
HAL Id: hal-00158701
https://hal.science/hal-00158701

Submitted on 29 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Games for Counting Abstractions
Jean-François Raskin, Mathias Samuelides, Laurent van Begin

To cite this version:
Jean-François Raskin, Mathias Samuelides, Laurent van Begin. Games for Counting Ab-
stractions. Electronic Notes in Theoretical Computer Science, 2005, 128 (6), pp.69-85.
�10.1016/j.entcs.2005.04.005�. �hal-00158701�

https://hal.science/hal-00158701
https://hal.archives-ouvertes.fr

Games for Counting Abstractions∗

J.-F. Raskin1, M. Samuelides2 and L. Van Begin1†

1 Computer Science Department, University of Brussels, Belgium
2 Ecole Normale Supérieure de Cachan, France

Abstract

It has been recently shown that monotonicity is not sufficient to ob-
tain decidability results for two-player games. However, positive results
can be obtained on restricted subclasses of monotonic two-player games.
In this paper, we identify and study a subclass of monotonic two-player
games that is useful for analysis of parametric (open-)systems that can
be modeled by using counting abstractions. Although the reachability
game problem is undecidable in general for that subclass, we identify two
interesting and decidable problems and show how to apply those results
in parametric system analysis.

1 Introduction

Model-checking methods were originally proposed for the automatic verification
of critical systems that have natural finite-state abstractions. Nevertheless,
much recent interest has concerned the application of model-checking methods
to infinite-state systems. Several interesting classes of infinite state systems
have been shown decidable. For example, Alur et al. [AD94] showed that timed
automata have a decidable reachability problem. Finkel et al. in [FS01], and
Abdulla et al. in [ACJT96] have shown that infinite, but monotonic, transi-
tion systems (also called well-structured transition systems) have a decidable
coverability problem. For instance, Petri nets and broadcast protocols define
monotonic transition systems.

Timed automata, Petri nets, and broadcast protocols are usually used to
model reactive systems embedded in a critical environment. But those for-
malisms define transition systems that are semantics models for closed systems.
In closed systems, we do not distinguish between the reactive system and its
environment. So the properties that we can verify on transition systems are

∗Supported by the FRFC project “Centre Fédéré en Vérification” funded by the Belgian
National Science Fundation (FNRS) under grant nr 2.4530.02. This work was done partially
when the second author was visiting the University of Brussels.

†This author was supported by a ”First Europe” grant EPH3310300R0012 of the Walloon
Region.

1

properties in which we cannot distinguish between the role of the reactive sys-
tem and the role of the environment. If we want to distinguish the role of the
reactive system and the environment in which it is embedded, we can use games
played on state spaces.

Usual transition systems can be considered as one-player games on which
only closed-system verification problems can be formulated. The control and
modular verification problems of systems can be studied as two-player games
played on state spaces, where one player, say player 1, represents the reactive
system and the other player, say player 2, represents the environment. If the
state space on which the game is played is infinite then we have to solve infinite-
state games. Infinite-state games have not yet been studied as intensively as
traditional verification problems on infinite-state transition systems. Neverthe-
less, recently there have been several interesting works in that direction. Here
are some examples. In [MPS95], Maler et al. study how to solve games defined
by timed automata. In [Wal96], Walukiewicz studies how to solve infinite games
defined by pushdown automata. In [dAHM01], Henzinger et al. study symbolic
algorithms to solve general infinite-state games.

In this paper, we study two-player games played on infinite but monotonic
game structures. In particular, we study games that are useful to study paramet-
ric systems. Parametric systems are systems where the number of instances of
component types is not fixed a priori. In general, we are interested to verify such
systems for any number of instances. The notion of counting abstraction [GS92]
is a powerful tool to reason on parametric systems and consists in only retaining,
for each component type, the number of instances that are in each possible (lo-
cal) configuration. Hence, if the number of component types and the number of
(local) configurations for each component is finite, then states of parametric sys-
tems can be abstracted by integer vectors. In that context, parametric systems
are modeled as vector addition systems with states (VASS for short). Here, we
want to consider parametric systems as open systems over which game proper-
ties can be formulated and verified. For that, we identify an interesting subclass
of monotonic game structures for which the coverability game and the deadlock-
avoidance game problems are decidable. A restricted form of two-player VASS
systems define game structures that fall into that class. We illustrate the interest
of our decidable game structures with an example from parametric systems.

Related works Recently, Abdulla et al. [ABd03] have studied the class of
monotonic game structures. On the negative side, they have shown that the
reachability problem is undecidable on the general class of monotonic game
structures. On the positive side, they have identified a subclass of monotonic
game structures on which the reachability problem is decidable. The subclass
that they have identified is called the class of downward closed game structures.
Downward-closed game structures are game structures where at least one of the
two players has downward closed behaviors, i.e. if one of the players can reach
a configuration c′ from a configuration c it can also reach c′ from all the config-
urations than are greater or equal to c. This is relevant for example when one

2

player may lose messages in a lossy channel system. The interest of this model
is thus clear in the context of communication protocols. Unfortunately, the pos-
itive results of their paper has no direct and natural application in the context
of counting abstractions. The subclass of monotonic game structures that we
identify in this paper and for which we obtain (other) interesting decidability
results is different from the class of downward closed game structures. Our class
of monotonic game structure, contrary to the class of downward closed mono-
tonic game structure, has direct and natural applications to the game analysis
of counting abstractions. Our positive results are thus new and important in
the context of automatic game-based analysis of parametric systems.

Structure of the paper In Section 2, we recall preliminaries, define mono-
tonic game structures, reachability, coverability and deadlock avoidance games
and their associated decision problems. In Section 3, we recall some well-known
results for solving reachability games. In Section 4, we identify a subclass of
monotonic game structures for which coverability game and deadlock-avoidance
game problems are decidable. In section 5, we show how a subclass of open
VASS systems can be used to define monotonic game structures that fall into
the decidable subclass. We finish that section by illustrating the interest of this
class for the game analysis of parametric systems abstracted using the counting
abstraction.

2 Preliminaries

Well quasi-orderings A well quasi ordering 4 on the elements of a set S,
wqo for short, is a reflexive and transitive relation such that for any infinite
sequence s0s1 . . . sn . . . of elements in S, there exist indices i and j, such that
i < j and si 4 sj . In the following, we note si ≺ sj if si 4 sj but sj 64 si.
For example, it is well-known that the quasi order ⊑⊆ N

k × N
k defined as

〈m1, m2, . . . , mk〉 ⊑ 〈m′
1, m

′
2, . . . , m

′
k〉 if mi ≤ m′

i for any 1 ≤ i ≤ k is a wqo.
In this paper, we will concentrate on wqo. Given a wqo 4 over the elements
of S, a set U ⊆ S is called an 4-upward closed set if for any s1 ∈ U , for any
s2 ∈ S such that s1 4 s2, we have that s2 ∈ U . We now recall one useful result
from [Hig52]:

Lemma 1 Let S be a set of elements, 4 ⊆ S × S be a wqo, and S0S1 . . . Sn . . .

be an infinite sequence of 4-upward closed subsets of S such that Si ⊆ Si+1 for
any i ≥ 0, then there exists j ≥ 0 such that for any k ≥ j, Sj = Sk.

Two-player game structures A (two-player) game structure G is a tuple
〈C, C1, C2,→〉 where C is a (potentially infinite) set of configurations partitioned
into the set of player 1 (also called the protagonist) configurations C1 and the
set of player 2 (also called the antagonist) configurations C2 (that is C1∩C2 = ∅
and C = C1 ∪ C2), and →⊆ (C1 × C2) ∪ (C2 × C1) is the transition relation.
In the following, we note c → c′ when (c, c′) ∈→. A play P in the game

3

structure G from a configuration c is either an infinite sequence of configurations
c0c1 . . . cn . . . such that c0 = c and ci → ci+1 for all i ≥ 0, or a finite maximal
sequence of configurations c0c1 . . . cn such that c0 = c and for all i, 0 ≤ i < n,
we have that ci → ci+1, and there does not exist c ∈ C such that cn → c. We
write lg(P) to denote the length of the play P , which is equal to the number of
configurations in P , if P is finite, and is equal to +∞ if P is infinite. Let G be
a game structure and c be a configuration of G, we note P (G, c) for the set of
all plays in G starting from configuration c. A winning condition W for a game
structure G and a configuration c is a subset W ⊆ P (G, c), that is: a subset of
plays starting in c. A game is a triple 〈G, c, W 〉 where G is a game structure, c is
a configuration of G, and W is the subset of plays starting in c. During a play,
players apply strategies. Let C∗ denotes finite sequences of configurations from
set of configurations C. A strategy for player i ∈ {1, 2} (i-strategy for short) is
a partial function S : C∗ → C such that dom(S) = {c1c2 . . . cn | cn ∈ Ci} and if
we have S(c1c2 . . . cn) = c′, cn → c′. A strategy is memory free if it is such that
for any c1c2 . . . cn ∈ C∗, if S(c1c2 . . . cn) is defined then S(c1c2 . . . cn) = S(cn),
that is the strategy only depends on the current configuration and not on the
history of the play. The outcome of a player-i strategy is defined as follows
(i ∈ {1, 2}). Let S be a i-strategy, the outcome of S in configuration c is the set
of all plays P = c0c1 . . . cn . . . ∈ P (G, c), noted Outcomei(G, c,S), such that: for
any j, 0 ≤ j < lg(P), we have that if cj ∈ Ci and S(c0c1 . . . cj) is defined then
cj+1 = S(c0c1 . . . cj). So, the outcome of a i-strategy S from a configuration c is
the set of plays starting in c that are generated when player i plays with strategy
S. In the sequel of the paper, we always suppose that player 1 is the protagonist
and tries to win the game while player 2 is the antagonist and tries to prevent
player 1 from winning the game. We say that player 1 has a winning strategy for
the game 〈G, c, W 〉 if Outcome1(G, c,S) ⊆ W for some S. We say that player 2
has a spoiling strategy for the game 〈G, c, W 〉 if Outcome2(G, c,S) ∩ W = ∅ for
some S. Notice that player 1 has a winning strategy if and only if player 2 does
not have a spoiling strategy for the games we will consider in this paper [GS53].

Monotonic game structures In this paper, we concentrate our attention on
a class of infinite game structures, called monotonic game structures, introduced
independently in [ABd03] and in [RSV03].

Definition 1 (Monotonicity) A game structure 〈C, C1, C2,→〉 is monotonic
for a wqo 4 ⊆ (C1 × C1) ∪ (C2 × C2) if the following condition is verified: for
any c1, c2 ∈ C, if c1 → c2, then for all c3 ∈ C, such that c1 4 c3, there exists
c4 ∈ C with c3 → c4 and c2 4 c4.

Given a game structure G = 〈C, C1, C2,→〉 and a wqo 4 ⊆ (C1×C1)∪(C2×C2)
such that G is monotonic for 4, then we write G = 〈C, C1, C2,→, 4〉 to underline
that G is a monotonic game for 4.

Games and associated decision and synthesis problems In this pa-
per, we concentrate on two important games: reachability games and deadlock-
avoidance games. In a reachability game, player 1 tries to force the game into

4

a given set of configurations (as a consequence player 2 tries to avoid that the
game enters this set of configurations). In a deadlock-avoidance game, player
1 tries to avoid the set of deadlock configurations (as a consequence player 2
tries to force the game into the set of deadlock configurations). We now give a
formal definition to those two games.

A reachability game is defined by a triple 〈G, c, F 〉 where G is a game struc-
ture with set of configurations C, c ∈ C is a configuration of G, and F ⊆ C is a
subset of configurations, called the winning configurations. The triple 〈G, c, F 〉
defines the game 〈G, c, W 〉 where W is the set of plays starting in c that contain
at least one configuration of F . The reachability game problem is defined as
follows: given a reachability game defined by a triple 〈G, c, F 〉, does player 1
have a winning strategy for this game?

When the underlying game structure is monotonic for a given wqo 4, it is
of interest to consider a special class of reachability games called coverability
games. A coverability game is defined by a reachability game 〈G, c, F 〉 where G

is a monotonic game structure for a given wqo 4 on the configurations of G, c

is a configuration of G, and F is an upward closed set of configurations for the
wqo 4. The coverability game problem is defined as follows: given a coverability
game defined by a triple 〈G, c, F 〉, does player 1 have a winning strategy for this
game ?

Besides reachability games, we study in this paper so-called deadlock-avoid-
ance games. In a deadlock-avoidance game, player 1 tries to avoid that the play
enters the set of deadlock configurations, i.e. configurations that have no outgo-
ing transitions. Formally, a deadlock-avoidance game is a game 〈G, c, W 〉 where
W is the set of all the infinite plays of G starting in c. The deadlock-avoidance
problem is defined as follows: Given a deadlock-avoidance game 〈G, c, W 〉, does
the player 1 have a winning strategy for this game?

Besides solving decision problems on infinite game structures, we are also
interested in strategy synthesis problems. Given a game for which player 1 has a
winning strategy, solving the strategy synthesis problem consists in constructing
a winning strategy for this game.

3 Solving reachability and deadlock-avoidance

games - Known results

Given a set of configurations S ⊆ C of a game G, we define the following set:
CPre1,G(S) is the set of configurations where player 1 has a one step strategy
to reach S, that is CPre1,G(S) equals

{c ∈ C1 | ∃c′ ∈ S : c → c′}
∪{c ∈ C2 | ∃c′ ∈ S : c → c′ and ∀c′ ∈ C : c → c′ implies c′ ∈ S}.

We define CPre
0
1,G(S) as S, for any n ∈ N, CPre

n+1
1,G (S) as CPre1,G(CPre

n
1,G(S))

and CPre
∗
1,G(S)=

⋃
n∈N

CPre
n
1,G(S). It is well-known, see for example [dAHM01],

that the following theorem holds:

5

Theorem 1 (From [dAHM01]) For any reachability game 〈G, c, F 〉, we have
that player 1 has a winning strategy for the game 〈G, c, F 〉 iff c ∈ CPre

∗
1,G(F).

Note that the operator CPre1,G is monotonic w.r.t. the inclusion relation
between sets of configurations. Unfortunately, this is not sufficient to ensure
the decidability of reachability problems on monotonic game structures (the
iteration of CPre may not stabilize). In [ABd03], Abdulla, Bouajjani et al.
have shown the undecidability of both reachability and coverability problems
on monotonic game structures. We also proved those results independently in
[Sam03, RSV03].

Furthermore, by using a construction similar to those presented in [ABd03,
RSV03, Sam03], we can easily reduce the termination problem for two counter
machines to the deadlock-avoidance problem for (a subclass of) monotonic
games. Since the termination problem is undecidable [Min67], we deduce the
undecidability of the deadlock-avoidance problem for monotonic games.

Theorem 2 The reachability, coverability and deadlock-avoidance game prob-
lems are undecidable for the class of monotonic games.

4 B-game structures

As shown in the previous section, monotonic games are not satisfactory from
a computational point of view. In this section, we identify a new interesting
subclass of monotonic games that enjoys decidability results for the coverability
and deadlock-avoidance game problems.

Remember that in practice, player 1 models the behaviours and decisions
that the system can take and player 2 describes the environment in which the
system is embedded. In a lot of practical cases, the whole set of behaviours of
the environment can be modelled using a finite state structure. Based on this
fact, we define here a subclass of monotonic game structures, called B-game
structures1, where the environment respects additional properties.

Definition 2 (B-game structures) A B-game structure G is a monotonic
game structure 〈C, C1, C2,→, 4〉 with the following additional property: for
any c1, c2 ∈ C2, c3 ∈ C1 if c1 → c3 and c2 4 c1 then there exists c4 ∈ C1 such
that c2 → c4 and c4 4 c3.

As we will see in the following, particular B-game structures correspond to
game structures where player 1 (the system) is equivalent to a VASS (counter
system) and player 2 (the environment) is equivalent to a finite state automaton.

Since the reachability problem for monotonic systems is undecidable in gen-
eral (for instance, the reachability between two markings is undecidable for sev-
eral monotonic extensions of Petri nets, see [Duf98] for details), the following
theorem holds.

1We call them B-game structure because one of the two players has access only to a bounded
amount of information to make its decisions.

6

Theorem 3 The reachability game problem is undecidable for B-games.

Proof. Sketch. We reduce the reachability problem for monotonic extensions
of Petri nets to the reachability game problem for B-games as follows. Given an
extended Petri net N , the configurations of the game are pairs 〈m, i〉 where m
is a marking of N and i ∈ {1, 2} is the identity of the current player, transitions
from configurations 〈m, 1〉 are 〈m, 1〉 → 〈m′, 2〉 such that we have m → m′ in
N , i.e. the behaviours of player 1 are defined by the whole set of transitions of
N . From the configurations 〈m, 2〉, we have the only transition 〈m, 2〉 → 〈m, 1〉.
Hence, each play of this game corresponds to an execution of N and we conclude
that m is reachable from m0 in N if and only if player 1 has a strategy to reach
〈m, 1〉 from 〈m0, 1〉. Moreover, if we define 4 such that 〈m1, i〉 4 〈m2, i〉 if and
only if m1 ⊑ m2 where ⊑ is the classical wqo on markings of (extended) Petri
nets, it is easy to show that the game is a B-game since player 2 leaves the con-
figurations of N unchanged. Since the reachability problem is undecidable for
several extensions of Petri nets, we conclude that the reachability game problem
is undecidable for B-games. �

On the other hand, we will show in the next two sub-sections that the cov-
erability and deadlock-avoidance problems are decidable on B-game structures.

4.1 Coverability games are decidable on B-game struc-

tures

In order to apply lemma 1, we next prove that, contrary to (general) monotonic
game structure, the CPre operator associated to B-game structures returns an
upward-closed set of configurations when applied to an upward-closed set of
configurations. This is the key to obtain the decidability of the coverability
problem.

Lemma 2 Let G be a B-game structure 〈C, C1, C2,→, 4〉, let U ⊆ C be any 4-
upward-closed set of configurations of G, then CPre1,G(U) is an 4-upward-closed
set of configurations.

Proof. Remember that CPre1,G(U) = {c ∈ C1 | ∃c′ ∈ U : c −→ c′} ∪ {c ∈ C2 |
∃c′ ∈ U : c −→ c′ and ∀c′ ∈ C : c → c′ implies c′ ∈ U}. Let c ∈ CPre1,G(U)
and c0 a configuration such that c 4 c0. We will show that c0 ∈ CPre1,G(U).
We study two cases. Case 1: c ∈ C1. There exists c′ ∈ U such that c −→ c′.
Since G is monotonic and c 4 c0, there exists c′0 ∈ C with c0 −→ c′0 and c′ 4 c′0.
c′0 ∈ U because U is upward closed and so c0 ∈ CPre1,G(U). Case 2: c ∈ C2.
There exists c′ ∈ U such that c −→ c′ and for all c′ ∈ C, c −→ c′ implies c′ ∈ U .
Since G is monotonic there exists c′0 ∈ C with c0 −→ c′0 and c′ 4 c′0. Let c′0 a
configuration such that c0 −→ c′0. Moreover, since G is a B-game and c 4 c0,
there exists c′ ∈ C with c −→ c′ and c′ 4 c′0. c −→ c′ implies c′ ∈ U . U is upward
closed, so c′0 ∈ U and c0 ∈ CPre1,G(U). These two cases allow us to conclude
that CPre1,G(U) is upward closed. �

7

The previous lemma together with lemma 1 allow us to state the following
result about B-game structures:

Lemma 3 Let G be a B-game structure 〈C, C1, C2,→, 4〉 and let F ⊆ C be
an 4-upward-closed set, the sequence S0S1 . . . Sn . . . of sets of configurations
defined by S0 = F , and for any i ≥ 1, Si =

⋃l=i

l=0
CPre

l
1,G(F), is such that there

exists j ≥ 0 such that for any k ≥ j, Sk = Sk+1.

This last lemma means that the iteration of CPre1,G operator starting from
an 4-upward closed set stabilizes after a finite number of steps. So, if CPre1,G(U)
can be effectively computed for any upward-closed U , the equality test between
two upward closed sets and the inclusion test of a configuration into an upward
closed set are decidable, then the coverability problem is decidable. In the
next subsection, we define B-VASS game structures for which we can effectively
compute CPre1,G(U) for any upward-closed set U and decide the equality and
inclusion tests.

Theorem 4 The coverability problem is decidable for B-game structures – pro-
vided that CPre1,G(U) is computable for any upward-closed set U , the equality
test between two upward closed sets and the inclusion test of a configuration into
an upward closed set are decidable.

Strategy synthesis We have shown the decidability of the coverability prob-
lem for B-game structures G such that: (i) for any upward closed set U we can
compute CPre1,G(U); (ii) given two upward closed sets U1 and U2 we can decide
if U1 = U2; and (iii) given an upward closed set U and a configuration c, we
can decide if c ∈ U .

We now show that we can automatically construct winning strategies for
those games, provided that for all configuration c and upward closed set U , if
{c′ | c → c′}∩U 6= ∅ then we can compute at least one c′ ∈ U such that c → c′.

Let (G, c, U) be a coverability game defined by the B-game structure G

with the wqo 4 as defined in Definition 2, and U be an 4-upward closed set
of configurations. We assume that c ∈ CPre

∗
1,G(U). Then we can construct

a winning memory free 1-strategy S with the following algorithm. For any
configuration c′ of G, we define S(c′) as follows. If c′ ∈ U we do not need
to define S(c′). If c′ ∈ CPre

∗
1,G(U) \ U , we compute CPre

n
1,G(U) where n is

the smallest integer such that c′ ∈ CPre
n
1,G(U). We choose S(c′) among {c′′ ∈

CPre
n−1
1,G (U) | c′ → c′′}.

4.2 Deadlock-avoidance games are decidable on B-games

The deadlock-avoidance tree associated to a monotonic game structure G with
initial configuration cinit, noted TG, is the smallest finite prefix of the unfolding
of G starting in cinit such that any leaf n of TG is such that either (assume that
conf(n) is the configuration associated to the node n)

1. the set {c | conf(n) → c} is empty; or

8

2. there exists an ancestor n′ of n in TG such that conf(n′) 4 conf(n).

Lemma 4 A deadlock-avoidance tree exists for any finitely branching mono-
tonic game structure.

Proof. Suppose that such a tree does not exist for a monotonic finitely branch-
ing game structure G with initial configuration cinit. Then, there exists an in-
finite play c1c2 . . . with c1 = cinit such that there is no i < j with ci 4 cj .
However, since 4 is a wqo, such a play does not exist from which we derive a
contradiction. �

Given a deadlock avoidance tree TG with set of nodes N , transition relation
succ and labeling function conf : N → C, the function label : N → {1, 2} is a
labeling function that satisfies the following properties :

1. for each leaf n of TG, label(n) = 2 if conf(n) has no successor in G.
Otherwise label(n) = 1;

2. for each node n of TG that is not a leaf, if conf(n) ∈ C1 then label(n) = 1
if there exists n′ ∈ succ(n) such that label(n′) = 1, otherwise label(n) = 2.
If conf(n) ∈ C2, then label(n) = 1 if for all n′ ∈ succ(n): label(n′) = 1,
otherwise label(n) = 2.

The reduced deadlock-avoidance tree of TG is a tree constructed from TG by
removing all the sub-trees rooted by nodes n such that label(n) = 2.

We now show that deadlock-avoidance trees are tools to reason about dead-
lock-avoidance B-games.

Lemma 5 Given a finitely branching deadlock-avoidance B-game 〈G, cinit, W 〉
and the deadlock-avoidance tree TG with root node ninit, player 1 has a winning
strategy if label(ninit) = 1, otherwise player 2 has a spoiling strategy.

Proof. First, let us show that there exists a winning strategy for player 1 if
label(ninit) = 1. The underlying idea consists in showing that player 1 can force
plays to be such that we can associate to the configurations c of plays nodes n of
the reduced deadlock-avoidance tree constructed from TG such that conf(n) 4 c.
Since for any node n of the reduced deadlock-avoidance tree we have that conf(n)
has at least one successor, then by monotonicity, so are the configurations of
the plays. We conclude that the plays are infinite, hence winning for player 1.

Note that conf(ninit) 4 cinit. Suppose a prefix of a play c1 . . . ck with c1 =
cinit such that we can associate to each ci a node ni of the reduced deadlock-
avoidance tree such that conf(ni) 4 ci (1 ≤ i ≤ k). Let us show that player 1
can force the game to go into a configuration ck+1 such that we can associate a
node nk+1 with conf(nk+1) 4 ck+1. One of two cases hold:

• either conf(nk) ∈ C1. Let n = nk if nk is not a leaf of the deadlock-
avoidance tree, otherwise let n = n′ where n′ is an ancestor of nk such
that conf(n′) 4 conf(nk). Since label(n) = 1, we know that there exists
a successor n′′ of n in the reduced deadlock avoidance tree such that

9

conf(n) → conf(n′′) and by monotonicity there exists ck+1<conf(n′′) such
that ck → ck+1. So, player 1 can choose ck+1 such that we can associate
a node n′′ of the reduced deadlock-avoidance tree with conf(n′′) 4 ck+1.

• or conf(nk) ∈ C2. Let n = nk if nk is not a leaf of the deadlock-avoidance
tree, otherwise let n = n′ where n′ is an ancestor of nk such that conf(n′) 4

conf(nk). Since conf(n) 4 ck and label(n) = 1, we have, by definition of
B-games, that for every successor c′ of ck there exists a successor node n′

of n in the deadlock avoidance tree such that conf(n′) 4 c′ and the game
is not in a deadlock state.

Hence, in all the cases either the player 1 can force the game to go into a
configuration ck+1 such that there exists a node n of the reduced deadlock-
avoidance tree with conf(n) 4 ck+1 or player 2 is forced to go into such a
configuration ck+1.

Second, we prove that player 2 has a spoiling strategy if label(ninit) = 2 in
a similar manner. Indeed, by definition of the function label, player 2 can force
the plays to follow paths of the deadlock-avoidance tree where all the nodes are
labeled by 2. Since the leaf nodes of those paths have no successors, such plays
are finite. �

Theorem 5 The deadlock-avoidance problem is decidable for finitely branching
B-game structures – provided the successor relation and the wqo 4 are decidable.

Strategy Synthesis We now show how to construct a winning strategy for
deadlock avoidance games defined by a (finitely branching) B-game structure G

with initial configuration cinit such that the deadlock-avoidance tree of G has a
root node labeled by 1.

We construct a memory free deadlock-avoidance strategy S as follows: for
all configuration c ∈ C1 such that there exists a node n of the reduced deadlock-
avoidance tree such that l(n) 4 c, we define S(c) = c′ such that l(n) → l(n′),
i.e. n′ ∈ succ(n), and l(n′) 4 c′. Notice that if n is a leaf, then there exists
a predecessor node n′′ in the deadlock-avoidance tree with l(n′′) ≺ l(n), hence
l(n′′) ≺ c, and the node n is replaced by n′′.

5 B-VASS games

In this section, we show that the two general decidability results presented in the
previous section have applications in parametric systems analysis where systems
are abstracted with the so-called counting abstraction [GS92]. Parameterized
systems are systems where the number of instances of component types is not
known. Counting abstraction consists in only retaining, for each component
type, the number of instances that are in each possible (local) configuration.
Hence, if the number of component types and the number of (local) configu-
rations for each component is finite, then states of parametric systems can be
simply represented by integer vectors.

10

Before the introduction of B-VASS games, we recall the definition of VASS.
Given a set V of variables, F(V, D) with D ∈ {N, Z} denotes the set of

functions f : V → D that associate to each variable in V an element in D.

Definition 3 (VASS) A VASS is a tuple A = 〈L, l0, V,→〉 where L is a finite
set of locations, l0 ∈ L is the initial location, V is a set of variables (also called
counters) and →⊆ L ×F(V, N) ×F(V, Z) × L is the transition relation.

In the following, we assume that for any 〈l1, G, A, l2〉 ∈→, if A(v) < 0 then
G(v) + A(v) ≥ 0. This last condition is a syntactic condition that ensures the
counters of the VASS to be always non-negative.

Note that a VASS can be seen as a Petri net where places correspond to
counters, and Petri net transitions and edges correspond to VASS transitions.

A valuation of the variables in V is a function v ∈ F(V, N). A state s of a
VASS 〈L, l0, V,→〉 is a tuple 〈l, v〉 where l ∈ L and v is a valuation of the vari-
ables in V . We need some additional notions. A transition t = 〈l1, G, A, l2〉 ∈→
is firable from a state s = 〈l, v〉 if l = l1 and G(x) ≤ v(x) for all x ∈ V . Firing
t from s = 〈l1, v〉 leads to the state s′ = 〈l2, v′〉 (noted s →t s′) such that
v′(x) = v(x) + A(x) for all x ∈ V . Given a set Σ of synchronization labels, the
set A(Σ) of actions constructed from Σ is the set containing

• internal actions: a such that a ∈ Σ;

• rendez-vous: a! (send) and a? (receive) such that a ∈ Σ.

Definition 4 (Communicating VASS) A pair of communicating VASS is a
tuple 〈A1, A2, V, Σ,L〉 where A1 = 〈L1, l1, V,→1〉 and A2 = 〈L2, l2, V,→2〉 are
VASS, Σ is a set of synchronization labels, L : (→1 ∪ →2) → A(Σ) is a function
that labels the transitions of A1 and A2 by actions, and V is the set of counters
shared by A1 and A2.

Given a pair of communicating VASS 〈A1, A2, V, Σ,L〉, the underlying game
structure 〈C, C1, C2,→〉, called VASS game structure, is defined as follows: C1 =
{〈l1, l2, v, 1〉 | l1 ∈ L1, l2 ∈ L2, v ∈ F(V, N) is a valuation }, C2 = {〈l1, l2, v, 2〉 |
l1 ∈ L1, l2 ∈ L2, v ∈ F(V, N) is a valuation }, and →=→i ∪ →r. We define →i

and →r as follows:

• →i= {〈〈l1, l2, v, 1〉, 〈l′1, l
′
2, v

′, 2〉〉 | 〈l1, v〉 →t 〈l′1, v
′〉,L(t) is an internal ac-

tion, l′2 = l2} ∪ {〈〈l1, l2, v, 2〉, 〈l′1, l
′
2, v

′, 1〉〉 | 〈l2, v〉 →t 〈l′2, v
′〉,L(t) is an

internal action, l′1 = l1};

• →r= {〈〈l1, l2, v, 1〉, 〈l′1, l
′
2, v

′, 2〉〉 | 〈l1, v〉 →t1 〈l′1, v
′〉, 〈l2, v〉,→t2 〈l′2, v

′〉
and either L(t1) = a! and L(t2) = a?, or L(t1) = a? and L(t2) = a!}

We define the partial order ⊑ on the configurations of a pair of communi-
cating VASS 〈A1, A2, V, Σ,L〉 as follows: 〈l1, l2, v, i〉⊑〈l′1, l

′
2, v

′, i′〉 if and only if
i = i′, l1 = l′1, l2 = l′2 and v 4 v′ where v 4 v′ if and only if v(x) ≤ v′(x) for all
x ∈ V . It is easy to see that ⊑ is a wqo.

11

Lemma 6 Any VASS game structure is monotonic for ⊑.

Let us now define a subset of pairs of communicating VASS that defines
B-game structures.

Definition 5 (B-Communicating VASS) A B-pair of communicating VASS
is a pair of communicating VASS 〈A1, A2, V, Σ,L〉 where

1. A1 is a VASS with a transition relation →1 such that for all
〈l1, G, A, l2〉 ∈→1 labeled by a?, we have that G associates 0 to each
variables in V ; and

2. A2 is a VASS with a transition relation →2 such that for all
〈l1, G, A, l2〉 ∈→2, we have A ∈ F(V, N) and G associates 0 to each vari-
able x ∈ V .

The underlying intuition behind B-pairs of communicating VASS is that the
first player is a VASS, i.e. equivalent to a Petri net, and the second player is
a finite automata that communicates with player 1 with synchronization labels
(rendez-vous) or by incrementing the counters of player 1 (but all the choices
of player 2 are independent from the value of the unbounded counters). This
is usually acceptable in practice because the environment can in most practical
cases be abstracted as a finite state automaton.

Proposition 1 B-pairs of communicating VASS define finitely branching B-
game structures.

Proof. Lemma 6 states that VASS games structures, hence B-VASS game
structures, are monotonic for ⊑.

So, given a B-pair of communicating VASS G = 〈A1, A2, V, Σ,L〉 that de-
fines the game structure 〈C, C1, C2,→,⊑〉, it remains to prove that for all the
configurations c = 〈l1, l2, v, 2〉, c′ = 〈l′1, l

′
2, v

′, 2〉 ∈ C2 with c′⊑c, if we have
c → c′′, then there exists c′′′⊑c′′ with c′ → c′′′. In both cases of internal action
and rendez-vous, only increments are applied and no test on the variables are
evaluated when passing from c to c′′. Since c′⊑c, l1 = l′1 and l2 = l′2, hence
the same transition(s) can be fired from c′ and leads to a state c′′′ with c′′′⊑c′′. �

Using Proposition 1 we next show that the coverability problem and the
deadlock-avoidance problem are decidable for B-VASS game structure.

Theorem 6 The coverability and deadlock-avoidance game problems are de-
cidable for the class of B-VASS game structures. Moreover, we can solve the
strategy synthesis problem for coverability and deadlock-avoidance games.

Proof. It is easy to show that ⊑ is decidable and the successor relation
is computable for pairs of communicating VASS. Hence we conclude that the
deadlock-avoidance game problem is decidable and we can solve the strategy
synthesis problem for deadlock-avoidance games.

12

Moreover, upward-closed sets are classically represented by their set of min-
imal elements which are guaranteed to be finite when the considered order is a
wqo. It is easy to show that using such a representation for upward closed sets
of configurations of pairs of communicating VASS, we can compute CPre1,G(U)
for any upward closed set U , the equality test between upward closed sets and
the inclusion test of a configuration into an upward closed set are decidable (see
for instance [Van03] for more details). Hence, the coverability game problem is
decidable for B-VASS game structures. Moreover, since the successor relation is
computable, we can solve the strategy synthesis problem for coverability games.
�

In [Sam03], we showed the undecidability of game problems for a class equivalent
to B-pairs of communicating VASS where accepting conditions are inspired by
classical problems on VASS (and Petri nets). More precisely, we showed that we
cannot decide if player 1 has a winning strategy for games where the accepting
condition is defined either by a set of configurations to avoid, a LTL formula,
the counters that must remain bounded all along the plays or one counter that
must be bounded all along the plays.

Let us now show how Theorem 6 can be used in practice to reason about
parametric systems.

6 An application in parametric systems analysis

release(L1 , L2)?

get(L1)?
get(L2)?

get(L2)?
get(L1)?

Idle

s1 s2

s3

s4 s5

behav1?

behav2?

Figure 1: A process.

We present here a system embedded in a simple environment that can be
naturally modeled with a B-pair of communicating VASS. That system is com-
posed of processes that use two resources L1 and L2 with a mutually exclusive
policy, as shown in Figure 1. Processes have two possible behaviours: either
they take L1 and then L2, or they take first L2 and then L1. A resource man-
ager decides to which processes the resources are given. As the system can be
composed of any number of processes, we model the entire system by applying
a so-called counting abstraction, i.e. counters are used to count the number
of processes that are in each of their possible states: I counts the number of
processes that are in an idle state and xi counts the number of processes that
are in the state si for i such that 1 ≤ i ≤ 5.

13

The behaviour of the entire system is described by the VASS obtained by
composing the resource manager VASS and the Process VASS shown in Figure
2.

t1 : x3 ≥ 1→x′
3 =x3−1,I′

=I+1

t2 : x1 ≥ 1→x′
1 =x1−1, x′

2 =x2+1
t3 : x4 ≥ 1→x′

4 =x4−1, x′
5 =x5+1

t4 : x2 ≥ 1→x′
2 =x2−1,x′

3 =x3+1
t5 : x5 ≥ 1→x′

5 =x5−1, x′
3 =x3+1

{I′
=I−1,

x′
4 =x4+1}

{I′
=I−1

x′
1 =x1+1}

a?

b?

T1 T2

Resouce manager : Process :

t5

t4

t3

t2

t1

Environment :

{I′
=I+1}

Idle

b!

a!

21

Idle

{I′
=I+1}

Figure 2: An example.

The Resource Manager VASS manages the access to L1 and L2 and the
Process VASS manages the behaviours of processes; when it is in the state T1

processes access first to L1 and then to L2, the converse otherwise. The initial
state of the system is 〈〈L1L2〉, T1〉 with all the counters equal to 0 except I

which is equal to 1. As shown in Figure 2, in each state the resource manager
can chose non-deterministically between the subset of transitions {t1, . . . , t5}
that are enabled. Those transitions give accesses to shared resources.

The environment VASS describes a simple environment interacting with the
system: either it adds a new process to the system, send a signal (a or b) to
the system that changes the behaviour of the processes (those that have started
some treatments finish them first), or does nothing. It is easy to be convinced
that the pair of communicating VASS composed of the VASS describing the
system together with the environment VASS is a B-pair of communicating VASS.
Indeed, the environment VASS only increments counters and transitions that
synchronize with other ones do not test or modify counters.

The question that we ask is as follows. Can the resource manager resolve its
choices (when several transitions are enabled in the set {t1, . . . , t5}) and ensure
that no deadlock can occur no matter how the environment is behaving?

To answer this question and compute a strategy that will ensure this prop-
erty, we construct a deadlock avoidance tree as defined in section 4.2. By lemma
4.6, this construction is guaranteed to terminate and by lemma 4.7 we know that
this tree contains enough information to decide if the transition relation of the
resource manager can be restricted to ensure that the resulting system is dead-
lock free no matter how the environment behaves. From the deadlock avoidance

14

tree, we can extract the strategy, as explained at the end of section 4.2, that is
summarized in figure 3. For instance, when the resource manager has granted a
process the resource L1 (resp. L2), then it must grant this process the resource
L2 before granting the resource L2 (resp. L1) to another process. This strategy
is thus synthesized automatically using the results of this paper.

L1L2

L1L2

L1L2
{x′

1 =x1−1,

x′
2 =x2+1}

{x′
4 =x4−1,

x′
5 =x5+1}

{x′
2=x2−1,

x′
3 =x3+1}

{x′
5=x5−1,

x′
3 =x3+1}

{x′
3=x3−1,I′ =I+1}

L1L2

Figure 3: Strategy for the resource manager to avoid deadlocks.

References

[ABd03] P. A. Abdulla, A. Bouajjani, and J. d’Orso. Deciding monotonic
games. In in Proc. Intern. Workshop Computer Science Logic
(CSL’03), volume 2803, Vienna (Austria), 2003. Springer Verlag.

[ACJT96] P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General De-
cidability Theorems for Infinite-state Systems. In Proceedings of the
11th Annual Symposium on Logic in Comuter Science (LICS’96),
pages 313–321. IEEE Computer Society Press, 1996.

[AD94] R. Alur, D.L. Dill. A theory of timed automata. Theoretical Com-
puter Science 126:183–235, 1994.

[dAHM01] L. de Alfaro, T.A. Henzinger, and R. Majumdar. Symbolic al-
gorithms for infinite-state games. In CONCUR 01: Concurrency
Theory, Lecture Notes in Computer Science 2154, pages 536–550.
Springer-Verlag, 2001.

[Duf98] C. Dufourd. Réseaux de Petri avec reset/transfert : Décidabilité et
indécidabilité. PhD thesis, ENS de Cachan, 1998.

[FS01] A. Finkel and P. Schnoebelen. Well-structured transition systems
everywhere! Theoretical Computer Science, 256(1-2):63–92, 2001.

[GS53] D. Gale and F.M. Stewart. Infinite Games with Perfect Informa-
tion. In Contribution of the Theory Game II, Annals of Mathematics
Studies (28), pages 245–266, 1953.

15

[GS92] S. M. German and A. P. Sistla. Reasoning about Systems with Many
Processes. Journal of ACM, 39(3):675–735, 1992.

[Hig52] G. Higman. Ordering by divisibility in abstract algebras. Proc.
London Math. Soc., 3(2):326–336, 1952.

[Min67] N.M. Minsky. Finite and Infinite Machines. Englewood Cliffs, N.J.,
Prentice-Hall, 1967.

[MPS95] O. Maler, A. Pnueli, J. Sifakis. On the synthesis of discrete con-
trollers for timed systems. In Proc. 12th Symposium on Theoretical
Aspects of Computer Science (STACS’95), Lecture Notes in Com-
puter Science 900, pages 229-242, 1995.

[Sam03] M. Samuelides. Jeux dans un réseau de Petri. Mémoire de DEA,
Ecole Normale Suprieure de Cachan, France, 2003.

[RSV03] J.-F. Raskin, M. Samuelides, L. Van Begin. Petri games are mono-
tonic but difficult to decide. Technical report 508, Université Libre
de Bruxelles, Belgium.

[Van03] L. Van Begin Efficient Verification of Counting Abstractions for
Parametric Systems. Ph.D. thesis, Université Libre de Bruxelles,
2003.

[Wal96] I. Walukiewicz. Pushdown processes: games and model checking. In
Proceeding of the 8th International Conference on Computer-Aided
Verification (CAV’96), Lecture Notes in Computer Science 1102,
pages 62–75, 1996.

16

