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It has been recently shown that monotonicity is not sufficient to obtain decidability results for two-player games. However, positive results can be obtained on restricted subclasses of monotonic two-player games. In this paper, we identify and study a subclass of monotonic two-player games that is useful for analysis of parametric (open-)systems that can be modeled by using counting abstractions. Although the reachability game problem is undecidable in general for that subclass, we identify two interesting and decidable problems and show how to apply those results in parametric system analysis.

Introduction

Model-checking methods were originally proposed for the automatic verification of critical systems that have natural finite-state abstractions. Nevertheless, much recent interest has concerned the application of model-checking methods to infinite-state systems. Several interesting classes of infinite state systems have been shown decidable. For example, Alur et al. [START_REF] Alur | A theory of timed automata[END_REF] showed that timed automata have a decidable reachability problem. Finkel et al. in [START_REF] Finkel | Well-structured transition systems everywhere![END_REF], and Abdulla et al. in [START_REF] Abdulla | General Decidability Theorems for Infinite-state Systems[END_REF] have shown that infinite, but monotonic, transition systems (also called well-structured transition systems) have a decidable coverability problem. For instance, Petri nets and broadcast protocols define monotonic transition systems.

Timed automata, Petri nets, and broadcast protocols are usually used to model reactive systems embedded in a critical environment. But those formalisms define transition systems that are semantics models for closed systems.

In closed systems, we do not distinguish between the reactive system and its environment. So the properties that we can verify on transition systems are 1 properties in which we cannot distinguish between the role of the reactive system and the role of the environment. If we want to distinguish the role of the reactive system and the environment in which it is embedded, we can use games played on state spaces.

Usual transition systems can be considered as one-player games on which only closed-system verification problems can be formulated. The control and modular verification problems of systems can be studied as two-player games played on state spaces, where one player, say player 1, represents the reactive system and the other player, say player 2, represents the environment. If the state space on which the game is played is infinite then we have to solve infinitestate games. Infinite-state games have not yet been studied as intensively as traditional verification problems on infinite-state transition systems. Nevertheless, recently there have been several interesting works in that direction. Here are some examples. In [START_REF] Maler | On the synthesis of discrete controllers for timed systems[END_REF], Maler et al. study how to solve games defined by timed automata. In [START_REF] Walukiewicz | Pushdown processes: games and model checking[END_REF], Walukiewicz studies how to solve infinite games defined by pushdown automata. In [START_REF] De Alfaro | Symbolic algorithms for infinite-state games[END_REF], Henzinger et al. study symbolic algorithms to solve general infinite-state games.

In this paper, we study two-player games played on infinite but monotonic game structures. In particular, we study games that are useful to study parametric systems. Parametric systems are systems where the number of instances of component types is not fixed a priori. In general, we are interested to verify such systems for any number of instances. The notion of counting abstraction [START_REF] German | Reasoning about Systems with Many Processes[END_REF] is a powerful tool to reason on parametric systems and consists in only retaining, for each component type, the number of instances that are in each possible (local) configuration. Hence, if the number of component types and the number of (local) configurations for each component is finite, then states of parametric systems can be abstracted by integer vectors. In that context, parametric systems are modeled as vector addition systems with states (VASS for short). Here, we want to consider parametric systems as open systems over which game properties can be formulated and verified. For that, we identify an interesting subclass of monotonic game structures for which the coverability game and the deadlockavoidance game problems are decidable. A restricted form of two-player VASS systems define game structures that fall into that class. We illustrate the interest of our decidable game structures with an example from parametric systems.

Related works

Recently, Abdulla et al. [START_REF] Abdulla | Deciding monotonic games[END_REF] have studied the class of monotonic game structures. On the negative side, they have shown that the reachability problem is undecidable on the general class of monotonic game structures. On the positive side, they have identified a subclass of monotonic game structures on which the reachability problem is decidable. The subclass that they have identified is called the class of downward closed game structures. Downward-closed game structures are game structures where at least one of the two players has downward closed behaviors, i.e. if one of the players can reach a configuration c ′ from a configuration c it can also reach c ′ from all the configurations than are greater or equal to c. This is relevant for example when one player may lose messages in a lossy channel system. The interest of this model is thus clear in the context of communication protocols. Unfortunately, the positive results of their paper has no direct and natural application in the context of counting abstractions. The subclass of monotonic game structures that we identify in this paper and for which we obtain (other) interesting decidability results is different from the class of downward closed game structures. Our class of monotonic game structure, contrary to the class of downward closed monotonic game structure, has direct and natural applications to the game analysis of counting abstractions. Our positive results are thus new and important in the context of automatic game-based analysis of parametric systems.

Structure of the paper

In Section 2, we recall preliminaries, define monotonic game structures, reachability, coverability and deadlock avoidance games and their associated decision problems. In Section 3, we recall some well-known results for solving reachability games. In Section 4, we identify a subclass of monotonic game structures for which coverability game and deadlock-avoidance game problems are decidable. In section 5, we show how a subclass of open VASS systems can be used to define monotonic game structures that fall into the decidable subclass. We finish that section by illustrating the interest of this class for the game analysis of parametric systems abstracted using the counting abstraction.

Preliminaries

Well quasi-orderings A well quasi ordering on the elements of a set S, wqo for short, is a reflexive and transitive relation such that for any infinite sequence s 0 s 1 . . . s n . . . of elements in S, there exist indices i and j, such that i < j and s i s j . In the following, we note s i ≺ s j if s i s j but s j s i . For example, it is well-known that the quasi order ⊑⊆ N k × N k defined as

m 1 , m 2 , . . . , m k ⊑ m ′ 1 , m ′ 2 , . . . , m ′ k if m i ≤ m ′ i
for any 1 ≤ i ≤ k is a wqo. In this paper, we will concentrate on wqo. Given a wqo over the elements of S, a set U ⊆ S is called an -upward closed set if for any s 1 ∈ U , for any s 2 ∈ S such that s 1 s 2 , we have that s 2 ∈ U . We now recall one useful result from [START_REF] Higman | Ordering by divisibility in abstract algebras[END_REF]:

Lemma 1 Let S be a set of elements, ⊆ S × S be a wqo, and S 0 S 1 . . . S n . . . be an infinite sequence of -upward closed subsets of S such that S i ⊆ S i+1 for any i ≥ 0, then there exists j ≥ 0 such that for any k ≥ j, S j = S k . Two-player game structures A (two-player) game structure G is a tuple C, C 1 , C 2 , → where C is a (potentially infinite) set of configurations partitioned into the set of player 1 (also called the protagonist) configurations C 1 and the set of player 2 (also called the antagonist) configurations C 2 (that is

C 1 ∩C 2 = ∅ and C = C 1 ∪ C 2 ), and →⊆ (C 1 × C 2 ) ∪ (C 2 × C 1 ) is the transition relation.
In the following, we note c → c ′ when (c, c ′ ) ∈→. A play P in the game structure G from a configuration c is either an infinite sequence of configurations c 0 c 1 . . . c n . . . such that c 0 = c and c i → c i+1 for all i ≥ 0, or a finite maximal sequence of configurations c 0 c 1 . . . c n such that c 0 = c and for all i, 0 ≤ i < n, we have that c i → c i+1 , and there does not exist c ∈ C such that c n → c. We write lg(P ) to denote the length of the play P , which is equal to the number of configurations in P , if P is finite, and is equal to +∞ if P is infinite. Let G be a game structure and c be a configuration of G, we note P (G, c) for the set of all plays in G starting from configuration c. A winning condition W for a game structure G and a configuration c is a subset W ⊆ P (G, c), that is: a subset of plays starting in c. A game is a triple G, c, W where G is a game structure, c is a configuration of G, and W is the subset of plays starting in c. During a play, players apply strategies. Let C * denotes finite sequences of configurations from set of configurations C. A strategy for player i ∈ {1, 2} (i-strategy for short) is a partial function S :

C * → C such that dom(S) = {c 1 c 2 . . . c n | c n ∈ C i } and if we have S(c 1 c 2 . . . c n ) = c ′ , c n → c ′ . A strategy is memory free if it is such that for any c 1 c 2 . . . c n ∈ C * , if S(c 1 c 2 . . . c n ) is defined then S(c 1 c 2 . . . c n ) = S(c n ),
that is the strategy only depends on the current configuration and not on the history of the play. The outcome of a player-i strategy is defined as follows (i ∈ {1, 2}). Let S be a i-strategy, the outcome of S in configuration c is the set of all plays P = c 0 c 1 . . . c n . . . ∈ P (G, c), noted Outcome i (G, c, S), such that: for any j, 0 ≤ j < lg(P ), we have that if c j ∈ C i and S(c 0 c 1 . . . c j ) is defined then c j+1 = S(c 0 c 1 . . . c j ). So, the outcome of a i-strategy S from a configuration c is the set of plays starting in c that are generated when player i plays with strategy S. In the sequel of the paper, we always suppose that player 1 is the protagonist and tries to win the game while player 2 is the antagonist and tries to prevent player 1 from winning the game. We say that player 1 has a winning strategy for the game G, c, W if Outcome 1 (G, c, S) ⊆ W for some S. We say that player 2 has a spoiling strategy for the game G, c, W if Outcome 2 (G, c, S) ∩ W = ∅ for some S. Notice that player 1 has a winning strategy if and only if player 2 does not have a spoiling strategy for the games we will consider in this paper [START_REF] Gale | Infinite Games with Perfect Information. In Contribution of the Theory Game II[END_REF].

Monotonic game structures

In this paper, we concentrate our attention on a class of infinite game structures, called monotonic game structures, introduced independently in [START_REF] Abdulla | Deciding monotonic games[END_REF] and in [START_REF] Raskin | Petri games are monotonic but difficult to decide[END_REF].

Definition 1 (Monotonicity) A game structure C, C 1 , C 2 , → is monotonic for a wqo ⊆ (C 1 × C 1 ) ∪ (C 2 × C 2 ) if the following condition is verified: for any c 1 , c 2 ∈ C, if c 1 → c 2 , then for all c 3 ∈ C, such that c 1 c 3 , there exists c 4 ∈ C with c 3 → c 4 and c 2 c 4 . Given a game structure G = C, C 1 , C 2 , → and a wqo ⊆ (C 1 ×C 1 )∪(C 2 ×C 2 ) such that G is monotonic for , then we write G = C, C 1 , C 2 , →,
to underline that G is a monotonic game for .

Games and associated decision and synthesis problems

In this paper, we concentrate on two important games: reachability games and deadlockavoidance games. In a reachability game, player 1 tries to force the game into a given set of configurations (as a consequence player 2 tries to avoid that the game enters this set of configurations). In a deadlock-avoidance game, player 1 tries to avoid the set of deadlock configurations (as a consequence player 2 tries to force the game into the set of deadlock configurations). We now give a formal definition to those two games.

A reachability game is defined by a triple G, c, F where G is a game structure with set of configurations C, c ∈ C is a configuration of G, and F ⊆ C is a subset of configurations, called the winning configurations. The triple G, c, F defines the game G, c, W where W is the set of plays starting in c that contain at least one configuration of F . The reachability game problem is defined as follows: given a reachability game defined by a triple G, c, F , does player 1 have a winning strategy for this game?

When the underlying game structure is monotonic for a given wqo , it is of interest to consider a special class of reachability games called coverability games. A coverability game is defined by a reachability game G, c, F where G is a monotonic game structure for a given wqo on the configurations of G, c is a configuration of G, and F is an upward closed set of configurations for the wqo . The coverability game problem is defined as follows: given a coverability game defined by a triple G, c, F , does player 1 have a winning strategy for this game ?

Besides reachability games, we study in this paper so-called deadlock-avoidance games. In a deadlock-avoidance game, player 1 tries to avoid that the play enters the set of deadlock configurations, i.e. configurations that have no outgoing transitions. Formally, a deadlock-avoidance game is a game G, c, W where W is the set of all the infinite plays of G starting in c. The deadlock-avoidance problem is defined as follows: Given a deadlock-avoidance game G, c, W , does the player 1 have a winning strategy for this game?

Besides solving decision problems on infinite game structures, we are also interested in strategy synthesis problems. Given a game for which player 1 has a winning strategy, solving the strategy synthesis problem consists in constructing a winning strategy for this game.

Solving reachability and deadlock-avoidance games -Known results

Given a set of configurations S ⊆ C of a game G, we define the following set: CPre 1,G (S) is the set of configurations where player 1 has a one step strategy to reach S, that is CPre 1,G (S) equals

{c ∈ C 1 | ∃c ′ ∈ S : c → c ′ } ∪{c ∈ C 2 | ∃c ′ ∈ S : c → c ′ and ∀c ′ ∈ C : c → c ′ implies c ′ ∈ S}. We define CPre 0 1,G (S) as S, for any n ∈ N, CPre n+1 1,G (S) as CPre 1,G (CPre n 1,G (S)) and CPre * 1,G (S) = n∈N CPre n 1,G (S)
. It is well-known, see for example [START_REF] De Alfaro | Symbolic algorithms for infinite-state games[END_REF], that the following theorem holds:

Theorem 1 (From [START_REF] De Alfaro | Symbolic algorithms for infinite-state games[END_REF]) For any reachability game G, c, F , we have that player 1 has a winning strategy for the game G, c, F iff c ∈ CPre * 1,G (F ).

Note that the operator CPre 1,G is monotonic w.r.t. the inclusion relation between sets of configurations. Unfortunately, this is not sufficient to ensure the decidability of reachability problems on monotonic game structures (the iteration of CPre may not stabilize). In [START_REF] Abdulla | Deciding monotonic games[END_REF], Abdulla, Bouajjani et al. have shown the undecidability of both reachability and coverability problems on monotonic game structures. We also proved those results independently in [START_REF] Samuelides | Jeux dans un réseau de Petri[END_REF][START_REF] Raskin | Petri games are monotonic but difficult to decide[END_REF].

Furthermore, by using a construction similar to those presented in [ABd03, RSV03, Sam03], we can easily reduce the termination problem for two counter machines to the deadlock-avoidance problem for (a subclass of) monotonic games. Since the termination problem is undecidable [START_REF] Minsky | Finite and Infinite Machines[END_REF], we deduce the undecidability of the deadlock-avoidance problem for monotonic games.

Theorem 2 The reachability, coverability and deadlock-avoidance game problems are undecidable for the class of monotonic games.

B-game structures

As shown in the previous section, monotonic games are not satisfactory from a computational point of view. In this section, we identify a new interesting subclass of monotonic games that enjoys decidability results for the coverability and deadlock-avoidance game problems.

Remember that in practice, player 1 models the behaviours and decisions that the system can take and player 2 describes the environment in which the system is embedded. In a lot of practical cases, the whole set of behaviours of the environment can be modelled using a finite state structure. Based on this fact, we define here a subclass of monotonic game structures, called B-game structures1 , where the environment respects additional properties.

Definition 2 (B-game structures) A B-game structure G is a monotonic game structure C, C 1 , C 2 , →, with the following additional property: for any c 1 , c 2 ∈ C 2 , c 3 ∈ C 1 if c 1 → c 3 and c 2 c 1 then there exists c 4 ∈ C 1 such that c 2 → c 4 and c 4 c 3 .

As we will see in the following, particular B-game structures correspond to game structures where player 1 (the system) is equivalent to a VASS (counter system) and player 2 (the environment) is equivalent to a finite state automaton.

Since the reachability problem for monotonic systems is undecidable in general (for instance, the reachability between two markings is undecidable for several monotonic extensions of Petri nets, see [START_REF] Dufourd | Réseaux de Petri avec reset/transfert : Décidabilité et indécidabilité[END_REF] for details), the following theorem holds.

Theorem 3 The reachability game problem is undecidable for B-games.

Proof. Sketch. We reduce the reachability problem for monotonic extensions of Petri nets to the reachability game problem for B-games as follows. Given an extended Petri net N , the configurations of the game are pairs m, i where m is a marking of N and i ∈ {1, 2} is the identity of the current player, transitions from configurations m, 1 are m, 1 → m ′ , 2 such that we have m → m ′ in N , i.e. the behaviours of player 1 are defined by the whole set of transitions of N . From the configurations m, 2 , we have the only transition m, 2 → m, 1 . Hence, each play of this game corresponds to an execution of N and we conclude that m is reachable from m 0 in N if and only if player 1 has a strategy to reach m, 1 from m 0 , 1 . Moreover, if we define such that m 1 , i m 2 , i if and only if m 1 ⊑ m 2 where ⊑ is the classical wqo on markings of (extended) Petri nets, it is easy to show that the game is a B-game since player 2 leaves the configurations of N unchanged. Since the reachability problem is undecidable for several extensions of Petri nets, we conclude that the reachability game problem is undecidable for B-games.

On the other hand, we will show in the next two sub-sections that the coverability and deadlock-avoidance problems are decidable on B-game structures.

Coverability games are decidable on B-game structures

In order to apply lemma 1, we next prove that, contrary to (general) monotonic game structure, the CPre operator associated to B-game structures returns an upward-closed set of configurations when applied to an upward-closed set of configurations. This is the key to obtain the decidability of the coverability problem.

Lemma 2 Let G be a B-game structure C, C 1 , C 2 , →, , let U ⊆ C be anyupward-closed set of configurations of G, then CPre 1,G (U ) is an -upward-closed set of configurations.

Proof. Remember that CPre 1,G (U ) = {c ∈ C 1 | ∃c ′ ∈ U : c -→ c ′ } ∪ {c ∈ C 2 | ∃c ′ ∈ U : c -→ c ′ and ∀c ′ ∈ C : c → c ′ implies c ′ ∈ U }. Let c ∈ CPre 1,G (U )
and c 0 a configuration such that c c 0 . We will show that c 0 ∈ CPre 1,G (U ). We study two cases. Case 1: c ∈ C 1 . There exists c ′ ∈ U such that c -→ c ′ . Since G is monotonic and c c 0 , there exists

c ′ 0 ∈ C with c 0 -→ c ′ 0 and c ′ c ′ 0 . c ′ 0 ∈ U because U is upward closed and so c 0 ∈ CPre 1,G (U ). Case 2: c ∈ C 2 . There exists c ′ ∈ U such that c -→ c ′ and for all c ′ ∈ C, c -→ c ′ implies c ′ ∈ U . Since G is monotonic there exists c ′ 0 ∈ C with c 0 -→ c ′ 0 and c ′ c ′ 0 . Let c ′ 0 a configuration such that c 0 -→ c ′ 0 . Moreover, since G is a B-game and c c 0 , there exists c ′ ∈ C with c -→ c ′ and c ′ c ′ 0 . c -→ c ′ implies c ′ ∈ U . U is upward closed, so c ′ 0 ∈ U and c 0 ∈ CPre 1,G ( 
U ). These two cases allow us to conclude that CPre 1,G (U ) is upward closed.

The previous lemma together with lemma 1 allow us to state the following result about B-game structures:

Lemma 3 Let G be a B-game structure C, C 1 , C 2 , →,
and let F ⊆ C be an -upward-closed set, the sequence S 0 S 1 . . . S n . . . of sets of configurations defined by S 0 = F , and for any i ≥ 1, S i = l=i l=0 CPre l 1,G (F ), is such that there exists j ≥ 0 such that for any k ≥ j, S k = S k+1 .

This last lemma means that the iteration of CPre 1,G operator starting from an -upward closed set stabilizes after a finite number of steps. So, if CPre 1,G (U ) can be effectively computed for any upward-closed U , the equality test between two upward closed sets and the inclusion test of a configuration into an upward closed set are decidable, then the coverability problem is decidable. In the next subsection, we define B-VASS game structures for which we can effectively compute CPre 1,G (U ) for any upward-closed set U and decide the equality and inclusion tests.

Theorem 4 The coverability problem is decidable for B-game structures -provided that CPre 1,G (U ) is computable for any upward-closed set U , the equality test between two upward closed sets and the inclusion test of a configuration into an upward closed set are decidable.

Strategy synthesis

We have shown the decidability of the coverability problem for B-game structures G such that: (i) for any upward closed set U we can compute CPre 1,G (U ); (ii) given two upward closed sets U 1 and U 2 we can decide if U 1 = U 2 ; and (iii) given an upward closed set U and a configuration c, we can decide if c ∈ U .

We now show that we can automatically construct winning strategies for those games, provided that for all configuration c and upward closed set U , if

{c ′ | c → c ′ } ∩ U = ∅ then we can compute at least one c ′ ∈ U such that c → c ′ .
Let (G, c, U ) be a coverability game defined by the B-game structure G with the wqo as defined in Definition 2, and U be an -upward closed set of configurations. We assume that c ∈ CPre * 1,G (U ). Then we can construct a winning memory free 1-strategy S with the following algorithm. For any configuration c ′ of G, we define S(c ′ ) as follows. If c ′ ∈ U we do not need to define

S(c ′ ). If c ′ ∈ CPre * 1,G (U ) \ U , we compute CPre n 1,G (U ) where n is the smallest integer such that c ′ ∈ CPre n 1,G (U ). We choose S(c ′ ) among {c ′′ ∈ CPre n-1 1,G (U ) | c ′ → c ′′ }.

Deadlock-avoidance games are decidable on B-games

The deadlock-avoidance tree associated to a monotonic game structure G with initial configuration c init , noted T G , is the smallest finite prefix of the unfolding of G starting in c init such that any leaf n of T G is such that either (assume that conf(n) is the configuration associated to the node n)

1. the set {c | conf(n) → c} is empty; or 2. there exists an ancestor n ′ of n in T G such that conf(n ′ ) conf(n).

Lemma 4 A deadlock-avoidance tree exists for any finitely branching monotonic game structure.

Proof. Suppose that such a tree does not exist for a monotonic finitely branching game structure G with initial configuration c init . Then, there exists an infinite play c 1 c 2 . . . with c 1 = c init such that there is no i < j with c i c j . However, since is a wqo, such a play does not exist from which we derive a contradiction. Given a deadlock avoidance tree T G with set of nodes N , transition relation succ and labeling function conf : N → C, the function label : N → {1, 2} is a labeling function that satisfies the following properties :

1. for each leaf n of T G , label(n) = 2 if conf(n) has no successor in G. Otherwise label(n) = 1; 2. for each node n of T G that is not a leaf, if conf(n) ∈ C 1 then label(n) = 1 if there exists n ′ ∈ succ(n) such that label(n ′ ) = 1, otherwise label(n) = 2. If conf(n) ∈ C 2 , then label(n) = 1 if for all n ′ ∈ succ(n): label(n ′ ) = 1, otherwise label(n) = 2.
The reduced deadlock-avoidance tree of T G is a tree constructed from T G by removing all the sub-trees rooted by nodes n such that label(n) = 2.

We now show that deadlock-avoidance trees are tools to reason about deadlock-avoidance B-games.

Lemma 5 Given a finitely branching deadlock-avoidance B-game G, c init , W and the deadlock-avoidance tree T G with root node n init , player 1 has a winning strategy if label(n init ) = 1, otherwise player 2 has a spoiling strategy.

Proof. First, let us show that there exists a winning strategy for player 1 if label(n init ) = 1. The underlying idea consists in showing that player 1 can force plays to be such that we can associate to the configurations c of plays nodes n of the reduced deadlock-avoidance tree constructed from T G such that conf(n) c. Since for any node n of the reduced deadlock-avoidance tree we have that conf(n) has at least one successor, then by monotonicity, so are the configurations of the plays. We conclude that the plays are infinite, hence winning for player 1.

Note that conf(n init ) c init . Suppose a prefix of a play c 1 . . . c k with c 1 = c init such that we can associate to each c i a node n i of the reduced deadlockavoidance tree such that conf(n i ) c i (1 ≤ i ≤ k). Let us show that player 1 can force the game to go into a configuration c k+1 such that we can associate a node n k+1 with conf(n k+1 ) c k+1 . One of two cases hold:

• either conf(n k ) ∈ C 1 . Let n = n k if n k is not a leaf of the deadlock- avoidance tree, otherwise let n = n ′ where n ′ is an ancestor of n k such that conf(n ′ ) conf(n k ).
Since label(n) = 1, we know that there exists a successor n ′′ of n in the reduced deadlock avoidance tree such that conf(n) → conf(n ′′ ) and by monotonicity there exists c k+1 conf(n ′′ ) such that c k → c k+1 . So, player 1 can choose c k+1 such that we can associate a node n ′′ of the reduced deadlock-avoidance tree with conf(n ′′ ) c k+1 .

• or conf(n k ) ∈ C 2 . Let n = n k if n k is not a leaf of the deadlock-avoidance tree, otherwise let n = n ′ where n ′ is an ancestor of n k such that conf(n ′ ) conf(n k ). Since conf(n) c k and label(n) = 1, we have, by definition of B-games, that for every successor c ′ of c k there exists a successor node n ′ of n in the deadlock avoidance tree such that conf(n ′ ) c ′ and the game is not in a deadlock state.

Hence, in all the cases either the player 1 can force the game to go into a configuration c k+1 such that there exists a node n of the reduced deadlockavoidance tree with conf(n) c k+1 or player 2 is forced to go into such a configuration c k+1 .

Second, we prove that player 2 has a spoiling strategy if label(n init ) = 2 in a similar manner. Indeed, by definition of the function label, player 2 can force the plays to follow paths of the deadlock-avoidance tree where all the nodes are labeled by 2. Since the leaf nodes of those paths have no successors, such plays are finite.

Theorem 5 The deadlock-avoidance problem is decidable for finitely branching B-game structures -provided the successor relation and the wqo are decidable.

Strategy Synthesis

We now show how to construct a winning strategy for deadlock avoidance games defined by a (finitely branching) B-game structure G with initial configuration c init such that the deadlock-avoidance tree of G has a root node labeled by 1.

We construct a memory free deadlock-avoidance strategy S as follows: for all configuration c ∈ C 1 such that there exists a node n of the reduced deadlockavoidance tree such that l(n) c, we define S(c) = c ′ such that l(n) → l(n ′ ), i.e. n ′ ∈ succ(n), and l(n ′ ) c ′ . Notice that if n is a leaf, then there exists a predecessor node n ′′ in the deadlock-avoidance tree with l(n ′′ ) ≺ l(n), hence l(n ′′ ) ≺ c, and the node n is replaced by n ′′ .

B-VASS games

In this section, we show that the two general decidability results presented in the previous section have applications in parametric systems analysis where systems are abstracted with the so-called counting abstraction [START_REF] German | Reasoning about Systems with Many Processes[END_REF]. Parameterized systems are systems where the number of instances of component types is not known. Counting abstraction consists in only retaining, for each component type, the number of instances that are in each possible (local) configuration. Hence, if the number of component types and the number of (local) configurations for each component is finite, then states of parametric systems can be simply represented by integer vectors.

Lemma 6 Any VASS game structure is monotonic for ⊑.

Let us now define a subset of pairs of communicating VASS that defines B-game structures.

Definition 5 (B-Communicating VASS) A B-pair of communicating VASS is a pair of communicating VASS A 1 , A 2 , V, Σ, L where 1. A 1 is a VASS with a transition relation → 1 such that for all l 1 , G, A, l 2 ∈→ 1 labeled by a?, we have that G associates 0 to each variables in V ; and 2. A 2 is a VASS with a transition relation → 2 such that for all l 1 , G, A, l 2 ∈→ 2 , we have A ∈ F(V, N) and G associates 0 to each variable x ∈ V .

The underlying intuition behind B-pairs of communicating VASS is that the first player is a VASS, i.e. equivalent to a Petri net, and the second player is a finite automata that communicates with player 1 with synchronization labels (rendez-vous) or by incrementing the counters of player 1 (but all the choices of player 2 are independent from the value of the unbounded counters). This is usually acceptable in practice because the environment can in most practical cases be abstracted as a finite state automaton.

Proposition 1 B-pairs of communicating VASS define finitely branching Bgame structures.

Proof. Lemma 6 states that VASS games structures, hence B-VASS game structures, are monotonic for ⊑.

So, given a B-pair of communicating VASS G = A 1 , A 2 , V, Σ, L that defines the game structure C, C 1 , C 2 , →, ⊑ , it remains to prove that for all the configurations c = l 1 , l 2 , v, 2 , c ′ = l ′ 1 , l ′ 2 , v ′ , 2 ∈ C 2 with c ′ ⊑c, if we have c → c ′′ , then there exists c ′′′ ⊑c ′′ with c ′ → c ′′′ . In both cases of internal action and rendez-vous, only increments are applied and no test on the variables are evaluated when passing from c to c ′′ . Since c ′ ⊑c, l 1 = l ′ 1 and l 2 = l ′ 2 , hence the same transition(s) can be fired from c ′ and leads to a state c ′′′ with c ′′′ ⊑c ′′ .

Using Proposition 1 we next show that the coverability problem and the deadlock-avoidance problem are decidable for B-VASS game structure.

Theorem 6 The coverability and deadlock-avoidance game problems are decidable for the class of B-VASS game structures. Moreover, we can solve the strategy synthesis problem for coverability and deadlock-avoidance games.

Proof. It is easy to show that ⊑ is decidable and the successor relation is computable for pairs of communicating VASS. Hence we conclude that the deadlock-avoidance game problem is decidable and we can solve the strategy synthesis problem for deadlock-avoidance games.

Moreover, upward-closed sets are classically represented by their set of minimal elements which are guaranteed to be finite when the considered order is a wqo. It is easy to show that using such a representation for upward closed sets of configurations of pairs of communicating VASS, we can compute CPre 1,G (U ) for any upward closed set U , the equality test between upward closed sets and the inclusion test of a configuration into an upward closed set are decidable (see for instance [START_REF] Van | Begin Efficient Verification of Counting Abstractions for Parametric Systems[END_REF] for more details). Hence, the coverability game problem is decidable for B-VASS game structures. Moreover, since the successor relation is computable, we can solve the strategy synthesis problem for coverability games.

In [START_REF] Samuelides | Jeux dans un réseau de Petri[END_REF], we showed the undecidability of game problems for a class equivalent to B-pairs of communicating VASS where accepting conditions are inspired by classical problems on VASS (and Petri nets). More precisely, we showed that we cannot decide if player 1 has a winning strategy for games where the accepting condition is defined either by a set of configurations to avoid, a LTL formula, the counters that must remain bounded all along the plays or one counter that must be bounded all along the plays.

Let us now show how Theorem 6 can be used in practice to reason about parametric systems.

6 An application in parametric systems analysis We present here a system embedded in a simple environment that can be naturally modeled with a B-pair of communicating VASS. That system is composed of processes that use two resources L 1 and L 2 with a mutually exclusive policy, as shown in Figure 1. Processes have two possible behaviours: either they take L 1 and then L 2 , or they take first L 2 and then L 1 . A resource manager decides to which processes the resources are given. As the system can be composed of any number of processes, we model the entire system by applying a so-called counting abstraction, i.e. counters are used to count the number of processes that are in each of their possible states: I counts the number of processes that are in an idle state and x i counts the number of processes that are in the state s i for i such that 1 ≤ i ≤ 5. tree, we can extract the strategy, as explained at the end of section 4.2, that is summarized in figure 3. For instance, when the resource manager has granted a process the resource L 1 (resp. L 2 ), then it must grant this process the resource L 2 before granting the resource L 2 (resp. L 1 ) to another process. This strategy is thus synthesized automatically using the results of this paper. 
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Figure 1 :

 1 Figure 1: A process.

Figure 3 :

 3 Figure 3: Strategy for the resource manager to avoid deadlocks.

We call them B-game structure because one of the two players has access only to a bounded amount of information to make its decisions.
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Before the introduction of B-VASS games, we recall the definition of VASS. Given a set V of variables, F(V, D) with D ∈ {N, Z} denotes the set of functions f : V → D that associate to each variable in V an element in D.

Definition 3 (VASS) A VASS is a tuple A = L, l 0 , V, → where L is a finite set of locations, l 0 ∈ L is the initial location, V is a set of variables (also called counters) and →⊆ L × F(V, N) × F(V, Z) × L is the transition relation.

In the following, we assume that for any l 1 , G, A, l 2 ∈→, if A(v) < 0 then G(v) + A(v) ≥ 0. This last condition is a syntactic condition that ensures the counters of the VASS to be always non-negative.

Note that a VASS can be seen as a Petri net where places correspond to counters, and Petri net transitions and edges correspond to VASS transitions.

A valuation of the variables in V is a function v ∈ F(V, N). A state s of a VASS L, l 0 , V, → is a tuple l, v where l ∈ L and v is a valuation of the variables in V . We need some additional notions. A transition t = l 1 , G, A, l 2 ∈→ is firable from a state s = l, v if l = l 1 and G(x) ≤ v(x) for all x ∈ V . Firing t from s = l 1 , v leads to the state s ′ = l 2 , v ′ (noted s → t s ′ ) such that v ′ (x) = v(x) + A(x) for all x ∈ V . Given a set Σ of synchronization labels, the set A(Σ) of actions constructed from Σ is the set containing

• internal actions: a such that a ∈ Σ;

• rendez-vous: a! (send) and a? (receive) such that a ∈ Σ.

is a function that labels the transitions of A 1 and A 2 by actions, and V is the set of counters shared by A 1 and A 2 .

Given a pair of communicating VASS A 1 , A 2 , V, Σ, L , the underlying game structure C, C 1 , C 2 , → , called VASS game structure, is defined as follows:

) is a valuation }, and →=→ i ∪ → r . We define → i and → r as follows:

We define the partial order ⊑ on the configurations of a pair of communicating VASS A 1 , A 2 , V, Σ, L as follows:

The behaviour of the entire system is described by the VASS obtained by composing the resource manager VASS and the Process VASS shown in Figure 2.

Resouce manager : Process :

Environment : The Resource Manager VASS manages the access to L 1 and L 2 and the Process VASS manages the behaviours of processes; when it is in the state T 1 processes access first to L 1 and then to L 2 , the converse otherwise. The initial state of the system is L 1 L 2 , T 1 with all the counters equal to 0 except I which is equal to 1. As shown in Figure 2, in each state the resource manager can chose non-deterministically between the subset of transitions {t 1 , . . . , t 5 } that are enabled. Those transitions give accesses to shared resources.

The environment VASS describes a simple environment interacting with the system: either it adds a new process to the system, send a signal (a or b) to the system that changes the behaviour of the processes (those that have started some treatments finish them first), or does nothing. It is easy to be convinced that the pair of communicating VASS composed of the VASS describing the system together with the environment VASS is a B-pair of communicating VASS. Indeed, the environment VASS only increments counters and transitions that synchronize with other ones do not test or modify counters.

The question that we ask is as follows. Can the resource manager resolve its choices (when several transitions are enabled in the set {t 1 , . . . , t 5 }) and ensure that no deadlock can occur no matter how the environment is behaving?

To answer this question and compute a strategy that will ensure this property, we construct a deadlock avoidance tree as defined in section 4.2. By lemma 4.6, this construction is guaranteed to terminate and by lemma 4.7 we know that this tree contains enough information to decide if the transition relation of the resource manager can be restricted to ensure that the resulting system is deadlock free no matter how the environment behaves. From the deadlock avoidance