5 = (0 — (A= 1)&uy)
{ B _ (3 4 1)y — (- Dewy). a7)

Usual methods for asymptotic expansions lead to the estimates (which are not
sufficient for the proof of Proposition E)

MAI
lui ()] + |v; (y)] < W-

However, using the relation 1 — £ = f,,il, we obtain the following estimates:

Lemma 2 Let & > 0 given. For all j > 1, introduce a; and b;, such that

) = LD ). 0y ) = LSy, ey,

The functions a; and b; are bounded, analytic functions of &, for & € [&,1].

They satisfy ‘ ‘
la; (§)] < AR, [b;(§)| < AR, (18)

where R depends only on \.

We prove Lemma E by recurrence. Assume that this relation is true for j. We
have the relations

dujiq :
{ d]; :(1_)‘)(53‘_()‘_1)%‘)%%

—dngfl =1 =NA+1)0b; — (A~ 1)%)&(”%

from which we deduce, using the limit 0 at £ — 1

Wb () = (A= Day(n) dn

u.7+1(y) = (1 - )\)/1 ny(j+1)+2




and

W pon) — (X — 1as
B = -y [ B ny& (),

1

We thus deduce that €UV v; 4 (y) and €U+ +1y, 4 (y) are bounded functions
when ¢ €]0, 1]. Moreover, if we assume |b;| < AR’/ and |a;| < AR/, then

lujir| < ARI|L = A[(J]A = 1| +1) fg v(y+1>+2
o741 < ARIL = AN+ 1/(A— 1]+ 1) [} 8.
We end up with

v(j+1)+1
. G ((A—1]41) 1—¢gvGHt
lujr1] <A —1AR EvGIDTL "G+ 1) +1 °

A—1]|+1) 1—¢vU+D)
[vjt1| < A= 1ARI|A +1] (lnglm H S

€€ € 10,1, we get [ujpa] < [A— 1ARTIA=EIES0D) o) <
ARIN = 1A+ 1| PP - Consider
= (|]A = 1] + Dmax(1, |A 4+ 1|). (19)

The previous inequalities become

1 A—1 i (1— A—1
il < ARG SO o) < amg =00 =,
hence we proved the inequality for j + 1.
The inequality is true for j = 1, hence the end of the proof of Lemma E, where
we may choose the value of R for A€ [2, g] as R = 14—5. Finally we have the
equalities, for all y such that &(y) > &:

U+(ya5) =1+ (1—5(§y)y))(1—k) ijl aj( ( ))(( £(y )u)

)
1— 1—X ;
=1+ = (@5w) Tiso “J+1((‘5( ))((5@3; )

Vi(y,e) :)\*1+(1*>\)(1*§(y))2]>1 (€ ))((g(y))r _
= A= 1+ 1= N1 = W) (ergm) 2250 bi1 (W) (g )

Using the estimates ([L§) and the change of variable ([Lg), for ¢ < R~! the series

> aj( )¢7 is normally convergent and the following functions are well defined

Uly,e) = 1+ L2 A e)
Vly,e) = A= 1+ (1= 2)(1 = £W))CBS ).

It is straightforward to check that U and V solve system (E) and that we

have, for {(y) > &, ¢(&) < Ey, hence for? ¢ < ¢y = 25—?% and {(y) > & we

have U(y,e) = Uy(y,e) and V(y,e) = Vi(y,e). We extended the solution
constructed for £(y) € [£o, 1] to the region ¢ < &. This proves Proposition B

4Note that these inequalities depend on a given arbitrary & > 0.

10



2 The solution in the low density region

2.1 Construction of the bounded solution

In this section, we obtain the family of solutions of (f]) bounded by |y|4e%¥ when
y — —o0, that is in the low density region & — 0. Introduce the new variable
t = —ey. Commonly, I call this solution the hypergeometric solution, because it
has been observed that, in the model case po(z) = (—x — 1)~ » studied in [f] as
well as in [E], the Rayleigh equation rewrites as the hypergeometric equation.

Introduce

NI =S 0 = 48 (s,)

T(s,e) = 7 E

We define the operators R., K. and K 2 through

€

R6)6) = [ e L) Mgl €D @0

1=

Ko(9)(t) = (1= VEN9)(t) = —

+o0
/t 7(s,€)Re(g) (s, €)ds. (21)

These operators rewrite

T, A a2 L
Rs(g)(svf):/ (V—y+€'75’(y,6))6’2(1“"5)8"71/? exp(er A(S(y)—5(s)))g(y, €)dy.

)2 +o0 .
K@)te) = [ G+t o) Ra) s,

We have the inequalities, for g uniformly bounded, (and A < v, which implies
E(=2) P <g(=f) M ort > )

—+00 1 ] v
RO <lglll [ 270l < ollS @22)
)\271 e e} v )\271 v
KO < 2ol [ o 0Sas < E gl S @)

Moreover, the following inequality is true:

9591 < G > K0)(0)] < oGP (20)

In a similar way, we introduce

K3 (9)(t) =125 )" SR (9)(s)ds

Ry(9)(s) = [ L e 29572y Pg(y)dy.

11



Let ep > 0 be fixed and 0 < € < €p. Under suitable assumptions on g (we can
for example consider g in C*°([tg, +o0[) such that |0Pg| < Cpy*~? for all p), the
operators K., R., Ky, Ry are well defined. Moreover, one proves that

gt xe) =3 KM (1)(t,e) (25)
gt N) =3 KM (1)) (26)

are normally converging series on [tg, +00[, and that we have:

g=1+K.(9),90 =1+ Ko(go)- (27)

2 v
Moreover, we know that g is defined on R, because the series (l)‘;# (%)p

converges and is majorated by exp(|]\? — 1|A%), from the inequality (24). We
obtain the inequalities

A2 —1 A —1
g0t V)] < exp(X 21 190 )] < exp(X=Y

o @)

We cannot thus consider the limit ¢ — 0 in the equalities containing g as (R9).
We shall assume that A\ belongs to a compact set and that A > % We prove

Proposition 3 Let g be defined through ) The family of solutions of the
system ) on (u,w) which is bounded by |y|*eY when y — —oo is given by

u(y,e) = C(F(t, A e)+G(t, A, 2)), E(y)wly, €) = v(y, ) = CEW)A-DF (L, A, e)+(A+1)G(E, A, €)]

where C is a constant, t € [tg,+00[, t = —ey and F and G are given by equalities

Bd) and [B31) below.

We have the estimates, for t € [to, €]
19(t,1,€) = go(t )| < Coc*[go(t, V)|
t t 1 t
(=2, €) = o=, €)l < Coe¥ Juo(—, €l

t t 1 t
L) —wo(=2, )] < Coetlug(—=
|U( 555) UO( Ea5)|— 0€ |U0( E,€)|

proof The system ([L]) rewrites on F and G given by Proposition fi:

1
2\t
G'(t,\,e) = =G(t, \,e) + %(% + E%Sl(t,{;‘))[()\ —1DF(t, A e)+ A+ DG, N e)).
(29)
A non exponentially growing solution of the system @) is obtained through
the following procedure. We denote by g(t, A, ) the function

{ F'(t,\e) = F(t,\e) — (L +ev 5 (t, ) [(A = DF(t, A\ e) + (A + 1DG(t, A )]

glt,\e) =Gt A\ e)et(E(—1)) = (£) % )
= G(t, A e)e't™ 5 exp(—ev 125 (1. €))

12



We first get, from the fact that F' is bounded when ¢t — +o0, that

1—X A—1

1 134 _
F(t, A e)e it e 2 5e) = P, \ e)e t(E(~L)) = (£)

_ ER-
= % t+oo(% + E%S/(S,E))s%eﬁ' )\215(575)675G(S, A, €)ds

= AL (eI (£)g(s5, M, e)em2E A (2) v ds

oo . 1oa oAzt
- ST (6 (8) s

(31)
We deduce from the system (@) the equality

d 1
E(G(t’ A (E)ett_%A exp(—e

1 -1,1 1 1
+ )\S(t,a))) = )\T(——i—aisl)ett_%X exp(—e¢

Under the assumptions g bounded and satisfies the condition

14+ A

N
N

S(t,e))F(t,\e).

vt

lim;oog(t, A, e) =1 (32)

one gets the equality
glt, N e) —1=K.(g)(t,e). (33)

Using the usual Volterra method and inequalities (23), (£4) and (), we deduce
that the only solution of (BJ) satisfying assumptions (BJ) is given through (7).
One gets G through (BJ) then F' thanks to

1= € A-1 AA+1
Ft,\e)e ez (=) = (=)

v v 2

€

/00 7(s,e)e 256 M g(s, N, e)ds.  (34)

The first part of Propositionﬂ is proven.
Denote by (ug, wp) the leading order term in ¢ of (u,w) when ¢ and X are fixed.
Introduce Fy(t, A) and Go(t, A) through the equalities

UO(t, )\) = Fo(t, )\) + Go(t, )\), wo (t, )\) = ()\ — 1)F0(1f, )\) + ()\ + 1)G0(t, )\)

The functions (Fy(t, A), Go(t, \)) are solution of

2vt

&(t, A) = —Go(t, A) + 5L Fo(t, \) + 32 Go(t, ).

{ A (4, 0) = Fo(t,A) — AL Fy(t, A) — AELGo(t, )
dt

2vt

The second part of Proposition E comes from the following estimates on the
operators R. and K., valid for ¢ < ¢eg and t > to > 0:

|Ro(f) = R)(f)] < Cre [RG(F)], IKo(g) — K (9)| < Caz?| K (g)],  (35)
from which we deduce the uniform estimates for g given by (Bd) solution of (BJ)
l9(t, A, ) = go(t: )| < Cae? |go(t, M)t > to,2 < 20 (36)

because the Volterra series associated with K is normally convergent in [to, +00].
This ends the proof of Proposition E

13



Note that the previous estimates, as well as the behavior of the solution and the
operator Ry, are valid only for to > 0, because, for evample, R} (1)(s) ~ 1 when
s — 0. The integral defining K()\ is nevertheless convergent at 400, because for
t > to we have the equality

1y,
2wsRA(1)(s) = 1 7/ 5(%);672@75)@_

2.2 Construction of the hypergeometric solution for ¢ =0
We prove in this Section

Lemma 3 The solution (Fo(t, \), Go(t, \)) constructed through (@), @), @)
for e =0 is given by

Fo(t,\) = e (Up(t, \) + 3

Go(t, \) = e " (Uo(t, A) — 3 %G (1, )
where Up(t) = 2’%U(—%, f%,Qt) the function U(a,b,T) being the Loga-
rithmic Kummer’s solution of the confluent hypergeometric equation (see /E])

This allows to obtain the limit of the (Fy(t, A), Go(t, A)) for ¢ — 0.
The equation satisfied by Up(t, \) = ug(t)e is

A+1

1
tUy — (2t + =)U) + Uyp = 0. (37)
v
Introducing T = 2¢, we recognize (see [[]) the equation for hypergeometric
confluent functions for b = —% and a = —IQLV)‘:

2 1 1
d?U, . dUg + A

(= =0 Uy = 0.
dT? (y+ VI o 0

The family of solutions of this Kummer’s equation is generated by two functions
M(a,b,T) and U(a,b,T). Note that T'=°M (1 +a —b,2 —b,T) is also a solu-
tion of (@), independant of M (a,b,T), hence U(a, b, T) can be expressed using
M(a,b,T) and T*~*M(1+a—b,2—b,T). The family of solutions of (87) which
go to zero when T — 400 is generated by U(a,b,T'), called the logarithmic
solution. It is the subdominant solution of the hypergeometric equation.

The expression of the subdominant solution U(a,b, T) is the following:

T M(a,b,T) _Tl_bM(l—i-a—b,Q—b,T)

U(a,b,T) = sinﬂb[F(l +a—b)I(b) I'(a)l'(2 —b) ]

where I is the usual Gamma function (I'(s) = [~ t*¢~*dt). The relation be-
tween U (a, b, 0) and U’(a, b, 0) characterize the subdominant solution of the ordi-
nary differential equation, and this particular solution has been chosen through

14



the limit® when z — 4o00:
raa-bu . u
Ula,b,0) = m,hmzﬁ_‘_mz Ula,b,2) = 1. (38)

As we imposed that g(t,e) — 1 when ¢ — +o00, we get that Go(t, \)e't™ 1
when ¢ — +o00 and that there exists a constant C such that Fy(t, \)e i
C when t — +00. Hence
(Fo(t,A) + Go(t, \))e't 2w — 1
As TU(a,b,T) — 1, we get that ¢~ = U( 1;;)‘,—%,215) — 2%, We thus
obtain the equality
1+Xx 1
S Up(t ) =t 2 e (Fy(t, A) + Go(t, \) = 27 5 ¢~ 2 U(— ; ==, 2t),
v
hence Lea 1
A+1
t,A) =272 U(— ——,2t
Uolt,3) = 273 U(— L2 Loy (39)
Introduce
I+ 1 T r(+1
Co(N) =U(= == 0)=— - I Azi . (40)
2u v sin X F( )F(l + 2 ) 1+ T)

A+l ,—%,Qt)e*t, As wy = ug — % = (A +

We get that uo( ) =272 U(—i2

1)U — %e)e~t one deduces
1 dU, 1 dU,
Go(t, ) = (Uo(t,A) = 5—2 (8, A))e ™ Fot, A) = (Un(t, X) + 5 —2 (1, A)e ™.
2 dt 2 dt
(41)
Using [ﬂ] and (@), we finally obtain
(42)

Go(t,\) — 2727 Cy(N), Fo(t, ) — 2727 Cy(X\) when ¢ — 0.

We deduce the equality

2,

+ 1 _
POF2) iyt =55 U (1, 0) = 2+

Up(0,\) = 215 —— T vl
(0, r(1+ 22y
Note that we can deduce the expressions of Fy + Gy and of Gg. We thus
check that
1+X 1 1-X 1
(Fo+Go)(t, et = Co(M (f% = 2) = CLOF M (14—, 24—, 21))
7 (43)
5 I'(1-b) T
T'(l14a—b) — sln‘rrbl"(b)l"(l«kafb)

15



e'Go(t,\) = Co((M — M')(—
—CC.2v (1 + )t M(1—|— A 24 1 0p)).

(44
We note that (M—M')(—1%2, -1 0) = 152, We deduce that ! (Fy+Go)(0, A) =
21

0,
52 Co(N) and et Go (0, \) = 2755 Co(A )(1 A), hence (A—1)et(Fy+Go)(0, )+
2¢!G(0,\) = 0. In the next Section, we combine the results of Section [ and
of Section E

3 Precise calculus of the Evans function.

The Wronskian is related to a function independant of the variable ¢, called
the Evans function, introduced below in ([i) and denoted by Ev(\, ). In the
present Section, we shall identify the leading order term in e of the Evans
function, and all the terms of the form v (X — 1) of the Evans function. We
shall finish by the calculation of the term of the form 7. More precisely, we
prove

Lemma 4 The function

Ev(X, ) = £(yo)W (o) (45)

s independant of yo. It is analytic in X\ and in 5%, €. Moreover, one has
Ev(l,e) = 2(%)% and O\Ev(1,0) = 212 (1 + 1), This function is called the

FEvans function of the equation
Using the expressions of d%(U(fsy, e)) and u+, we have
eWl(y,e) =uy(y,e)(—eXU(—cy,e) + eW(—ey,¢))

—U(—ey,e)(—eui(y,e) + @M(?Ja €))
= 177 EWut(y, )W (—ey,e) — U(—ey, )vi(y, €))-

Hence we have the following constant function to study, which depends only on
A€

Ev(\, ) = E(y)W(y) = [E(y)ur(y,e)V (—ey,e) — E(y)vy(y,€)U(—¢y, e)].

We shall use the equalities, valid for all yy (and o) such that both solutions are

defined (which means yo € [~ 25, —327))

Ev(\,€) = E(yo)W(o) = (EW)(—2).

g

We begin with the

Lemma 5 The Evans function has an analytic erpansion in X\, which coeffi-
cients depend analytically on € and v.
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For the precise study of the different terms of Ev(\, ), we introduce
t €
5 = 5(72)7C = E_l,vCO =vt= C(t,O), fort > to > 0.

We check that the function Ev(),¢) is analytic in A and has an analytic expan-
sion in e¥ and ¢ thanks to the equality

[v] _
1 1 1—gv-bl 1
;;o SER TI- € " grr(1—¢) (1 -¢)

which implies that the relation between ¢ and ( is analytic in € and v,

1 1
Assume from now on \ > % and v > 2 and replace £(y) by ev(~v. Using this
Lemma, there exists two functions By(e) and Cp(A, e) such that

Fv(\e) = Bv(l,e) + Bo(e)(A — 1) + Co (N, e) (A — 1)%. (46)

Direct relations Considering the limit in @) for ¢ = 0, we obtain
Ev(X,0) = (A = 1)e"(Fy + Go)(t, \)[~1 + (1 — N vtA(vt,0) + vtB(vt,0)].

As this quantity is independant of ¢, we consider the limit when ¢ — 0, hence

we deduce that
A+1

2v CO ()\) (47)

Ev(\,0) = —(A—1)2'~
Remark that this implies the identity

(A—1)et (Fy-+Go)(t, N[~ 1+(1—=N)wtA(vt, 0)+vtB(vt, 0)] = —21 2 Cy(N)(A—1)
(48)
which rewrites
A+1

e (Fo + Go)(t, \)[~1 4+ (1 = N vtA(vt,0) + vtB(vt,0)] = =21~ 727 Cy(N).

In a similar way, we check that, for A =1, U; =1 and Vi =0, and g(¢,1,¢) = 1,
which implies
1% 1 S

G(t,1,e) =e (=) vet =eY(

9 14

1

) (49)

from which one deduces

S

Ev(l,e) = 2e'G(t,1,6)¢ = 2(

).

From ([td), the unique root A(¢) of Ev(), €) in the neighborhood of A = 1 satisfies

(50)

R | ™

Ev(1,¢)

M) = B O T G, 06 — 1)

The two first terms of the expansion of A(e) — 1 in terms of ¢+ under the
assumption v > 2 are thus given through
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Ev(1,¢)

2
Ale) —1=-— +o(ev).
= EEranone - T
As A\e) —1= fE];J(f(léj) + o(ev), we write
_ Ev(l,e) 2
AMe) -1 = T Bo(e)—Co(d, 0)(308(0)) TEu(l, a) o(ev)

(51)

= _EL;}((lsa — Co(1,0)(Bo(0) 3 (Ev(L,€))? + o(e7).

One is thus left with the calculus of Cy(1,0) and of By(e) up to the order
1. For the computation of By(e), we need the behavior of the solutions of the
overdense system for A = 1.

As in Section [l, we introduce a;(£) = a?—i—«fa; +0(&?) and b; (&) = b? +§b} +
O(€?). We recall that CA(C,e) = 2277, a;(§)¢7 and ¢(B((,e) = Y072, bi(€)¢7.

Introduce

w(€) =Y T, 0(¢) = Y TN bw(¢) = Y T el k(O =Y ¢ jaj

j>1 j>1 j>1 j>1

Lemma 6 The following relations are true

¢H(F +G)(t 1) = ' (Fy + Go)(t,1) = j
2e'G(t,1,e) — 2e'Go(t,1) = 2=~ e : +O(e )
C(t,e) = Go(t) = —€555
CA(C,e)(1 = &(y)) — CoA(Co, 0) = ECTR(C) — w(C) — %5 (Cw'(€)
CB(¢,e)(1 = &(y) — ¢oB(Co,0) = &C[v(C) —u(¢) — 525 (Cu' ()

For the computation of Cy(1,0), one has
e (Fo + Go)(t, A) — ' (Fo + Go)(t, 1)
A—1 '

From these two results, one obtains the following

00(17 0) = 7limA~>l,t~>0

Proposition 4 Introduce the function Ro(t) = 5= Int — Ki1)(t) - ;BO(O)t’%,

where K&( ) has been introduced in @)and note that the terms By and Cy
which have been introduced in (@) are calculated through

teo 1 1
By(0) = —2/ sve 2ds = —27vI(14 =)
0 124
We have )
Ev E.1,.
Bo(E) = Bo(O) + —+ 2(—) v llmt_,oRo(t),
v—1 1%
and

feroo I *25621;9 FInse 2%ds + 1 f svle 25K} (1)(s)ds
Bo(O)f 1—e" %% ds + J"O ——1 —25[1 hlS—RQ( )]d
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Let us begin with the proof of Proposition . We rewrite the Evans function as

Ev(\e) = [(A=1De"(F+G)(t, A\ e) +2e'G(t, A\ e)](§(y) + (1 — N (1 — E)CA(C, €))
—e!'(F +G)(t, A 6)(>\* 1+ (1 =M1 = &()CB((e)). 52)
52
Remember that we have

(A=1)[Bo(e) + Co(A, e)(A = 1)] = Ev(\ e) — Eu(l,e).

We thus deduce the equality

BO(E) + CO(Aﬂ €>(>\ - 1) = g(y) QetG(t’/\V?:fetG(tvlvE)
(L= €I (F +G)(1:A,2)(1 = CBIC,)) +2¢'Glt X, €)CA(G <))

+(1 = N1 = §(y)CA(G, €)' (F + G)(t, Ase)

Recall that G(t, \,e)e’ = (%)i (t, A\, e) and use g(t,1,e) = 1. We use also the
relation (B4) to get

(F+A2_J&1G)(t’)‘a€)e_t(%)% —2ft V ve g (Sd)\ ,€)ds
“1ft % 2[4 —2(g—1)]ds

Note that we need two terms of G and of F' + G, and that we use

dg d

T (=N (BN, g 1= (1= VR (o).

This will contribute to the term in C. Rewrite the first term of (F2) as

(% —1  Coarn
[ﬁ*(;) = K2(g)]-

2e'G(t, N\, e) — 2e'G(t, 1,¢)
A—1

<=

£(y)

€
—92(=
)
Its limit when A goes to 1 is 2(%)% [ 1n(%) — K1(1)]. Hence we get the identity
Bo(e) = —(1—ev¢)[e'(F +G)(t,1,6)(1 = (Bi((,9)) + 2€'G(t, 1,£)¢ A (G, €)]
(%) 55 In(§) — K2(1)]
(54)
and the right hand side is independant on ¢. Using Lemma E, we obtain

Bo(e) =2(2)[5In($) - K1)
+<1fs%<*§)( "1 = ¢B1(G,0) + 2¢A1 (¢, 0) + o(e7))

+(1—ev¢mv)le (Fo+Go)( 1(1 = ¢Bi(C,¢e)) + 2e'Go(t, )CAl(C,(E)])
55

Bo(e) =2(2)} [H () — KAL) £5(1 = (Ba(C,0) + 204, 0) + ofe)

(C(Bl (Ca O) — B (Ca 5)) + 2€tGO(t’ 1)C(A1 (Ca 5) - CAl (Ca O))]

19



Using the relations Gy(t,1) = (%)5e’t and Fy(t,1) = 2€! ;roo sve~25ds, one
deduces that Go(t,1)and Fy(t, 1) goes to a constant when ¢ — 0.
Hence one gets

Bo() = Bo(0) + (=) hmtéo[ Int —2K3(1)(t) -t~ ¥ Bo(0)].  (56)

The second part consists in the calculus of Cy(1,0).
Considering now € = 0 in (@), one obtains the two identities

BO(O) = 7et(F + G)(ta 17 0)(1 - COBl (CO? 0)) - 2€tG(t7 15 0)<0A1(§05 0)7 CO = vt.

By(0) + Co(A, 0)(A = 1) = —e'(Fo 4 Go)(t, \)(1 = ¢oB(Co, 0)) — 2 Go(t, A)¢oA(Co, 0))
—(A = 1)¢0A(Co, 0)e! (Fo + Go)(t, A).

Hence

Co(M0)(A=1) = —(A—=1)CA(Co, 0)e' (Fo + Go)(t, A)
+e'(Fo + Go)(t , (¢B(¢,0) — ¢B1(¢,0))
+(1 = GoB(o,0))(e" (Fo + Go)(t, 1) — €' (Fo + Go)(t, \))
+2e!Go(t,1)(CA1(C,0) — CA(C,0))
+C0A(Co,0)(2e' G (t, 1) — 2e*Go(t, N)).

We get (as we work for e = 0, we should write ¢y but we drop this notation and
we use ¢ = vt)

Co()\, 0) = —CA(C, 0)€t(F0 + Go)(t, )\)
—e'(Fo + Go)(t, )CW

H(Fo+G et (Fo+Go)(t,1
(1 _ CB(C 0)) 0 0)( ) — ( 0 0)( )

) ren (t, )\)C A(S 0))\51141(@»0)
—CA(C, 0) 2 GoltA 2 Go(t]).

In this equality, one only needs the value for A — 1, and it is independant of (.
We thus consider the limit when A — 1 and { — 0, hence one obtains
€t(FQ + Go)(ﬁ, )\) - €t(FQ + Go)(ﬁ, 1)

A—1 ’

Co(l, 0) = —limg_,07>\_,1

Equality (53) rewrites

— t"o(s%y—%g—k)di[ “25g(s, A\ €)]ds
A — 48
PvTrEN) K2 (g)e > ]ds
Hence, considering the limit € — 0, one obtains

A—1

(Fo + 352 Go)(t, Ne t ()&

i
+A-DR 76



The value for A = 1 is thus (Fy + Go)(t,1)e™t = 2ft+°°(§)%e*25ds. Hence

e (L2 Go) (1, N ()5 + (Fo+ Go)(t, M) ()5 — (Fy + Go)(t,1)]

7 — 1)e=2%ds
35 [K3 (go)e>*]ds

Dividing by A — 1, one deduces

—1 _ _1 < L;l_
e’t[f%Go(t,)\)(%)% + (F0+G0)(tv)\))\_gFoJrGo)(tvl)(%)% + (Fy +GO)(t71)(u))\2_1 1]

We consider the limit when A — 1, and recalling that for € = 0 one has % =s,
H(t,\) = (Fo+Go) (t,A) = (Fo+Go)(t,1)

denoting by , we obtain

e~ [~1Go(t, 1) + H(t, 1) + (Fo + Go)(t, 1) 55 In &

2];0 In se~2%ds
+ [77 sv LK (1)e *]ds

Using again the integration by parts on the last term hence one gets

~H—LGo(t,1) + H(t,1) + (Fo + Go)(t,1)5= In §]

2 [ seds — 1 RO — % ()R (e->ds

We notice that the function Ro(t) = —LInt+ 2KL(1)(t) +t ¥ Bo(0) has a finite
limit when ¢ goes to zero, according to (64). We have the equality K}(t) =

1Ry(t) + 5 Int — £ By(0)t~v. We deduce that

1 15 o 1, o
L E(sv)Kj(L)e2ds = ;| E( E% ( ) >=Ins— 3 BO(O) vle 12 ds
—u’_lft v s)—|— 2—1V1ns— 1By (0)s~v]e 2ds

In this last term, the only term which matters when ¢t — 0 is the term

1 1 ! 1 1 Le=2s 1
—530(0)1/?_1/ sTle™%ds = —§BO(O)1/?_1[/ £ T ods— Int].
t t

S

1

Note that By(0) = —2 J~0+ sve~2%ds. One obtains

o 1 1 1
Bo(0) = —/ (&)hetda= 275001+ 7).
0 1%
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3.1 Reduction of the Evans function

Lower order terms Recall that the operator K1(1) is defined through (R1]).
We prove the following lemma of reduction:

Proof of Lemma E It is enough to prove that the relation giving ( is

hence we deduce

t=—Ce+ S 1 e—S _ R
v v—1

We thus obtain ¢ = %", hence

Go—¢_ . ¢
== +O(E)C
We deduce that w(¢) —

w(Go) — (¢ = Go)w'(Go) = 0
We use e'G(t, A\, e) = (£ )55

w(Go) = (¢ = Co)w'(Go) + O((C — C0)?), hence w(C) -
ev) fufld w(¢) — w(Co) — (¢ = Co)w'(¢) = 0(ev).

&2 g(t, M\ €), hence for A = 1 we obtain

e'G(t,1,e) =n L.

The equality giving F'(¢,1,¢) being

+oo +oo
e 'F(t,1,¢) = / 7(s,e)e”*n(s,e) " tds = —e_2t77(t,5)_1+2/ e (s, e) " Lds,
t t

one obtains

e 1 1
e(F+G)(t, 1,e) — et (Fy + Go)(t, 1 :262’5/ e 25(— ds.
(F+G)ELe) = elFot Gl ) =27 | ey = 06,0))
Similarily
2 n(s,e)
e'(2G(t,1,e) — 2Go(t, 1)) = A AA
e L)
Using the relation
1 14 1 1
1 v(t O(e%)) =
n(t,s)”( +o—evn(te) + 0()) N0V

one obtains

n(tag) _ 1 1
T 1= e nlt0) + 0.

This gives directly the two equalities of Lemma E
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3.2 Limit for large k of the growth rate

Recall that was proven in [[L0] the following estimate on any value of y such that
there exists a solution of ( gk

) associated with A\ = = and € = kLo:
vy— A= MLOM l/+1 e when k — 4o00.
If we compare with ([J), one may see the difference between the result for

Lo — 0 when k is fixed and the result for Ly > 0 fixed and k& — 400. Note for
example that the limit of

\/gk:
\/1+ ELo)oT(1+ 1)

when k — 400 is +00 because v > 1. This is not surprising because we did not
get the lower order terms up to the order ¢ of the expansion of A\. Remark that
the term in e comes from the terms in & in the functions A(¢,¢) and B((, ¢).
We have the following result (according to [[L0])

Lemma 7 There exists k. > 0 such that, for all k > k., there exists a real v(k)
and a non zero solution u(x)e““y"”(k)t of the Rayleigh equation (B) such that

A

We have the following behavior of the eigenmode
llog ull + 1lpg o'l + llull + [Ju/|| + [Ju”|] < 400

As the result of this Lemma is important for the nonlinear analysis, we rewrite
an idea of the proof, based on Remark 8.1 of [@] We denote by L2, the space

hs)
SIv

1
of functions u such that pu € L*(R).
Finding 7 is equivalent to finding 0 as an eigenvalue (in L?(R)) of

1 _1d d g
et (Pod pot)+1 = Zko(a).

This operator rewrites —7 4> + 1 — Lko(x) + k~*Wo(x) where Wo(z) =

$k§(x)+ 5 (ko(z))?, which is bounded Wheni—g is bounded (or equivalently when

1 1
k{ is bounded). We introduce the operator @ = —-5p, 2 < (po-L p, 2 )+1, which
is coercive, thanks to the Poincare estimates, for k large enough. The eigenvalue

problem rewrites
2

”g € 0p(Q 3 ko Q).

Under the (natural) hypothesis that ko has a nondegenerate minimum Lg, one
deduces that for k large enough one has at least a value of (k) such that
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Ly < W < 4Ly using usual results on semiclassical Schrodinger operators
which potential has a well.
We thus constructed v € L?(R) and (k) such that v is the eigenvector of
G1)

g

_1
To v is associated a solution of (ff) which is u = p, 2Q~%v, v’ € L?, ,u € L?
oé p

Q’% kOQ’% associated with the eigenvalue

O o=

Remembering that u solves

" 2 / ng
—u" +ku —ko(x)u — —————=u =0,
o = G

multiplying this equation by u and integrating, one gets
_1 gk? 1 1,
(*u? + (u')?)dx = /kzo(:n)p 2y piu+ péudx
/ O (k)2 0
hence, using the hypothesis
_3
p6P0 <M
one obtains (the norm on the Sobolev space H' is ||u||} = [(v/)? + k*u?dz)
L. :
[lully < M[—==551lpg ull + [1pg /]

(v(k))

1
hence a control on the H! norm of u (instead of having the weight pg ).
Moreover, as v’ = %ko (x)u+ ko(x)u’ — k*u, one deduces that v” € L?, and
we have iteratively the control of u in H® (s < $p44, according to the number

of derivatives of ky that we consider).
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4 Towards a non linear analysis

We show in this Section that the result of Guo and Hwang [E] can be extended
in our set-up, even if the density profile po(x) does not satisfy the coercivity
assumption (3) of [§. The quantity ko(z) = 22%3
physical interpretation, being the inverse of a length: it is called the inverse of
the density gradient scalelength. We need the assumptions

plays a crucial role. It has a

(H) ko(x) bounded ,kzo(x)pa% bounded.

Note that ko bounded is fulfilled in the case studied by Guo and Hwang (where
po is bounded below), and in the case of the striation model (studied by R.
Poncet [[L§]) but is not automatically fulfilled by a profile such that po(z) — 0
when x — —oo. However, for the particular case of the ablation front profile,
we have ko(z) = Lo_lf(Lio)"(l — &(£5)), hence it is bounded and belongs to

[0, Lo ' sy )-

v

Before starting the proof of Theorem E, which is rather technical, let us de-
scribe our procedure.
Firstly, we prove that the linear system reduces to an elliptic equation on the
pressure, from which we obtain a general solution. We identify a normal mode
solution of this system using the first part of the paper.
Once this normal mode solution U is constructed, with suitable assumptions on
the growth rate, one introduces a perturbation solution of the nonlinear system,
which initial condition is 6U|;—¢ and an approximate solution V¥ of the non
linear system which admits an expansion in 8 up to the order N with the same
initial condition.
Using the Duhamel principle for the construction of the j—th term of the ex-
pansion in & of V'V, one obtains a control of all the terms of VIV,
The natural energy inequalities are on the quantities pé ul, pé v, py 3 ., po 3 o
We verify that the properties of po(x) imply that we can deduce inequalities
on ul, v, py'p’ and T7.
Note that we have, as a consequence of the method that we chose, a control in
t5eM of the H® norm of all solutions of the homogeneous linear system (with
any initial condition U(z,%,0)), and a control by e/Y*)* (with no additional
power in t) of the H® norm of the j—th term of the expansion.

Remark 1 When an initial value mizes eigenmodes, the H® norm of the solu-
tion behaves as t5e’. If one starts from a pure eigenmode with % <~(k) < A
the exponential behavior comes at most from the growth of the pure eigenmode.
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4.1 Obtention of a solution of the linear system

Consider the system
oo + pyv1 = fo
poOiv1 + Ozp = 0g + f1
pPo0tv2 + Oyp = fo
Ozv1 + ay’UQ =0

1 _1
We know that the relevant quantities are pgvi,2, py >0, and we denote these
three quantities by X,Y, 7. To have the same behavior when py — 0, consider

_1

1 such that, once 9 is obtained, we revert to v; and vy using v1 = —0y(p, ),
_1

vg = O0z(py 2¢). Introduce

b= py *[9y(pov1) — Du(pova)]- (57)
The system on vy, v9, o, p implies the two equations
{awg@7+%ﬁ@uamh) (58)
atT + k?o(l')X = paafo.

We obtain 9 from b through the elliptic equation
1 ! 1 2
Ay — (§k0 + Zkzo)z/} = —b. (59)

We then revert to X through the equality X = —0y%. Finally, the pressure p
is obtained through the elliptic equation

P00z (pg ' 0xp) + 052p = pi 05 0 (po > )9 + p3 0z (pg " f1) + po * fo

which rewrites
1 1 1
Ap — koOzp = p;[0279 — Shog) + po * (divf — Ko f1)] (60)
Hence we solve the system

Oy = koOy1p(b) + Po > fo

Ob = g0yT + py 2 (9y f1 — O f2)

T(O) = TO(‘Tay)a b(O) = bO(:Ea y) (61)
Ay — (5o + 7kg) = —b

Ap — koOup = p 0279 — 2koTg) + po 2 (divf — ko f1)]

which has the same properties as the system (13) of [E]7 the Poincare estimate
being still valid.

From b and 7, one reverts to X and Y, hence a solution of the system. Moreover,
one checks that (X,Y) € L*(R) (according to the energy equality), hence X €
H'(R) under the assumption ko bounded.
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Proposition 5 Under the hypotheseses (H), and under the hypothesis h; €
L% j =0,1,2, the functions uy,v1,T1,p1 solution of

8tT1 - ko’ul = h,o

podrur + Ozp1 + pogTh = hy

po0yv1 + Oyp1 = ho

Ozpuq + Gyvl =0

satisfies ui(t),v1(t), T1(t) € L? when it is true for t = 0. Moreover, one has
po () € L*(R?).

Proof The proof of this result follows two steps: first of all the assumption kg
1 1 1 1

bounded implies that pg u1, pg vi, po 2 Vp1, pé T1 belong to L?. We thus multiply

the equality Oy + p61Vp1 +T1G = h by V(palp). We get, integrating in x, y:

/(VQ1)2 +ko(z)1Var.€n + ThgV g1 = /flVih
from which one deduces
[IVa1]| < max(kopy *)|lpg a1ll + gl|T1 e + [I2]].

It is then enough to use the Poincare estimate between pé ¢ and p, %Vpl to
obtain the estimate on Vgq;, from which one deduces the estimate on ¢ .
Finally, from the estimate on ¢; and on Vgq;, multiplying the equation on the
velocity by #; and integrating, we get the Gronwall type inequality

d .
Ellmll < Clla1llmr + [|B[] + gl T1 ][0

hence a control on ||@;|| on [0,T] for all ¢ as soon as it is true for ¢ = 0.
The system writes

U+ (V)T +TVQ +TQko(x)er = (1 —-T)g (62)
divii =0
In the system (@), appear only quadratic terms. When one wants to deduce

the term of order N in the system, plugging in the expansions 7%, v, v" and
QY one obtains source terms of the form

Sy = Y50 uTn—jko(x) —u;0pTn—; — 050, T -
Rin == 05 wi0hun—j + vj0,un—j + Tj0.Qn—; + TjQn—jko(x)
Ron = = 3235 wi0pon—j + 0008 —; + Ti0,Qn—;

and the system rewrites

8tTN - ’U,Nko(:c) == SN

Oun + 0.QN + Qnko(x) + gTny = Rin
0N +0yQNn = Ra N

Ozun + 6yvN =0.
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Higher order Sobolev regularity (preparatory equality) One of the
main tools that we have to use is the divergence free condition, in order to get
rid of the pressure p or of the reduced pressure ) when obtaining the energy
inequality. Recall that the system (@) rewrites

6tTN — uNko(.T) = SN

podiiin + V(poQn) + gpoTnér = poRn
diV’LTN =0

Where EN = (Rl,N7 RQyN).
Denote by Gy = poOrRn — gpoSneér. Applying the operator 0;0. to equation
on the velocity and using the equation on the specific volume, one obtains

A (pod2iN) + V0% (poQn) + g (pokoun) = 9 (G ). (64)
One deduces the

Lemma 8 For all n, one has the estimate

1 1 1
106 005wl < Ca(Y_ llpg Onvun|l + llpg 92 GN ).

p<n

Moreover, as the coefficients of the system depend only on x, this inequality is
also true with the same constants when O} is replaced by 970, for all ¢ > 0.

Proof One notices that (f4) writes

n—1 n—1
P00 O Tin+V (9,030 (p0Q))+Fko () podnuny = Gn— Copl* P, 0% tin—5 Y Chpy" " Vo, un.
p=0 p=0

Multiplying by 0402, @ and integrating, using the recurrence hypothesis that

1 1 1
1 0208w < Co( Y 110G 005 in|)+29°A%( D llpg Oun|D+HIGH |

m<p—1 m<p—1
as well as the inequalities
[ko(2)g] < A%, o5 " pf”| < A,

(which are true as soon as kg is a C* function which derivatives are bounded,
because p{, = kopo ) one obtains the inequality

1 1
1 0205 x|l < Cu( Y llpg 0RO anl)).

m<n

Lemma E is proven.
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4.2 The energy equalities

Note that the system for the leading term of the perturbation is the system (f3)
with a null source term. Owing to this remark, we shall treat the general case
and apply the equality to the particular cases.

Multiplying (64) by 9;0™. in and integrating, using the divergence free relation,
one obtains

[ 0m (pod%in ).0% Oyiindzdy + [ gom (pokotn + poSY)E1.0,0m i dady

[ 07 (000 SN).0:07 i daxdy.

In this equality, we can consider (for Sobolev inequalities) the term containing
the largest number of derivatives of @x. We obtain, denoting by

RN = 07 (po0%iin) — po0l 0% iy

BTZLV = 8;2 (p()k/’o’uN) — pokzoc');’nuN

the equality

[ P00 0% tin O indady + [ gpokoOinun.0;0% undzdy
+ [ RY.0m. 0vindady + [ gBY 0,0 unddy

[ 0m (00 RN).0: 00 iy dady — [ 9O (poSn)er.0:0m dindady.

The terms éﬁf and BY contain only derivatives of order less than n — 1, hence
it will appear as a source term in the application of the Duhamel principle later
on. The two first terms of the previous equality are the exact derivative in time
of

1 = n
BN () =4l / po(@1 Byl Pdady + / gpoko(O un)?daxdy).

The energy equality is thus

B0 = EYO)+ [ 0l (9)is

where

gN@t) = [ gpoatéN).atagnﬁNdxdy — [ g9 (poSn)E1.0: 07 i dady
= —([ RY.0%.0iindzdy + [ gBY .0,0%. undady).

Note that this source term satisfies
1
g7’ ()] < lpg O BN || L2 Y (8) (65)
where one has
1 1 .
KX () < lpo * Byl + llpg * 050 (podeS™)]]
+lallllpo > BY || + 103 (po ST

We are ready to prove the Duhamel inequality associated with this problem,
using gko(x) < AZ.

(66)
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4.3 The Duhamel principle

Two versions of the behavior of the semi group will be deduced. The first one
corresponds to the general case for the terms in §2 at least.
We consider the (general) system

polx )0 2 W+ V(po0iQ) + gkopower = Mg, diva = 0. (67)
with the initial conditions
Wli—p = 0, 0| 1—¢ = 0. (68)

Note that this system is easily deduced from the system obtained for the N th
term of the expansion in ¢ of the solution.

Proposition 6 Assume that there exists two constants K and L, with L > A,
sich that s
llpo 2 M|| < Ke™. (69)

The unique solution of the linear system @/ with initial Cauchy conditions
(68) satisfies the estimate

1
|lpg | < L(L A)(1+ - A)2) et
< 2K oL

) = (L (L—A)?
||p028tu_f|| S (1+ = A)Z) 2elt

||p0<92w||< K(1+(L A)Q) elt

Proof We begin by multyplying the equation (@) by 0% and integrate in
space. One deduces that

10 02| < A2|pg wl| + Ke*.

We will make use of this equality later.
Let us multiply the equation (@) by 0. We obtain the identity

d 1

1
dt(2 /po(atw) dxdy + = /kopokow dxdy = /M x,y, t)Opdrdy.

Integrating in time and using the initial condition (@) as well as the estimate
(Bd), we obtain the inequality

1 t 1
/m@@ﬂmwﬁﬁ§/%mﬁmw+2K/4ﬂ£@ﬂ%ﬂs
0

Let us introduce now u(t fo ||pO 9y||(s)ds. We obtain, considering £ [ pyi?dady,
that

1 t 1
H%wMﬂSAH%&MWMS
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that is

Hence the inequality

(' (1)) < A%(u(t))? +/O 2K elsu! (s)ds.

From this inequality, we deduce that

(W (1)* < A(u(t))® + 2K e ult)

u'(t) < Au(t) + /2K eltu(t).

Introduce h such that u(t) = (h(t))?e*. We obtain the inequality

hence

Ohh'eM < VoK he F
hence )
()< 5 9Ke 7t
that is
V2K -
h(t) < eiTt
L—A
which leads to oKk
' Lt
u(t) < - A)2€

The estimate on u/(t) follows, using (u/)? < A2?u? + 2Kel'u. We thus, by
integration, deduce another estimate on u. The estimate on pyd3%w is the con-
sequence of (§).

If one wants a general formulation of the Duhamel principle (taking into ac-
count non zero initial values), one states the following proposition, which will
lead to the result of proposition E, hence allowing a mixing of modes and a weak
nonlinear result. The mixing of modes is not our purpose here, but we shall
not speak of weak nonlinear results. See Cherfils, Garnier, Holstein [H] for more
details.

Proposition 7 The solution of

1d - 4 .
5 _(/(po(atu]\f)2 - g@po(UN)2)d1'd’y) = g(tv Zz, atuN)
2dt £o
with initial condition 0wty (0), N (0), with the assumption
l9(t, 2, 0vin)| < K (t)]|pg Otin]| 2
where K is a positive increasing function for t > 0 satisfies the inequalities
1 1
g% < [Cr+ fy VE(s)e Mods]es!
1
16 eiin|| < [C1 + [y /K (s)eAods el

where Cy depends on the initial data.
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Proof We deduce from the energy equality the following inequality:

t 1
[ mle) @i dudy—g [ ko(w)on(a)iidady < Cov2 [ K (5)l1fdu 1 (s)ds
0

where Cy = [ po(z)(0vin)?(0)dzdy — g [ ko(z)po(z)u? (0)dzdy and Cp 4 =
max(Cp,0). Consider now the function u(t) = ||p¢ ﬁN(O)||+f0t ||pg Ortin (s)||ds =
1 1

1 1 1
[lpgin (0)]] + fot [lpg Ortin]||(s)ds. We notice that u'(t) = ||pdrtin]|(t) hence
u/(t) > 0. Recall that gko(x) < A2. The inequality implies

(WD) < A2(u(t)? + Cop +2 i K(s)u/(s)ds < A2(u(t))? + Cov + 2K (t)ut)

2
< (Au+ E8)?2 4+ oy — K9

Use now the inequality (a® + b + c2)% < a+ b+ c for positive numbers a, b, c
to obtain

u'(t) < Au(t) + /Cot + V2K (t)u(t).

Introducing v(t) = u(t)e~t which satisfies v(t) > u(0)e™*, we deduce

V(1) < /Core M+ (2K (t)e Mu(t).

e Assume u(0) > 0. We obtain, denoting by h(t) = \/v(t)

2hh' < \/Co ye ™ 4+ /2K (t)e=Ath(t)

hence o
20 < (—2t)2em % 4\ /2K (t)e M
< G he ¥ 42K
We deduce the inequality
Co,+

h(t) < h(0) + Afl(m)%(l — 67%) + L/o K(s)e=Asds.

which imply that there exists A and B such that

t
u(t) < (A%eM 4 B2eM( K (s)e=Asds)?).
0

e Assume u(0) = v/ (0) = 0. As Cp+ = 0, we have the inequality
u'(t) < Au(t) + /2K (t)u(t)

from which one deduces, with the same notations as above, that
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hence with h(0) = 0 one obtains

ht) < /Ot ,/%K(s)e—Asds.

e Assume finally ©(0) =0 and «/(0) > 0. We obtain

V(1) < /Core M 4 2K (t)e Mu(t).

Introduce 0(t) = v(t) — 1/Co,+ 1*‘3\7M. We have

v'(t) < \/QK(t)eAt(f;(t) + coﬁl’Te*At) < \/2K(t)eAt(f;(t) n io,Jr)

from which one deduces the inequality

o o ¢
2\/174— iO’JF §2\/ iO’JF +/0 \/2K (s)e=Asds.

In all the previous cases, we deduced the inequality u(t) < [Cy +fg K (s)eAsds)2elt.
Using finally the relation

d 1 FR
Zil1P6 an | < llpg Oiin|| = u' (1)

we get
1
[lpg @l < ult) = u(0).

These are the two estimates of Proposition ﬂ

Of course, the proof is much simpler in the case we are interested in, that is
Oyin = 0, iy = 0, where (using the notations of this paragraph, Cy = Cp 4+ =
u(0) = 4/ (0) = 0), where one deduces easily

VJu(t)e Mt < /Ot 277/ K (s)e=Msds.

4.4 H°® estimates for a general solution of the linearized
system

The H°® inequalities for the solution of the homogeneous system We
consider the system satisfied by the leading order term of the perturbation of
the Euler system (which is the system (63), particular case of (5J) for N = 1.
We prove in this section the analogous of the Proposition 1 of [E], with a slightly
better estimate which shows essentially that the relevant growth rate is, up to
polynomial terms, A:
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Proposition 8 Let T1(t), u1(t) be the solution of the modified linearized Euler
system @) There exists a constant Cs depending only on the characteristics
of the system, that is of kg and g, such that

oG Ta ()= +lpg @ ()]s < Co(144)* exp(At)([pg T1(0)] s + 15 w1 (0)]|a+)-

Note that in these inequalities (which are general) a power of ¢ appears in the

bound for the norm H?®. This is the general case. Note that similar estimates
were obtained independantly by R. Poncet [Ld.
An important feature of this result takes in consideration an initial condition
which is not an eigenmode of the Rayleigh equation, and which is a combination
of different eigenmodes. As we shall see in what follows, the interaction of these
different eigenmodes lead to a linear growth of the form (1 + ¢)%eM for the H*®
norm of the solution.

Proof We provein a first stage the H*® inequality result for the system satisfied
by (T1,u1,v1,Q1). We use the pressure p; in the analysis. The system imply
the equation

po(l‘)atQQﬁl + Vatpl = poﬁkéul.

We apply the operator D,, , to this equation. The energy inequality deduced
from (BJ) and from the inequality (66 is

((ug))? < A%(uy)? + Co + K (t)uy, (1)
where we have the estimate
1 -3 Bl -3 nl
K, (1) < |lpo 2 Ryl + |9lllpg 2 Byll-

1. principal term

1
The inequation on ||p¢ t1|| writes
d, 1 1,
(oG @alD)* < A%|lpg @al* + Co

hence one obtains the inequality

1 1 C i .
log ]| < [1pF @1 (0)]| cosh At + \/A— + |18 i (0)]? sinh At < Doe,

2. derivative of the principal term
In the inequality obtained for D; ,i;, the source term g; is bounded by
M Doe™t|| Dy .04 || because it contains only derivatives of order n—1 = 0.
We have thus the inequality

((u1))? < A*(u1)® + Co + 2M Doeuy (t)
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from which one deduces

(Y ()2 < (aud + M0 1 g - (MDoyzans
hence .
(u})'(t) < Au(t) + == +/Co
that is

from which one deduces
ut(t) < A=Y(\/Co + M Dot + Aul(0))e™.

3. Greater order term:
We prove thus by recurrence that there exists A,, and B,, such that

ul(t) < (A, + Bpt)"e,

according to the inequality

d, g At ar (A1 +tBy_)" !
— < .
g (uy, (t)e™") < \/Cre + oA

. . d
One deduces the same inequality for Zu,, (t).

4. In the derivative D,, ,, the only term which matters for the order of the
power of ¢ is n, hence one deduces that

1 1
>~ U198 Drpiin|| + 110§ Du pOstin|[) < (Cs + tD,)*e™
n+p=s

Proposition E is proven. Note that this improvement does not change the be-
havior of the approximate solution we intend to construct, because for a normal
mode solution

ul,y,t) = a(z)e*v ",

where y(k) has been calculated and where @(z) is solution of the Rayleigh
equation, one has the following equalities:

1 1
10§ Do g1 (O] = [l Do 71 0) 74"
1D s T ()] = |[T3 (0) 7" (70)
105 D@1 (0] = 1195 D @ (0) e

Remark that, according to Lemma ﬂ, and to the equality ikQ1 (z,y,t) = VZ.(:) Orur(z,y,t),
we have also the relations

Do s ()| = || D i1 (0) €7 R
[ D p @1 ()| = || Dy p@Q1(0)]|e7®)E
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4.5 The H*® inequalities for the linearized system

We consider the system (@) We apply the operator D, , = 0;"0%. This system
becomes

e Dy T — Dy yunko(z) = Dy pSY + 32070 CID, qun ks’ (2)

atDnL,puN + palam (pODm,pQN) + gDm,pTN = Dm,p‘s’év - 25;01 CgDm,qQNk(()qip) (-T)

GtDm,va + amemQN = Dm,pSév

aszmuN + 6me,va =0.

(72)

We notice that this system writes as the system (@) with a source term involving
derivatives of the solution at a lesser order of derivatives in x.
We introduce

1 t 1
up (t) = [1pg O3n i (0)]| 2 +/ PG 0:0niin (s)]| L2ds
0
and v (t) = ul¥ (t)e M.

We are now ready to study the behavior of the lower order terms of the
expansion, assuming that we found a (k) such that % < y(k) < A.
We have to deal in a second part with terms of the form u), where N > 2. In
this set-up one has to use Proposition ﬁ, because we cannot obtain the sharpest
inequality using the estimate v’ < Au+ £ + v/Co.

4.6 Inequalities for the following terms of the expansion

Recall that from Lemma ﬂ (proven in [E]), there exists a normal mode solution
of the linearized system of the form d(z, k)7 where & < (k) < A.
With this normal mode solution one constructs an approximate solution of the
nonlinear system, of the form

TN(z,y,t) =1+ 310, 69T (x,y, 1)
ulN (@, y,t) = Y00, 0wy (x, y, 1)
o (x,y,t) = Zj:l 0 vj(x,y,t)

QN (2, y,t) = Qo(@) + X0, 07Q;(w,y,1).

There is an important Lemma, which depends on Hypothesis (H):
Lemma 9 The functions uj,v;,Q;,T; belong to L?.

The proof of this Lemma is a consequence of Proposition E, which will lead to
the control of the source term of the linear system on T, un,vN, QN.

We shall use the estimates of Cordier, Grenier and Guo [ff], and the method of
Guo and Hwang [ to give an H*® estimate of TV, u™V, v, Q" and a L? estimate
of TN — Ty — 6Ty, u — dui, v — dvq to obtain a lower bound on TV, uv, v¥.
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1
We prove in this section the H® estimate @ in the weighted norm ||pg.||. Using
1
the assumption kyp, > bounded, we deduce estimates in H® for @y. The first
result reads as

Proposition 9 There exists constants Cl and AP, depending only on the char-
acteristics of the system (namely g, ko(z) and its derivatives) and on the HP
norm of the initial data such that

ull (1) < (CHN (AP 1Mk,

Remark 2 This estimate relies heavily, as in ﬂ’/, on the quadratic structure of
the nonlinearity, and that we give the precise estimate on the constant C; which
appears in (13) of /ﬁ/ This estimate could not be obtained in the set-up of Guo
and Hwang /E] because the nonlinearity was written using pi.Vi, hence a cubic
nonlinearity.

A second comment is the following: the inequality 2v(k) > A allows us to forget
the coefficient (1 4 ¢)® in the H*® estimate for a general solution of the linear
system (obtained in Proposition E) This is a consequence, as we shall see below,
of the relation

t
1
At (N~(k)—A)s N~ (k)t
e e ds < ——e¢
/0 ~ Ny(k)— A

(to be compared with the relation e’* fot eA=Nsds < teht).
Case N =2
Recall that we have the following system

atTQ — ko(:C)UQ = 7U181T1 — ’UlayTl — T1u1
po(x)0iia + V(poQ2) + gTo = —po(z)[ti1. V1] — poT10:Q1 — ppQ1T1
diVGQ =0

We have thus the estimates
1 1
3 3 k
106 0:S3 1| + 11pg S31| < CFe> ™.
This means that K2(t) < D2e??®?* hence
t
1
I1pE Brita]| < (Co + / 2 D31 —4)s gg)2 A
0
hence the inequality
1 1
10 Ortiz|| + [|pg @al| < Moe* ™",

We need to derive estimates for the terms 75 and (2. For the term 75, one has

d1

EQ/p(JTQQdycdy = /k’o(x)pouzTQ-l-/Sfl)oTﬂwdy
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from which one deduces the inequality
d, 1 1 1
— o5 Toll < Mllpguall + llog S| < (M Mo + CF)e* "

hence the estimate

Ct + MM,

e2'y(k)t —1).
IS b

1 1
llpg T2 < [lpg T2(0)I] +

As for the estimate on )2, one deduces
02(pg 02 (po@2)) + 0%Qa + g0, Ty = divS?

which imply estimates on Q5.

Case N > 3.

We start with the induction hypothesis that, for j < N — 1, there exists Cy and
A such that

1 1 1 1 1 1 o
lpg l+195 D;||+16 0y 1|+1p6 a Tyl 1+ 1105 By Ty | +10g Tyl < A7~ Cel "

and that the derivative in time of all quantities is bounded by jy(k) A1 CJei(*)t,
Thus there exists M (independant on the number of terms which appear in the

source term and which depends only on the coefficients of the system) such that

the source term of (66) for n = 0 is bounded by:

KN () < MANT2CY N2y (k)eN 7Rt (73)

Note that in this estimate the N2 term comes, one from the number of the terms
in the expansion Z;V;Ol A;By_; and a second one® from the derivative in time

which appears in the source term 8,58_" N We thus obtain, using

hn(t) < /Ot \/ 2K (s)e=Asds

the inequality

t
hN(t) < \/QMAN_QC(;VN%)/(/{:)/ e(Nv(k)=A)sdg
0

which yields

8M N?v(k)
2 N—1,N _(Nvy(k)—A)t
ha(t)? < A c} e(Nv(k)=A) W

The choice of A is thus induced by %735% <1 for all N (forgetting that

we have to be more precise to obtain estimates not only on @ but also on Ty)

6Note also that if we consider a cubic model, the number of terms in the source term is
N(N — 1), hence adding a derivative in time we get N3 in the estimate. As we can see in the
following lines, this gives a less efficient estimate
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SJM'y(k)
y(k)—
norm of the leading term (77, uq,v1, Ql)
The final estimate is

hence the simplest choice is A = . The value of Cj is thus given by the

||/)o in|| < OV AN—1eNv (Rt

We proved the assumption (@)
We use this result and the estimates for a normal mode solution (on which no
powers of ¢ appear for the norms of the derivatives). We obtain

¢ N~(k)—
(t) < h(0) + AN () E 4 NChA(h ﬁ/ M= g
u(0) i
hence as N~y (k) > A one gets
h(t) < h(0) +A—1(C°v+)% + 5 C%(k)%eWt
B u(0) N (k ) N :

We deduce the inequality (using (a + b)? < 2(a? + b?))

1
Co+ 2

u(t) < 2(h(0) + u(0)) + A~*( w(0) ) )2l 4 2( )20 N~ (k)eN TR,

N~(k)— A

Remark If the system has a cubic source term, at each stage of the construc-
. 1 . . .
tion one gets N2 MN~1C¥ as estimate, hence the convergence of the infinite

series is not ensured by these estimates.

4.7 Estimates for the approximate solution

In this paragraph, we derive estimates on the global approximate solution. We
shall use throughout what follows the Moser estimates, that we recall here

ID*(f)llr2 < CUIflsllglls + gllollf1]s) (74)
and
[[D*(fg) — fD%llrz < C([Dfllsollglls—1 + llgllso|f1]s) (75)

and the Sobolev embedding || f||oc < C||f||s for s > £ and ||V f||s < C||f||sfor
5> %l + 1. More precisely, we prove that

Proposition 10 For all 6 <1 and for all t < ( 3 In —— JC -, we have
SACer ()t
N N N 0
177 = Ul A+l e +1QT = aollne < CT—7 =m0
eV (k)

N R R y(k)t 2 2 - -
7Y =1l > | 0|26 — ACECR T —

eV (k)t

N 2
M|z > [Ju1 (0)]|£26e7™ — ACEC55 T 0ACoe
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eV (k)i
1 —6ACHev (Rt

We have also the following estimates for the remainder terms

[[oN]|L2 > [|v1(0)]| 20 Bt — AC2C362

||R’N||HS + ||SN||H5 < M6N+1(N+1)2AN—IOéVJrQ(SN—i-le(N—i-l)'y(k)t-

Proof We have proven the H® estimates for all the terms of the expansion
u;j,v5, 15, Q5. It is this easy to deduce, using (E), the estimate for the remainder
terms. This comes from the inequality (1 <j < N —1)

1D (ujdrun )| < Cllujlloollun—;llrerer + [[]jall[O1un—jllo0)

(and subsequent inequalities), the Solobev embedding ||f|lcc < [|f]]2 and the
H? estimate for s = 2,3 for all the terms of the expansion, using also that the
norm H* of the terms of the expansion in 87 of order less than N is bounded
by CJA7~1e7 (M)t We thus deduce that

N N
: S 1— (C A5)N—16(N—1)7(k)t
NN grs J=1 g 53 k)t ~(k)t 0
: ;T]”H - ; AT G CCooe 1~ CoAder e
When ¢ < T} = ﬁ In —50(1,4’ we obtain 1 — CyAdse?®) > 1—0, hence we deduce
the estimate
N
cC
N _ = _ 0 ¢ (k)
T = Uz = 1Y Tyl < 756670
Jj=1
Moreover, one has
N
TN = 1|2 = 8|ITulle = Y & (IT;|
j=2
hence using
N N
j j C2AC
S L < YOI Ipe < <L
Jj=2 Jj=2 -
one obtains
CZAC
||TN - 1||L2 > 6||T1(0)||L26V(k)t - ﬁ(52627(k)t.

One may thus consider C'5 = % We thus deduce that, for t < ﬁ In %,
we obtain

1
1T = 1|2 > §5||T1(0)||L2€7(k)t-

Similar estimates hold for |[@V||z.
Note that this proves that the first term of the expansion is the leading term of
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the approximate total solution.
For all what follows, we introduce

Acoev(k)t
I(t) = —————~ 76
) = T 5ac,e0 (76)
Ingi(t) = N2ANZLON ANy (R)E, (77)
5 Estimates of the (nonlinear) solution
We constructed in the previous section a solution 7%, @™V, Q" such that
TN + GNVTN — ko(x)uN TN = SN
o™ + aN.VaN + TN py'V(poQN) = G+ RN (78)
diviV =0
with the following properties for the remainder terms:
1 1
lod a2 RY|] + llpg 02 5™ < Cud™ i (8) (79)
107 R || 4 1107 S™ || < Cod™ Iy (1) (80)

1
the constant (), depending on the Sobolev norm with weight pj of the initial
value of the normal mode solution and of the characteristic constants of the
problem.
1
We deduced from this equality and the additional assumption kgp, > bounded
that we have identical estimates on RY and S¥:

103 B3| + 1103 S™|| < Cod™ v (1) (81)

We study in this Section the global solution of the Euler system @) to obtain
Sobolev estimates on the difference between the approximate solution and the
full solution. Let 79 = T — TN, @ = & — aV,Q% = Q — QV. We have the
following system of equations:

8T + @NVT? + @VTN = ko(uT? + uiTN) — SN
po(atﬂ'd + ﬁdVﬁ + ﬁNVﬁd) + TV(poQ) - TNV(poQN) = 7p0R’N (82)
divi? = 0.

Before stating the results on the difference quantities according to the sys-

tem, we use the properties of TN — 1, @V, QV:

Lemma 10 Let t € [0,TY].
For all «, there exists a constant C(|a|) such that

| D (@.vaN || < C(la])[[@?]]o G5 eV 0"
ID*(THVQN + koQM))|| < C(|a])[|T)|jo GEs e (*)t
1D (kou (TN = 1))|| < Cla)||@]]j T €7 H)

ID(TN — 1)(VQ? + koQ&1)|| < C(|a])||Q%]ja) 41582 e *)t
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The proof of this Lemma comes from the fact that
D(fg") =) CID"fD*FgN

and we use the estimate |[D* PgV|| < C|lgN |24 || |5, as well as the H*
result on any term of the form gV = Zjvzl §7g;j, where g; = uj,v;,Tj,Q; to
conclude for any term studied in the Lemma. Moreover, we use the Moser
estimates to obtain

|D*(@.V f) =@V D fI| < C([IVl[oo|[V flljag—1 + IV fllool@l]a))
hence, using # = @~ + ¢, one deduces
1D%(@.V f)=a.VD* f1| < C([Va|loo|| f1l1a+00) 111V Fllool 11V 11001 (£))
and, similarily
1D @V HI < CEIE IV Flloo + 1110 +2) + 7 ool a2 + @l IV floo,

1D(TVQY)~TVD*Q| < COIMQ 1| HIVT || [VQlja -1+ VQ oo 1T |ja

according to the equality D*(TVQ?) — TVD*Q¢ = D*((T — 1)VQ?) — (T —
1) VD@4,
We shall also use the following estimates

1D (@.va?)|| < C(laD|a||alla||ja+1 (83)

1D (@.va?) — a’.vDa!|| < C(lal)|[@||a||a@]|q- (84)

These equalities come respectively from ([4) and ([7g).
Introduce in what follows V = @®.Va™ +aN. Vi, W = V+T%; ' V(poQ").
We have the estimates

1DV || < Mgy (3] o141
[DWI| < Mo I3 ([[@ ] 041 + 1T |ja)), Yer
IDHTIVQT) — TV DQ| < C(IT[s[|Q7l2 + 1T I|allQ[I1) for [af =2
TPy > V(poQM)| < SI()||T4||
5.1 Estimates on the density
The equation on the density yield
KT + @ NT — kouT? = koudTV — a?.vTN — SN,

Apply the operator D and denote by W} = D*(@.VT) — @.VD*T?. This
equation rewrites

DT + @ VDT + W} — D*(kouT?) + D*(@.VTY) — D*(kouT™) = 0.
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We can decompose W1 — D®(kouT?) into two parts, the one with @, the other
one with %%, denoted respectively by W, and W2 It is clear that

IWaT = D*(kouT?) + D*(@*.VTN) = D*kouT™)|| < C5([|@al ||y + [|T]]je)-
it is also clear that, using Moser estimates, ||[W,|| < C(||Vﬁd||oo||Td|||a‘ +

[[@]|0[1T%|o0). One is thus left with the inequality

d « « —
prlL T < [[Wall + [[D*SN|| + COI(t) (||l o) + I T]1a))-
We have thus the estimate

DT < O([Va oo [T ) + 7] |jaf[[T]00) + 6 Ina M

d
e
+COI()(||Tallja) + 1T a))-

5.2 Estimates on the pressure
We obtained the relations
IVQ| < M(lla.vat|| + s1(@)([[@|ly + [|T9)]) + 6 v (1))

Va1 IVDOQI| < My(3 4y (1D (@ V)| + I @)@ ]2 + || T]]1]
+OMH I (8) + (1 + 0I() + |17 3)(||[a. V]|
L) (T + l@?]l) + 0¥ Iy (2))

Using the fact that ¢ < T, one obtains

IVQ < My(J[a®. Va(| + ||a@|y + [T + 6+ 4 (2)).

Yt [IVDQI| < Ma(3 0y ||D* (@ Va)|| + ||| + |72
HAH[[Ts) (@t Vat|] + 1T + [[@?]l) + 68 Iy (2))

In what follows, we introduce
G% = DYTNVQY)-TVNVDQU4-D* (TN Qo) )+ DTV QN + ko TQN 1)+ D RV,
G = D*(T'VQY) — TIVD*Q* + D*(TQ%¢é, ).
The equation on D% is
8, D@ + D*(@.Vi?) + D*RN + G* + G% + TVD*Q? = 0.

When one multiplies by VD*Q?, one uses the divergence free condition on D¢
to get the estimate

2 a (o = an arel o
3lIVD QU < [[p* (@ vad)|| + | D* RN + [|G*|| + |G-
We use

G < C+ B3 (1Q% 1oy + 1710 + 1] ap+1)5I(t)
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and
G < CUIVT ool |Q o) + T jal [VQ oo + [1T7]oc|Qja)-
Hence we obtain (and it is pertinent for |a| > 2)

IVD*Q7| < C’(IID“d(ﬁd-ng)ll + IIDZENII) + COI)(1Q oy + 1T o) + 117l +1)
+CUIT311Q g + NT o 11QIIs)-

For |a| = 2, we will obtain ||Q9||3, which is important.
We use the equality, for |a| = 2

IG*[| = ID°T*VQ* + ) D'TVDPQ Cy]|
0<B<a
which leads to the inequality
1G] < Do(IT|l|Q% | + [|T)1311Q%|2)-
Replacing this estimate in the inequality for « such that |a| = 2, one gets
1D°VQ1| < Cu(|| D@ .V @) ||+ T |2+ |3+ LHIT ) Q 2+ T 4| Q|1 +6+ I (2)-
Using the inequalities on ||Q4||; and ||Q9||2, one gets
1Q < My(l[at.vad|| + [[@|l + (|77 + 6™+ Inpa (1))

1Ql2 < Ma(l|a@® Va||s+[[@| |+ T |1+ Invaa () AT 3) + (LT 5) |7+ || Va]])

1Q%s < Ms(|[a”.Var|ls + ||@?]|s + |72 + (1 + [|T7[5 + 1Tl l|a®. Vad|] + (1 + [|T9]s)l|a]]2
HITalla@]] + 6V Iy () (1 + 1 T]s + (1 + (| T]]5)%))

We use then the inequalities

IVDQY| < C({LID“(ﬁd-Vﬁdd)ll+|ID”‘§NII +11Q o ) )
HNT o (1 +11Q[3) + [T o2 + (1 + [T [3)| Q% |ay)

from which one obtains

QU a1 < M\da|+1(||ﬁd-V@7:|||a\ + ||U:||\a|+1 + 5Nj111v+1(f)
HIT o) (T Q% [3) + Q1o (1 + [[T]]3))-

Note that we have the estimate
@ V| o) < Clla®[s]E|)a)41- (85)
hence

1Q%aj+1 < M1 (1 + ||ﬁj||3)||ﬁd|||a\+l + 5N“£N+1(t)
T (T + 11Q%Is) + (1 + ITIs)1Q% 1o

44



It is then enough to use a recurrence argument to control the norm of Q¢ in
H**+1 using the control of the norm of Q¢ in H*.
For the control on %%, let us rewrite the equation on D*%#?*. We introduce

Vo = D*(@.va?) — a.V D@, W, = D*(T.VQ?) — T.VD*Q".
We have the estimates
IVall < QU+ [[a@]3)][a@ g Wal| < CO+ IT12)11Q -
Using the relation
/ TVD*Q* D@ dxdy = — / DQYV(TN —1) + VT D@ dxdy
thanks to the divergence free condition, as well as
/ @.VD*a. D@ dxdy = 0
one obtains the estimate
%IID“ﬁdII < Vall+ [[Wal [+ DB |+ D* (ke TQ®)| + [[D* Q| (1 +[|T%|13),
hence the inequality
%IIDW”ZII < CIA+TY[)1Qa + (1 + [|a@[3)]1@ o) + 6V Ins1(2)] (87)
For |a| > 3, this inequality is an a priori inequality. We have to state the

identical inequalities for |a| = 0,1, 2.
We have the following inequalities:

d,
— @] < Co((1+ IT[3)1Q7] + 6™ In41(2)) (88)
because ‘7& = Wa =0,

d, .. i [
IVl < CO+HIT) Q7+l ls)Iall + AT )R s+ I (1)

(89)
and

d

1 < QAT [)IQ7 A+ A+ T ) Q1+ (L@ o) [|a] [ 46"+ I ()

(90)
We thus deduce an estimate of the form

d . . ~ . 1
E(IITdIIiJrIIudIIi) < COAHT ) @ |s) (1T 3@ 1)+ Iv e () (1T 3+ @) 13) 2
from which one deduces an estimate of the form

d -, 1 -, . 1
IR+ < COHNT ) 1@ s) (1T 3+ 15) 2 +CoN v (1)
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End of the proof We thus know that, for ¢t < T, we have sN+t1 Iy 1(t) <1
hence an inequality of the form

%H(t) <O+ (H)HH®) + 1)

where H(t) = (||T[F + ||a®|I3)?.
As we have H(0) = 0, one deduces that

H(t) ds
— < (Ct.
/0 14+sY)s+1 "~

The function H — fOH (L is a bijection from [0, +o00[ onto [0, f0+oo M‘ﬁ[

1+s%)s+1
For H(t) > 1, one deduces Ct > fol (H_;ﬂﬁ, hence for t < % fol Mﬁ =

T1, one obtains H(t) < 1. The set of points ¢ such that ¢ > 0 and H(t) < 1 is
not empty.

Once this set is not empty (and once we proved that the solution exists for a
time T1), we obtain

Lemma 11 Let h be a function such that

dh
& <ca+ R(t))2h(t) + CSNFLeWN+HYRE 1) = 0,
For 6 <1 and (N + 1)y(k) > 17C, denoting by T = ﬁ Ini, one has

vt € [0, T3], h(t) < §NHeN (R,

Proof The inequality we start with is

%h(t) < O+ h(t)*h(t) + CeN+LeN+DrhE,

We consider N such that (N + 1)y(k) > 17C. We study the interval where
h(t) € [0,1], knowing that h(0) = 0. Consider ¢y the first time (if it exists)
where h(tg) = 1. If it does not exist, then h(t) < 1 for ¢ € [0,T¢] and we have,
for all t € [0,7¢] the inequality

B (t) < 16Ch(t) + CoNFLeW+r(R)t,

from which one deduces

C5N
ilf) < me(“l”(k)t < GVHLN+ ()t

hence h(T¢) < 1.
If ¢y exists, we have, for all ¢ € [0, ¢], the inequality

d

E(h(t)€7160t) < 70(1 - h(t))h(t)R(h(t))e*th + 05N+16(N+1)'y(k)t7160t

46



where R(x) = (1 + )3 +2(1 +z)? + 4(1 + ) + 8, from which one deduces that

h(to)e 150" < ¢

S CESD 1605N+16(N+1)v(k)to—160t0 < §NHL(N+1)7(k)to—16Cto
’y —

hence h(to) < 1, contradiction.
We thus deduce that h(t) < 1 for t € [0,7¢], hence

h(t) < gNFLeWNHDR 4 [0, TY).

Lemma @ is proven.
We have thus the inequalities

2v(k)t
~ SN (1d o 2 452 € _ SNHL (N+1)v(k)t
1l = [la || = & = d]la1(0)] - Co A" Cod A ()t 0" "e :

Choose t = T} = 'v(k) In =75 M We have

]| = 6e7 ™ [||i1(0)]] — Co - 0],

1-46
We thus check that there exists g < % such that 0 < eo implies [||11(0)]] —

C’O—f@N] > 1|@1(0)]]. Hence for t < one has

'y(k) In =% c 5
_ 1.
[a@®)]| > §|IU1(0)|I56”(’“”- (91)

In particular
1

e e[ LA

We proved Theorem .

It is then clear that, for 0 < ¢ < TP, this term is smaller than #,as small as one
wants, hence the inequality on T'¢, @¢

AsT =TV + 7% @ = &N + @?, one obtains

1T = oe > 1T = |7

which imply the result.
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