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Abstract

We consider the context of decision support for schedule modification after the computa-
tion off-line of a predictive optimal (or near optimal) schedule. The purpose of this work is
to provide the decision-maker a characterization of possible modifications of the predictive
schedule while preserving optimality. In the context of machine scheduling, the anticipated
modifications are changes in the predictive order of operations on the machines. To achieve
this goal, a flexible solution feasible w.r.t to operations deadlines, is provided instead of a
single predictive schedule. A flexible solution represents a set of semi-active schedules and is
characterized by a partial order on each machine, so that the total order can be set on-line,
as required by the decision maker. A flexible solution is feasible if all the complete schedules
that can be obtained by extension are also feasible.

In this paper we develop two main issues. The first one concerns the evaluation of a
flexible solution in the worst case allowing to certify if the solution is feasible. The second
issue is the computation of feasible (w.r.t deadlines) flexible solutions of maximal flexibility
imposed by the decision maker. Under an epsilon-constraint framework, solving this problem
allows to find compromise solutions for the flexibility criterion and any minmax regular
scheduling criterion. The special case of the flow-shop scheduling problem is studied and
computational experiments are carried out.

1 Introduction

We consider a general non preemptive disjunctive scheduling problem in which a set of operations
has to be scheduled on a set of machines, each operation requiring a fixed single machine during
its execution and each machine being able to process only one operation simultaneously. The
operations are linked by precedence constraints such that if operation i precedes operation j then
the start time of j must be greater than the completion time of i. Such a model encompasses
the standard flow-shop and job-shop models.

An important issue in scheduling concerns the support provided to the end-user(s) for on-line
schedule execution after the off-line scheduling phase, which consists in providing an optimal or
suboptimal schedule.

We consider in this paper a bicriteria disjunctive scheduling problem. Assuming that a non
decreasing function is associated with each job completion time, the first considered objective
function is defined as the maximum of these functions and has to be minimized. Being itself
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non decreasing in the job completion times, this objective function is called a regular minmax
objective function. In scheduling, the most studied regular minmax objective functions are the
makespan and the maximum lateness. The second criterion involves the maximization of a
flexibility objective function, for on-line decision support.

As soon as a regular minmax objective function is considered, the support for on-line schedul-
ing most often lies in representing the solution as a m-vector of sequences of operations (total
operation orders), where m is the number of machines, and for each operation an earliest and a
latest start time yielding operation slacks. The sequences and the time windows are such that
scheduling the operations in the predetermined order and inside their time windows is feasible
and keeps the objective function under an acceptable threshold defined by the latest completion
times. Such a flexibility provided to the end-user is referred to as time flexibility. This paper
addresses the problem of providing more flexibility than the classical time one in disjunctive
scheduling problems.

As already considered in previous studies [1, 2, 3, 4, 5, 6, 7], this can be achieved by providing
sequential flexibility. Sequential flexibility lies in defining only a partial order of the operations
on each machine, leaving to the end-user the possibility to make the remaining sequencing
decisions. We define a flexible solution of a disjunctive problem as a m-vector of partial operation
orders. This is the principle of the groups of permutable operations model that has been studied
by several authors [2, 3, 5, 6], also called ordered assignment model by [7] and presented in
more details in Section 3. However, the group model sets restrictions on the proposed partial
orders that we relax in this paper. Indeed we represent the partial orders through additional
precedence constraints between operations of the same machine, which allows representing any
partial order. The second objective function, measuring the provided sequential flexibility could
be defined as the number of feasible total order vectors extending the partial order vector of
the flexible solution. However, the problem of computing this number is #P-complete [8].
Consequently we will propose in this paper another flexibility measure linked to the disjunctive
graph representation.

A flexible solution allows to postpone some sequencing decisions and to hedge against some
small to medium disruptions (raw material unavailability, small breakdowns, ...) with a minimum
effort of computations [1, 9, 7]. It also permits to take into account some decision maker
preferences that cannot be simply modeled or that may render the problem difficult to solve.
For example, if two jobs can be executed in any order, without any influence on the first objective
function, then the decision maker may prefer to sequence first the job that can be processed
rapidly to avoid the starvation of the next machine, or the job with a maximum number of
successors to maintain enough flexibility in the future. He may also favor a job belonging to a
privileged client or a job that has to be sent to a downstream shop for further processing.

Providing a flexible solution through partial orders is useful in practice only if the problem of
evaluating the complete solutions that can be obtained by extension is tractable. More precisely,
given a reasonable decision policy followed by the decision maker, the following questions have
to be answered. Do there remain decisions (following the decision policy) leading to a feasible
schedule ? What is the worst first objective function value reachable by the remaining set of
decisions ? Answering these questions provides a performance guarantee for the first criterion
if the given on-line policy is followed.

The main problem considered in this paper, denoted (P), is the bicriteria problem of finding
a compromise flexible solution between the first (regular minmax) criterion and the second
(flexibility) criterion. To solve (P) we need to answer the above-defined questions by solving the
following subproblem, denoted (SP), which concerns the evaluation of a flexible solution with
respect to the problem constraints and the first objective function. Given an on-line decision
policy and a flexible solution, problem (SP) is to decide whether all total order vectors reachable
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by the decision policy are feasible w.r.t. problem constraints and, in the case of a “yes” answer,
to compute the maximal value of the first objective function among all reachable total orders.

The paper is organized as follows. In Section 2, we define formally problems (SP) and (P), for
a general disjunctive scheduling problem and the semi-active on-line scheduling policy. In Section
3, we discuss the previous related work and show that our study provides a general framework
to the majority of previous studies on representation and evaluation of flexible solutions in
disjunctive problems [10, 2, 3, 4, 5, 6, 7]. In Section 4, we reformulate problem (SP) as a
elementary constrained longest path problem. Using previous results on the group of permutable
operations model, we provide sufficient conditions on the precedence constraints under which
(SP) can be solved in polynomial time. In Section 5, we provide a polynomial time dynamic
programming algorithm to solve (SP) if other conditions on the precedence constraints, not
implied by the preceding ones, are met, which is the case for the flow-shop precedence model. In
Section 6, we propose an ǫ−constraint method [6, 11, 12, 13] to solve (P) for the flow-shop case.
The method is optimal for the regular minmax criterion but tackles heuristically the flexibility
criterion. Computational results are provided on standard flow-shop instances issued from the
literature [14].

2 Problem and subproblem setting

We consider the following disjunctive scheduling problem. There is a set N = {1, . . . , n} of
operations to be scheduled on m machines. mi, pi and ri denote the machine, processing time
and release date of operation i, respectively. The release date is the earliest time when the
operation processing can start. Each operation is associated with a non-decreasing cost function
fi(Ci) of its completion time Ci. We introduce two dummy operations 0 and n + 1 such that
p0 = pn+1 = 0. This problem is represented by a disjunctive graph G = (V, C, D) [15]. V is the
set of vertices corresponding to operations i ∈ N and the two dummy operations 0 and n + 1.
C is the set of conjunctive arcs representing the precedence constraints between the operations.
Each conjunctive arc (i, j) is valuated by pi. D is a set of pairs of disjunctive arcs {(i, j), (j, i)}
for each pair of operations i, j ∈ N requiring the same machine for their execution (mi = mj).
We have D = {{(i, j), (j, i)}|i 6= j and mi = mj}. Arc (i, j) represents the decision to sequence
i before j, whereas arc (j, i) represents the decision to sequence j before i on the machine. In
the remaining a pair of disjunctive arcs {(i, j), (j, i)} is called a disjunction and denoted by eij

or eji.
Let D denote the set of all disjunctive arcs, i.e. D = {(i, j)|eij ∈ D}. A selection π is a

(possibly empty) set of arcs such that π ⊆ D and |π∩eij | ≤ 1, for all eij ∈ D. Let D(π) = {eij ∈
D|eij ∩ π = ∅}. A selection is complete if D(π) = ∅, otherwise it is partial. The disjunctive
graph issued from a complete or partial selection π is denoted by G(π) = (V, C ∪ π, D(π)).
Given a set of arcs E, let G(E) denote graph (V, C ∪ E). A complete selection π is feasible if
the graph G(π) = (V, C ∪ π) is acyclic. The completion time Ci(π) of any operation i ∈ N in
the semi-active schedule derived from the complete feasible selection π is equal to the length
of the longest path in G(π) from 0 to i plus pi. Let Π(D) denote the set of feasible complete
selections given a set D of disjunctions. The objective of the classical scheduling problem is
to find a complete feasible selection π ∈ Π such that a regular minmax objective function
F (C1(π), . . . , Cn(π)) = maxi=1,...,n fi(Ci(π)) is minimized.

Here, we assume the decision maker makes on-line the remaining sequencing decisions on
each machine following a semi-active policy until obtaining a complete selection π. A feasible
semi-active schedule can be obtained by a list scheduling algorithm as soon as C is acyclic: sort
the operations in a non decreasing order of their level in G = (V, C) then sequence as soon as
possible on its machine each operation according to this order. The first problem tackled in this
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paper is the following maximization problem (SP) : Given a disjunctive graph G = (V, C, D),
what is the worst case objective function value over all feasible semi-active schedules, i.e compute
maxπ∈Π(D) F (C1(π), . . . , Cn(π)) ?

To illustrate this problem, consider the following 2-machine and 4-job flow-shop problem.
This gives 8 operations and the flow-shop context sets m1 = m3 = m5 = m7 = 1 and
m2 = m4 = m6 = m8 = 2. Furthermore, we have p1 = 1, p2 = 6, p3 = 2, p4 = 5,
p5 = 4, p6 = 6, p7 = 6 and p8 = 1. All release dates are equal to 0 except for r5 = 2.
The considered criterion is the makespan. Let us consider additional precedence constraints
{(1, 3), (1, 5), (1, 7), (3, 7), (5, 7), (2, 4), (2, 6), (6, 8), (2, 8)}. We obtain the disjunctive graph G
displayed in Figure 1.

3
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0 9
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Figure 1: The disjunctive graph for a partial selection

The precedence constraints restrict the possible sequences to (1, 3, 5, 7) and (1, 5, 3, 7) on
machine 1 and (2, 4, 6, 8), (2, 6, 4, 8) and (2, 6, 8, 4) on machine 2. We obtain the 6 schedules
displayed in Figure 2. The solution of problem (SP) is 20 which is the worst-case makespan
value of the 6 semi-active schedules. Note that the optimal makespan of the flow-shop problem
is 19.

The second problem considered in this paper (P) consists in maximizing the flexibility of the
solution represented by a partial selection π subject to operation deadlines. Let π denote a partial
selection. π is worst-case feasible if its associated disjunctive graph G(π) = (V, C ∪ π, D(π)) is
such that for each operation i, maxπ′∈Π(D(π)) Ci(π

′) ≤ d̃i where d̃i denotes the deadline of
operation i.

In order to select among feasible flexible solutions, we have to propose a measure of flexibility.
The number of characterized semi-active schedules is naturally a good measure. However, as
already underlined, the problem of computing this number is #P-complete [8]. For this reason,
we measure the flexibility of a solution by the number of unselected disjunctions |D|. Indeed,
this quantity represents the amount of remaining decisions that can be managed by the decision
maker. Hence problem (P) can be stated as the problem of finding a worst-case feasible selection
π such that maxπ′∈Π(D(π)) Ci(π

′) ≤ d̃i and D(π) is maximized.
Note that solving (P) may require to solve a series of problems (SP) to evaluate the worst-

case feasibility of the tentative selections. (P) can be seen as an ǫ−constraint problem where
objective minmaxi=1,...,n fi(Ci(π)) appears as a constraint through deadlines d̃i while the second
objective is the maximization of flexibility through the number of unselected disjunction |D(π)|.
Hence solving (P ) in an ǫ−constraint framework allows finding a compromise between flexibility
and performance [6].

In the above example, if we consider a deadline equal to 20, then the flexible solution rep-
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Figure 2: Sequences and semi-active schedules compatible with the partial selection

resented in Figure 1 is worst-case feasible and represents the 6 schedules displayed in Figure 2.
The number of unselected disjunctions in this solution is |D| = 3.

3 Related work

Problem (SP) can be viewed as a maximization problem of an objective function that is naturally
minimized. Several works have already been proposed in this domain. In particular, Aloulou,
Kovalyov and Portmann [10] adapt the traditional three-field notation α|β|γ to this class of
problems. They denote this family of considered maximization problems as α(sa)|β|(f →max).
The first field α provides the shop environment. Here α ∈ {1, F, J} for respectively single
machine (1), flow-shop (F ) and job shop (J) problems. sa indicates that we search for the
worst schedule among all semi-active schedules, which corresponds to the considered on-line
scheduling policy. The second field gives additional constraints on operations. The third field
contains information about the criterion to maximize.

To the best of our knowledge, the first related results we are aware are due to Posner [16].
Posner studied reducibility among single machine weighted completion time scheduling problems
including minimization as well as maximization problems. In these problems, the jobs may have
release dates and deadlines but there are no precedence constraints between the jobs. Besides,
inserting idle times between the jobs is allowed.

Aloulou et al [10] studied several maximization versions in a single machine en-
vironment. They examined problems 1(sa)|β|(γ→max), where β ⊆ {ri, prec} and
γ ∈ {fmax, Cmax, Lmax, Tmax,

∑

(wi)Ci,
∑

(wi)Ui,
∑

(wi)Ti}. They showed that these prob-
lems are at least as easy as their minimization counterparts, except for problems
1(sa)||(

∑

wiTi→max) and 1(sa)|ri|(
∑

wiTi→max), which are still open. In particular, prob-
lems 1(sa)|ri, prec|(Lmax→max) and 1(sa)|ri, prec|(Tmax→max) can be solved in O(n3) times
while the minimization counterparts are strongly NP-hard, even if prec = ∅ [17].

This work is closely related to the work presented in the first part of the paper. Indeed, prob-
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lem (SP) can be denoted, in the Aloulou et al notation, as α(sa)|ri, prec|(fmax→max). Besides,
we propose in section 5 an algorithm solving the flow-shop problem F (sa)|ri, preck|(fmax→max),
generalizing the algorithm of Aloulou et al for problem 1(sa)|ri, prec|(fmax→max) [10]. Here
preck denotes precedence constraints appearing only between operations scheduled on the same
machine, besides the classical flow-shop precedence constraints.

Another class of related work for both problems (SP) and (P) in the context of flexibility
generation for on-line scheduling is linked to the concept of groups of permutable operations
[3, 5], also called ordered (group) assignment [2, 7]. A group of permutable operations is a
restriction of the sequential flexibility considered here in such a way that each operation is
assigned to a group and there is a complete order between the groups of operations performed
on the same machine. There are no precedence constraints between the operations of the same
group. A pioneering work for the definition of the groups of permutable operations concept and
the generation of flexible solutions has been achieved by Erschler and Roubellat [5] in the context
of a job-shop problem with due dates. However no computational experiments were given to
validate the practical interest of the approach. This has been achieved later but independently
by Wu et al [7] who define the identical ordered assignment representation and propose an
approach that computes an ordered assignment in a job-shop (i.e. ordered groups of permutable
operations on each machine), focusing first on resolving a critical subset of scheduling decisions.
As in the work of Erschler and Roubellat [5], the principle is to allow the remaining scheduling
decisions to be made dynamically in the presence of disturbances. They show through numerical
experiments on the weighted tardiness job-shop that this approach is superior to the one that
generated a complete solution, in the presence of small to medium disturbances.

Other heuristics have been designed to generate groups of permutable operations for general
disjunctive problems [3] and multiobjective methods have been designed to find a compromise
between flexibility and performance in the two-machine flow-shop [6]. Artigues et al [2] establish
the correspondence between the groups of Erschler and Roubellat [5] and the ordered assignment
of Wu et al [7] and make a synthesis by calling this representation the ordered group assignment.
They also propose a polynomial time algorithm to perform the exact worst-case evaluation of
an ordered group assignment, i.e. to solve the corresponding problem (SP). This method is
based on longest path computations in a so-called worst-case graph, derived from the considered
ordered group assignment. This method solves problem (SP) for general disjunctive problems
(e.g. job-shop) where the disjunctions appear only between operations of the same group (inside
each group the graph of disjunctions eij is a clique) and when the precedence constraints are
defined between operations of different groups. The flexibility of a solution is measured by the
numbers of groups it contains. They propose a heuristic to minimize this number in the job-shop
problem with deadlines, which corresponds to problem (P).

As an illustration of the differences between our model and the groups of permutable oper-
ations, the selection π proposed for the flow-shop example yielding the 6 feasible schedules of
Figure 2 with a worst-case makespan of 20 cannot be represented by the groups of permutable
operations formalism. More precisely, on machine 1 the considered partial order is a group
partial order: operation 1 is in the first group, operations 3 and 5 are in the second group, and
operation 7 is in the third and last group (there is a total order between the groups). However,
there is no group partial order representing the situation on machine 2.

Recently Briand et al [4] have proposed to characterize a set of optimal schedules for the
two-machine permutation flow-shop F2|prmu|Cmax by means of interval structures. The in-
terval structure provides a partial order which does not involve the restrictions of the concept
of groups of permutable operations. Aloulou and Portmann [1] consider the single-machine
scheduling problem with dynamic job arrival and total weighted tardiness and makespan as
objective functions. They propose a multiobjective genetic algorithm to compute partial order
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flexible solutions. The flexibility is measured by the number of unselected disjunctions.
In this paper we provide a general framework for these previous works by defining formally

the problem of computing the worst-case completion times of the operations in the set of semi-
active schedules compatible with a given operations partial orders. We show that this problem is
polynomially solvable for the nonpermutation flow-shop and we provide a dynamic programming
algorithm to solve it. We also integrate this algorithm in a method allowing to compute feasible
flexible solutions.

4 A longest path formulation of the maximization problem (SP)

Let Ĉi denote the worst case completion time of operation i, i.e. Ĉi = maxπ∈Π Ci(π). Computing
Ĉi, for each i ∈ N solves problem (SP) since the objective function is a minmax function of non
decreasing functions of the completion times.

In any semi-active schedule represented by a feasible complete selection π, the completion
time of an operation i is equal to the length of the longest path from 0 to i in the acyclic directed
graph associated with π. Consequently, to compute the worst case completion times Ĉi, a basic
algorithm is to find for each operation i the feasible selection π with the longest path length
between 0 and i. We show below that we can reduce the search to a partial selection.

Recall that D is the set of all disjunctive arcs. Let us consider the following Constrained
Longest Path problem associated to operation i (CLP (i)).

Definition 1 Given a disjunctive graph G = (V, C, D) and an operation i, problem CLP (i)
consists in computing the longest elementary path L∗(0, i) from 0 to i in G(D) = (V, C∪D) such
that G(L∗) = (V, C ∪ L∗(0, i)) is acyclic.

We show now that solving (CLP (i)), ∀i ∈ N solves problem (SP).

Theorem 1 The worst case completion time Ĉi is equal to the length of path L∗(0, i) solution
of problem CLP (i).

Proof. We first show that (a) Ĉi is the length of an elementary path l from 0 to i in G(D)
and that G(l) is acyclic. Let π ∈ Π such that we have Ĉi = Ci(π). π is the complete selection
such that Ĉi is the length of a longest path l from 0 to i in G(π). Since G(π) is acyclic, l is
elementary and since l ⊆ π ∪ C, G(l) is also acyclic. Since π ⊂ D, l is also an elementary path
in G(D) = (V, C ∪ D).

Let us show that (b) any elementary path L from 0 to i in G(D) verifying G(L) is acyclic
is such that there exists a feasible complete selection π ∈ Π verifying C ∪ L ⊆ C ∪ π. Suppose
that L includes only conjunctive arcs. Then L ⊆ C and (b) is verified. Suppose now that L
includes also disjunctive arcs. Since L is elementary, we have |L ∩ eij | ≤ 1 for each disjunction
eij . Hence L \ (L ∩ C) is a partial selection. Furthermore, since G(L) = G(V, C ∪ L) is acyclic
C ∪ L defines a new acyclic precedence constraints graph and the disjunctive problem defined
by (V, C ∪ L, D(L)) is feasible. Hence L \ (L ∩ C) is included in a feasible complete selection.

From (b) it follows that the length of any elementary path L from 0 to i, verifying G(L) is
acyclic, is less than or equal to Ĉi. We proved in (a) that there exists an elementary path l,
such that G(l) is acyclic, with a length equal to Ĉi. Hence, Ĉi is the length of CLP (i)-solution.

We conjecture that CLP (i) is not easy to solve in the general case. It admits as a particular
case the search for the longest elementary path in a graph with positive length cycles. This
problem is known to be NP-hard for general graphs [18]. Taking account of the acyclicity
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constraint, the problem can be seen as a constrained longest path problem which is also NP-
hard in a general case [19].

In Figure 3, we illustrate the problem and the necessity of the no-cycling condition in def-
inition 1 for a job-shop with 2 machines, 3 jobs and no release dates. The processing time of
each operation is equal to one. Operations 1, 4 and 5 are assigned to the first machine and
operations 2, 3 and 6 are assigned to the second machine. Structural precedence constraints are
(1, 2), (3, 4) and (5, 6). (3, 2) and (1, 4) are additional precedence constraints.

The longest elementary path from 0 to 7 is displayed in bold. Its length is equal to 6. Such
a path is infeasible since it induces a cycle with precedence constraint (3, 4). Hence, it is not a
solution of CLP (7).

This can be interpreted by considering the operation sequences represented by the disjunc-
tive graph of Figure 3 on each machine. On Machine 1, the represented sequences are (1, 4, 5),
(1, 5, 4), and (5, 1, 4) while on Machine 2 the represented sequences are (3, 2, 6), (3, 6, 2) and
(6, 3, 2). However there are only 8 feasible semi-active schedule since the combination of se-
quences (1, 4, 5) and (6, 3, 2) is inconsistent with the precedence constraints. The worst schedules
have a duration of 5 and are given either by {(1, 4, 5), (3, 6, 2)} or {(1, 5, 4), (6, 3, 2)}.

0

1 2

3 4

5 6

7

Figure 3: A job-shop example and an infeasible elementary longest path

The preceding studies on the group of permutable operations model allow us to define suffi-
cient conditions that render (SP) solvable in polynomial time.

Theorem 2 If the disjunctive arc pairs form a binary transitive relation on each set of opera-
tions assigned to the same machine, (SP) is solvable in polynomial time

Proof. The model based on groups of permutable operations corresponds to the case where
the absence of precedence constraint between two operations assigned to the same machine (i.e.
the presence of a pair of disjunctive arcs between these operations), defines a binary transitive
relation. Indeed the operations of a group are totally permutable while there is a precedence
constraint between any operation of a group and any operation of the consecutive group on the
considered machine. Conversely, any feasible partial selection such that disjunctive arc pairs
form a binary transitive relation on each set of operations assigned to the same machine can
be clearly represented by a group partial order on each machine. In [2], a polynomial time
algorithm is precisely provided to solve problem (SP). This proves the theorem.

Below we give a condition on the precedence constraints which do not restrict the possible
partial orders under which the no cycling condition of each problems CLP (i) is always verified
by any longest elementary path.
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Theorem 3 Given a disjunctive graph G(V, C, D) such that G(V, C) is acyclic, if the machines
can be renumbered so that (i, j) ∈ C =⇒ mi ≤ mj then any elementary path L starting with
node 0 in G(D) = (V, C ∪ D) is such that G(L) = (V, C ∪ L) is acyclic.

Proof. A cycle can be generated with a precedence constraints only inside a strongly connected
component of G(D) (i.e. a set of nodes pairwise connected by a path). Due to the structure of
the precedence constraints given by the condition, the strongly connected components of G(D)
include only operations assigned to the same machine. Hence any elementary cycle of G(D)
involves only operations assigned to the same machine. Let L denote an elementary path in
G(D). By definition L is acyclic and no cycle can be created by adding precedence constraints
to L.

We show in the next section that problem (SP) is polynomially solvable in the flow-shop
context, for which the condition of theorem 3 holds.

5 A polynomial algorithm for solving (SP) in the nonpermuta-
tion flow-shop case

In this section, we consider the nonpermutation flow-shop problem with operation release dates
and additional precedence constraints appearing only between operations scheduled on the same
machine, as in the example presented is section 2. In this case, any sequence of operations
compatible with the precedence constraints of machines yields a feasible complete selection as
stated by theorem 3. For each operation j, let j− denote its job predecessor. We assume that
if j is the first operation of its job, then j− is a dummy operation denoted j0. Let Γ−

j (resp.

Γ+
j ) denote the set of operations that must be scheduled before (resp. after) j on machine mj .

Let Ij denote the set of operations of machine mj that are not linked to j with any precedence
constraint. We have

Γ−
j = {i 6= j|mi = mj and there is a path from i to j in G = (V, C)} (1)

Γ+
j = {i 6= j|mi = mj and there is a path from j to i in G = (V, C)} (2)

Ij = {i 6= j|mi = mj , i 6∈ Γ−
j and j 6∈ Γ−

i } (3)

Let us define Ĉj0 = rj . We have the following result.

Lemma 1 The worst case completion time of any operation j is given by

Ĉj = pj + max















rj , (a)

Ĉj− , (b)

max
i∈Ij∪Γ−

j

{max(ri, Ĉi−) +
∑

x∈Ij∪Γ−

j
\Γ−

i

px} (c)

Proof.

Consider machine 1 and an operation j to be executed on this machine. We have
Ĉj− = Ĉj0 = rj , hence terms (a) and (b) are redundant. Denote by S the semi-active schedule

in which Cj(S) = Ĉj and the block B of consecutive operations on machine 1, ending with
j, is such that there is no idle time between any two consecutive operations in B and B is of
maximal size. B always exists since we have at least j ∈ B. If B = {j}, then the starting time
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of j, Sj , is such that Sj = rj and (a) is verified.

If |B| > 1, then we have Sj ≥ rj . Let i be the first operation of block B. i is not a successor
of j on the machine and i ∈ Ij ∪ Γ−

j . Similarly, by definition all operations inside B, except j

itself, belong to Ij ∪ Γ−
j \ Γ−

i (they cannot be predecessors of i on the machine). Let us now
consider the operations scheduled before i on machine 1. Let x denote the operation scheduled
at the largest position before i such that x 6∈ Γ−

i . This operation could be inserted right after i.
The obtained schedule is semi-active and the completion time of j increases, which contradicts
the maximality of Cj(S). Hence all operations scheduled before i are in Γ−

i . This implies that
all operations of Ii ∪ Γ−

j \ Γ−
i are scheduled after i. Conversely, suppose that x is the operation

scheduled at the smallest position after j such that x is not a successor of j, i.e. x /∈ Γ+
j .

This operation could be inserted right before j providing a new semi-active schedule in which
the start time of j increases, which contradicts the maximality of Cj(S). Hence all operations
scheduled after j are successors of j. It follows that if Sj > ri then

Ĉj ≤ max
i∈Ij∪Γ−

j

{ri +
∑

x∈Ij∪Γ−

j
\Γ−

i

px} + pj . (4)

Can we have i ∈ Ij ∪ Γ−
j such that Ĉj < ri +

∑

x∈Ij∪Γ−

j
\Γ−

i

px + pj?

Suppose that i is such an operation. It is possible to build a feasible semi-active schedule in
which all the operations before i are machine predecessors of i and the operations after j are
only machine successors of j. This can be made by scheduling the operations of Γ−

i in an order
compatible with the precedence constraints within this set, then i, then the operations of Ii∪Γ+

j

in an order compatible with the precedence constraints within this set, then operation j, then
the operations of Γ+

j in an order compatible with the precedence constraints within this set.
The operations on machine 2 can be scheduled in any order compatible with the precedence
constraints of machine 2, and so on. The obtained schedule S is semi-active and we have
Cj ≥ ri +

∑

x∈Ij∪Γ−

j
\Γ−

i

px + pj . Hence (4) is verified to equality.

We can use the similar arguments to prove the result for any machine k > 1.
Consider a machine k and an operation to be executed on this machine. Let S be a semi-

active schedule in which Cj(S) = Ĉj and the block B of operations consecutive on machine k,
ending with j, is such that there is no idle time between any two consecutive operations in B
and B is of maximal size. If |B| = 1 then we have either Cj(S) = rj + pj or Cj(S) is set by Cj− .

To maximize this value we have Cj(S) = Ĉj− + pj .
If |B| > 1 we can also state that an operation i ∈ Ij ∪ Γ−

j starts the block with Si = ri

or Si = Ci− . With similar arguments as for machine 1, we prove that all operations of the set
Ij ∪ Γ−

j \ Γ−
i are in the block. Furthermore if Si > ri then we have Sj = Ci− = Ĉi− to have

Ĉj maximal. Last we can show that for any operation i ∈ Ij ∪ Γ−
j , we can build a feasible

semi-active schedule in which all the operations before i are machine predecessors of i and the
operations after j are machine successors of j and Si = max(ri, Ĉi−). This achieves the proof.

Let ν = n/m be the number of jobs. Due to lemma 1, we have the following result.

Theorem 4 Problem F (sa)|ri, preck|(fmax → max) can be solved in O(mν3) times if each func-
tion fi is computable in O(1) time.

Proof. Once sets Γ−
j and Ij are built for each operation j, all worst-case completion times can

be computed trivially via the proposed recursion by dynamic programming in O(mν3).
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In the illustrative example of section 2, the worst case completion times are given (in the order
of their computation) by Ĉ1 = r1+p1 = 1 (a), Ĉ3 = r5+p5+p3 = 8 (c), Ĉ5 = r1+p1+p3+p5 = 7
(c), Ĉ7 = r5 + p5 + p3 + p7 = 14 (c), Ĉ2 = Ĉ1 + p2 = 7 (b), Ĉ4 = Ĉ7 + p8 + p4 = 20 (c),
Ĉ6 = Ĉ3 + p4 + p6 = 19 (c), Ĉ8 = Ĉ3 + p4 + p6 + p8 = 20 (c).

6 A ǫ-constraint heuristic for solving the minimal makespan,
maximal flexibility flow-shop problem

In this Section, we show how feasible flexible solutions can be computed for a flow-shop problem
where the first objective function is the makespan and the second objective function is the
number of unselected disjunctions. Contrarily to most references encountered in the literature
we do not restrict the set of schedules to permutation schedules, where the order of the jobs has
to be identical on all machines [20, 21, 22].

Under the ǫ-constraint framework, the method we propose is a heuristic aiming at maximizing
the number of unselected disjunctions while all jobs have a common deadline corresponding to
the desired makespan value.

In Section 6.1, we present a simple elementary heuristic that computes a feasible flexible
solution. Taking a worst-case feasible selection as input, this heuristic issues a worst-case fea-
sible selection with a non-larger number of unselected disjunctions. In Section 6.2, we present
a branch-and-bound method whose aim is twofold. First, the method ensure the deadline con-
straint is satisfied and so works as an exact method for the first criterion. Second, the branch-
and-bound scheme is used as a heuristic for the second criterion to compute several input worst-
case selections allowing to apply WCH several times. Last, Section 6.3 provides computational
experiments on standard flow-shop instances and illustrates the ability of the method to find a
good compromise between flexibility and performance.

6.1 WCH: A simple heuristic to compute a flexible solution

Let π denote a worst-case feasible selection and consider its induced disjunctive graph G(π) =
(V, C∪π, D(π)). Recall π is worst-case feasible if and only if the worst case completion time Ĉi of
each operation verifies Ĉi ≤ di. The heuristic aims at finding a flexible solution with a maximal
number of unselected disjunctions |D| which represents the greatest amount of decisions let to
the decision maker.

To this end, WCH modifies the disjunctive-graph so that the corresponding selection becomes
minimally worst-case feasible, i.e. it does not include any orientated disjunctive arc (i, j) such
that π \ {(i, j)} is worst case feasible. The heuristic traverses all arcs (i, j) of π and checks
whether the latter property is verified for (i, j). If such an arc (i, j) is found, it is removed from
π and eij is consequently added to D(π) which increases the objective function. The process is
iterated until π becomes minimally worst-case feasible. Only those arcs (i, j) such that there is
no other path from i to j (belonging to the transitive reduction of π) are considered for being
removed. Otherwise, removing (i, j) does not remove any precedence constraint.

The order in which arcs are selected for being removed from π determines the resulting
disjunctive graph. Hence several orders may result in different minimally worst-case feasible
graphs. We call the above procedure with 100 randomly generated arc orders. The solution
with the largest number of unselected disjunctions is returned.
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6.2 Computing several worst-case feasible selections through branch-and-
bound

Any exact or heuristic solution method to F |d̃i = d|− could be used to generate an input
for WCH. To obtain several worst-case feasible selections (and so apply WCH several times),
we solve problem F |d̃i = d|− through branch-and-bound and we call WCH each time a node
corresponds to a worst-case feasible selection.

In this section, we briefly give the elements of the branch-and-bound, all borrowed from
previous studies: the branching scheme (Section 6.2.1), the constraint propagation algorithms
used at each node to sharpen the operation time windows (Section 6.2.2), the heuristic used at
each node to try to find a feasible solution (Section 6.2.3). In Section 6.2.4 we explain how the
WCH heuristic has been integrated in the branch-and-bound scheme.

6.2.1 Branching Scheme

The proposed branching scheme is based on the disjunctive graph. At each node the disjunctive
graph is updated through the last branching decisions. The branching rules are based on the
relative ordering of the operations assigned to the same machines. At each node a machine is
selected and a child node is generated for each operation candidate for being scheduled next on
the machine. The machine is selected as the one on which the operation with the smallest release
date i∗ is assigned. The candidates for being scheduled first on this machine are the operations
with a release date not greater than the earliest completion time of i∗. All disjunctive arcs issued
from the selected operation are then orientated as outgoing arcs for this operation and included
in the selection π. Hence at each node, a disjunctive graph G(π) = (V, C ∪ π, D(π)). The tree
is explored by depth-first search.

6.2.2 Constraint propagation

The common deadline d allows to compute a time window [ri, di] for each operation i ∈ N .
Constraint propagation algorithms are used at each node to maintain the time window as tight
as possible, to detect implied precedence constraints and to prune the node if inconsistency is
proven. The release times ri and the deadlines di are first computed with forward and back-
ward longest path computations in (V, C ∪ π). Time window tightening, precedence constraint
detection and consistency checking are performed by the disjunctive constraint propagation and
edge-finding techniques. For a precise description of these techniques, we refer to [23, 24].

Furthermore at the root node initial time windows are computed by the shaving technique
[25, 26] which consists in running the above-referred constraint propagation algorithms after
setting the start time of an operation to its release date (or to its deadline). If inconsistency is
proven, the tentative value can be removed from the time window. Such a technique has been
proven very useful for flow-shop problems [27].

6.2.3 Heuristic

In the case where the current node has not been pruned by constraint propagation, a heuristic is
used to find a feasible solution. The heuristic is simply based on the application of the well-known
priority-rule based active and non-delay constructive algorithms [28]. At each node, we apply 4
times the non-delay scheduling algorithms and 4 times the active scheduling algorithm. The 4
used priority rules are the minimal earliest possible start (ri), the minimal lastest start (di − pi)
and the randomized version of these rules where another operation than the one determined by
the rule is selected with a low probability.
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When no feasible solution has been found, the solution with the lowest makespan is kept.
Each time one of the 8 constructive methods improves the best known solution in terms of
makespan, an intensification phase is applied by running H1 times the randomized version of
the priority rule that yielded the improvement with both active and non-delay algorithms.

6.2.4 Integration of worst-case completion times

Each time a node corresponds to a worst-case feasible graph selection π, WCH is called to
increase |D(π)|. Although at this time, problem F |d̃i = d|− is solved, the search process
continues to find further flexible solutions and improves the flexibility criterion. The branch-
and-bound stops when this process has been applied 100 times, which corresponds to a total
of 10000 calls to the WCH procedure, or when there is no more node to develop. Throughout
this process the flexible solution with the largest |D| is stored. Recall that the branch-and-
bound is an exact method w.r.t problem F |d̃i = d|− and serves as a generator of worst-case
feasible selections for WCH. The number of unselected disjunctions of the flexible solutions is
consequently heuristically maximized only.

6.3 Experimental results

In this section we give the performance of the branch-and-bound on flow-shop instances issued
from the literature, in terms of issued flexibility.

Because of the difficulty of the non permutation flow-shop problem problem, we have modified
the smallest instances designed by Taillard [14], which originally comprise 10 problems with 20
jobs and 5 machines, to keep only the 10 first jobs in each. All programs have been coded
in C++ and run on an AMD64 archicture under Linux. Cplex 9.0 was used to solve the LP
relaxations and the MILP problems. Parameters H1 was set to 50000 iterations.

We have made 2 series of experiments, one with the common deadline of each instance set to
the optimal makespan and the other one with the common deadline set to the optimal makespan
augmented by 5%. The results are given in Table 1 for the instances with the tight common
deadline and in Table 2 for the instances with the loose common deadline. In both tables, we
give for each instance the number of jobs, the number of machines, the minimal makespan, the
common deadline, the largest obtained number of unselected disjunctions of the flexible solutions
(also expressed in percentage of the total number of disjunctions, equal to 225). We also provide
the numbers of nodes and the CPU times in seconds needed to obtain the first feasible solution
and the numbers of nodes and CPU times needed to obtain the flexible solution. The results
show that in both cases, flexible solutions are exhibited with a reasonable amount of additional
CPU time. As expected the flexibility is higher for the instances with a loose common deadline
but significant flexibility is also generally obtained for the instances with the tight deadline.

7 Conclusion

In this paper, we proposed a longest path formulation of the problem of evaluating the worst
case performance of flexible solutions in disjunctive scheduling with any minmax regular objec-
tive function. A flexible solution is defined by an operation partial order on each machine. We
proved that this problem is polynomially solvable in the special case of the flow-shop problem
with release dates and additional precedence constraints between operations scheduled on the
same machine. We used the worst case computation method to generate flexible solutions for a
flow-shop problem with a common deadline. We show that flexible solutions with a significant
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Table 1: Results on instances with a tight common deadline

P #jobs m C∗

max
d |D| #nodes 1st CPU 1st #nodes CPU

1 10 5 767 767 3 (1.3%) 5286 18 6614 21
2 10 5 763 763 6 (2.6%) 7 0 1660 40
3 10 5 691 691 7 (3.1%) 12 0 837 52
4 10 5 813 813 3 (1.3%) 1 0 33 11
5 10 5 731 731 8 (3.5%) 4666 12 7295 118
6 10 5 749 749 9 (4%) 267 0 6373 20
7 10 5 741 741 11(4.8%) 1676 10 3254 16
8 10 5 717 717 4 (1.7%) 58 6 1026 12
9 10 5 687 687 7 (3.1%) 1 0 62 27
10 10 5 762 762 17(7.5%) 14 0 499 150

Table 2: Results on instances with a loose common deadline

P #jobs m C∗

max
d |D| #nodes 1st CPU 1st #nodes CPU

1 10 5 767 805 14 (6.2%) 180 0 3500 146
2 10 5 763 801 9 (4%) 1 0 758 70
3 10 5 691 725 11 (4.8%) 1 0 2778 105
4 10 5 813 853 10 (4.4%) 1 0 4805 109
5 10 5 731 767 11 (4.8%) 2 0 34104 177
6 10 5 749 786 16 (7.1%) 1 0 3708 162
7 10 5 741 778 22 (9.7%) 21 0 13748 220
8 10 5 717 752 9 (4%) 16 0 704 90
9 10 5 687 721 21 (9.3%) 4 0 7807 186
10 10 5 762 800 19 (8.44%) 1 0 515 193
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flexibility are obtained with a reasonable computational overhead with partial solutions leav-
ing unselected up to 10% of the disjunctions when the deadline is loose and up to 7% of the
disjunctions when the deadline is tight.

Besides their interest for on-line decision support, flexible solutions could also be used in
bicriteria scheduling as a support to ǫ−constraint methods with other criteria than flexibility
maximization. This has been underlined by Gupta and Stafford in [29], about the work of
Briand et al [4]. Indeed, once a set of schedules achieving a required worst-case value on the
first (regular minmax) criterion, the optimal solution for the second criterion can be searched
on this set without considering any constraint on the first criterion.

Another work of interest would be to focus on extensions of the worst-case performance
evaluation procedure to more general problems. Unfortunately, extending this approach to the
job shop is not trivial. A way to solve it is to study the complexity of the problem of finding
the constrained longest elementary path in the disjunctive graph of the job-shop problem. It is
also of great interest to investigate maximization problems with total (weighted) flow time as
objective function. Indeed, the flow-shop problem F (sa)|rj |(

∑

Cj → max) is open whereas the
single machine 1(sa)|rj |(

∑

wjCj → max) is polynomially solvable [10].
Last, we have to underline, as already stated in [2] among others, the fact that maximizing

flexibility remains an indirect way for schedule robustness under uncertainty. An important
open issue is to first quantify and second maximize the ability of a flexible solution to absorb
different classes of disruptions.
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