
HAL Id: hal-00158709
https://hal.science/hal-00158709

Submitted on 29 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Monotonic Extensions of Petri Nets: Forward and
Backward Search Revisited

Alain Finkel, Jean-François Raskin, Mathias Samuelides, Laurent van Begin

To cite this version:
Alain Finkel, Jean-François Raskin, Mathias Samuelides, Laurent van Begin. Monotonic Extensions
of Petri Nets: Forward and Backward Search Revisited. Electronic Notes in Theoretical Computer
Science, 2002, 68 (6), pp.85-106. �10.1016/S1571-0661(04)80535-8�. �hal-00158709�

https://hal.science/hal-00158709
https://hal.archives-ouvertes.fr

Monotonic Extensions of Petri Nets :

Forward and Backward Search Revisited

A. Finkel†, J.-F. Raskin‡ 1,2, M. Samuelides†, L. Van Begin‡ 3

† Laboratoire Spécification et Vérification
CNRS UMR 8643 & ENS de Cachan

61 av. du Prsident Wilson, 94235 Cachan cedex,France
finkel@lsv.ens-cachan.fr

‡ Université Libre de Bruxelles
Blvd du Triomphe, 1050 Bruxelles, Belgium

{jraskin,lvbegin}@ulb.ac.be

Abstract

In this paper, we revisit the forward and backward approaches to the verification
of extensions of infinite state Petri Nets. As contributions, we propose an efficient
data structure to represent infinite downward closed sets of markings and to com-
pute symbolically the minimal coverability set of Petri Nets, we identify a subclass
of Transfer Nets for which the forward approach generalizes and we propose a gen-
eral strategy to use both the forward and the backward approach for the efficient
verification of general Transfer Nets.

Key words: Extended Petri Nets, Symbolic Verification, Efficient Data Structure,
Safety Property.

1 Introduction

Model-checking techniques have proven useful for the verification of finite state
abstractions of various concurrent and distributed computer systems. Unfor-
tunately, useful finite state abstractions are often difficult to obtain from the
concrete systems to verify. As a consequence, a lot of efforts have been made
recently to extend the successful techniques for model-checking of finite state

1 This author was partially supported by a “Crédit aux chercheurs”, Belgian Na-
tional Fund for Scientific Research.
2 This author was partially supported by a FRFC grant 2.4530.02.
3 This author was supported by a Walloon Region grant ”First Europe”.

Article published in Electronic Notes in Theoretical Computer Science 68 (2002) 1–22

systems to infinite state systems and parametric verification. A lot of inter-
esting theoretical results have been obtained, see for example [3,6,13,16]. Nev-
ertheless, a lot of work remains to be done to turn those positive theoretical
results into practical verification algorithms.

In parametric verification, we want to verify at once an entire family of sys-
tems. For example, some mutual exclusion protocols have been designed to
work for any number of processes that want to share common resources and
the verification of such protocols for a specific number of process is not rel-
evant. In this context, several abstraction have proven to be useful, see for
example [1,4,17]. The work in this paper is directly connected to the context
of the so-called counting abstraction. When considering the counting abstrac-
tion, the model of (infinite) Petri Nets and its extensions, like Transfer Nets
and Reset Nets, are particularly important. In this paper, we will discuss ef-
ficient techniques to analyze infinite state Petri Nets and Transfer Nets (note
that Reset Nets can be viewed as a subclass of Transfer Nets).

There are two main different approaches for the verification of Petri Nets. The
first one is the forward approach (that was first defined by Karp and Miller in
[20]). This approach starts from the (possibly parametric) set of initial mark-
ings and computes an approximation of the closure of the transition relation
(often referred as the Post relation) over markings defined by the Petri net.
That over-approximation is sufficiently precise to completely answer interest-
ing questions about Petri Nets. One of the most important class of properties
we can verify is a subclass of the so-called safety properties, i.e. ”can the Petri
net ever reach a set of bad markings?”, with the restriction that the set of bad
markings is upward closed. That result allows us in theory to automatically
answer any mutual exclusion property for example. The backward approach
represents an alternative to the forward approach for the verification of such
properties. The backward approach consists in applying iteratively from the
set of Bad markings the Pre relation (which is the inverse of the Post relation).
If the closure of the Pre relation intersects with the set of initial markings
then we know that some Bad markings are reachable. The application of the
Pre relation is guaranteed to terminate if the set of Bad markings is upward
closed [3,16]. Unfortunately, in the two cases, a naive implementation of the
abstract algorithm is not practical. It is not surprising as we know that the
theoretical complexity of the reachability problem of upward closed sets (also
called coverability problem) for that class of infinite state models is very high,
see [22].

So, further research was necessary to obtain more practically useful verifica-
tion techniques. For the forward approach, we have defined in [15] an heuristic
to minimize the set of markings to consider when computing the Karp-Miller
covering tree. For the backward approach, we have defined in [9] a bdd-like
structure that allow us to compactly represent the infinite sets that are gener-
ated during the iteration of the Pre relation. The resulting algorithm for the
backward search is symbolic in the sense that (minimal) markings are never

2

enumerated during the computation and all the operations on sets involved
in the algorithm are directly computed on the underlying compact structure
that represents the sets. Practical evaluation of the algorithm has shown that
it is much more effective than the naive enumerative approach, see [10] for
details.

In this paper, as a first contribution, we show how to turn into a symbolic
algorithm the enumerative algorithm that we have defined in [15] to compute
the minimal coverability set of an infinite state Petri net. For this we use a
variant of the data structure that we have defined in [9]. As we have now two
symbolic algorithms (one for the forward search, one for the backward search)
, we are able to make a fair comparison between the relative practical merits
of the two approaches.

A main advantage of the backward search is its robustness in the following
sense: it is not only applicable to the basic class of infinite Petri Nets but also
to all the extensions that preserve monotonicity (see [3]). Transfer Nets (and
so broadcast protocols that they generalize) and Reset Nets maintain mono-
tonicity for example. Unfortunately, the forward approach does not generalize
for those models (see [8,13]) i.e. in those cases the search is not guaranteed
to terminate. Indeed, there are negative results [8] that show us that it is not
always possible to compute the coverability set for those extensions. Never-
theless, as a second contribution, we show in this paper that we can compute
forwardly a weak version of the coverability set for an interesting subclass of
Transfer Nets. That weak version allow us to decide the safety properties that
can be expressed as upward closed sets of markings. This subclass is of prac-
tical interest as it covers all the examples of abstractions of multi-threated
Java programs that we have analyzed backwardly in [12]. The advantage of
the forward approach is that it starts from the set of initial markings and
usually generate sets that are more structured than those generated with the
backward search.

In [10], we have shown that the efficiency of the backward search can be im-
proved substantially by using rough approximations of the forward reachable
states in order to guide the search towards initial markings. In our previous
works, the over-approximation is obtained automatically by computing the
structural invariants of the net ([24]). As a third contribution, we propose here
to use the symbolic implementation of the minimal coverability set for Petri
nets to compute another over-approximation of the forward reachable states
of general Transfer Nets that do not fall in the class of models that we have
identified. If the over-approximation is too large to give an conclusive answer
to the safety verification problem, we propose to use this over-approximation
to guide the exact backward search. The information collected during this
over-approximation is potentially (and often much) richer than the one com-
puted with the invariants. Those heuristics seems necessary to attack those
verification problems that have very high theoretical complexities [23].

3

Structure of the paper In section 2, we introduce the model of Multi
Transfer Nets that contains Petri Nets as a subclass. We also recall some
notions about upward closed sets, downward closed sets and covering sets. In
section 3, we show how to represent efficiently infinite downward closed sets
with a graph based data structure. Section 4 presents a symbolic algorithm to
compute the minimal coverability tree of a Petri Net. We have implemented
this symbolic algorithm and used our graph based structure to represent the
downward closed sets it manipulates. We report in section 5 on the practical
behavior of our new symbolic forward algorithm and compare its performances
with a symbolic backward algorithm that we have defined and implemented
in previous works. In section 6, we identify an interesting subclass of Multi
Transfer Nets for which the forward search can be extended, we call this class
the Multi Isolated Transfer Nets. In section 7, we suggest the cooperative use
of a forward approximation and the backward search for the full class of Multi
Transfer Nets.

2 Petri Nets and Multi Transfer Nets

In this section, we define Multi Transfer Nets (MTNs for short), an exten-
sion of Petri Nets with fairly general transfers. That extension maintains the
monotonicity property of Petri Nets 4 .

Definition 1 A Multi Transfer Net is a pair 〈P,B〉 where: P = {p1, . . . , pn}
is a set of places, and B = {M1, . . . ,Mm} is a set of multi transfers. A multi
transfer M is a tuple 〈T, {B1, . . . , Bu}〉 such that

• T = 〈I,O〉 is the Petri Net transition part of the multi transfer: I,O : P →
N;

• each Bi = 〈Pi, pi〉 with Pi ⊆ P (a set of source places) and pi ∈ P (a target
place) is a transfer.

In order to avoid cyclic transfers, a multi transfer M with set of transfers
{B1, . . . , Bu} must satisfy the following conditions:

1. for any Bi, we require that pi �∈ Pi;
2. for any transfers Bi and Bj with Bi �= Bj , we require that (Pi ∪ {pi}) ∩

(Pj ∪ {pj}) = ∅.

A Petri Net is a MTN where each multi transfer contains an empty set of
transfer (then the multi transfer is just a plain Petri Net transition).

A marking m : P → N is a function which assigns a value c ∈ N to each place.

4 By monotonicity property, we mean that if a transition t can be fired in a marking
m, it can also be fired in any markings m′ greater than m.

4

That function can equivalently be seen as a vector of size |P|. We define �
on markings such that m � m′ iff m(p) ≤ m′(p), ∀p ∈ P. We say that m is
covered by m′ when m �m′. We denote

∑
p∈P m(p) by m(P).

Definition 2 [Multi Transfer-Enabling]Let M be a multi-transfer with the
Petri Net transition part 〈I,O〉. We say that M is enabled in m if I �m.

Definition 3 [Multi Transfer-Firing]Let M = 〈T, {B1, . . . , Bu}〉 be a multi
transfer enabled inm. FiringM inm leads to the markingm′ (writtenm�M

m′). To define m′, we need to define the intermediary markings m1 and m2:

• m1 = m − I. That is, we first remove the tokens needed by the Petri Net
part of the transition;

• then we define m2 as follows:
· for any place p which is target of a transfer, i.e. p = pi for some 1 ≤ i ≤ u,

we have m2(p) = m1(p) +m1(Pi). That is, we transfer all the remaining
tokens from the sources to the target;

· for any place p which is a source of a transfer, i.e. p ∈ Pi for some 1 ≤ i ≤
u, we have m2(p) = 0;

· for all other places p (which are neither a source nor the target of a
transfer), we have m2(p) = m1(p);

• Finally,m′ is obtained fromm2 by adding the tokens produced by the Petri
Net part of the transition, that is: m′ = m2 + O.

b

ω

c

invalid shared

modified exclusive
a

d

Fig. 1. MTN of the Mesi protocol.

Fig. 1 shows an example of MTN modeling the Mesi protocol [18]. Dashed
arrows represent transfer arcs and plain arrows represent classical Petri Nets
arcs. When transition d is fired, one token is removed from the place invalid,
then the tokens of the places shared, modified and exclusive are transferred to
the place invalid and finally one token is put in exclusive. We now define the
semantics of MTNs.

Definition 4 [Operational Semantics]Let M = 〈P,B〉 be an MTN. A run of
M is a sequence of markings m0m1 . . .mn such that for any i, 0 ≤ i < n,
there exists M ∈ B such that mi �M mi+1, m0 is the initial marking of
the run and mn the target marking of the run. A marking m′ is reachable
from a marking m, written m �∗ m′, if and only if there exists a run with
initial marking m and target marking m′. The set of reachable markings of

5

M from a set of markings S0, written Reach(M, S0), is defined as the set
{m′ | ∃m ∈ S0 : m�∗ m′}.

Given a MTN M, a set of initial markings S0 and a set of Bad markings U ,
we are interested by the following two decision problems:

1. “Can the MTN M reach a Bad marking in U starting from an marking
in S0 ?”, i.e. Reach(M, S0)∩U =? ∅. This is called the safety verification
problem.

2. “Is there a bound c ∈ N for the place p such that in any reachable marking
of M starting from S0, the number of tokens in p does not exceed c ?”,
i.e. ∃c ∈ N : ∀m ∈ Reach(M, S0) : m(p) ≤ c?. 5 This is called the place
boundedness problem.

Before going further, we need some more notations. We define a special value
ω. For any c ∈ N, we have c < ω, and furthermore we have ω + c = ω − c =
ω, ∀c ∈ N ∪ {ω}. We extend markings to ω-markings which assigns a value
c ∈ N ∪ {ω} to each places. The � relation on markings is extended to ω-
markings in the obvious way.

Definition 5 [Least Upper Bound]The least upper bound (lub) of a (possibly
infinite) set of markings {m1,m2, . . .} is the marking m such that:



m(p) = ω if ∀c ∈ N : ∃i ≥ 1 : mi(p) > c

m(p) = max ({m1(p),m2(p), . . .}) otherwise.

We say that a set of markings S is downward closed iff we have

∀m : (m ∈ S → ∀m′ �m : m′ ∈ S).

Symmetrically, we say that a set of markings S is upward closed iff we have

∀m : (m ∈ S → ∀m′ �m : m′ ∈ S).

Given a upward closed set S, we note Min(S) the set of minimal elements
defined as:

Min(S) = {m ∈ S | ¬∃m′ ∈ S :m′ ≺m}.

Given a downward closed set S, we note Lim(S) the set of its limits elements
defined as:

Lim(S) = {m ∈ Slim|¬∃m′ ∈ Slim : m ≺m′} ∪ {m ∈ S|¬∃m′ ∈ S :m ≺ m′}

5 Let us note that the weaker question “Is c ∈ N a bound for the place p ?” is a
particular case of the safety verification problem.

6

where Slim = {m|m = lub({ m1,m2, . . . ,mn, . . .}) with
∀i ≥ 1 : mi ∈ S ∧mi ≺mi+1}.

Given a set of ω-markings, we define its downward closure as follows:

Definition 6 [Downward Closure]Let S be a set of ω-markings, the downward
closure of S, noted ↓ S, is the set of markings {m|∃m′ ∈ S and m � m′}

In N
k, any upward closed set S is identified by its finite set of minimal elements

and any downward closed set S is identified by its finite set of limit elements
(that are vectors potentially with ωs). We are now equipped to define the
notion of coverability set which is an important tool to answer the decision
problems that we have mentioned above.

Definition 7 [Coverability Set [15,14]]A coverability set for a MTN M and a
set S0 of initial markings, noted CS(M, S0), is a set of ω-markings such that :

(1) for everym ∈ CS(M, S0)\Reach(M, S0), there exists an infinite sequence
m1 ≺ m2 ≺m3 . . . with for all i ≥ 1 :mi ∈ Reach(M, S0) and such that
m = lub({m1,m2,m3, . . .}).

(2) ∀m ∈ Reach(M, S0), there exists m′ ∈ CS(M, S0) such that m �m′.

In all the coverability sets, there is an interesting one which is called the
minimal coverability set.

Definition 8 [Minimal Coverability Set [15,14]]The minimal coverability set
of a Petri Net M for a set S0 of initial markings is the intersection of all the
finite coverability sets of M for S0.

We have shown in a previous work [15] that the minimal coverability set is
unique and can be computed effectively for any Petri Net M and any finite
set of initial ω-markings S0.
Let us now recall some properties of coverability sets, see [15] for details.

1. any CS(M, S0) is an approximation of the reachable markings in the
following sense :

Reach(M, S0) ⊆↓ CS(M, S0)
2. any CS(M, S0) is sufficient to answer any safety verification problem if

the set of Bad markings U is upward closed. In fact, we have:
Reach(M, S0) ∩ U = ∅ iff ↓ CS(M, S0) ∩ U = ∅

3. any CS(M, S0) is sufficient to give an answer to the place boundedness
problem. A place p is bounded in Reach(M, S0) iff there does not exist
a ω-marking m ∈ CS(M, S0) such that m(p) = ω.

7

3 Downward Closed Covering Sharing Trees

The motivation of this section is to define a way to compactly represent
(possibly infinite) downward closed sets of markings. We start from Shar-
ing Trees (STs) that are data structures introduced in [25] to efficiently
store tuples of integers. A sharing tree S is a rooted acyclic graph with
nodes partitioned in k-layers such that: all nodes of layer i have successors
in the layer i + 1; a node cannot have two successors with the same label;
finally, two nodes with the same label in the same layer do not have the
same set of successors. Formally, S is a tuple (N, V, root, end, val, succ), where
N = {root} ∪ N1 ∪ . . . ∪ Nk ∪ {end} is the finite set of nodes (Ni is the set
of nodes of layer i and, by convention, N0 = {root} and Nk+1 = {end}),
V = {x1, x2, . . . , xk} is a set of variables. Intuitively, Ni is associated to xi.
val : N → N∪{#,⊥} is a labeling function for the nodes, and succ : N → 2N

defines the successors of a node. Furthermore, (1) val(n) = # iff n = root,
succ(root)=N1, val(n) = ⊥ iff n = end, succ(end)=∅; (2) for i : 0, . . . , k,
∀n ∈ Ni, succ(n) ⊆ Ni+1 and succ(n) �= ∅; (3) ∀n ∈ N , ∀ n1, n2 ∈ succ(n), if
n1 �= n2 then val(n1) �= val(n2). (4) ∀i, 0 ≤ i ≤ k, ∀n1, n2 ∈ Ni, n1 �= n2, if
val(n1) = val(n2) then succ(n1) �= succ(n2). A path of a k-sharing tree is a se-
quence of nodes 〈#, n1, . . . , nk,⊥〉 such that ni+1 ∈ succ(ni) for i = 1, . . . , k-1.
Paths represent tuples of size k of natural numbers. We use elem(S) to denote
the flat denotation of a k-sharing tree S:

elem(S) = { 〈val(n1), . . . , val(nk)〉 | 〈#, n1, . . . , nk,⊥〉 is a path of S }.
Conditions (3) and (4) ensure the maximal sharing of prefixes and suffixes
among the tuples of the flat denotation of a sharing tree. The size of a sharing
tree is the number of its nodes and edges. The number of tuples in elem(S)
can be exponentially larger than the size of S. As shown in [25], given a set of
tuples A of size k, there exists a unique sharing tree such that elem(SA) = A
(modulo isomorphisms of graphs). Given two finite sets of tuples of integers
represented as two STs S1 and S2, there are polynomial time algorithms in the
size of the two STs to compute S3 such that S3 = S1 ∩ S2, S3 = S1 ∪ S2 and
S3 = S1 \ S2 and a polynomial algorithm to decide if S1 ⊆ S2. But STs can
only represent finite sets. In [11], we have proposed to use an extension of that
data-structure to represent infinite upward closed sets of markings. We adapt
here this idea in order to represent (potentially infinite) downward closed sets
of markings. We know that a (potentially infinite) downward closed set of
markings is identified by its finite set of limit elements. This set is a finite set
of ω-markings. We will use ST to represent this finite set of ω-markings. We
define downward closed covering ST as ST with val : N → N∪ {#,⊥}∪ {ω}.
A downward closed covering ST S has the following semantics :

[[S]] = {m ∈ N
k|∃m′ ∈ elem(S) : m �m′}

So, [[S]] is the downward closure of elem(S), i.e. [[S]] =↓ elem(S). We will say
that a downward closed covering ST (dcCST) S is irredundant if ¬∃m1,m2 ∈

8

0 0 0

0

1 1

0

⊥

ω

ω

Fig. 2. Example of a dcCST that represents an infinite downward closed set.

elem(S) with m1 ≺ m2. In our experience, it is often better to keep S irre-
dundant. An example of dcCST is given in Fig. 2. It represents the infinite
downward closed set {m ∈ N

5|m � 〈0, 0, 0, 0, ω〉 ∨m � 〈0, 0, 0, 1, 1〉 ∨m �
〈0, 0, 0, ω, 0〉}. Note that the dcCST encodes efficiently this infinite downward
closed set as its limits elements share large prefixes. It is easy to show with
straightforward adaptations of proofs from [11] (where we define CST to rep-
resent infinite upward-closed sets) that (i) there is no polynomial time algo-
rithm (unless P = NP) to decide [[S1]] ⊆ [[S2]] where S1,S2 are two dcCSTs,
(ii) there is no polynomial time algorithm (unless P = NP) to compute from
S1 an irredundant dcCST S2 such that [[S1]] = [[S2]]. We will show that those
negative theoretical results seems not to be a practical obstacle to the use of
dcCST in a symbolic algorithm computing the minimal coverability set. The
algorithm using dcCSTs is given in the next section. Practical evaluation of
the algorithm is given in section 5.

4 Symbolic Computation of the Minimal Covering Set for PN

To compute a coverability set of a Petri Net, we generally construct what we
call a coverability tree (see [20]). This is mainly a tree where the nodes are
labelled by the elements of a coverability set and the edges are an approxi-
mation of the successor relation between the ω-markings labelling the nodes.
Unfortunately, the procedure presented in [20] computes unmanageable trees,
even for small Petri Nets. An efficient heuristic is presented in [15]. This algo-
rithm construct the minimal coverability tree, which is a tree where the values
of the nodes correspond to the limit elements of the minimal coverability set
of the Petri Net P , i.e. the elements of Lim(↓ CS(P, S0)). The main idea of the
algorithms of [20,15] is to use an acceleration function fa when a marking m
is accessible from a markings m′ in the tree with m′ ≺ m. The definition of
fa is as follows :
fa(m′,m) = m′′ such that



m′′(p) = m′(p) if m(p) = m′(p)

m′′(p) = ω if m(p) >m′(p)

More precisely, the algorithm of [15] works as follows. At each step of the
construction of the tree, an untreated node annotated with the ω-marking m

9

is developed by computing its successors (at the beginning, untreated nodes
correspond to initial markings). For each successors m′ of m, we have three
cases :

(1) there is an already computed ω-marking m′′ such that m′ � m′′, then
m′ is forgotten.

(2) there is at least one path in the tree from a ω-marking m′′ to m such
that m′′ ≺ m′, then we take the largest such path and constructs n =
fa(m′′,m′). Finally, we take the farest predecessorm′′′ ofm withm′′′ ≺ n
(possibly different from m′′) and replace the subtree rooted by m′′′ by
n (see Fig. 3(a)). We finally remove all the subtrees rooted by m′′ with
m′′ ≺ n (see Fig. 3(b)).

(3) In the other cases, a new node connected to the node ofm and annotated
with m′ is added to the tree. As in the previous case, all the subtrees
rooted by a marking m′′ such that m′′ ≺m′ are removed.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

. ..

.
..

.
...

.

.

.
..

.
.. .

.

.
.
.
.

. ..

.

.

.
n

m′′′ ≺ n

.

.

. m

m′′ ≺ m′

(a) (b)

n = fa(m′′,m′)

m′′

m′′′

m′′ ≺ m′
m′

m

m′′

m′

.

m0

Q

.

.

.

Fig. 3. operations on trees

An improvement of this algorithm is to symbolically treat the sets of ω-
markings instead of enumerating them. Symbolically means that the com-
putations on sets are done by making some global computations on the data
structures used to represent them. To make this possible, we first define a
set-based version of the algorithm of [15]. Fig. 4 shows such an high-level al-
gorithm manipulating sets. In [15], the minimal coverability tree is constructed
to manage case (2) and (3). But note that, for those cases, we only need the
reachability relation between ω-markings rather than the direct successor re-
lation of the tree. For this reason, we do not compute a coverability tree in
the symbolic algorithm: we do not maintain the successor relation but only
the closure of that relation. It is easy to see that this is sufficient for the case
(2) and case (3) of the previous algorithm when we want to answer to upward
closed properties or place boundness 6 .

6 Note that the construction of the coverability graph allow us to answer to the
regularity problem (is the language of the net regular). As the elements of a cov-
erability set are the nodes of a coverability graph, such a graph is constructed by
adding edges between the elements of the set by simply applying the Post operation
on each of them.

10

All the operations of the enumerative algorithm are replaced by operations on
downward closed sets. The symbolic algorithm computing the minimal cover-

1: function MinimalCoverabilitySet (〈P,B〉; S0) return S
2: F ← S0

3: S ← S0

4: R+ ← ∅
5: while F �= ∅ do
6: Succ ← {m′|∃m ∈ F,M ∈ B :m �M m′}
7: Succ ← max(Succ) \ {m|∃m′ ∈ S :m � m′}
8: R+ ← R+ ∪ {〈m,m′〉|m ∈ F ∧ m′ ∈ Succ ∧ ∃M ∈ B :m �M m′}
9: R+ ← R+ ∪ {〈m,m′〉|m′ ∈ Succ ∧ ∃m′′ ∈ F,M ∈ B :m′′ �M m′

∧ 〈m,m′′〉 ∈ R+}
10: Succ′, R+′ ← Acc(S, Succ,R+)
11: S ← S ∪ Succ′

12: S ← max(S)
13: F ← max(Succ′)
14: R+′ ← R+ ∩ (S × S)
15: endwhile

Fig. 4. Symbolic Algorithm that computes the minimal coverability set for a Petri
net 〈P,B〉 and a set of initial ω-marking S0.

ability set of a Petri net is given in figure 4 and works as follows. The algorithm
maintains a set F of ω-markings that are untreated (this is the frontier of the
search), a set S of ω-markings that contains the nodes already treated, and
R+ is a set of pairs of ω-markings 〈m,m′〉 such that m,m′ ∈ S ∪ F and
m �∗ m′. All the sets of ω-markings or pairs of ω-markings are represented
using dcCSTs and all the operations of the algorithm are symbolic in the
sense that they all works directly on the structure of the dcCSTs representing
the sets. All the algorithms on dcCSTs are easy adaptation of algorithms on
CSTs that we have defined in [11].

At each iteration of the loop (line 5), the following operations are performed.
In line (6), the set of the new reachable ω-markings (Succ) is computed and
only the maximal elements of this set that are not covered by an ω-marking
computed in previous iterations are kept (line 7). Lines 8 and 9 update R+ for
those markings. In line 10, we compute the accelerations (see decription of the
function Acc). We then add the successor ω-markings of the frontier that are
obtained after acceleration to the set S of ω-markings computed so far (line
11). In line 12, we suppress from S all the ω-markings that are not maximal.
As the new frontier we only consider the maximal elements computed during
the current iteration (possibly accelerated) (line 13). After the minimization
of S, the relation R+ is updated.

The acceleration function is given in Fig. 5 and works as follows. It takes as
arguments the set of new reachable ω-markings (Succ), the set of reachable
ω-markings computed in the previous iterations (S) and the accessibility rela-
tions on all those ω-markings (R+). First, the set of the pairs that have to be

11

accelerated is computed (line 2). The first component of those pairs are called
source of the acceleration, the second one is called the target of the acceler-
ation and the result of the acceleration is called the accelerated ω-marking.
The arcs between the source of the acceleration and the accelerated ω-marking
are computed (line 3), the arcs between a predecessors of a source of an ac-
celeration and the corresponding accelerated ω-marking are computed (line
4) and finally, the arcs between the successors of a source of an acceleration
that are predecessors of the target of the acceleration are linked to the ac-
celerated ω-marking (line 5). R+ is adjusted by adding all those arcs and the
set of successors is adjusted by adding all the accelerated elements (lines 7-8).

1: function Acc (S;Succ;R+) return Succ′,R+′

2: G ← {〈m,m′〉 ∈ R+ :m ≺ m′}
3: H1 ← {〈m,m′〉|∃m′′ : 〈m,m′′〉 ∈ G ∧m′ = fa(m′,m′′)}
4: H2 ← {〈m,m′〉|∃〈m′′′,m′′〉 ∈ G :m′ = fa(m′′′,m′′) ∧ 〈m,m′′′〉 ∈ R+}
5: H3 ← {〈m,m′〉|∃〈m′′′,m′′〉 ∈ G :m′ = fa(m′′′,m′′) ∧ 〈m′′′,m〉 ∈ R+

∧ 〈m,m′′〉 ∈ R+}
6: H ← H1 ∪ H2 ∪ H3

7: R+′ ← R+ ∪ H
8: Succ′ ← Succ ∪ {m|∃m′ : 〈m′,m〉 ∈ H}

Fig. 5. Function that accelerates all the accelerable cycles.

As previously explained, the size of dcCST can be logarithmic in the size of the
set of limit elements it represents. In this way, we could have an exponential
gain both in memory usage and execution time using dcCST to represent
sets of ω-markings and closure of the transition relation and by symbolically
computing operations on sets directly on the graph structure of the dcCST.

5 Comparison With Backward Approach

5.1 Conceptual Comparison

In this section, we recall some facts about the forward and backward approach
for the verification of infinite states Petri Nets and their monotonic extensions.

Sets. Starting from an upward closed set, the application of Pre preserves
the upward closure of the set. So, the backward search manipulates upward
closed sets. As we have seen, a coverability set is the set of limit elements of a
downward closed set of markings that over-approximates the set of reachable
markings. So, forward approach manipulates downward closed sets.

12

Forward Backward

Downward closed Sets Upward closed Sets

Over-approximation of successors Exact set of predecessors

Acceleration No Acceleration

Not Robust Robust

Safety, Place boundedness Safety

Depends on initial markings Depends on bad markings

Fig. 6. Conceptual differences between forward and backward search.

Approximation of the computation. The backward approach computes
the exact set of predecessors of an upward closed set of bad markings and the
forward approach computes an approximation of the reachable markings that
is still precise enough to verify upward closed safety properties.

Techniques to guarantee termination. By applying the Pre operation,
it is guaranteed to reach a fixpoint after a finite number of iterations. Forward
approach needs an acceleration function to reach a fixpoint when the net is
unbounded.

Robustness. Backward approach is robust for extensions of Petri Nets that
maintain monotonicity of the model, on the other hand forward approach
cannot always be extended for those natural extensions of Petri Nets.

Properties. Only covering properties can be decided with the backward
algorithm but in addition place boundness can be solved with the forward
approach.

Dependence of the search. When computing the coverability tree, we
start the construction of the tree from the set of initial markings and the tree
does not depend on the property that we want verify. On the other hand,
with the backward approach, the computation depends on the property to
verify. Note that if Pre∗(U) does not intersect with the set of initial markings
then no set computed during the fixpoint computation contains any reachable
marking.

13

5.2 Practical Comparison

We have applied our symbolic forward algorithm on a set of parameterized
Petri Nets 7 . The results of the experiments are shown in Fig. 7 and compared
with the results obtained using our symbolic backward algorithm defined in
[10]. We have run the backward algorithm with and without the invariant
heuristic of [10]. The invariant heuristic computes structural invariants of the
Petri net and uses them to prune the backward search: every upward closed
set that does not intersect with the set of solutions of the structural invariants
is suppressed. This heuristic is safe as the set of solutions of the structural
invariants over-approximates the reachable markings of the Petri net. Our set
of examples is composed by some concurrent and production systems as the
multipoll ([21]), the mesh2x2 ([2]) and its extension to 3x2 case, the flexible
manufacturing system (FMS) of [7], the central server model (CSM) of [2] and
the PNCSA protocol analysed in [5,15].

As we can see from the figures, the forward search is always faster than the
backward search. This is due to the fact that the behaviour of the Petri net
is much more regular when executed from its initial markings than when ex-
ecuted backwardly from a possible non reachable set of markings. As we can
see for the PNCSA1 and PNCSA2 examples where we verify two different
properties, efficiency of the backward search can depend a lot on the property
that we want to verify. The invariant heuristic is very useful to obtain rea-
sonable execution times in the backward search, this confirm the observation
that getting some information about (an over-approximation of) the reachable
markings is important.

Case Study P T IPost EXPost MPost IPre EX1
Pre MPre EX2

Pre

PNCSA1 31 36 56 1s 2.3MB 17 16.42s 3.7MB 2.5s

PNCSA2 31 36 56 1s 2.3MB 38 >4h 4.8MB 43.79s

CSM 14 13 10 0.02s 1.4MB 11 0.1s 2.1MB 0.07s

FMS 22 20 16 0.08s 1.6MB 46 6.13s 5.6MB 5.98s

mesh2x2 32 32 8 0.13s 1.7MB 15 0.8s 2.6MB 0.8s

mesh3x2 52 54 10 0.48s 2.1MB 21 6.5s 5MB 6.5s

multipoll 18 21 11 0.14s 1.6MB 18 2.1s 2.5MB -

Fig. 7. Benchmarks on an AMD Athlon 900Mhz 500Mbytes : P=No. of places; T
= No. of transitions; IPost (IPre) =No. of iterations of the forward (backward) algo-
rithm to reach the fixpoint; EXPost(EX1

Pre) = Execution time to reach the forward
(backward) fixpoint ; EX2

Pre = Execution time to reach the backward fixpoint using
structural invariants; MPost(MPre) = Memory usage to reach the forward (backward)
fixpoint.

7 see the web page http://www.ulb.ac.be/di/ssd/lvbegin/CST/index.html for
a detailed description of the examples.

14

6 A Weak Extension of the Minimal Coverability Set

As we have seen in the last section, there are conceptual advantages to use
the backward approach and practical evidences that plead for the forward
approach. Unfortunately, we know that it is not always possible to compute
a coverability set for natural extensions of Petri Nets [8]. In this section, we
identify a subclass of MTNs for which we can compute a weaker notion of
coverability set. We call this class Multi Isolated Transfer Nets as the restric-
tion is that any two transfers do not share places. This class is of practical
importance as it covers all the examples of abstraction of Java programs that
we have analyzed with the backward approach in [12].

This section is organized as follows. We first formally define the subclass of
Multi Isolated Transfer Nets. Then we define the weaker notion of coverability
set that we can construct for this class of systems. We then define an algorithm
to compute this weak coverability set and illustrate its behavior on a simple
example.

6.1 Multi Isolated Transfer Nets

Given a multi transfer M = 〈T, {B1, B2, . . . , Bu}〉, we use Transfer(M) to
denote the set of transfers {B1, B2, . . . , Bu} of M . Remember that each Bi is
a pair 〈Pi, pi〉, where Pi is the set of sources and pi is the target of the transfer
Bi.

Definition 9 A Multi Isolated Transfer Net M = 〈P,B〉 is a MTN satisfying
the following additional conditions, expressed informally as :

(i) a place cannot be a source of two different transfers;
(ii) a place cannot be the target of one transfer and source in another one;
(iii) a place source of a transfer cannot be source of the Petri Net part of a

multi transfer.

and formally as follows:

(i) ∀p ∈ P : ¬∃Mi,Mj ∈ B with 〈Pi, pi〉 ∈ Transfer(Mi) and 〈Pj, pj〉 ∈
Transfer(Mj), (〈Pi, pi〉 �= 〈Pj, pj〉), p ∈ Pi and p ∈ Pj.

(ii) ¬∃p ∈ P such that ∃Mi,Mj ∈ B with 〈Pi, pi〉 ∈ Transfer(Mi), 〈Pj, pj〉 ∈
Transfer(Mj) and p ∈ Pi and p = pj .

(iii) ∀Mi ∈ B, ∀〈Pi, pi〉 ∈ Transfer(Mi), ∀p ∈ Pi : ¬∃Mj ∈ B with Mj =
〈〈I,O〉, B〉 and I(p) > 0.

As an illustration of Multi Isolated Transfer Net, consider Fig. 8. We now
define a weak notion of coverability set that is parameterized by a upward

15

s1 s2

s3 s4

t3

t4

t2

t1

Fig. 8. An example of Multi Isolated Transfer Net.

closed set U .

Definition 10 [Weak Coverability Set]Given a MTN M, a set of initial ω-
markings S0 and an upward closed set U defined by an unique minimal mark-
ing mU

8 , a weak coverability set of M according to S0 and mU (noted
WCS(M, S0,mU)) is a set of ω-markings such that the two following condi-
tions holds:

(1) ∀m ∈ WCS(M, S0,mU) \ Reach(M, S0), there exists an infinite sequence
m1 � m2 � . . . � mn � . . . with mi ∈ Reach(M, S0) for any i ≥ 1 and
such that:

- if m(p) = ω then either mi(p) > mi−1(p), for all i > 1, or mi(p) ≥
mU(p), for all i ≥ 1.

- if m(p) �= ω, we have for any i ≥ 0 : mi(p) = mi+1(p) and m(p) =
m0(p).

(2) ∀m ∈ Reach(M, S0), there exists m′ ∈ WCS(M, S0,mU) with m � m′.

A weak coverability set over-approximates the set of reachable states and all
the coverability sets. Nevertheless, it is still sufficiently precise to verify upward
closed safety properties. On the contrary, it cannot always be used to decide
place boundedness. This is formally expressed by the following proposition:

Proposition 11 Let M be a MTN, an initial marking S0 and an upward-
closed set U with the minimal marking mU , the following holds :

Reach(M, S0) ⊆↓ CS(M, S0) ⊆↓ WCS(M, S0,mU)
↓ WCS(M, S0,mU) ∩ U �= ∅ iff Reach(M, S0) ∩ U �= ∅

8 This restriction is to simplify the presentation, the extension to a finite set of
minimal markings (and so to any upward closed set) is not difficult.

16

6.2 Algorithm to Compute a WCS

In this section, we give an algorithm that computes a weak coverability set
for a Multi Isolated Transfer Net M, a set of initial markings and an upward
closed set U , defined by mU . The algorithm is presented as an extension of
the enumerative algorithm given in section 4. At each step of the construction
of the tree, an untreated node annotated with the ω-marking m is developed
by computing its successors (at the beginning, untreated nodes corresponds
to initial markings). For each successors m′ of m by firing M , we have three
cases as in the algorithm of section 4 for computing the minimal coverability
set of a Petri Net. Cases (1), (3) are identical to the enumerative algorithm of
section 4, we only detail case (2) that define the following acceleration (that
we call AccIsolated) adapted to our subclass of Transfer Nets.

(2) if there is a sequence of transitions σ in the tree from a marking m′′ to m
such that m′′ ≺ m′ (so, we have m′′ �σ m �M m′), then we construct
n as follows :
we have n(p) = ω if ∃ a path fromm′′ tom corresponding to the sequence
of transition σ with m′′ ≺m′ and
(1) p is not the source or the target of a transition in σ · M and the

marking strictly increases from m′′ to m. More formally:

∀〈P, pt〉 ∈ Transfer(σ ·M) : p �∈ ({pt} ∪ P) and m′′(p) <m′(p)

(2) p is the target of a transfer in σ · M and either the marking of p
increases strictly from m′′ to m′ or there is a source of that transfer
that increases strictly from m′′ to m′. More formally:

∃〈P, pt〉 ∈ Transfer(σ ·M) with (p = pt) and

(m′′(p) < m′(p) ∨ ∃p′ ∈ P :m′′(p′) < m′(p′))
(3) p is a source of a transfer in σ ·M and the marking of p increases

strictly from m′′ to m′, and furthermore the marking of p is greater
or equal to mU(p). More formally:

∃〈P, pt〉 ∈ Transfer(σ ·M) with p ∈ P and

m′′(p) <m′(p) and m(p) ≥mU(p)

otherwise, n(p) = m′(p).
Finally, we take the farest predecessor m′′′ of m with m′′′ ≺ n (possibly
different from m′′) and replace the subtree rooted by m′′′ by n.

Note that as we consider Multi Isolated Transfer Net, those three cases are mu-
tually exclusive. The following theorem states the correction of the algorithm
defined with the acceleration above :

Theorem 12 If M is a Multi Isolated Transfer Net, S0 a finite set of initial
ω-marking,mU a marking defining a non-empty upward closed set U , then the

17

algorithm defined in section 4 with the acceleration AccIsolated, terminates
and computes a weak coverability set.

Due to space limitation, we omit the formal proof of this statement and give
the main idea that underlies the proof of correctness. The only particularity of
the acceleration defined above is for places involved in a transfer. Let us take
the case of a target place t. In the definition of the acceleration, we put ω in
two cases : (1) when t has strictly increased, (2) if one of its sources has strictly
increased. Case (1) is classically justified by monotonicity of the model, i.e.
repeating σ ·M will add at least the same number of tokens in t each time
(remember that t is not the source of any transfer). Case (2) is justified as
follows: t is not the source of any transfer, so the sequence σ ·M takes out
of t a constant number of tokens each time σ · M is fired. Furthermore, as
a source of t strictly increased between m′′ and m′ and this place is not the
source of another transfer, when repeating σ ·M , from m′, we know that the
target will increase strictly and then we simply apply the justification of case
(1). For the sources, the justification is as follows. When a source increases
strictly between m′′ and m′, we are not sure that it will increase beyond any
bound, but we know that it will not decrease when repeating σ ·M . So if its
value is greater or equal to mU(s), we know that it will stay so. By putting ω
in s, we do not take a too rough approximation for the following two reasons.
First, putting ω in s is safe w.r.t. the intersection with U , that is n has an
intersection with U iff m′ and all the marking reachable from m′ by iterating
σ ·M has an intersection with U . Second, it is easy to see that if we put ω in
a source s, then there is also a ω in the target t of the transfer, and this ω will
never leave the place t as we know that t is not the source of a transfer. As a
consequence, the ω in s is guaranteed not to “propagate” unsafely in the net.

We are planning to extend our symbolic implementation of the algorithm of
section 4 and test it in the near future.

6.3 An Examplative Run of the Algorithm

We have seen in the previous subsection that our acceleration for Multi Iso-
lated Transfer Nets does not always put a ω in a source that is increasing. Note
that this is the only difference with the algorithm for Petri Net. Applying the
usual algorithm for Petri net to a MTN may result in an over-approximation.
We illustrate this phenomenon on an example.

Fig. 9(a) shows a simple example of Multi Isolated Transfer Net. We con-
sider 〈1, 0, 0, ω〉 as initial ω-marking. Fig. 9(b-d) shows the computations of
algorithms presented in the previous sections. Fig. 9(b) presents the tree of
the enumerative algorithm for Petri Net after two iterations. At this step, it
detects that the successor for the transition b is greater than the initial ω-
marking 〈1, 0, 0, ω〉. Thus, case (2) is applied (so, here we forget that s3 is a

18

source of a transfer in a) : ω is added to the initial ω-marking in s3, the initial
marking is then replaced and the procedure continue from this new unique
node. Finally, the algorithm ends after computing the tree shown in Fig. 9(c).

According to the upward closed set s2 ≥ 1∧ s3 ≥ 1, the algorithm specialized
for Multi Isolated Transfer net computes the same tree. Thus, the computed
weak coverability set coincides with the over-approximation computed by the
algorithm for Petri net and the two algorithms allow us to conclude that there
is a mutual exclusion between place s2 and s3. But if the safety property to
be verified is ”no reachable markings satisfies s3 ≥ 2”, only our algorithm
computing the weak coverability set returns the right answer. At the second
step, as shown by Fig. 9(b) the algorithm also detects that the successor for
transition b is greater than the initial marking but doesn’t put ω for the place
s3 because s3 is the source of a transfer and the number of tokens is not enough
to intersect with the upward closed set s3 ≥ 2. Fig. 9(d) shows the final tree
computed by the new algorithm.

=b

s1
s2

s3 s4

a

��

a) d)c)b)

〈1, 0, 0, ω〉

b

a

〈1, 0, ω, ω〉

〈1, 0, 1, ω〉

a

b b

a

〈1, 0, 1, ω〉

〈0, 1, 0, ω〉〈0, 1, 0, ω〉

〈1, 0, 1, ω〉

〈0, 1, 0, ω〉

〈1, 0, 1, ω〉

Fig. 9. An example of Isolated Multi-transfer Net.

7 The General Case: Combination of Forward and Backward Search

As we already recalled the forward approach cannot be extended to the full
class of MTNs [8]. But as shown in Fig. 7, backward approach seems to be
more explosion prone and seems to be useful only when some information
about potential reachable markings can be used to guide the search. Struc-
tural invariants have been used to prune the backward search space in [10,12].
Unfortunately, results of Fig. 7 show that this technique does not always speed
up the search.

Fig. 10 shows results on some MTNs corresponding to abstractions of Java
programs analysed with a symbolic backward algorithm (see [12]). Without
information to prune the search space, backward algorithm can take a lot of
time, about one hour for the P/Cbug example for the corrected version of the
model. Forward approach using the symbolic algorithm of section 4 ends in
the worst case in 37s.

19

In those particular examples, the over-approximation computed by the struc-
tural invariants is very effective, see the column giving the time of the com-
putation of Pre∗ in the table of Fig. 10 but this is not always the case. For
example, the MTN of the Mesi protocol (Fig. 1) has no useful structural in-
variants (see the description of the example).

Case Study P T IPost EXPost MPost IPre EX1
Pre NPre EX2

Pre

I/D 32 28 73 3.16s 2.7MB 30 20.11s 6MB 3.3s

P/C1
bug

44 37 78 37.4s 4.7MB 29 1h12m 33MB 9.21s

P/C1
corr 44 37 18 0.63s 2.2MB 29 56m 31MB 0.02s

P/C2 20 16 33 0.23s 1.7MB 19 3.1s 3MB 0.04s

Fig. 10. verification of MTNs on an AMD Athlon 900Mhz 500Mbytes

In the P/C1
corr and P/C2 examples, the algorithm of section 4 finds no bug

and so allow us to conclude that the system is correct. In the other cases,
the forward over-approximation cannot be conclusive as the models can reach
bad states. But in those cases, backward algorithm can be applied to find an
error trace by using the information previously computed by the forward over-
approximation as explained above. Note that these three examples fall in the
Multi Isolated Transfer Net 9 subclass but more complex models, for which
it cannot exist an exact forward search computing a minimal coverability set,
can be analysed with this methodology.

Let us now show that the forward approximation computed by the algorithm
of section 4 can give more information than the structural invariants. The
parameterized MTN of the Mesi protocol (see [18]) has only one structural
invariant which says that the number of tokens in all the places is constant
in all the forward reachable markings. As the place invalid can contain any
number of tokens (it contains ω tokens in the initial ω-markings), this in-
variant do not give any information to prune the backward search (see [10]
for more details). But by applying the symbolic algorithm presented in sec-
tion 4, we obtain that the reachable markings are covered by the ω-markings
{〈ω, ω, ω, 0〉, 〈ω, 0, ω, ω〉} (where the places are encoded in the markings as
〈invalid, shared,modified, exclusive〉). This over-approximation allows us to ver-
ify the mutual exclusion property between shared and exclusive. Other interest-
ing properties cannot be verified with this over-approximation. As an exam-
ple, consider the mutual exclusion property that asks that at most one token
can be in exclusive. Backward approach can be applied efficiently to answer
this question by eliminating during the search all the upward closed sets that
do not intersect with the over-approximation computed forwardly. This over-
approximation contains more information than the structural invariants and
so is potentially more effective than the structural invariant heuristic. Instead
of opposing the forward and backward approaches, we propose to use them

9 We could have applied the algorithm of section 6 to compute a WCS that is suffi-
cient to verify the safety properties but our remarks in this section are more general
and apply to the full class of MTNs.

20

together.

First, if we have to verify that a Multi Transfer Net that does not fall in
the class of Multi Isolated Transfer Net cannot reach an upward closed set
of Bad markings U , we first compute an over-approximation of the minimal
coverability set with the symbolic procedure defined in section 4. Let us note
O this set of ω-markings.

Then, we check if ↓ O ∩ U �= ∅. If this is the case, then we are done, we
know that the MTN cannot reach U . Otherwise, we can use O in conjunction
with the backward search as follow. Instead of computing µX · U ∪ Pre(X)
we compute µX · ((U) ↓ O) ∪ (Pre(X)) ↓ O)) where) is defined as :) :
upward closed set × downward closed set → upward close set

S) T = {m|∃m′ ∈ S :m′ �m and ∃m′′ ∈ T : m′ �m′′}
So, we remove from S any upward closed subset that does not intersect with
T . This is mainly the same idea that we use in the invariant heuristic defined
in [10]. But the information computed using the forward search is always at
least as precise as the one computed using the structural invariants and often
much more precise. We will experiment this heuristic in the near future.

References

[1] P. Abdulla, L. Boasson, A. Bouajjani. Effective Lossy Queue Languages. In
Proc. ICALP’01, LNCS 2076, 2001.

[2] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis.
Modelling with Generalized Stochastic Petri Nets. Series in Parallel Computing.
John Wiley & Sons, 1995.

[3] P. A. Abdulla, K. Cerāns, B. Jonsson and Y.-K. Tsay. General Decidability
Theorems for Infinite-State Systems. In Proc. LICS’96, pages 313–321, 1996.

[4] K. Baukus, S. Bensalem, Y. Lakhnech, and K. Stahl. Abstracting WS1S
Systems to Verify Prameterized Networks. In Proc. TACAS 2000, LNCS 1785,
pages 188–203, 2000.

[5] B. Bérard and L. Fribourg. Reachability analysis of (timed) Petri nets using
real arithmeti In Proc. CONCUR’99, LNCS 1664, pages 178–193, 1999.

[6] A. Bouajjani and R. Mayr. Model Checking Lossy Vector Addition Systems.
In Proc. of STACS’99, LNCS 1563, pages 323–333. Springer, 1999.

[7] G. Ciardo, A.S. Miner. Storage Alternatives for Large Structured State
Space. In Proc. Modelling Techniques and Tools for Computer Performance
Evaluation, LNCS 1245, pages 44–57, 1997.

[8] C. Dufourd, A. Finkel, Ph. Schnoebelen. Reset Nets Between Decidability and
Undecidability. In Proc. ICALP’98, LNCS 1443, pages 103–115, 1998.

21

[9] G. Delzanno, and J. F. Raskin. Symbolic Representation of Upward-closed Sets.
In Proc. TACAS 2000, LNCS 1785, pages 426–440, 2000.

[10] G. Delzanno, J.-F. Raskin, and L. Van Begin. Attacking Symbolic State
Explosion. In Proc. CAV’01, LNCS 2102, pages 298–310, 2001.

[11] G. Delzanno, J-F. Raskin and L. Van Begin. Covering Sharing Trees: Efficient
Data Structures for the Automated Verification of Parameterized Systems.
http://www.ulb.ac.be/di/ssd/jfr/CST.ps, 2002.

[12] G. Delzanno, J-F. Raskin and L. Van Begin. Towards the Automated
Verification of Multithreaded Java Programs. In Proc. TACAS 2002, LNCS
2280, pages 173–187, 2002.

[13] J. Esparza, A. Finkel, and R. Mayr. On the Verification of Broadcast Protocols.
In Proc. LICS’99, pages 352–359, 1999.

[14] A. Finkel. Reduction and covering of infinite reachability trees. Information
and Computation, 89(2):144–179, 1990.

[15] A. Finkel. The minimal coverability graph for Petri nets. In In Advances in
Petri Nets ’93, LNCS 674, pages 210–243, 1993.

[16] A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere!
Theoretical Computer Science, 256(1-2):63–92, 2001.

[17] S. M. German, A. P. Sistla. Reasoning about Systems with Many Processes.
JACM 39(3): 675–735, 1992.

[18] J. Handy. The Cache Memory Book. Academic Press, 1993.

[19] D. S. Johnson. A Catalog of Complexity Classes. In J. Van Leeuwen,
editor, Handbook of Theoretical Computer Science, Volume A, Algorithm and
Complexity, Elsevier, 1990.

[20] R. M. Karp and R. E. Miller. Parallel Program Schemata. Journal of Computer
and System Sciences, 3, pages 147–195, 1969.

[21] P. Marenzoni, S. Caselli, G. Conte. Analysis of Large GSPN Models : A
Distributed Solution Tool. In Proc. Int. Work. on Petri Nets and Performance,
1997.

[22] C. Rackoff. The Covering and Boundness Problem for Vector Addition Systems.
Theoretical Computer Science 6, 223, 1978.

[23] Ph. Schnoebelen. Verifying Lossy Channel Systems Has Nonprimitive Recursive
Complexity. Information Processing Letters, 83(5):251–261, 2002.

[24] M. Silva, E. Teruel, and J. M. Colom. Linear Algebraic and Linear Programming
Techniques for Analysis of Place/Transition Net Systems. In Lectures on Petri
Nets I: Basic Models. , LNCS 1491, pages 308–309, 1998.

[25] D. Zampuniéris, and B. Le Charlier. Efficient Handling of Large Sets of Tuples
with Sharing Trees. In Proc. DCC’95, 1995.

22

