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Recursion between Mumford volumes of moduli spaces

We propose a new proof, as well as a generalization of Mirzakhani's recursion for volumes of moduli spaces. We interpret those recursion relations in terms of expectation values in Kontsevich's integral, i.e. we relate them to a Ribbon graph decomposition of Riemann surfaces. We find a generalization of Mirzakhani's recursions to measures containing all higher Mumford's κ classes, and not only κ 1 as in the Weil-Petersson case.

Introduction

Let

Vol WP (M g,n (L 1 , . . . , L n )) (1-1)

be the volume (measured with Weil-Petersson's measure) of the moduli space of genus g curves with n geodesic boundaries of length L 1 , . . . , L n . Maryam Mirzakhani found a beautiful recursion relation [START_REF] Mirzakhani | Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces[END_REF][START_REF] Mirzakhani | Weil-Petersson volumes and intersection theory on the moduli space of curves[END_REF] for those functions, allowing to compute all of them in principle. That relation has then received several proofs [START_REF] Mulase | Mirzakhani's recursion relations, Virasoro constraints and the KdV hierarchy[END_REF][START_REF] Liu | A simple proof of Mirzakhani's recursion formula of Weil-Petersson volumes[END_REF], and we provide one more proof, more "matrix model oriented".

The main interest of our method, is that it easily generalizes to a larger class of measures, containing all Mumford classes κ, which should also prove the result of Liu and Xu [START_REF] Liu | A simple proof of Mirzakhani's recursion formula of Weil-Petersson volumes[END_REF].

In fact, our recursion relations are those of [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF], and they should be generalizable to a much larger set of measures, not only those based on Kontsevich's hyperelliptical spectral curve, and not only rational spectral curves. For instance they hold for the generalized Kontsevich integral whose spectral curve is not hyperelliptical, i.e. they should hopefully allow to compute also some sort of volumes of moduli spaces of stable maps with spin structures.

In [START_REF]Weil-Petersson volume of moduli spaces, Mirzakhani's recursion and matrix models[END_REF] it was observed that after Laplace transform, Mirzakhani's recursion became identical to the solution of loop equations [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF] for Kontsevich's matrix integral. Based on that remark we are in position to reprove Mirzakhani's result, and in fact we prove something more general:

Consider an arbitrary set of Kontsevich KdV times2 t 2d+3 , d = 0, 1, . . . , ∞, we define their conjugated times tk , k = 0, 1, . . . , ∞, by:

f (z) = ∞ a=1 (2a + 1)! a! t 2a+3 2 -t 3 z a → f (z) = -ln (1 -f (z)) = ∞ b=1 tb z b (1-2)
Then we prove the following theorem:

Theorem 1.1 Given a set of conjugated Kontsevich times t0 , t1 , t2 , . . ., the following "Mumford volumes", W g,n (z 1 , . . . , z n ) = 2 -dg,n (t 3 -2) 2-2g-n d 0 +d 1 +...+dn=dg,n

d 0 k=1 1 k! b 1 +...+b k =d 0 ,b i >0 n i=1 2d i + 1! d i ! dz i z 2d i +2 i k l=1 tb l < k l=1 κ b l n i=1 ψ d i i > g,n (1 -3) 
where d g,n = 3g -3 + n = dim M g,n , satisfy the following recursion relations (where K = {z 1 , . . . , z n }):

W 0,1 = 0 W 0,2 (z 1 , z 2 ) = dz 1 dz 2 (z 1 -z 2 ) 2 W g,n+1 (K, z n+1 ) = 1 2 Res z→0 dz n+1 (z 2 n+1 -z 2 )(y(z) -y(-z))dz W g-1,n+2 (z, -z, K) + g h=0 J⊂K W h,1+|J| (z, J) W g-h,1+n-|J| (-z, K/J) (1 -4)
where

y(z) = z - 1 2 ∞ k=0 t 2k+3 z 2k+1 (1-5)
From theorem.1.1, we obtain as an immediate consequence if t 2d+3 = -(2iπ) 2d 2d+1! +2δ d,0 , i.e. t1 = 4π 2 and tk = 0 for k > 1, and after Laplace transform: Corollary 1.1 The Weil-Petersson volumes satisfy Mirzakhani's recursions.

The proof of theorem 1.1 is detailed in the next sections, it can be sketched as follows:

• We first define some W g,n (z 1 , . . . , z n ) which obey the recursion relations of [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF], i.e.

eq.1-4. In other words, we define them as the solution of the recursion, without knowing what they compute.

• We prove that those W g,n (z 1 , . . . , z n ) correspond to some expectation values in the

Kontsevich integral Z(Λ) = dM e -N Tr ( M 3 3 -M Λ 2 )
, where Λ = diag(λ 1 , . . . , λ n ), and

t k = 1 N Tr Λ -k , of the form: W g,n (λ i 1 , . . . , λ in ) dx(λ i 1 ) . . . dx(λ in ) = (-1) n M i 1 ,i 1 . . . M in,in (g) c 
(1-6)

• Then we expand < M i 1 ,i 1 . . . M in,in > into Feynman ribbon graphs, which are in bijection with a cell decomposition of M comb g,n

(like in Kontsevich's first works), and the value of each of those Feynman graphs is precisely the Laplace transform of the volume of the corresponding cell.

• the sum over all cells yields the expected result: the inverse Laplace transforms of W g,n are the volumes V g,n , and, by definition, they satisfy the recursion relations.

• In fact the volumes are first written in terms of the first Chern classes ψ i in formula eq.2-31, and after some combinatorics, we find more convenient to rewrite them in terms of Mumford κ classes.

Then, we specialize our theorem to some choices of times t k 's, in particular the following:

• The first example is t 2d+3 = -(2iπ) 2d 2d+1! + 2δ d,0 , in which case V g,n the Laplace transform of W g,n are the Weil-Petersson volumes, and thus we recover Mirzakhani's recursions.

• Our second example is t k = λ -k , i.e. Λ = λ Id, for which the Kontsevich integral reduces to a standard one-matrix model, and for which the W g,n are known to count triangulated maps, i.e. discrete surfaces with the discrete Regge metrics (metrics whose curvature is localized on vertices and edges). We are thus able to associate some class to that discrete measure on M g,n . And we have a formula which interpolates between the enumeration of maps and the enumeration of Riemann surfaces, in agreement with the spirit of 2d-quantum gravity in the 80's [START_REF] Witten | Two-dimensional gravity and intersection theory on moduli space[END_REF]2,[START_REF] Di Francesco | 2D Gravity and Random Matrices[END_REF].

Proof of the theorem 2.1 Kontsevich's integral

In his very famous work [START_REF] Kontsevich | Intersection theory on the moduli space of curves and the matrix Airy function[END_REF] Maxim Kontsevich introduced the following matrix integral as a generating function for intersection numbers

Z(Λ) = dM e -N Tr ( M 3 3 -M (Λ 2 +t 1 )) = e 2N 3 Tr Λ 3 +N t 1 Tr Λ dM e -N Tr ( M 3 3 +M 2 Λ-t 1 M ) (2 -1)
where the integral is a formal integral over hermitian matrices M of size N, and Λ is a fixed diagonal matrix

Λ = diag(λ 1 , . . . , λ n ) , t k = 1 N Tr Λ -k (2-2)
Throuthough all this article we shall assume t 1 = 0, since anyways none of the quantities we are interested in here depend on t 1 (see symplectic invariance in [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF], or see [START_REF] Di Francesco | Polynomial averages in the Kontsevich model[END_REF]).

In [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF], a method to compute the topological expansion of such matrix integrals was developped. We first define the Kontsevich's spectral curve: Definition 2.1 The spectral curve of Z(Λ) is the rational plane curve of equation:

E(x, y) = y 2 -x - y N Tr 1 x -t 1 -Λ 2 - 1 N Tr 1 x -t 1 -Λ 2 M (0) = 0 (2-3)
i.e. it has the following rational uniformization

E(x, y) = x(z) = z 2 + t 1 y(z) = z + 1 2N Tr 1 Λ(z-Λ) = z -1 2 ∞ k=0 t k+2 z k (2-4)
Then we define (i.e. the algebraic invariants of [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF]):

Definition 2.2
We define the correlators:

W 0,1 = 0 W 0,2 (z 1 , z 2 ) = dz 1 dz 2 (z 1 -z 2 ) 2 (2-5)
and we define by recursion on 2g -2 + n, the symmetric3 form W g,n+1 (z 0 , z 1 , . . . , z n ) by (we write K = {z 1 , . . . , z n }):

W g,n+1 (K, z n+1 ) = Res z→0 z dz n+1 (z 2 n+1 -z 2 )(y(z) -y(-z))dx(z) W g-1,n+2 (z, -z, K) + g h=0 J⊂K W h,1+|J| (z, J) W g-h,1+n-|J| (-z, K/J) (2 -6)
Then, if dΦ = ydx, we define for g > 1:

F g = 1 2g -2 Res z→0 Φ(z)W g,1 (z) (2-7)
(there is a separate definition of F g for g = 0, 1, but we shall not use it here).

We recall the result of [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF] (which uses also [START_REF] Eynard | Topological expansion of mixed correlations in the hermitian 2 Matrix Model and x -y symmetry of the F g algebraic invariants[END_REF]):

Theorem 2.1 ln Z = ∞ g=0 N 2-2g F g (2-8)
Now, we prove the more elaborate result:

Theorem 2.2 if i 1 , . . . , i n are n distinct integers in [1, N], then: W (g) n (λ i 1 , . . . , λ in ) dx(λ i 1 ) . . . dx(λ in ) = M i 1 ,i 1 . . . M in,in (g) c 
(2-9)

where < . > means the formal expectation value with respect to the measure used to define Z, the subscript c means connected part or cumulant, and the subscript (g) means the g th term in the 1/N 2 topological expansion.

In other words, the W g,n compute some expectation values in the Kontsevich integral, which are not the same as those computed by [START_REF] Di Francesco | Polynomial averages in the Kontsevich model[END_REF].

proof:

From eq. 2-1, it is easy to see that:

N -n ∂ n ln Z ∂λ i 1 . . . ∂λ in = 2 n λ i 1 . . . λ in M i 1 ,i 1 . . . M in,in c (2-10) 
i.e., to order N 2-2g-n :

∂ n F g ∂λ i 1 . . . ∂λ in = 2 n λ i 1 . . . λ in M i 1 ,i 1 . . . M in,in (g) c 
(2-11)

Now, let us compute ∂Fg ∂λ i with the method of [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF]. Consider an infinitesimal variation of the matrix Λ: λ i → λ i + δλ i (we assume δt 1 = 0). It translates into the following variations of the function y(z):

δy(z) = 1 2Nz Tr δΛ (z -Λ) 2 (2-12)
and thus the form:

-δy(z)dx(z) = d 1 N Tr δΛ z -Λ = Res ζ→z 1 (z -ζ) 2 1 N Tr δΛ ζ -Λ = - i Res ζ→λ i 1 (z -ζ) 2 1 N Tr δΛ ζ -Λ (2 -13)
Then, using theorem 5.1 of [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF], we have:

δF g = i Res ζ→λ i W (g) 1 (ζ) 1 N Tr δΛ ζ -Λ = i W (g) 1 (λ i ) dλ i δλ i N (2-14) i.e. W (g) 1 (λ i ) = M ii (g) dx(λ i ) (2-15)
And repeating the use of theorem 5.1 in [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF] recursively we get the result.

Example:

M ii (1) = 1 16(2 -t 3 ) 1 λ 5 i + t 5 (2 -t 3 )λ 3 i -→ Tr M (1) = t 5 8(2 -t 3 ) 2 (2-16)

Expectation values and ribbon graphs

Let i 1 , . . . , i n be n distinct given integers ∈ [1, . . . , N]. We want to compute: (2)[START_REF] Di Francesco | Polynomial averages in the Kontsevich model[END_REF][START_REF] Di Francesco | 2D Gravity and Random Matrices[END_REF][START_REF]Weil-Petersson volume of moduli spaces, Mirzakhani's recursion and matrix models[END_REF][START_REF] Eynard | Topological expansion for the 1-hermitian matrix model correlation functions[END_REF][START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF][START_REF] Eynard | Topological expansion of mixed correlations in the hermitian 2 Matrix Model and x -y symmetry of the F g algebraic invariants[END_REF][START_REF] Kontsevich | Intersection theory on the moduli space of curves and the matrix Airy function[END_REF][START_REF] Liu | A simple proof of Mirzakhani's recursion formula of Weil-Petersson volumes[END_REF][START_REF] Mirzakhani | Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces[END_REF][START_REF] Mirzakhani | Weil-Petersson volumes and intersection theory on the moduli space of curves[END_REF][START_REF] Mulase | Mirzakhani's recursion relations, Virasoro constraints and the KdV hierarchy[END_REF][START_REF] Mumford | Towards an enumerative geometry of the moduli space of curves[END_REF][START_REF] Tutte | A census of planar triangulations[END_REF][START_REF] Witten | Two-dimensional gravity and intersection theory on moduli space[END_REF][START_REF] Wolpert | On the homology of the moduli space of stable curves[END_REF] Let us also choose n positive real perimeters P 1 , . . . , P n Let Γ(g, n, m) be the set of tri-valent oriented ribbon graphs of genus g, with n marked faces, and m unmarked faces. Each marked face F = 1, . . . , n carries the given index i F , and each unmarked face

M i 1 ,i 1 . . . M in,in (g) 
f carries an index i f ∈ [1, . . . , N].
Let us consider another set of graphs: Let Γ * (g, n, m) be the set of oriented ribbon graphs of genus g, with trivalent and 1-valent vertices, made of m unmarked faces bordered with only tri-valent vertices, each of them carrying an index i f , and n marked faces carrying the fixed index i F ∈ {i 1 , . . . , i n }, such that each marked face has one 1-valent vertex on its boundary. The unique trivalent vertex linked to the 1-valent vertex on each marked face, corresponds to a marked point on the boundary of that face. Assume that i 1 , . . . , i n are distinct integers. The usual fat graph expansion of matrix integrals gives (cf [2,[START_REF] Di Francesco | 2D Gravity and Random Matrices[END_REF][START_REF] Kontsevich | Intersection theory on the moduli space of curves and the matrix Airy function[END_REF]):

M i 1 ,i 1 . . . M in,in (g) = N -m m G∈Γ * g,n,m {i f } (-1) #vertices #Aut(G) e∈edges(G) 1 λ e left + λ e right (2-18) It is obtained by first expanding e -N 3 Tr M 3 = ∞ v=0 N v 3 v v! (-1) v ( Tr M 3 ) v ,
and then computing each polynomial moment of the Gaussian measure e -N Tr ΛM 2 with the help of Wick's theorem. Each TrM 3 corresponds to a trivalent vertex, each M ii corresponds to a 1-valent vertex, and edges correspond to the "propagator" < M ij M kl > Gauss = δ il δ jk N (λ i +λ j ) . The result is best represented as a fatgraph, whose edges are double lines, carrying two indices. The indices are conserved along simple lines. The symmetry factor comes from the combination of 1/(3 v v!) and the fact that some graphs are obtained several times. Notice that (-1) v = (-1) n , because the total number of 1 and 3-valent vertices must be even.

Notice that the edge connected to the 1-valent vertex M i F ,i F gives a factor 1/2λ i F , and the two edges on the boundary of face F , on each side of the 1-valent vertex give a factor 1/(λ i F + λ j ) 2 (where j is the index of the neighboring face), which can be written:

1

(λ i F + λ j ) 2 = ∞ 0 dl e le 0 d li e -le(λ i F +λ j ) (2-19)
and all other edges have a weight of the form:

1 λ e left + λ e right = ∞ 0
dl e e -le(λ e left +λ e right ) (2-20)

We are thus led to associate to each edge e a length l e ∈ R + . Therefore Now, we introduce the perimeters of each face P F for marked faces, and p f for unmarked ones.

M i 1 ,i 1 . . . M in,in (g) = N -m 2 n λ i 1 . . . λ in m G∈Γ * g,n,m {i f } (-1) n #Aut(G)
Notice that each graph of Γ * g,n,m projects on a graph of Γ g,n,m by removing the 1-valent vertex and its adjacent trivalent vertex, and keeping a marked point on the boundary of the face F . The sum of F d lF over graphs of Γ * g,n,m which project to the same graph, corresponds to a sum of all possibilities of marking a point on the boundary of face F , i.e. a factor P F , and thus removing the marked point. Therefore:

M i 1 ,i 1 . . . M in,in (g) = N -m 2 n λ i 1 . . . λ in m G∈Γg,n,m {i f } (-1) n #Aut(G) f ∞ 0 dp f e -f λ i f p f F ∞ 0 P F dP F e -λ i F P F e ∞ 0 dl e f δ(p f - e∈∂f l e ) n F =1 δ(P F - e∈∂F l e ) = 1 2 n λ i 1 . . . λ in m G∈Γg,n,m (-1) n #Aut(G) f ∞ 0 dp f 1 N Tr (e -p f Λ ) F ∞ 0 P F dP F e -λ i F P F Vol(π -1 G (P F , p f )) (2 -22)
where Vol(π -1 G (P F , p f )) is the volume of the pullback of the ribbon graph G in M comb g,n+m :

Vol(π -1 G (P F , p f )) = e dl e f δ(p f - e∈∂f l e ) n F =1 δ(P F - e∈∂F l e ) (2-23)
The number of integrations (i.e. after performing the δ) is 2d g,n+m = #edges-#faces = 2(3g -3+n+m), which is the dimension of M g,n+m , therefore e dl e is a top-dimension volume form on M comb g,n+m = M g,n+m × R n+m + , i.e.:

e

dl e = ρ g,n+m d g,n+m ! F dP F f dp f ∧ Ω d g,n+m (2-24)
where Ω is the 2-form on the strata π -1 G (P F , p f ) of M comb g,n+m such that:

Ω = f p 2 f ω f + F P 2 F ω F (2-25)
and where ω f = e<e ′ d(l e /p f ) ∧ d(l e ′ /p f ) is the first Chern class of pullback of the cotangent bundle at the center of the face

ψ f = c 1 (L f ).
Kontsevich [START_REF] Kontsevich | Intersection theory on the moduli space of curves and the matrix Airy function[END_REF] proved that the constant ρ g,n+m is given by: ρ g,n+m = 2 g-1-2d g,n+m (2-26)

Thus we have:

Vol(π -1 G (P F , p f )) = ρ g,n+m d g,n+m ! π -1 G (P F ,p f ) Ω d g,n+m = ρ g,n+m f d f + F d F =d g,n+m π -1 G (P F ,p f ) f p 2d f f ψ d f f d f ! F P 2d F F ψ d F F d F ! = ρ g,n+m f d f + F d F =d g,n+m f p 2d f f d f ! F P 2d F F d F ! < f ψ d f f F ψ d F F > G (2 -27) therefore f ∞ 0 dp f 1 N Tr (e -p f Λ )Vol(π -1 G (P F , p f )) = ρ g,n+m f ∞ 0 dp f 1 N Tr (e -p f Λ ) f d f + F d F =d g,n+m f p 2d f f d f ! F P 2d F F d F ! < f ψ d f f F ψ d F F > G = ρ g,n+m f d f + F d F =d g,n+m f 2d f ! d f ! 1 N Tr (Λ -(2d f +1) ) F P 2d F F d F ! < f ψ d f f F ψ d F F > G = ρ g,n+m f d f + F d F =d g,n+m f 2d f ! d f ! t 2d f +1 F P 2d F F d F ! < f ψ d f f F ψ d F F > G (2 -28)
and then, when we sum over all graphs (since we sum over graphs with m unmarked faces, we have to divide wrt to the symmetry factor m!, like in [START_REF] Kontsevich | Intersection theory on the moduli space of curves and the matrix Airy function[END_REF]) :

M i 1 ,i 1 . . . M in,in (g) = (-1) n ρ g,n 2 n λ i 1 . . . λ in F ∞ 0 P F dP F e -λ i F P F m 1 m! d f +d F =dg,n+m f 2d f ! d f ! t 2d f +1 4 F P 2d F F d F ! < f ψ d f f F ψ d F F > (2 -29)
Therefore, if we write:

W g,n (λ i 1 , . . . , λ in ) dλ i 1 . . . dλ in = ∞ 0 dP 1 . . . dP n F P F e -λ i F P F V g,n (P 1 , . . . , P n ) (2-30)
we find that the inverse Laplace transform of W g,n is:

V g,n (P 1 , . . . , P n ) = ρ g,n m (-1) n m! m 1 d f + n 1 d F =dg,n+m f 2d f ! d f ! t 2d f +1 4 F P 2d F F d F ! < f ψ d f f F ψ d F F > (2-31)
where the intersection theory is computed on M g,n+m .

Since we are interested only in the perimeters of the n marked faces, we may try to perform the integration over the m unmarked faces, i.e. we introduce the forgetful projection π n+m→n : M g,n+m → M g,n which "forgets" the m remaining points. It is known [START_REF] Arbarello | combinatorial and algebro-geometric cohomology classes on the moduli spaces of curves[END_REF][START_REF] Witten | Two-dimensional gravity and intersection theory on moduli space[END_REF] that the push forward of the classes ψ d f f , can then be rewritten in terms of Mumford's [START_REF] Mumford | Towards an enumerative geometry of the moduli space of curves[END_REF] tautological classes κ b on M g,n , by the relation:

(π n+m→n ) * (ψ a 1 +1 1 . . . ψ am+1 m F ψ d F F ) = σ∈Σm c=cycles of σ κ i∈c a i F ψ d F F (2-32) 
Therefore, if we rewrite d f = a f + 1 we have:

1 ρ g,n V g,n (P 1 , . . . , P n ) = m (-1) n m! m 1 a f + n 1 d F =dg,n f 2a f + 1! a f ! t 2a f +3 2 F P 2d F F d F ! < f ψ a f +1 f F ψ d F F > = m (-1) n m! m 1 a f + n 1 d F =dg,n σ∈Σm f 2a f + 1! a f ! t 2a f +3 2 F P 2d F F d F ! < c κ c a i F ψ d F F > = (-1) n d 0 +d 1 +...+d F =dg,n F P 2d F F d F ! m 1 m! a 1 +...+am=d 0 ,a f ≥0 σ∈Σm f 2a f + 1! a f ! t 2a f +3 2 < c κ c a i F ψ d F F > (2-33)
Now, instead of summing over permutations, let us sum over classes of permutations, i.e. partitions l 1 ≥ l 2 ≥ . . . ≥ l k > 0, and we denote |l| = i l i = m the weight of the class, and |[l]| the size of the class:

|[l]| = |l|! i l i j (#{i/ l i = j})! (2-34)
The sum over the a's for each class gives:

(-1) n ρ g,n V g,n (P 1 , . . . , P n ) = d 0 +d 1 +...+d F =dg,n F P 2d F F d F ! k l 1 ≥l 2 ≥...≥l k >0 |[l]| |l|! a i,j ,i=1,...,k,j=1,...,l i δ( i,j a i,j -d 0 ) i,j 2a i,j + 1! a i,j ! t 2a i,j +3 2 < k i=1 κ l i j=1 a i,j F ψ d F F > (2 -35)
Since the summand is symmetric in the l i 's, the ordered sum over l 1 ≥ . . . l k , can be replaced by an unordered sum (multiplying by 1/k!, and by i (#{i/ l i = j})! in case some l i coincide):

(-1) n ρ g,n V g,n (P 1 , . . . , P n ) = d 0 +d 1 +...+d F =dg,n F P 2d F F d F ! k 1 k! l 1 ,l 2 ,...,l k >0 k i=1 1 l i a i,j ,i=1,...,k,j=1,...,l i δ( i,j a i,j -d 0 ) i,j 2a i,j + 1! a i,j ! t 2a i,j +3 2 < k i=1 κ l i j=1 a i,j F ψ d F F > = d 0 +d 1 +...+d F =dg,n F P 2d F F d F ! k 1 k! b 1 +b 2 +...+b k =d 0 k i=1 tb i < k i=1 κ b i F ψ d F F > (2 -36) where tb = l>0 1 l a 1 +...+a l =b j 2a j + 1! a j ! t 2a j +3 2 (2-37)
tb can be computed as follows: introduce the generating function

g(z) = ∞ a=0 2a + 1! a! t 2a+3 2 z a (2-38) then tb is tb = l>0 1 l (g l ) b = (-ln (1 -g)) b (2-39)
where the subscript b means the coefficient of z b in the small z Taylor expansion of the corresponding function, i.e.

-ln (1

-g(z)) = ∞ b=0 tb z b = g(z) , 1 -g(z) = e -g(z) (2-40)
In fact, it is better to treat the a = 0 and b = 0 terms separately. Define:

f (z) = 1 - 1 -g(z) 1 -t 3 2 = ∞ a=1 2a + 1! a! t 2a+3 2 -t 3 z a (2-41) and f (z) = -ln (1 -f (z)) = g(z) -t0 = ∞ b=1 tb z b (2-42)
We have:

t0 = -ln (1 - t 3 2 ) (2-43)
and tb is now a finite sum:

tb = b l=1 (-1) l l a 1 +...+a l =b,a i >0 j 2a j + 1! a j ! t 2a j +3 t 3 -2 (2-44)
Using that κ 0 = 2g -2 + n, we may also perform the sum over all vanishing b's. Let us change k → k + l where l is the number of vanishing b's, i.e.

(-1) n ρ g,n V g,n (P 1 , . . . , P n ) =

d 0 +d 1 +...+d F =dg,n F P 2d F F d F ! k l 1 k!l! ( t0 κ 0 ) l b 1 +b 2 +...+b k =d 0 ,b i >0 k i=1 tb i < k i=1 κ b i F ψ d F F > = e t0 κ 0 d 0 +d 1 +...+d F =dg,n F P 2d F F d F ! k 1 k! b 1 +b 2 +...+b k =d 0 ,b i >0 k i=1 tb i < k i=1 κ b i F ψ d F F > = 2 2 -t 3 2g-2+n d 0 +d 1 +...+d F =dg,n F P 2d F F d F ! k 1 k! b 1 +b 2 +...+b k =d 0 ,b i >0 k i=1 tb i < k i=1 κ b i F ψ d F F > (2 -45)
Notice that:

ρ g,n 2 2g-2+n = 2 -dg,n (2-46) thus 2 dg,n (t 3 -2) 2g-2+n V g,n (P 1 , . . . , P n ) = d 0 +d 1 +...+d F =dg,n F P 2d F F d F ! k 1 k! b 1 +b 2 +...+b k =d 0 ,b i >0 k i=1 tb i < k i=1 κ b i F ψ d F F > (2 -47)
Finaly we obtain theorem 1.1 .

Examples

Some examples

First, we give a few examples with general times t k 's.

Using formula 2-44, we have:

t1 = -6 t 5 t 3 -2 , t2 = -60 t 7 t 3 -2 + 18 t 2 5 (t 3 -2) 2 (3-1) t3 = - 7! 3! t 9 t 3 -2 + 3!5! 2! t 5 t 7 (t 3 -2) 2 - 3! 3 3 t 3 5 (t 3 -2) 3 , . . . (3-2) 
Then we use theorem 1.1 for some examples. In the examples that follow, the first expression is the definition eq.1-3, while the second expression results from the recursion eq.1-4.

W 0,3 (z 1 , z 2 , z 3 ) = 1 t 3 -2 dz 1 dz 2 dz 3 z 2 1 z 2 2 z 2 3 < 1 > 0 = 1 t 3 -2 dz 1 dz 2 dz 3 z 2 1 z 2 2 z 2 3 (3-3) i.e. V 0,3 (L 1 , L 2 , L 3 ) = 1 t 3 -2 , < 1 > 0 = 1 (3-4) W 1,1 (z) = dz 2(t 3 -2) 6 z 4 < ψ > 1 + t1 z 2 < κ 1 > 1 = dz 8(t 3 -2) 1 z 4 - t 5 (t 3 -2)z 2 (3-5) i.e. < ψ > 1 = 1 24 , < κ 1 > 1 = 1 24 (3-6) W 1,2 (z 1 , z 2 ) = dz 1 dz 2 4(t 3 -2) 2 z 6 1 z 6 2 5! 2! (z 4 1 < ψ 2 2 > +z 4 2 < ψ 2 1 >) + 3! 2 z 2 1 z 2 2 < ψ 1 ψ 2 > + t1 z 2 1 z 4 2 < κ 1 ψ 1 > + t1 z 4 1 z 2 2 < κ 1 ψ 2 > + 1 2 t2 1 z 4 1 z 4 2 < κ 2 1 > + t2 z 4 1 z 4 2 < κ 2 > where t1 = 6λ -2 (1 -2λ 3 ) -1 .
It would be interesting to understand how this relates to the discrete Regge measure on the set triangulated maps. In the case of triangulated maps, loop equations, i.e. the recursion equation eq.1-4 are known as Tutte's equations [START_REF] Tutte | A census of planar triangulations[END_REF] which give a recursive manner to enumerate maps. This shows how general the recursion equation eq.1-4 is.

Other properties

From the general properties of the invariants of [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF], we immediately have the following properties:

• Integrability. The F g 's satisfy Hirota equations for KdV hierarchy. That property is well known and it motivated the first works on Witten-Kontsevich conjecture [START_REF] Kontsevich | Intersection theory on the moduli space of curves and the matrix Airy function[END_REF].

• Virasoro. The invariants of [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF] were initialy obtained in [START_REF] Eynard | Topological expansion for the 1-hermitian matrix model correlation functions[END_REF][START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF] from the loop equations, i.e. Virasoro constraints satisfied by Z(Λ).

• Dilaton equation, we have: where dΦ = ydx.

For the Weil-Petersson case, after Laplace transform this translates into [START_REF]Weil-Petersson volume of moduli spaces, Mirzakhani's recursion and matrix models[END_REF]:

V g,n (L 1 , . . . , L n ) WP = 1 2g + n -2 ∂ ∂L n+1
V g,n+1 (L 1 , . . . , L n , 2iπ) WP (4-2)

• It was also found in [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF] how all those quantities behave at singular points of the spectral curve, and thus obtain the so-called double scaling limit.

• The invariants constructed in [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF] have many other nice properties, and it would be interesting to explore their applications to algebraic geometry...

Conclusion

In this paper we have shown how powerful the loop equation method is, and that the structure of the recursion equation eq.1-4 (i.e. Virasoro or W-algebra constraints) is very universal.

We have thus provided a new proof of Mirzakhani's relations, exploiting the numerous properties of the invariants introduced in [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF]. However, the construction of [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF] is much more general than that of Mirzakhani, since it can be applied to any spectral curve and not only the Weil-Petersson curve y = 1 2π sin (2π √ x). In other words, we have Mirzakhani-like recursions for other measures, and theorem.1.1 gives the relationship between a choice of t k 's (i.e. a spectral curve) and a measure on moduli spaces. Moreover, the recursion relations always imply integrability and Virasoro.

It would be interesting to understand what the algebraic invariants W g,n defined by the recursion relation of [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF] compute for an arbitrary spectral curve, not necessarily hyperelliptical neither rational...

  For any graph G in either Γ(g, n, m) or Γ * (g, n, m), each edge e is bordered by two faces (possibly not different), and we denote the pair of their indices as (e left , e right ).

  e e -e le(λ e left +λ e right )

W

  g,n (z 1 , . . . , z n ) = 1 2g + n -2 Res z→0 Φ(z)W g,n+1 (z 1 , . . . , z n , z) (4-1)

Our definition of times t k slightly differs from the usual one, we have t k = 1 N Tr Λ -k .

The non-obvious fact that this is symmetric in its n + 1 variables is proved by recursion in[START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF].
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i.e. < κ

The recursion equation 1-4 also gives: 

and so on ...

Specialisation to the Weil-Petersson measure

Now, we specialize to the Weil-Petersson spectral curve of [START_REF]Weil-Petersson volume of moduli spaces, Mirzakhani's recursion and matrix models[END_REF]:

therefore each b i must be 1, and we must have k = d 0 , and we get:

(3-13) which is, after Wolpert's relation [START_REF] Wolpert | On the homology of the moduli space of stable curves[END_REF], the Weil-Petersson volume since 2π 2 κ 1 is the Weil-Petersson Kähler form, and thus, we have rederived Mirzakhani's recursion relation.

Specialisation to the κ 2 measure

Just to illustrate our method, we consider the integrals with only κ 2 :

which correspond to the conjugated times

i.e. t 3 = 3, and

The corresponding spectral curve is:

with that spectral curve, the volumes V g,n satisfy the recursion of theorem 1.1.

Specialisation to discrete measure

Let us consider the example where Λ = λ Id, which is particularly important because

i.e. Kontsevich integral reduces to the usual cubic one-matrix model, which is known to count triangulated maps [2].

In that case we have: For instance we have:

(3-23)