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The two-dimensional Keller-Segel model after
blow-up

Jean Dolbeault1 and Christian Schmeiser2

Abstract. In the two-dimensional Keller-Segel model for chemotaxis of bi-
ological cells, blow-up of solutions in finite time occurs if the total mass is
above a critical value. Blow-up is a concentration event, where point ag-
gregates are created. In this work global existence of generalized solutions
is proven, allowing for measure valued densities. This extends the solution
concept after blow-up. The existence result is an application of a theory
developed by Poupaud, where the cell distribution is characterized by an ad-
ditional defect measure, which vanishes for smooth cell densities. The global
solutions are constructed as limits of solutions of a regularized problem.

A strong formulation is derived under the assumption that the generalized
solution consists of a smooth part and a number of smoothly varying point
aggregates. Comparison with earlier formal asymptotic results shows that
the choice of a solution concept after blow-up is not unique and depends on
the type of regularization.

This work is also concerned with local density profiles close to point ag-
gregates. An equation for these profiles is derived by passing to the limit in a
rescaled version of the regularized model. Solvability of the profile equation
can also be obtained by minimizing a free energy functional.
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1 Introduction

The simplest description of a cell population, which produces a chemical
signal and responds to it chemotactically, is the Keller-Segel model

∂t̺+ ∇ · (̺∇S −∇̺) = 0 , (1)

−∆S = ̺ . (2)

The model is written in nondimensionalized form with the cell density ̺(t, x)
and the chemical concentration S(t, x) both depending on time t and posi-
tion x. The first equation is a convection-diffusion equation, where the drift
term ̺∇S describes the chemotactic reaction of the cells, and the second
equation is a quasistationary approximation of a reaction-diffusion equation
for the chemical concentration. The reaction term ̺ models the production
of the chemical by the cells. The model is based on the assumption that
characteristic times for the dynamics of the chemical are much shorter than
those for the cell dynamics. Also the chemotactic sensitivity, the cell dif-
fusivity, the chemical diffusivity, and the reaction rate (coefficients of ̺∇S,
∇̺, ∆S, and, respectively, ̺) have been assumed constant and have been
removed by an appropriate scaling.

Since its first formulation [15] and first mathematical investigation [13],
this model (as well as variants of it) has received a considerable amount of
attention in the mathematical literature. This is caused by the interesting
nonlinear effects it shows. In particular, it is well known that in general
smooth solutions of initial(-boundary) value problems may only exist for
finite time, with L∞-blow-up of the cell density at the end of the existence
interval. This phenomenon strongly depends on the spatial dimension. It
does not occur in one-dimensional problems, and it occurs conditionally in
higher dimensional situations. For the two-dimensional whole space problem
and initial data ̺I satisfying

̺I ∈ L1
+(IR2) ∩ L∞(IR2) ,

∫

IR2
|x|2̺I(x)dx <∞ ,

the situation has recently been clarified completely. The qualitative be-
haviour depends on the total mass

M =
∫

IR2
̺I dx .

For M < 8π, a global bounded solution of the initial value problem with
̺(t = 0) = ̺I exists, which is dispersed for t → ∞. For M > 8π, blow-up
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in finite time occurs. First results in this direction have been obtained in
[12] and recently completed in [8] and [2]. Actually, even the critical case
M = 8π is understood now [3]: A global solution exists in this case, which
possibly becomes unbounded as t→ ∞.

Blow-up scenarios have been investigated in [9], showing that at the blow-
up time, mass concentrates in a point. Biologically, this represents aggrega-
tion of cells, and the description of the dynamics of these aggregates and of
their interaction with the non-aggregated cells is of natural interest.

This led to the study of regularized models which, in some cases, can be
seen as more precise descriptions of the actual biological processes. Examples
are the inclusion of volume filling effects by a density dependent chemotactic
sensitivity [10], [17], [18], [7], the inclusion of a finite sampling radius, which
results in a regularization of the chemical concentration [11], and kinetic
transport models, whose macroscopic limit is the Keller-Segel model [5]. All
these models share the properties that they have global solutions and that
they contain the Keller-Segel model as a formal limit.

The asymptotic behaviour of a class of regularized models with density
dependent chemotactic sensitivities after blow-up has been investigated in
[17], [18]. By formal asymptotics the dynamics of solutions of the regularized
problem is studied under the assumption that in the limit the cell density
is the sum of a smooth part and of a finite number of point aggregates,
mathematically represented as Delta distributions. The result is a partial
differential equation for the smooth part coupled to a system of ordinary
differential equations for the dynamics of the masses and the positions of the
aggregates. Well posedness of this formal limiting problem is proved locally
in time. Actually, the system can only be expected to be valid on bounded
time intervals between blow-up events and/or collisions of aggregates.

In this work we study the regularized model

∂t̺
ε + ∇ · (̺ε∇Sε[̺

ε] −∇̺ε) = 0 , (3)

where the Poisson equation ∆S = −̺ is replaced by the regularized Newto-
nian potential solution

Sε[̺](x) = −
1

2π

∫

IR2
log(|x− y| + ε)̺(y)dy . (4)

This regularization is similar to the finite-sampling-radius model [11] men-
tioned above. We consider the initial value problem

̺ε(t = 0) = ̺I ∈ L1
+(IR2) ∩ L∞(IR2) . (5)
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Our main result is a rigorous characterization of the limits of solutions as
ε → 0 globally in time and for arbitrary initial mass. We use the frame-
work developed by Poupaud in [16], which he applied to the two-dimensional
incompressible Euler equations as well as to the system (3)–(4) without dif-
fusion of cells. The limit of the cell density satisfies a generalized weak
formulation of the Keller-Segel model (1)–(2) allowing for measure valued
cell densities. Obviously, the main mathematical problem is an appropriate
definition of the only nonlinear term, the convective flux ̺∇S. Here the fact
that the spatial dimension is two, is of essential importance.

The rest of this work is structured as follows: in the following section,
a priori estimates for solutions of (3)–(5) are derived and the theory from
[16] is outlined. In Section 3, the limit ε→ 0 is carried out and the limiting
problem is formulated. A strong formulation is derived under the assumption
that the limiting cell density is the sum of a smooth part and a number of
point aggregates. It turns out that the strong formulation is similar to the
limiting model formally derived by Velázquez [17], [18], except one detail,
showing that the limit actually depends on the type of regularization. The
subject of Section 4 is the study of local density profiles of the regularized
problem approximating point aggregates. After an appropriate rescaling,
an equation for these profiles is rigorously derived. Finally, a free energy
functional for the regularized problem is introduced and it is shown that
solutions of the profile equation can be obtained as minimizers.

2 A priori estimates and diagonal defect mea-

sures

Theorem 1 For every positive ε, the problem (3)–(5) has a global solution
satisfying

‖̺ε(·, t)‖L1(IR2) = ‖̺I‖L1(IR2) := M , (6)

and

‖̺ε(t, ·)‖L∞(IR2) ≤ c
(

1 +
1

ε2

)

, (7)

with an ε-independent constant c.
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Proof: The existence of a local solutions and the mass conservation prop-
erty (6) are well known results. As a consequence,

|∇Sε[̺
ε](x, t)| ≤

1

2π

∫

IR2

̺ε(y, t)dy

|x− y| + ε
≤

M

2πε

holds and the second a priori estimate (7) follows from Lemma 1 in [11].
Global existence is an immediate consequence.

Basic and important for what follows is the following representation of
the distributional interpretation of the convective flux: For ϕ ∈ C∞

0 (IR2),

∫

IR2
ϕ̺∇Sε[̺]dx = −

1

4π

∫

IR2

∫

IR2

(ϕ(x) − ϕ(y))(x− y)

|x− y|(|x− y| + ε)
̺(x)̺(y)dx dy (8)

holds, implying the uniform-in-ε estimate

∣

∣

∣

∣

∫

IR2
ϕ̺ε∇Sε[̺

ε]dx
∣

∣

∣

∣

≤
M2

4π
|ϕ|1,∞ , (9)

where |ϕ|k,∞ = maxk1+k2=k supIR2 |∂k1

x1
∂k2

x2
ϕ|. The form of the integral kernel

in (8) suggests to introduce the family

mε(t, x) :=
∫

IR2
Kε(x− y)̺ε(t, x)̺ε(t, y)dy , with Kε(x) =

x⊗2

|x|(|x| + ε)
, (10)

of matrix valued functions. Following [16] (to which we also refer to for some
of the details omitted in the rest of this section), we consider ̺ε(t, ·) and
mε(t, ·) as time dependent measures ̺ε(t) and mε(t).

Lemma 1 The families {̺ε(t)}ε>0 and {mε(t)}ε>0 are tightly bounded locally
uniformly in t, and {̺ε(t)}ε>0 is tightly equicontinuous in t.

Proof: The proof is actually contained in the proof of Theorem 3.2 of [16]
and repeated here only for completeness. We compute

d

dt

∫

IR2
ϕ̺ε dx =

∫

IR2
̺ε(∆ϕ+ ∇ϕ · ∇Sε[̺

ε])dx ,

which, by (9), can be estimated by
∣

∣

∣

∣

∣

d

dt

∫

IR2
ϕ̺ε dx

∣

∣

∣

∣

∣

≤ c |ϕ|2,∞ .
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with c independent of ε and t. This implies equicontinuity in W 2,∞(IR2)′:
∣

∣

∣

∣

∫

IR2
ϕ̺ε(t, x) dx−

∫

IR2
ϕ̺ε(s, x) dx

∣

∣

∣

∣

≤ C(ϕ)|t− s| .

Now let ϕ ∈ Cb(IR
2). Then for every δ > 0 there exists ϕδ ∈ W 2,∞(IR2)

such that ‖ϕ − ϕδ‖L∞(IR2) ≤ δ. By the above inequality and by the uniform
boundedness of ̺ε, we have

∣

∣

∣

∣

∫

IR2
ϕ̺ε(t, x) dx−

∫

IR2
ϕ̺ε(s, x) dx

∣

∣

∣

∣

≤ 2δM + C(ϕδ)|t− s| ,

implying, together with ̺ε(t)(IR2) = M , the tight equicontinuity of ̺ε(t).
With a test function ϕR(x) = 1 − β(|x|2/R2) with β nonincreasing,

β(r) = 1 for 0 ≤ r ≤ 1/2, and β(r) = 0 for r ≥ 1, the above inequality
gives

̺ε(t)(IR2 \BR) ≤ ̺I(IR
2 \BR/2) +

c t

R2
,

which immediately implies the locally uniform tight boundedness. The result
for mε is a consequence of the estimate |mε| ≤M̺ε.

By the Prokhorov criterium, tight boundedness and equicontinuity of
̺ε(t) provides compactness for ̺ε(t) and mε(t) in the sense that there exist
nonnegative bounded time dependent measures ̺(t) and m(t) such that, re-
stricting to subsequences, ̺ε(t) converges to ̺(t) tightly and locally uniformly
in t, as ε→ 0, and

∫ t2

t1

∫

IR2
ϕ(t, x)mε(t, x)dx dt→

∫ t2

t1

∫

IR2
ϕ(t, x)m(t, x)dx dt ,

for all ϕ ∈ Cb([t1, t2] × IR2).
Actually, also

∫

IR2

∫

IR2
ϕ(x, y)̺ε(t, x)̺ε(t, y) dx dy →

∫

IR2

∫

IR2
ϕ(x, y)̺(t, x)̺(t, y) dx dy ,(11)

uniformly in t for all ϕ ∈ Cb(IR
2 × IR2) (see [16]). However, by the discon-

tinuity of the limiting kernel in (10), we cannot pass to the limit there, but
we have to introduce the defect measure

ν(t, x) = m(t, x) −
∫

IR2
K(x− y)̺(t, x)̺(t, y)dy ,
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with

K(x) = lim
ε→0

Kε(x) =

{

x⊗2

|x|2
for x 6= 0 ,

0 for x = 0 .

The atomic support of the measure ̺(t) will be denoted by

Sat(̺(t)) := {a ∈ IR2 : ̺(t)({a}) > 0} .

It is an at most countable set.

Lemma 2 ([16]) The defect measure ν is symmetric and nonnegative, and
satisfies

tr(ν(t, x)) ≤
∑

a∈Sat(̺(t))

(̺(t)({a}))2δ(x− a) .

Outline of a proof: Symmetry is obvious. For a test function ϕ ∈ Cb(IR
2×

IR2), (ϕ(x, y)−ϕ(x, x))Kε(x−y) converges uniformly to the continuous func-
tion (ϕ(x, y) − ϕ(x, x))K(x− y). Therefore, by (11),

∫

IR2

∫

IR2
(ϕ(x, y) − ϕ(x, x))Kε(x− y)̺ε(t, x)̺ε(t, y) dx dy

→
∫

IR2

∫

IR2
(ϕ(x, y) − ϕ(x, x))K(x− y)̺(t, x)̺(t, y) dx dy .

By the definitions of m and ν this implies

∫

IR2

∫

IR2
ϕ(x, y)Kε(x− y)̺ε(t, x)̺ε(t, y) dx dy

→
∫

IR2

∫

IR2
ϕ(x, y)K(x− y)̺(t, x)̺(t, y) dx dy +

∫

IR2
ϕ(x, x)ν(t, x) dx .

Since Kε is nonnegative, so is the right hand side for a nonnegative test func-
tion. Choosing ϕ(x, y) = ψ(x)η(R(x − y)) ≥ 0 with an arbitrary nonnega-
tive ψ and a nonnegative bounded η with compact support and η(0) = 1,
the first term on the right hand side tends to zero for R → ∞, proving
nonnegativity of ν. The convergence is indeed a consequence of Lebesgue’s
theorem of dominated convergence using the fact that K(x− y)η(R(x− y))
is bounded and converges to 0 pointwise.
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For proving the second statement, note that tr(Kε) ≤ 1. Combined with
the above this gives (again with a nonnegative test function)

∫

IR2

∫

IR2
ϕ(x, y)̺(t, x)̺(t, y) dx dy

≥
∫

IR2

∫

IR2
ϕ(x, y)tr(K(x− y))̺(t, x)̺(t, y) dx dy +

∫

IR2
ϕ(x, x)tr(ν(t, x)) dx

=
∫

IR2

∫

IR2
ϕ(x, y)(1 − χD(x, y))̺(t, x)̺(t, y) dx dy +

∫

IR2
ϕ(x, x)tr(ν(t, x)) dx ,

where χD denotes the characteristic function of the diagonal in IR2 × IR2.
Since

χD(x, y)̺(t, x)̺(t, y) =
∑

a∈Sat(̺(t))

̺(t)({a})2 δ(x− a)δ(y − a) , (12)

the desired result follows.

The limit of ̺ε is thus characterized by the pair (̺, ν) whose properties
are collected in the following definition.

Definition 1 For an interval I ⊂ IR, the set of time dependent measures
with diagonal defects is defined by

DM+(I; IR2) =
{

(̺, ν) : ̺(t) ∈ M+
1 (IR2) ∀t ∈ I, ν ∈ M(I × IR2)2×2,

̺ is tightly continuous with respect to t,

ν is a nonnegative, symmetric, matrix valued measure,

tr(ν(t, x)) ≤
∑

a∈Sat(̺(t))

(̺(t)({a}))2δ(x− a)
}

,

where M denotes spaces of Radon measures and M+
1 the subspace of non-

negative bounded measures.

3 Global measure valued solutions and a strong

formulation

With the tools presented in the previous section, it is now not hard to pass
to the limit in the regularized Keller-Segel model. We again follow along
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the lines of [16]. Starting from the distributional formulation (8) for the
regularized flux, we observe that

(ϕ(x) − ϕ(y))(x− y)

|x− y|(|x− y| + ε)
= Kε(x− y)∇ϕ(x) + Lε(ϕ)(x, y) ,

with

Lε(ϕ)(x, y) =
(ϕ(x) − ϕ(y) − (x− y) · ∇ϕ(x))(x− y)

|x− y|(|x− y| + ε)
,

which converges uniformly to the continuous L0(ϕ)(x, y) for any test function
ϕ ∈ C1

b (IR2). For any time interval (0, T ), we may therefore pass to the
limit in
∫ T

0

∫

IR2
ϕ(t, x)̺ε(t, x)∇Sε[̺ε](t, x)dx dt = −

1

4π

∫ T

0

∫

IR2
mε(t, x)∇ϕ(t, x) dx dt

−
1

4π

∫ T

0

∫

IR2

∫

IR2
̺ε(t, x)̺ε(t, y)Lε(ϕ)(t, x, y) dx dy dt .

As a result, restricting to subsequences, ̺ε∇Sε[̺
ε] converges to j[̺, ν] in the

sense of distributions, with the limiting flux defined by

∫ T

0

∫

IR2
ϕ(t, x)j[̺, ν](t, x)dx dt

= −
1

4π

∫ T

0

∫

IR4
(ϕ(t, x) − ϕ(t, y))K(x− y)̺(t, x)̺(t, y)dx dy dt

−
1

4π

∫ T

0

∫

IR2
ν(t, x)∇ϕ(t, x)dx dt . (13)

for ϕ ∈ C1
b ((0, T ) × IR2) with

K(x) =

{

x
|x|2

for x 6= 0 ,

0 for x = 0 .
(14)

This actually completes the proof of our main result.

Theorem 2 For every T > 0, as ε→ 0, a subsequence of solutions ̺ε of (3)–
(5) converges tightly and uniformly in time to a time dependent measure ̺(t).
There exists ν(t) such that (̺, ν) ∈ DM+((0, T ); IR2) is a generalized solution
of

∂t̺+ ∇ · (j[̺, ν] −∇̺) = 0 , (15)
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in the sense that the convective flux j[̺, ν] is given by (13)–(14) and that
(15) holds in the sense of distributions. The initial condition ̺(t = 0) = ̺I

is satisfied in the sense of tight continuity.

Note that, for a ̺ not charging points, ν = 0 and j[̺, 0] = ̺∇S0[̺],
implying that (15) is a generalization of the classical Keller-Segel model.

In order to derive a strong formulation of (15), we decompose the cell
density as

̺ = ̺+ ˆ̺ , with ˆ̺(t, x) =
∑

n∈N

Mn(t)δ(x− xn(t)) , δn(t, x) = δ(x− xn(t))

where N ⊂ IIN, assuming ̺ is smooth and that t varies in a time interval,
where the atomic support of ̺ consists of smooth paths xn(t) carrying smooth
weights Mn(t). Then, by (̺, ν) ∈ DM+((0, T ); IR2),

ν(t, x) =
∑

n∈N

νn(t)δn(t, x) ,

with nonnegative symmetric νn satisfying tr(νn) ≤ M2
n. The convective flux

can be written as

j[̺, ν] = ̺∇S0[̺+ ˆ̺] +
∑

n

Mnδn∇S0



̺+
∑

m6=n

Mmδm



+
1

4π

∑

n

νn∇δn .

The equation (15) is then equivalent to

∂t̺ + ∇ · (̺∇S0[̺] −∇̺) + ∇̺ · ∇S0[ ˆ̺]

+
∑

n

δn(Ṁn − ̺Mn)

−
∑

n

Mn∇δn



ẋn −∇S0



̺+
∑

m6=n

Mmδm









+
∑

n

(

1

4π
νn : ∇2δn −Mn∆δn

)

= 0 .

The terms in the first row are in L∞
t L

1
x. The other three rows contain zeroth,

first and second order derivatives of δn. Therefore, all the coefficients (in
each row and for every n) have to vanish individually. Starting from the last
row this gives

νn = 4πMn id . (16)
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As a consequence of tr(νn) = 8πMn ≤ M2
n, point masses have to be at

least 8π, implying further that there is only a finite number of them.
The other rows give the dynamics of ̺, Mn, and xn:

∂t̺+ ∇ · (̺∇S0[̺] −∇̺) −
1

2π
∇̺ ·

∑

n

Mn
x− xn

|x− xn|2
= 0 , (17)

Ṁn = ̺(x = xn)Mn , (18)

ẋn = ∇S0[̺](x = xn) −
1

2π

∑

m6=n

Mm
xn − xm

|xn − xm|2
. (19)

Note that the last term in the first equation can be written as a divergence,
away from Sat(̺), where it provides sinks compensating the growth of the
point masses:

d

dt

(

∫

IR2
̺ dx+

∑

n

Mn

)

= 0 .

It is interesting to compare the above system with the equations derived in
[17] in the formal limit of a different regularization of the Keller-Segel model,
as mentioned in the introduction. The results in [17] are identical except for
a factor in front of the right hand side of (19), which depends on the details
of the regularization.

A local-in-time existence result for initial value problems for (17)–(19)
can be found in [19]. In general, one has to expect blow-up events in the
smooth part ̺ and/or collisions of point aggregates in finite time. At such
points in time, a restart is required with either an additional point aggregate
after a blow-up event or with a smaller number of point aggregates after a
collision. A rigorous theory producing global solutions by such a procedure
is missing, however.

4 Long time behaviour

This section is devoted to a brief and formal discussion of the long time
behaviour of weak solutions assuming the validity of (16), i.e.

ν(t, x) = 4π id
∑

a∈Sat(̺(t))

̺(t)({a})δ(x− a) , (20)
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and the existence of the second order moment of the initial density:

∫

IR2
|x|2̺Idx <∞ .

Solutions with subcritical total mass M < 8π are smooth and decay to zero
as time tends to infinity [2]. See [1], [3] in case M = 8π. We shall concentrate
on the supercritical case M > 8π.

Using the product of a time dependent function and a smooth cut-off of
|x|2 as a test function in the distributional formulation of (15), and removing
the cut-off by a limiting procedure, we obtain

d

dt

∫

IR2
|x|2̺ dx = 4M −

1

2π

∫

IR4
(1 − χD)̺⊗ ̺ dy dx−

1

2π

∫

IR2
tr(ν) dx

= M

(

4 −
M

2π
−
M̂

2π

)

−
1

2π

∑

a 6=b,

a,b∈Sat(̺(t))

̺(t)({a})̺(t)({b}) ,

with M̂ =
∑

a∈Sat(̺(t)) ̺(t)({a}) and M = M − M̂ . The second equality
follows from (12) and (20). A well known identity for smooth solutions of
the Keller-Segel model is recovered for Sat(̺(t)) = ∅. For M > 8π, the right
hand side is the sum of two nonpositive terms, and the second order moment
is a Lyapunov function. Obviously, the dissipation term only vanishes when
M = 0, and when the atomic support of ̺(t) consists of only one point.
Therefore, we expect ̺(t, x) → Mδ(x −XI) as t → ∞. The position XI of
the limiting aggregate is the initial center of mass

XI =
1

M

∫

IR2
x̺Idx ,

since by a computation which goes as the one for the second order moment,
the center of mass does not move:

d

dt

∫

IR2
x̺dx = 0 .

The result of convergence to one aggregate as t→ ∞ has been proven rigor-
ously for the Keller-Segel model without cell diffusion [16]. There the result
is valid independently of the value of the total mass, and the proof does not
need exact information (as (20)) on the defect measure.
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We conclude this section by two examples of how the asymptotic state
can be reached. The first one is very simple. Consider a strong solution with
̺ = 0 and two aggregates: ̺(t, x) = M1δ(x − x1(t)) + M2δ(x − x2(t)). The
masses are constant by (18), and the ODEs for the positions can be solved
explicitly:

xi(t) = XI + ui(t)
x1(0) − x2(0)

|x1(0) − x2(0)|
,

with

ui(t) = (−1)i−1 Mi

M1 +M2

√

|x1(0) − x2(0)|2 − t(M1 +M2)/π .

Thus, the asymptotic state is reached in finite time

t =
π|x1(0) − x2(0)|2

M1 +M2

by collision of the aggregates.
As a second example consider another strong solution with one point

aggregate and small enough (to be specified below) initial mass

M(0) =
∫

IR2
̺(t = 0)dx

of the smooth part. Such a solution may exist only on a finite time interval.
The equations (17)–(19) then become

∂t̺+ ∇ · (̺∇S0[̺] −∇̺) −
M1

2π
∇̺ ·

x− x1

|x− x1|2
= 0 ,

Ṁ1 = ̺(x = x1)M1 ,

ẋ1 = ∇S0[̺](x = x1) .

For q > 1, a straightforward computation using the Poisson equation ∆S0[̺] =
−̺ gives

d

dt

∫

IR2
̺qdx = (q − 1)

(

∫

IR2
̺q+1dx−

4

q

∫

IR2
|∇̺q/2|2dx

)

− ̺(x = x1)
qM1 .

With the Gagliardo-Nirenberg inequality
∫

IR2
|u|2(1+1/q)dx ≤ Cq

∫

IR2
|u|2/qdx

∫

IR2
|∇u|2dx

13



with u = ̺q/2 this implies

d

dt

∫

IR2
̺qdx ≤ (q − 1)

(

CqM −
4

q

)

∫

IR2
|∇̺q/2|2dx− ̺(x = x1)

qM1 .

Since M(t) is nonincreasing, the right hand side is nonpositive for M(0) <
4/(qCq). For

M(0) < Mcrit = sup
q>1

4

qCq

,

the above argument can be made rigorous with an appropriate q, proving
global existence and decay to zero of ̺. Since the optimal constants Cq are
only known for special values of q (see [6]), we cannot compute Mcrit. The
best possible bound for M(0) guaranteeing global existence of the strong so-
lution with one aggregate is expected to be 8π, since this presumably prevents
a second aggregate to form.

5 Local density profiles

For fixed t and a ∈ Sat(̺(t)), we introduce the transformations εξ = x − a
and ε2̺ε = Rε in (3), leading to

ε2∂tR
ε + ∇ξ · (R

ε∇ξS1[R
ε] −∇ξR

ε) = 0 . (21)

By (7), Rε is uniformly bounded, implying compactness of ∇ξS1[R
ε]. As

a consequence, the L∞-weak* limit R of Rε (restricting to subsequences)
satisfies the formal limiting stationary equation

∇ξ · (R∇ξS1[R] −∇ξR) = 0 . (22)

Multiplication by ln(R) − S1[R] and integration by parts shows that this
quantity is independent of ξ:

ln(R) − S1[R] = ca(t) .

In the weak formulation of (22),

∫

IR2
(R∆ϕ+R∇ξϕ · ∇ξS1[R])dξ = 0 ,
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we choose test functions approximating ϕ(ξ) = (r2−|ξ|2)+/4 and let r → ∞,
leading to
∫

IR2
R(ξ)dξ =

1

8π

∫

IR4

|ξ − η|

|ξ − η| + 1
R(ξ)R(η)dηdξ ≤

1

8π

(∫

IR2
R(ξ)dξ

)2

.

This shows that either R vanishes or its mass is not smaller than 8π.
Solutions of (22) carrying a given mass M > 8π can also be constructed

by minimization of the free energy

Fε[̺] :=
∫

IR2

(

̺ log ̺−
1

2
̺Sε[̺]

)

dx

=
∫

IR2
̺ log ̺ dx+

1

4π

∫

IR4
log(|x− y| + ε)̺(x)̺(y)dy dx .

A straightforward computation shows its decay along solutions of (3):

d

dt
Fε[̺

ε] = −
∫

IR2
̺ε|∇(log ̺ε − Sε[̺

ε])|2dx .

The free energy has an interesting scaling property. With an arbitrary a ∈ IR2

and with the transformation R(ξ) = ε2̺(a+ εξ) we have

Fε[̺] =

(

2M −
M2

4π

)

log
1

ε
+ F1[R] . (23)

Lemma 3 Let R ∈ L1
+(IR2) be a radial function such that

∫

IR2 log(1+|x|)R(x) dx <
∞. If M =

∫

IR2 Rdx, then

1

4π

∫

IR2
log(1 + |x− y|)R(y) dy ≥

M

4π
log |x| ∀ x ∈ IR2 .

Proof: Let R(x) = u(|x|) a.e. and observe that

1

2π

∫

IR2
log(1 + |x− y|)R(y) dy ≥

1

2π

∫

IR2
log |x− y|R(y) dy =: v(|x|) ,

where v is such that

1

r
(r v′)′ = u , lim

r→∞

(

M

2π
log r − v(r)

)

= 0 .

It is the straightforward to check that

v(r) = log r
∫ r

0
s u(s) ds+

∫ ∞

r
s log s u(s) ds ≥ log r

∫ ∞

0
s u(s) ds =

M

2π
log r .
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Theorem 3 Defining L1
+,M = {R ∈ L1

+(IR2) :
∫

IR2 Rdξ = M} and

JM := inf
R∈L1

+,M

F1[R] ≥ −∞ ,

then JM = −∞ for M < 8π, and JM > −∞ for M ≥ 8π. If M > 8π,
there exists a minimizer R ∈ L1

+,M with F1[R] = JM , which is rotationally
symmetric and nonincreasing as a function of |ξ|.

Proof: We first observe that for M = 8π,

F1[R] ≥ F0[R] ≥M(1 + log π + logM) = 8π log(8/e)

by the logarithmic HLS inequality, see [4]. Assume next that M < 8π. For a
fixed ̺ ∈ L1

+,M ∩L∞(IR2) for which F0[̺] is well defined, set ̺δ(ξ) = δ2̺(δξ).
Then from the scaling property (23),

F1[̺
δ] =

(

M2

4π
− 2M

)

log
1

δ
+ Fδ[̺] ∼

δ→0
2M

(

M

8π
− 1

)

log
1

δ
+ F0[̺] →

δ→0
−∞ .

This proves the statement for M < 8π.
For the decreasing radial symmetrization R∗ of R (see [14]),

∫

IR2
R logRdξ =

∫

IR2
R∗ logR∗ dξ

holds. On the other hand, we use the Riesz symmetrization inequality
(see [14]):
∫

IR2×IR2
R∗(ξ) k(|ξ − η|)R∗(η) dξ dη ≥

∫

IR2×IR2
R(ξ) k(|ξ − η|)R(η) dξ dη ,

which holds for any R ∈ L1
+(IR2) and for nonnegative nonincreasing k such

as k(z) := [log((1 + 2r)/(1 + z))]+. This implies
∫

IR2×IR2
R∗

r(ξ) log(1 + |ξ − η|)R∗
r(η) dξ dη

≤
∫

IR2×IR2
Rr(ξ) log(1 + |ξ − η|)Rr(η) dξ dη ,

with Rr = RχBr(0). Passing to the limit r → ∞, Rr can be replaced by R,
proving a slight generalization of an inequality from [4]. As a consequence,
F1[R] ≥ F1[R

∗]. Using Lemma 3, we get

F1[R
∗] ≥

∫

IR2
R∗ logR∗ dξ +

M

4π

∫

|ξ|>1
log |ξ|R∗ dξ (24)
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From now on, we consider only radial functions.
Consider then the case M > 8π. Let δ ∈ [0, 1),

Rδ
∞(ξ) := min{1, |ξ|−M(1−δ)/(4π)} and M δ

∞ :=
∫

IR2
Rδ

∞ dξ .

By Jensen’s inequality

∫

IR2
R log

(

R

Rδ
∞

)

dξ = M δ
∞

∫

IR2

R

Rδ
∞

log

(

R

Rδ
∞

)

Rδ
∞dξ

M δ
∞

≥M log

(

M

M δ
∞

)

,

so that, for the full free energy, we have: F1[R] ≥M log (M/M0
∞) . It remains

to prove the existence of a minimizer when M > 8π. We choose a δ > 0 small
enough such that M(1 − δ) > 8π, and using (24), we write

F1[R] ≥
∫

IR2
R log

(

R

Rδ
∞

)

dξ +
Mδ

4π

∫

|ξ|>1
log |ξ|R(ξ)dξ ,

implying

F1[R] ≥M log

(

M

M δ
∞

)

+
Mδ

4π

∫

|ξ|>1
log |ξ|R(ξ)dξ ,

Therefore, for a minimizing sequence {Rn}, both

∫

IR2
Rn logRndξ and

∫

|ξ|>1
log |ξ|R(ξ)dξ

are bounded and, consequently, {Rn} has a weakly convergent subsequence
in L1(IR2). By lower semicontinuity, we can pass to the limit in F1[Rn].
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