
HAL Id: hal-00158669
https://hal.science/hal-00158669v1

Preprint submitted on 29 Jun 2007 (v1), last revised 20 Jul 2007 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Flexible solutions in disjunctive scheduling : general
formulation and study of the flow-shop case

Mohamed Ali Aloulou, Christian Artigues

To cite this version:
Mohamed Ali Aloulou, Christian Artigues. Flexible solutions in disjunctive scheduling : general for-
mulation and study of the flow-shop case. 2007. �hal-00158669v1�

https://hal.science/hal-00158669v1
https://hal.archives-ouvertes.fr

Flexible solutions in disjunctive scheduling :
general formulation and study of the flow-shop

case
Mohamed Ali Aloulou∗, Christian Artigues†

Résumé

On considère le problème de pilotage d’atelier en temps réel et on propose de
construire d’une façon procative une solution présentant de la flexibilitéséquentielle
pouvant être exploitée en temps réel pour absorber les incertitudes du modèle et les
perturbations. Ceci peut être réalisé en définissant un ordre partiel des opérations
au niveau de chaque machine, laissant la possibilité au décideur de compléter les
décisions de séquencement en fonction de ses préférences et de l’état de l’exécution.
Proposer une solution partielle n’est pertinent que si on est capable dedonner une
évaluation de tous les ordonnancements qui peuvent être obtenus par extension de
cette solution. L’article répond alors aux deux questions suivantes : Quelle est la
meilleure et la pire performance des ordonnancements pouvant être atteintspar une
règle de pilotage suivi par le décideur ? Comment construire une solution flexible
avec des garanties de performance imposées ?

Mots-clefs : Ordonnancement disjonctif, flexibilité, évaluation de la performance
dans le pire cas

Abstract

The purpose of this work is to provide the decision-maker a characterization of
possible modifications of predictive schedules while preserving optimality. Inthe
context of machine scheduling, the anticipated modifications are changes in the pre-
dictive order of operations on the machines. To achieve this goal, a flexiblesolution
is provided. It represents a set of semi-active schedules and is characterized by a
partial order on each machine, so that the total order can be set on-line,as required

∗LAMSADE, Université Paris-Dauphine, 75775 Paris cedex 16,France.
aloulou@lamsade.dauphine.fr
†LAAS-CNRS, 7 avenue du Colonel Roche, 31077 Toulouse, France.artigues@laas.fr

33

Flexible solutions in disjunctive scheduling [...]

by the decision maker. A flexible solution is optimal if all the complete schedules
that can be obtained by extension are also optimal. We consider the problem of eval-
uating the worst case performance of flexible solutions in disjunctive scheduling. We
show that this problem can be modeled as an elementary longest path problemin the
disjunctive graph representing the scheduling problem with additional constraints.
In the flow-shop context, we give a polynomial algorithm to solve the problemand
propose a method to issue optimal flexible solutions. Computational experiments
show that significant flexibility is obtained.

Key words : Disjunctive scheduling, flexibility, worst-case performance evaluation

1 Introduction

We consider a general non preemptive disjunctive problem inwhich a set of opera-
tions has to be scheduled on a set of machines, each operationrequiring a fixed single
machine during its execution and each machine being able to process only one operation
simultaneously. The operations are linked by simple precedence constraints that do not
necessarily form chains. Such a model encompasses the standard flow-shop and job-shop
models.

An important issue in scheduling concerns the support provided to the end-user(s) for
on-line schedule execution after the off-line scheduling phase, which consists in providing
an optimal or suboptimal schedule.

In disjunctive scheduling, as soon as a regular minmax objective function is con-
sidered, the support for on-line scheduling often lies in providing for each machine the
mandatory sequence of operations, and for each operation anearliest and a latest start time
yielding operation slacks. The sequences and the time windows are such that scheduling
the operations in the predetermined order and inside their time windows is feasible and
keeps the objective function in a range of acceptable values. Such a flexibility provided
to the end-user is referred to as temporal flexibility. This paper addresses the problem
of providing more flexibility than the classical temporal one in disjunctive scheduling
problems. As already considered in previous studies [2, 3, 6, 7, 11, 12, 27], this can be
achieved by defining only a partial order of the operations oneach machine, leaving to the
end-user the possibility to make the remaining sequencing decisions. This is the principle
of the groups of permutable operations model that has been studied by several authors
[3, 6, 11, 12]. It is also called ordered assignment model by [27]. The group model sets
restrictions on the proposed partial orders that we relax inthis paper. Indeed we represent
the partial orders through general precedence constraintsbetween operations of the same
machine, that have not to be distinguished from the structural precedence constraints.

34

Annales du LAMSADE n˚7

A flexible solution allows to postpone some sequencing decisions and to hedge against
some small to medium disruptions (raw material unavailability, small breakdowns, ...)
with a minimum effort of computations [2, 15, 27]. It also permits to take into account
some decision maker preferences that cannot be simply modeled or that may render the
problem difficult to solve. For example, if two jobs can be executed in any order, without
any influence on the performance, then the decision maker mayprefer to sequence fist
the job that can be processed rapidly to avoid the starvationof the next machine, or the
job with a maximum number of successors to maintain enough flexibility in the future.
He may also favor a job belonging to a privileged client or a job that has to be sent to a
downstream shop for further processing.

Providing a partial solution through partial orders is useful in practice only if it can
be assorted with an evaluation of the complete solutions that can be obtained by exten-
sion. More precisely, given a reasonable decision policy followed by the decision maker,
the following questions have to be answered. Do there remaindecisions (following the
decision policy) leading to a feasible schedule ? What is the best and the worse objective
function value reachable by the remaining set of decisions ?Answering these questions
provides a performance guarantee if the given on-line policy is followed.

Two main issues are developed in this paper. The first concerns the evaluation of a
flexible solution in the worst case. The second issue is the computation of optimal or near
optimal flexible solutions. A flexible solution is optimal ifall the complete schedules that
can be obtained by extension are also optimal.

In the first part of the paper, we focus on the worst case performance evaluation of a
flexible solution. We consider disjunctive scheduling problems with a minmax objective
function. We assume that the decision maker follows a semi-active schedule policy to
extend the proposed partial orders, which is relevant to anyregular objective function.
Recall that a schedule is called semi-active if the operations cannot be shifted to start
earlier without changing the operation sequences or violating precedence constraints or
release dates [4]. In this case, the worse objective function value can be determined by
computing the worst-case completion time of each operationseparately. We show that
the problem of computing the worse completion time of an operation in all feasible semi-
active schedules can be modeled as an elementary longest path problem in the disjunctive
graph representing the scheduling problem with additionalconstraints. This statement
provides a general framework for the majority of previous studies on representation and
evaluation of set of solutions based on sufficient conditions in disjunctive problems [1, 3,
6, 7, 11, 12, 27].

In the special case of the flow-shop problem with release dates and additional prece-
dence constraints, we give a polynomial algorithm that computes the maximal completion
times of all operations in all feasible semi-active schedules. These results generalize some
results previously established for the single machine version of this problem [1]. The
proposed algorithm is used in a branch and bound method to compute feasible flexible

35

Flexible solutions in disjunctive scheduling [...]

solutions (w.r.t a common due-date) for a flow-shop problem denoted byF |d̃i = d|−.

In Section 2, we present the worst-case computation problemin more details. We
discuss the related work in Section 3. In Section 4, the longest path formulation of the
problem is given. In Section 5, we present the polynomial algorithm for the flow-shop
case. In Section 6, we present a method to compute feasible flexible solutions in the flow-
shop context and provide computational experiments. Finally, we conclude in section 7.

2 Problem setting

We consider the following disjunctive scheduling problem.There is a setN =
{1, . . . , n} of operations to be scheduled onm machines.mi, pi andri denote the ma-
chine, processing time and release date of operationi, respectively. The release date is
the earliest time when the operation processing can start. Each operation is associated
with a non-decreasing cost functionfi(Ci) of its completion timeCi. We introduce two
dummy operations0 andn+1 such thatp0 = pn+1 = 0. This problem is represented by a
disjunctive graphG = (V,C,D) [22]. V is the set of vertices corresponding to operations
i ∈ N and the two dummy operations0 andn + 1. C is the set of conjunctive arcs rep-
resenting the precedence constraints between the operations. Each conjunctive arc(i, j)
is valuated bypi. D is a set of pairs of disjunctive arcs{(i, j), (j, i)} for each pair of
operationsi, j ∈ N requiring the same machine for their execution (mi = mj). We have
D = {{(i, j), (j, i)}|i 6= j andmi = mj}. Arc (i, j) represents the decision to sequence
i beforej, whereas arc(j, i) represents the decision to sequencej beforei on the ma-
chine. In the remaining a pair of disjunctive arcs{(i, j), (j, i)} is called a disjunction and
denoted byeij or eji.

Let D denote the set of all disjunctive arcs, i.e.D = {(i, j)|eij ∈ D}. A selectionπ
is a (possibly empty) set of arcs such thatπ ⊆ D and|π ∩ eij| ≤ 1, for all eij ∈ D. Let
D(π) = {eij ∈ D|eij ∩ π = ∅}. A selection is complete ifD(π) = ∅, otherwise it is
partial. The disjunctive graph issued from a complete or partial selectionπ is denoted by
G(π) = (V,C ∪ π,D(π)). Given a set of arcsE, let G(E) denote graph(V,C ∪ E). A
complete selectionπ is feasible if the graphG(π) = (V,C∪π) is acyclic. The completion
timeCi(π) of any operationi ∈ N in the semi-active schedule derived from the complete
feasible selectionπ is equal to the length of the longest path inG(π) from 0 to i plus
pi. Let Π denote the set of feasible complete selections. The objective of the classical
scheduling problem is to find a complete feasible selectionπ ∈ Π such that aregular
minmax objective functionF (C1(π), . . . , Cn(π)) = maxi=1,...,n fi(Ci(π)) is minimized.

Here, we assume the decision maker makes on-line the remaining sequencing deci-
sions on each machine following a semi-active policy until obtaining a complete selection
π. A feasible semi-active schedule can be obtained by a list scheduling algorithm as soon

36

Annales du LAMSADE n˚7

asC is acyclic: sort the operations in a non decreasing order of their level inG = (V,C)
then sequence as soon as possible on its machine each operation according to this order.
The first problem tackled in this paper is the following problem (SP) : Given a disjunctive
graphG = (V,C,D), what is the worst case objective function value aver all feasible
semi-active schedules, i.e computemaxπ∈Π F (C1(π), . . . , Cn(π)) ?

To illustrate this problem, consider the following 2-machine and 4-job flow-shop prob-
lem. This gives 8 operations and the flow-shop context setsm1 = m3 = m5 = m7 = 1
andm2 = m4 = m6 = m8 = 2. Furthermore, we havep1 = 1, p2 = 6, p3 = 2, p4 = 5,
p5 = 4, p6 = 6, p7 = 6 andp8 = 1. All release dates are equal to 0 except forr5 = 2.
All objective functions are the completion times of the activities. Let us consider addi-
tional precedence constraints{(1, 3), (1, 5), (1, 7), (3, 7), (2, 4), (2, 6), (6, 8)}. We obtain
the disjunctive graphG displayed in Figure 1.

3

7

1

6

8

0 9

2

4

5

Figure 1: The disjunctive graph for a partial selection

The precedence constraints restrict the possible sequences to(1, 3, 5, 7) and(1, 5, 3, 7)
on machine1 and(2, 4, 6, 8), (2, 6, 4, 8) and(2, 6, 8, 4) on machine 2. We obtain the 6
schedules displayed in Figure 2. Note that such restrictioncannot be modeled by the
group of permutable operation representation used in [1, 6,11, 12, 27]. The solution of
problem SP is 20 which is the worst-case makespan value of the6 semi-active schedules.
Note that the optimal makespan of the flow-shop problem is 19.

The second problem considered in this paper is to propose a method allowing to com-
pute optimal (or feasible w.r.t. a due date) flexible solutions with a maximum number of
disjunctions|D|. Indeed, this quantity represents the amount of remaining decisions that
can managed by the decision maker.

Consider the problemF |di = d|− with d = 20 for the above example. The flexible
solution represented in Figure 1 is feasible and representsthe 6 schedules displayed in
Figure 2. The number of disjunctions in this solution is|D| = 3.

37

Flexible solutions in disjunctive scheduling [...]

1 3 5 7

1 5 3 7

1 5 3 7

1 3 5 7

1 5 3 7

1 3 5 7

8 4

8 4

2 4 6 8

2 4 6 8

2 6 4 8

2 6 4 8

62

2 6

Figure 2: Sequences and semi-active schedules compatible with the partial selection

3 Related work

Problem SP can be viewed as a maximization problem of an objective function that
is naturally minimized. Several works have aleady been proposed in this domain. In
particular, Aloulou, Kovalyov and Portmann [1] adapt the traditional three-field notation
α|β|γ to this class of problems.

They denote this family of considered maximization problems asα(sa)|β|(f →max).
The first fieldα provides the shop environment. Hereα ∈ {1, F, J} for respectively single
machine (1), flow-shop (F) and job shop (J) problems.sa indicates that we search for
the worst schedule among all semi-active schedules, which correspond to the considered
online scheduling policy. The second field gives additionalconstraints on operations. The
third field contains information about the criterion to maximize.

To the best of our knowledge, the first related results we are aware are due to Pos-
ner [21]. Posner studied reducibility among single machineweighted completion time
scheduling problems including minimization as well as maximization problems. In these
problems, the jobs may have release dates and deadlines but there are no precedence con-
straints between the jobs. Besides, inserting idle times between the jobs is allowed.

Aloulou et al [1] studied several maximization versions in a single machine en-
vironment. They examined problems1(sa)|β|(γ→max), whereβ ⊆ {ri, prec} and
γ ∈ {fmax, Cmax, Lmax, Tmax,

∑

(wi)Ci,
∑

(wi)Ui,
∑

(wi)Ti}. They showed that these

38

Annales du LAMSADE n˚7

problems are at least as easy as their minimization counterparts, except for problems
1(sa)||(

∑

wiTi→max) and 1(sa)|ri|(
∑

wiTi→max), which are still open. In par-
ticular, problems1(sa)|ri, prec|(Lmax→max) and1(sa)|ri, prec|(Tmax→max) can be
solved inO(n3) times while the minimization counterparts are strongly NP-hard, even if
prec = ∅ [18].

This work is closely related to the work of the present paper.Indeed, problem
(SP) can be denoted, in the Aloulouet al notation, asα(sa)|ri, prec|(fmax→max).
Besides, we propose in section 5 an algorithm solving the flow-shop problem
F (sa)|ri, preck|(fmax→max), generalizing the algorithm of Aloulouet al for problem
1(sa)|ri, prec|(fmax→max) [1]. Here preck denotes precedence constraints appearing
only between operations scheduled on the same machine, besides the classical flow-shop
precedence constraints.

Another class of related work in the context of flexibility generation for online
scheduling is linked to the concept of groups of permutable operations [6, 11], also called
ordered (group) assignment [3, 27]. A group of permutable operations is a restriction of
the sequential flexibility considered here in such a way thateach operation is assigned to
a group and there is a complete order between the groups of operations performed on the
same machine. There are no precedence constraints between the operations of the same
group. A pioneering work for the definition of the groups of permutable operations con-
cept and the generation of flexible solutions has been achieved by Erschler and Roubellat
[11] in the context of a job-shop problem with due dates. However no computational
experiments were given to validate the practical interest of the approach. This has been
achieved later but independantly by Wuet al [27] who define the identical ordered as-
signement representation and propose an approach that computes an ordered assignement
in a job-shop (i.e. ordered groups of permutable operationson each machine), focusing
first on resolving a critical subset of scheduling decisions. As in the work of Erschler and
Roubellat [11], the principle is to allow the remaining scheduling decisions to be made
dynamically in the presence of disturbances. They show through numerical experiments
on the weighted tardiness job-shop that this approach is superior to the one that generated
a complete solution, in the presence of small to medium disturbances.

Other heuristics have been designed to generate groups of permutable operations for
general disjunctive problems [6] and multiobjective methods have been designed to find a
compromise between flexibility and performance in the two-machine flowshop [12]. Ar-
tigueset al [3] establish the correspondence between the groups of Erschler and Roubellat
[11] and the ordered assignment of Wuet al [27] and make a synthesis by calling this rep-
resentation the ordered group assignment. They also propose a polynomial algorithm to
perform the exact worst-case evaluation of an ordered groupassignment. This method
is based on longest path computations in a so-called worst-case graph, derived from the
considered ordered group assignment. This method solves problem SP for general dis-
junctive problems (e.g. job-shop) where the disjunctions appear only between operations

39

Flexible solutions in disjunctive scheduling [...]

of the same group (inside each group the graph of disjunctions eij is a clique) and when
the precedence constraints are defined between operations of different groups.

As an illustration, the selectionπ proposed for the flow-shop example yielding the 6
feasible schedules of Figure 2 with a worst-case makespan of20 cannot be represented by
groups of permutable operations. Recently Briandet al [7] have proposed to charaterize
a set of optimal schedules for the two-machine permutation flowshopF2|prmu|Cmax by
means of interval structures. The interval structure provides a partial order which does not
involve the restrictions of the concept of groups of permutable operations. Aloulou and
Portmann [2] consider the single-machine scheduling problem with dynamic job arrival
and total weighted tardiness and makespan as objective functions and propose a genetic
algorithm to compute a flexible solution based on a partial order of the jobs.

In this paper we provide a general framework for these previous works by defining
formally the problem of computing the worst-case completion times of the operations in
the set of semi-active schedules compatible with a given partial order of the operations on
the machines. We show that this problem is polynomially solvable for the nonpermutation
flow-shop and we provide a dynamic programming algorithm to solve it.

4 A longest path formulation of the maximisation prob-
lem

Let Ĉi denote the worst case completion time of operationi, i.e. Ĉi = maxπ∈Π Ci(π).
ComputingĈi, for eachi ∈ N solves problem SP since the objective function is a minmax
function of non decreasing functions of the completion times. Recall thatD is the set of
all disjunctive arcs. Let us now consider the following Constrained Longest Path problem
associated to operationi (CLP (i)).

Definition 1 Given a disjunctive graphG = (V,C,D) and an operationi, problem
CLP (i) consists in computing the longest elementary pathL∗(0, i) from 0 to i in
G(D) = (V,C ∪ D) such thatG(L∗) = (V,C ∪ L∗(0, i)) is acyclic.

We have the following result.

Theorem 1 The worst case completion timêCi is equal to the length of pathL∗(0, i)
solution of problemCLP (i).

Proof. We first show that (a)̂Ci is the length of an elementary pathl from 0 to i in G(D)
and thatG(l) is acyclic. Letπ ∈ Π such that we havêCi = Ci(π). π is the complete

40

Annales du LAMSADE n˚7

selection such that̂Ci is the length of a longest pathl from 0 to i in G(π). SinceG(π) is
acyclic,l is elementary and sincel ⊆ π ∪ C, G(l) is also acyclic. Sinceπ ⊂ D, l is also
an elementary path inG(D) = (V,C ∪ D).

Let us show that (b) any elementary pathL from 0 to i in G(D) verifying G(L)
is acyclic is such that there exists a feasible complete selection π ∈ Π verifying C ∪
L ⊆ C ∪ π. Suppose thatL includes only conjunctive arcs. ThenL ⊆ C and (b)
is verified. Suppose now thatL includes also disjunctive arcs. SinceL is elementary,
we have|L ∩ eij| ≤ 1 for each disjunctioneij. HenceL \ L ∩ C is a partial selection.
Furthermore, sinceG(L) = G(V,C∪L) is acyclicC∪L defines a new acyclic precedence
constraints graph and the disjunctive problem defined by(V,C ∪ L,D(L)) is feasible.
HenceL \ L ∩ C is included in a feasible complete selection.

From (b) it follows that the length of any elementary pathL from 0 to i, verifying
G(L) is acyclic, is less or equal than̂Ci. We proved in (a) that there exists an elementary
path l, such thatG(l) is acyclic, with a length equal tôCi. Hence,Ĉi is the length of
CLP (i)-solution.

Note that in the general case, problemCLP (i) may be not easy to solve since it
admits as a particular case the search for the longest elementary path in a graph with
positive length cycles. This problem is known to be NP-hard for general graphs [13].
In Figure 3 we illustrate the problem and the necessity of theno-cycling condition in
definition 1 for a job-shop with 2 machines, 3 jobs and no release dates. Operations
1,4 and 5 are assigned to the first machine and operations 2,3 and 6 are assigned to the
second machine. Structural precedence constraints are(1, 2), (3, 4) and(5, 6). (3, 2) and
(1, 4) are additional precedence constraints. The longest elementary path from 0 to 7
is displayed in bold. Such a path is infeasible since it induces a cycle with precedence
constraints(3, 4). Hence, it is not a solution ofCLP (7).

0

1 2

3 4

5 6

7

Figure 3: A job-shop example and an infeasible elementary longest path

The following proposition shows on the opposite that the problem is simplified in a
nonpermutation flow-shop context, since the no cycling condition is not necessary.

41

Flexible solutions in disjunctive scheduling [...]

Proposition 1 Given a disjunctive graphG = (V,C,D) of a nonpermutation flow-shop
with additional precedence constraints and an operationi, if L(0, i) is an elementary path
from0 to i in G(D) = (V,C ∪ D) thenG(L) = (V,C ∪ L) is acyclic.

Proof. Due to the flow-shop structure, the strongly connected components ofG(D)
include only operations assigned to the same machine. Henceany elementary cycle of
G(D) involves only operations assigned to the same machine. LetL denote an elementary
path inG(D). By definitionL is acyclic and no cycle can be created by adding structural
precedence constraints toL.

We show in next Section that the problem is polynomially solvable in the flow-shop
context.

5 A polynomial algorithm for the nonpermutation flow-
shop case

In this section, we consider the nonpermutation flow-shop problem with operation
release dates and additional precedence constraints appearing only between operations
scheduled on the same machine, as in the example presented issection 2. In this case, any
sequence of operations compatible with the precedence constraints of machines yields a
feasible complete selection. For each operationj, let j− denote its job predecessor. We
assume that ifj is the first operation of its job, thenj− is a dummy operation denotedj0.
Let Γ−

j (resp.Γ+

j) denote the set of operations that must be scheduled before (resp. after)
j on machinemj. Let Ij denote the set of operations of machinemj that are not linked to
j with any precedence constraint. We have

Γ−
j = {i 6= j|mi = mj and there is a path fromi to j in G = (V,C)} (1)

Γ+

j = {i 6= j|mi = mj and there is a path fromj to i in G = (V,C)} (2)

Ij = {i 6= j|mi = mj, i 6∈ Γ−
j andj 6∈ Γ−

i } (3)

Let us defineĈj0 = rj. We have the following result.

Lemma 1 The worst case completion time of any operationj is given by

Ĉj = pj + max















rj, (a)

Ĉj− , (b)

max
i∈Ij∪Γ

−

j

{max(ri, Ĉi−) +
∑

x∈Ij∪Γ
−

j
\Γ−

i

px} (c)

42

Annales du LAMSADE n˚7

Proof.

Consider machine 1 and an operationj to be executed on this machine. We have
Ĉj− = Ĉj0 = rj, hence terms (a) and (b) are redundant. Denote byS the semi-active
schedule in whichCj(S) = Ĉj and the blockB of operations consecutive on machine 1,
ending withj, is such that there is no idle time between any two consecutive operations
in B andB is of maximal size.B always exists since we have at leastj ∈ B. If B = {j},
then the starting time ofj, Sj, is such thatSj = rj and (a) is verified.

If |B| > 1, then we haveSj ≥ rj. Let i be the first operation of blockB. i is not a
machine successor ofj andi ∈ Ij ∪ Γ−

j . Similarly, by definition all operations insideB,
exceptj itself, belong toIj ∪ Γ−

j \ Γ−
i (they cannot be machine predecessors ofi). Let us

now consider the operations scheduled beforei on machine1. Let x denote the operation
scheduled at the largest position beforei such thatx 6∈ Γ−

i . This operation could be
inserted right afteri. The obtained schedule is semi-active and the the completion time of
j increases, which contradicts the maximality ofCj(S). Hence all operations scheduled
beforei are inΓ−

i . This implies that all operations ofIi ∪ Γ−
j \ Γ−

i are scheduled after
i. Conversely, suppose thatx is the operation scheduled at the smallest position afterj
such thatx is not a successor ofj, i.e. x /∈ Γ+

j . This operation could be inserted right
beforej providing a new semi-active schedule in which the start timeof j increases,
which contradicts the maximality ofCj(S). Hence all operations scheduled afterj are
successors ofj. It follows that if Sj > ri then

Ĉj ≤ max
i∈Ij∪Γ

−

j

{ri +
∑

x∈Ij∪Γ
−

j
\Γ−

i

px} + pj. (4)

Can we havei ∈ Ij ∪ Γ−
j such thatĈj < ri +

∑

x∈Ij∪Γ
−

j
\Γ−

i

px + pj?

Suppose thati is such an operation. It is possible to build a feasible semi-active schedule
in which all the operations beforei are machine predecessors ofi and the operations after
j are only machine successors ofj. This can be made by scheduling the operations of
Γ−

i in an order compatible with the precedence constraints within this set, theni, then the
operations ofIi ∪ Γ+

j in an order compatible with the precedence constraints within this
set, then operationj, then the operations ofΓ+

j in an order compatible with the prece-
dence constraints within this set. The operations on machine 2 can be scheduled in any
order compatible with the precedence constraints of machine 2, and so on. The obtained
scheduleS is semi-active and we haveCj ≥ ri +

∑

x∈Ij∪Γ
−

j
\Γ−

i

px +pj. Hence (4) is verified

to equality.

We can use the similar arguments to prove the result for any machinek > 1.

Consider a machinek and an operation to be executed on this machine. LetS be a
semi-active schedule in whichCj(S) = Ĉj and the blockB of operations consecutive on

43

Flexible solutions in disjunctive scheduling [...]

machinek, ending withj, is such that there is no idle time between any two consecutive
operations inB andB is of maximal size. If|B| = 1 then we have eitherCj(S) = rj +pj

or Cj(S) is set byCj−. To maximize this value we haveCj(S) = Ĉj− + pj.

If |B| > 1 we can also state that an operationi ∈ Ij ∪Γ−
j starts the block withSi = ri

or Si = Ci−. With similar arguments as for machine 1, we prove that all operations
of the setIj ∪ Γ−

j \ Γ−
i are in the block. Furthermore ifSi > ri then we haveSj =

Ci− = Ĉi− to haveĈj maximal. Last we can show that for any operationi ∈ Ij ∪
Γ−

j , we can build a feasible semi-active schedule in which all the operations beforei are
machine predecessors ofi and the operations afterj are machine successors ofj and
Si = max(ri, Ĉi−). This achieves the proof.

Let ν = n/m be the number of jobs. Due to lemma 1, we have the following result.

Theorem 2 ProblemF (sa)|ri, preck|(fmax → max) can be solved inO(mν3) times if
each functionfi is computable inO(1) time.

Proof. Once setsΓ−
j and Ij are built for each operationj, all worst-case completion

times can be computed trivially via the proposed recursion by dynamic programming in
O(mν3).

In the illustrative example of section 2, the worst case completion times are given (in
the order of their computation) bŷC1 = r1 + p1 = 1 (a), Ĉ3 = r5 + p5 + p3 = 8 (c),
Ĉ5 = r1 + p1 + p3 + p5 = 7 (c), Ĉ7 = r5 + p5 + p3 + p7 = 14 (c), Ĉ2 = Ĉ1 + p2 = 7 (b),
Ĉ4 = Ĉ7 + p8 + p4 = 20 (c), Ĉ6 = Ĉ3 + p4 + p6 = 19 (c), Ĉ8 = Ĉ3 + p4 + p6 + p8 = 20
(c).

6 Flexible solutions for the flow-shop problem with a
common due-date

In this Section, we show how flexible solutions can be computed for a flow-shop prob-
lem with a common due date. Contrarily to most references encountered in the litterature
we do not restrict the set of schedules to permutation schedules, where the order of the
jobs has to be identical on all machines [17, 24, 26]. Formally, the problem solved in this
section can be denotedF |d̃i = d|−, i.e. a flow-shop in which all jobs have a common
due-date and the objective is to obtain a feasible schedule.Solving this problem can also
solve the makespan minimization problemF ||Cmax.

In this Section we solve problemF |d̃i = d|− through branch and bound. Inside the
branch and bound we incorporate worst case completion time computations to issue a
flexible solution rather than a single schedule.

44

Annales du LAMSADE n˚7

In the remaining Section, we briefly give the elements of the branch and bound, all
borrowed from previous studies: the branching scheme (Section 6.1), the constraint prop-
agation algorithms used at each node to sharpen the operation time windows (Section
6.2), the heuristic used at each node to try to find a feasible solution (Section 6.3). In
Section 6.4 we explain how the worst-case computation methods have been integrated in
the branch and bound scheme. Last, Section 6.5 provides computational experiments on
standard flow-shop instances.

6.1 Branching Scheme

The proposed branching scheme is based on the disjunctive graph. At each node the
disjunctive graph is updated through the last branching decisions. The branching rules are
based on the relative ordering of the operations assigned tothe same machines. At each
node a machine is selected and a child node is generated for each operation candidate for
being scheduled next on the machine. The machine is selectedas the one on which the
operation with the smallest release datei∗ is assigned. The candidates for being scheduled
first on this machine are the operations with a release date not greater than the earliest
completion time ofi∗. All disjunctive arcs issued from the selected operation are then
orientated as outgoing arcs for this operation. Hence at each node, a disjunctive graph
G = (V,C,D) is defined whereC includes the structural and the additional resource
precedence constraints. The tree is explored by depth-firstsearch.

6.2 Constraint propagation

The common due dated allows to compute a time window[ri, di] for each operation
i ∈ N . Constraint propagation algorithms are used at each node to maintain the time win-
dow as tight as possible, to detect implied precedence constraints and to prune the node if
inconsistency is proven. The release timesri and the due datesdi are first computed with
forward and backward longest path computations in(V,C). Time window tightening,
precedence constraint detection and consistency checkingare performed by the disjunc-
tive constraint propagation and edge-finding techniques. For a precise description of these
techniques, we refer to [8, 5].

Furthermore at the root node initial time windows are computed by the shaving tech-
nique [19, 9] which consists in running the above-referred constraint propagation algo-
rithms after setting the start time of an operation to its release date (or to its due date). If
inconsistency is proven, the tentative value can be removedfrom the time window. Such
a technique has been proven very useful for flow-shop problems [20].

45

Flexible solutions in disjunctive scheduling [...]

6.3 Heuristic

In the case where the current node has not been pruned by constraint propagation, a
heuristic is used to find a feasible solution. The heuristic is simply based on the applica-
tion of the well-known priority-rule based active and non-delay constructive algorithms
[4]. At each node, we apply 4 times the non-delay scheduling algorithms and 4 times the
active scheduling algorithm. The 4 used priority rules are the minimal earliest possible
start (ri), the minimal lastest start (di−pi) and the randomized version of these rules where
another operation then the one determined by the rule is selected with a low probability.

When no feasible solution has been found, the solution with the lowest makespan is
kept. Each time one of the 8 constructive methods improves the best known solution
in terms of makespan, an intensification phase is applied by runningH1 times the ran-
domized version of the priority rule that yielded the improvement with both active and
non-delay algorithms. This amounts to a basic neighborhoodsearch of a further improv-
ing solution

6.4 Integration of worst-case completion times

The branch and bound additionnaly uses worst-case completion time computations.
Let G = (V,C,D) denote a disjunctive graph which is worst-case feasible, i.e. for which
the worst case completion timêCi of each operation verifieŝCi ≤ di. SinceG is feasible
in the worst-case, we may prune the node and keepG as a flexible solution. Although at
this time, problemF |d̃i|− is solved, the search process continues however to find further
flexible solutions. Note that we aim at finding a flexible solution with a maximal number
of disjunctions|D| which represent the greatest amount of decisions let to the decision
maker.

Each time a feasible solution is found (or the node is worst-case feasible), we run a
heuristic (WCH) returning a flexible solution from a given worst-case feasible disjunctive
graphG described as follows. The disjunctive-graph is modified such that it becomes
minimally worst-case feasible, i.e. it does not include anyorientated disjunctive arc(i, j)
such that(V,C \(i, j), D∪eij) is worst case feasible. The heuristic traverses all arcs(i, j)
of C and check whether the latter property is verified for(i, j). If an arc(i, j) such that
(V,C \ (i, j), D ∪ eij) is worst case feasible is found,(i, j) is removed fromC andeij is
added toD. The process is iterated untilG becomes minimally worst-case feasible. Note
that this process increases the size of the solution space represented byG. Only those
arcs(i, j) such that there is no other path fromi to j are considered for being removed.
Otherwise, removing(i, j) does not remove any precedence constraint.

The order in which arcs are selected for being removed fromC determines the result-
ing disjunctive graph. Hence several orders may result in different minimally worst-case

46

Annales du LAMSADE n˚7

feasible graphs. We call the above procedure with 100 randomly generated arc orders for
each encountered feasible or worst-case feasible node. Thebranch and bounds stops when
this process has been applied in turn 100 times, which correspond to a total of 10000 calls
to the WCH procedure, or there is no more node to develop.

Recall that the branch and bound is an exact method w.r.t problemF |d̃i = d|−. The
number of disjunctions of the flexible solution is heuristically maximized only.

6.5 Experimental comparison

In this Section we give the performance of the branch and bound on flowshop instances
issued from the litterature.

Because of the difficulty of the non permutation flow-shop problem problem, we have
modified the smallest instances designed by Taillard [23], which originally comprise 10
problems with 20 jobs and 5 machines, to keep only the 10 first jobs in each. All programs
have been coded in C++ and run on an AMD64 archicture under Linux. Cplex 9.0 was
used to solve the LP relaxations and the MILP problems. Parameters H1 was set to 50000
iterations.

We have made 2 series of experiments, one with the common due date of each instance
set to the optimal makespan and the other one with the common due date set to the optimal
makespan augmented by 5%. The results are given in Table 1 forthe instances with the
tight common due date and in Table 2 for the instances with theloose common due date.
In both tables, we give for each instance the number of jobs, the number of machines,
the minimal makespan, the common due date, the largest obtained number of disjunctions
of the flexible solution (also expressed in percentage of thetotal number of disjunctions,
equal to 225). We also provide the numbers of nodes and the CPU times in seconds needed
to obtain the first feasible solution and the numbers of nodesand CPU times needed to
obtain the flexible solution. The results show that in both cases, flexible solutions are
exhibited with a reasonable amount of additional CPU time. Asexpected the flexibility
is higher for the instances with a loose common due-date but significant flexibility is also
generally obtained for the instances with the tight due date.

7 Conclusion

In this paper, we proposed a longest path formulation of the problem of evaluating
the worst case performance of flexible solutions in disjunctive scheduling with minmax
regular objective function. A flexible solution is defined byan operation partial order
on each machine. We proved that this problem is polynomial inthe special case of the

47

Flexible solutions in disjunctive scheduling [...]

Table 1: Results on instances with a tight common due date

P #jobs m C∗
max d |D| #nodes 1st CPU 1st #nodes CPU

1 10 5 767 767 3 (1.3%) 5286 18 6614 21
2 10 5 763 763 6 (2.6%) 7 0 1660 40
3 10 5 691 691 7 (3.1%) 12 0 837 52
4 10 5 813 813 3 (1.3%) 1 0 33 11
5 10 5 731 731 8 (3.5%) 4666 12 7295 118
6 10 5 749 749 9 (4%) 267 0 6373 20
7 10 5 741 741 11(4.8%) 1676 10 3254 16
8 10 5 717 717 4 (1.7%) 58 6 1026 12
9 10 5 687 687 7 (3.1%) 1 0 62 27
10 10 5 762 762 17(7.5%) 14 0 499 150

Table 2: Results on instances with a loose common due date

P #jobs m C∗
max d |D| #nodes 1st CPU 1st #nodes CPU

1 10 5 767 805 14 (6.2%) 180 0 3500 146
2 10 5 763 801 9 (4%) 1 0 758 70
3 10 5 691 725 11 (4.8%) 1 0 2778 105
4 10 5 813 853 10 (4.4%) 1 0 4805 109
5 10 5 731 767 11 (4.8%) 2 0 34104 177
6 10 5 749 786 16 (7.1%) 1 0 3708 162
7 10 5 741 778 22 (9.7%) 21 0 13748 220
8 10 5 717 752 9 (4%) 16 0 704 90
9 10 5 687 721 21 (9.3%) 4 0 7807 186
10 10 5 762 800 19 (8.44%) 1 0 515 193

48

Annales du LAMSADE n˚7

flow-shop problem with release dates and additional precedence constraints between op-
erations scheduled on the same machine. We used the worst case computation method to
generate flexible solutions for a flow-shop problem with a common due date. We show
that flexible solution with a significant flexibility are obtained with a reasonable compu-
tational overhead with partial solutions leaving unselected up to 10% of the disjunctions
when the due date is loose and up to 7% of the disjunction when the due date is tight.

Besides their interest for on-line decision support, flexible solutions could also be used
in bricriteria scheduling as a support toǫ-constraint method [10, 16, 25]. Indeed, once
a set of schedules achieving a required worst-case value on the first (regular minmax)
criterion, the optimal solution for the second criterion can be searched on this set without
considering any constraint on the first criterion, as underlined by Gupta and Stafford in
[14], about the work of [7].

Another work of interest would be to focus on extensions of the worst-case perfor-
mance evaluation procedure to more general problems. Unfortunately, extending this
approach to the job shop is not trivial. A way to solve it is to study the complexity of
the problem of finding the constrained longest elementary path in the disjunctive graph
of the job-shop problem. It is also of great interest to investigate maximization prob-
lems with total (weighted) flow time as objective function. Indeed, the flow-shop problem
F (sa)|rj|(

∑

Cj → max) is open whereas the single machine1(sa)|rj|(
∑

wjCj → max)
is polynomially solvable [1].

Acknowledgments

The authors are very grateful to Eric Sanlaville for the proposed suggestions to im-
prove the presentation and the content of the paper.

References

[1] M. Aloulou, M. Kovalyov, and M.C. Portmann. Maximizationin single machine
scheduling.Annals of Operations Research, 129:21–32, 2004.

[2] M.A. Aloulou and M.-C. Portmann. An efficient proactive-reactive scheduling ap-
proach to hedge against shop floor disturbance. In G. Kendall, E.K. Burke, S. Petro-
vic, and M. Gendreau, editors,Multidisciplinary Scheduling: Theory and Applica-
tions 1st International Conference, MISTA ’03 Nottingham, UK,13-15 August 2003.
Selected Papers, pages 223–246. Elsevier, 2005.

49

Flexible solutions in disjunctive scheduling [...]

[3] C. Artigues, J.C. Billaut, and C. Esswein. Maximization of solution flexibility for
robust shop scheduling.European Journal of Operational Research, 165(2):314–
328, 2005.

[4] K. R. Baker. Introduction to sequencing and scheduling. Wiley, 1974.

[5] Ph. Baptiste, C. Le Pape, and W. Nuijten.Constraint-Based Scheduling. Kluwer
Academic Publishers, 2001.

[6] J.C. Billaut and F. Roubellat. A new method for workshop realtime scheduling.
International Journal of Production Research, 34(6):1555–1579, 1996.

[7] C. Briand, H.T. La, and J. Erschler. A new sufficient condition of optimality for
the two-machine flowshop problem.European Journal of Operational Research,
169(3):712–722, 2006.

[8] J. Carlier and E. Pinson. An algorithm for solving the job-shop problem.Manage-
ment Science, 35(2), 1989.

[9] J. Carlier and E. Pinson. Adjustment of heads and tails forthe job-shop problem.
European Journal of Operational Research, 78:146161, 1994.

[10] V. Chankong and Y. Haimes.Multiobjective decision making theory and methodol-
ogy. Elsevier, 1983.

[11] J. Erschler and F. Roubellat. An approach for real time scheduling for activities with
time and resource constraints. In R. Slowinski and J. Weglarz, editors,Advances in
project scheduling. Elsevier, 1989.

[12] C. Esswein, J.C. Billaut, and V. Strusevich. Two-machine shop scheduling: Com-
promise between flexibility and makespan value.European Journal of Operational
Research, 167(3):796–809, 2005.

[13] M.R. Garey and D.S. Johnson.Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, 1979.

[14] J.N.D. Gupta and E. F. Stafford. Flowshop scheduling research after five decades.
European Journal of Operational Research, 169(3):699–711, 2006.

[15] W. Herroelen and R. Leus. Project scheduling under uncertainty: Survey and re-
search potentials.European Journal of Operational Research, 165(2):289–306,
2005.

[16] H. Hoogeveen. Multicriteria scheduling.European Journal of Operational Re-
search, 167(3):592–623, 2005.

50

Annales du LAMSADE n˚7

[17] J. Lemesre, C. Dhaenens, and E.G. Talbi. An exact parallel method for a bi-
objective permutation flowshop problem.European Journal of Operational Re-
search, 177(3):1641–1655, 2007.

[18] J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker. Complexity of machine
scheduling problems.Annals of Discrete Mathematics, 1, 1977.

[19] P. Martin and D.B. Shmoys. A new approach to computing optimal schedules for
the job-shop scheduling problem. In5th International IPCO Conference, pages
389–403, 1996.

[20] L. Peridy, E. Pinson, and D. Rivreau. Enhanced disjunctive elimination rules for the
flow-shop and permutation flow-shop problems. In6th International Workshop on
Project Management and Scheduling, Istanbul, 1998.

[21] M. E. Posner. Reducibility among wighted completion time scheduling problems.
Annals of Operations Research, pages 91–101, 1990.

[22] B. Roy and B. Sussmann. Les problèmes d’ordonnancement avec contraintes dis-
jonctives, 1964. D.S. vol. 9, SEMA, Paris, France.

[23] E.D. Taillard. Benchmarks for basic scheduling problems. Euro-
pean Journal of Operational Research, 64:278–285, 1993. available at
http://ina2.eivd.ch/collaborateurs/etd/problemes.dir/ordonnancement.dir/ordonnancement.html
(visited on April, 3 2006).

[24] M. F. Tasgetiren, Y.-C. Liang, M. Sevkli, and G. Gencyilmaz. A particle swarm
optimization algorithm for makespan and total flowtime minimization in the permu-
tation flowshop sequencing problem.European Journal of Operational Research, in
press.

[25] V. T’Kindt and J.-C. Billaut.Multicriteria Scheduling. Springer, 2002.

[26] V. T’Kindt, J.N.D. Gupta, and J.-C. Billaut. Two-machineflowshop scheduling with
a secondary criterion.Computers and Operations Research, 30:505–526, 2003.

[27] S.D. Wu, E.S. Byeon, and R.H. Storer. A graph-theoretic decomposition of the job-
shop scheduling problem to achieve scheduling robustness.Operations Research,
47(1):113–124, 1999.

51

