N
N

N

HAL

open science

Flexible solutions in disjunctive scheduling: general
formulation and study of the flow-shop case
Mohamed Ali Aloulou, Christian Artigues

» To cite this version:

Mohamed Ali Aloulou, Christian Artigues. Flexible solutions in disjunctive scheduling: general for-
mulation and study of the flow-shop case. 2007. hal-00158669v1

HAL Id: hal-00158669
https://hal.science/hal-00158669v1

Preprint submitted on 29 Jun 2007 (v1), last revised 20 Jul 2007 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00158669v1
https://hal.archives-ouvertes.fr

Flexible solutions in disjunctive scheduling :

general formulation and study of the flow-shop
case

Mohamed Ali Aloulot, Christian Artigues

Résumé

On considére le probléme de pilotage d’atelier en temps réel et on propose d
construire d’'une fagon procative une solution présentant de la flexibdgéentielle
pouvant étre exploitée en temps réel pour absorber les incertitudes dleneddes
perturbations. Ceci peut étre réalisé en définissant un ordre patiebmkrations
au niveau de chaque machine, laissant la possibilité au décideur de congdéte
décisions de séquencement en fonction de ses préférences etidiell&aécution.
Proposer une solution partielle n’est pertinent que si on est capalderaer une
évaluation de tous les ordonnancements qui peuvent étre obtenusesiex de
cette solution. L'article répond alors aux deux questions suivantes lleQast la
meilleure et la pire performance des ordonnancements pouvant étre giteinise
régle de pilotage suivi par le décideur ? Comment construire une solutiobldle
avec des garanties de performance imposées ?

Mots-clefs : Ordonnancement disjonctif, flexibilité, évaluation de la performance
dans le pire cas

Abstract

The purpose of this work is to provide the decision-maker a characterizaitio
possible modifications of predictive schedules while preserving optimalitghdn
context of machine scheduling, the anticipated modifications are changespreth
dictive order of operations on the machines. To achieve this goal, a fleahléon
is provided. It represents a set of semi-active schedules and isctdrézad by a
partial order on each machine, so that the total order can be set oadinequired

*LAMSADE, Université Paris-Dauphine, 75775 Paris cedexP@nce.
al oul ou@ ansade. dauphi ne. fr
fTLAAS-CNRS, 7 avenue du Colonel Roche, 31077 Toulouse, Erand i gues@ aas. fr

33

Flexible solutions in disjunctive scheduling [...]

by the decision maker. A flexible solution is optimal if all the complete schedules
that can be obtained by extension are also optimal. We consider the probdeai-o
uating the worst case performance of flexible solutions in disjunctivedsiing. We

show that this problem can be modeled as an elementary longest path pholthem
disjunctive graph representing the scheduling problem with additionadticonts.

In the flow-shop context, we give a polynomial algorithm to solve the prolaach
propose a method to issue optimal flexible solutions. Computational experiments
show that significant flexibility is obtained.

Key words : Disjunctive scheduling, flexibility, worst-case performance evaluation

1 Introduction

We consider a general non preemptive disjunctive problemhith a set of opera-
tions has to be scheduled on a set of machines, each operagjoming a fixed single
machine during its execution and each machine being ablet®ps only one operation
simultaneously. The operations are linked by simple precee constraints that do not
necessarily form chains. Such a model encompasses thasddtmv-shop and job-shop
models.

An important issue in scheduling concerns the support gem/to the end-user(s) for
on-line schedule execution after the off-line schedulihgge, which consists in providing
an optimal or suboptimal schedule.

In disjunctive scheduling, as soon as a regular minmax atgéunction is con-
sidered, the support for on-line scheduling often lies iovating for each machine the
mandatory sequence of operations, and for each operatiesrbest and a latest start time
yielding operation slacks. The sequences and the time wisdoe such that scheduling
the operations in the predetermined order and inside time& windows is feasible and
keeps the objective function in a range of acceptable val8ash a flexibility provided
to the end-user is referred to as temporal flexibility. Thagpgr addresses the problem
of providing more flexibility than the classical temporaleom disjunctive scheduling
problems. As already considered in previous studies [2, 3, &1, 12, 27], this can be
achieved by defining only a partial order of the operationsarh machine, leaving to the
end-user the possibility to make the remaining sequencegsbns. This is the principle
of the groups of permutable operations model that has beeiest by several authors
[3, 6,11, 12]. It is also called ordered assignment modeld3y.[The group model sets
restrictions on the proposed partial orders that we relakigipaper. Indeed we represent
the partial orders through general precedence constita@tigeen operations of the same
machine, that have not to be distinguished from the stratprecedence constraints.

34

Annales du LAMSADE n°7

A flexible solution allows to postpone some sequencing d&tssand to hedge against
some small to medium disruptions (raw material unavaitgbismall breakdowns, ...)
with a minimum effort of computations [2, 15, 27]. It also pets to take into account
some decision maker preferences that cannot be simply ewadelthat may render the
problem difficult to solve. For example, if two jobs can be@axed in any order, without
any influence on the performance, then the decision makerprefgr to sequence fist
the job that can be processed rapidly to avoid the starvatidhe next machine, or the
job with a maximum number of successors to maintain enougibiliy in the future.
He may also favor a job belonging to a privileged client or lafloat has to be sent to a
downstream shop for further processing.

Providing a partial solution through partial orders is us@f practice only if it can
be assorted with an evaluation of the complete solutionscdwa be obtained by exten-
sion. More precisely, given a reasonable decision politgvieed by the decision maker,
the following questions have to be answered. Do there rehirsions (following the
decision policy) leading to a feasible schedule ? What is ¢ &nd the worse objective
function value reachable by the remaining set of decisioAs©i&wering these questions
provides a performance guarantee if the given on-line padi¢ollowed.

Two main issues are developed in this paper. The first coadbmevaluation of a
flexible solution in the worst case. The second issue is thgotation of optimal or near
optimal flexible solutions. A flexible solution is optimalafl the complete schedules that
can be obtained by extension are also optimal.

In the first part of the paper, we focus on the worst case pedoce evaluation of a
flexible solution. We consider disjunctive scheduling peats with a minmax objective
function. We assume that the decision maker follows a setiwveaschedule policy to
extend the proposed partial orders, which is relevant toragylar objective function.
Recall that a schedule is called semi-active if the operatmannot be shifted to start
earlier without changing the operation sequences or waggirecedence constraints or
release dates [4]. In this case, the worse objective fumatadue can be determined by
computing the worst-case completion time of each operaéparately. We show that
the problem of computing the worse completion time of an apen in all feasible semi-
active schedules can be modeled as an elementary longegirpatem in the disjunctive
graph representing the scheduling problem with additi@oealstraints. This statement
provides a general framework for the majority of previouslgs on representation and
evaluation of set of solutions based on sufficient condgtiondisjunctive problems [1, 3,
6,7,11,12, 27].

In the special case of the flow-shop problem with releasesdatd additional prece-
dence constraints, we give a polynomial algorithm that astegpthe maximal completion
times of all operations in all feasible semi-active schedulhese results generalize some
results previously established for the single machineieersf this problem [1]. The
proposed algorithm is used in a branch and bound method tpuienieasible flexible

35

Flexible solutions in disjunctive scheduling [...]

solutions (w.r.t a common due-date) for a flow-shop problemated byF|d; = d|—.

In Section 2, we present the worst-case computation problemore details. We
discuss the related work in Section 3. In Section 4, the Ishgath formulation of the
problem is given. In Section 5, we present the polynomiab@ilgm for the flow-shop
case. In Section 6, we present a method to compute feasikilelésolutions in the flow-
shop context and provide computational experiments. Finaé conclude in section 7.

2 Problem setting

We consider the following disjunctive scheduling problerihere is a setV =
{1,...,n} of operations to be scheduled enmachines.m;, p; andr; denote the ma-
chine, processing time and release date of operatiogspectively. The release date is
the earliest time when the operation processing can starth Bperation is associated
with a non-decreasing cost functigh(C;) of its completion timeC;. We introduce two
dummy operation8 andn + 1 such thap, = p,.1 = 0. This problem is represented by a
disjunctive graply = (V, C, D) [22]. V is the set of vertices corresponding to operations
i € N and the two dummy operatiofisandn + 1. C'is the set of conjunctive arcs rep-
resenting the precedence constraints between the operatiach conjunctive arg, j)
is valuated byp,. D is a set of pairs of disjunctive ardg:, j), (j,¢)} for each pair of
operationsg, j € N requiring the same machine for their execution & m;). We have
D = {{(¢,7),(4,7)}|i # j andm; = m;}. Arc (i, j) represents the decision to sequence
i beforej, whereas ar¢j, i) represents the decision to sequerideefore: on the ma-
chine. In the remaining a pair of disjunctive afgs, j), (j,7)} is called a disjunction and
denoted by;; orej;.

Let D denote the set of all disjunctive arcs, iB.= {(i, j)|e;; € D}. A selectionr
is a (possibly empty) set of arcs such that D and|r Ne;;| < 1, foralle;; € D. Let
D(m) = {e;; € Dle;; N = 0}. A selection is complete iD(r) = 0, otherwise it is
partial. The disjunctive graph issued from a complete otigegelectionr is denoted by
G(r) = (V,CuUm, D(n)). Given a set of arc&, let G(F) denote graptiV,C U E). A
complete selection is feasible if the grapl’(7) = (V, CU~) is acyclic. The completion
time C;(7) of any operatiori € N in the semi-active schedule derived from the complete
feasible selectionr is equal to the length of the longest pathdtir) from 0 to i plus
p;. Let Il denote the set of feasible complete selections. The obgeofithe classical
scheduling problem is to find a complete feasible selection II such that aegular
minmax objective functiod’(Cy (), ..., Cy(m)) = max;—1__, fi(Ci(7)) is minimized.

Here, we assume the decision maker makes on-line the rergaseiquencing deci-
sions on each machine following a semi-active policy uritbining a complete selection
7. A feasible semi-active schedule can be obtained by a l&diding algorithm as soon

36

Annales du LAMSADE n°7

asC is acyclic: sort the operations in a non decreasing orddreif tevel inG = (V, C)
then sequence as soon as possible on its machine each epaatording to this order.
The first problem tackled in this paper is the following peahl (SP) : Given a disjunctive
graphg = (V,C, D), what is the worst case objective function value aver alsifda
semi-active schedules, i.e computex,cr F'(Cy(7),...,Ch(m)) ?

To illustrate this problem, consider the following 2-mawhand 4-job flow-shop prob-
lem. This gives 8 operations and the flow-shop contextegts- ms = ms = m; = 1
andmy = my = mg = mg = 2. Furthermore, we have, = 1, p» = 6, p3 = 2, p4 = 5,
ps = 4, ps = 6, py = 6 andpg = 1. All release dates are equal to 0 except/fpre= 2.
All objective functions are the completion times of the @tieés. Let us consider addi-
tional precedence constraintél, 3), (1,5),(1,7),(3,7),(2,4), (2,6), (6,8)}. We obtain
the disjunctive graply displayed in Figure 1.

Figure 1: The disjunctive graph for a partial selection

The precedence constraints restrict the possible segaiga(de3, 5, 7) and(1, 5, 3,7)
on machinel and(2,4,6,8), (2,6,4,8) and(2,6,8,4) on machine 2. We obtain the 6
schedules displayed in Figure 2. Note that such restriatemmot be modeled by the
group of permutable operation representation used in [11612, 27]. The solution of
problem SP is 20 which is the worst-case makespan value & sleeni-active schedules.
Note that the optimal makespan of the flow-shop problem is 19.

The second problem considered in this paper is to proposdteonhallowing to com-
pute optimal (or feasible w.r.t. a due date) flexible solsigvith a maximum number of
disjunctions| D|. Indeed, this quantity represents the amount of remaingogstbns that
can managed by the decision maker.

Consider the problent’|d; = d|— with d = 20 for the above example. The flexible
solution represented in Figure 1 is feasible and repredkat§ schedules displayed in
Figure 2. The number of disjunctions in this solution/i§ = 3.

37

Flexible solutions in disjunctive scheduling [...]

Figure 2: Sequences and semi-active schedules compatfihléw partial selection

3 Related work

Problem SP can be viewed as a maximization problem of an mlgecinction that
is naturally minimized. Several works have aleady been gseg in this domain. In
particular, Aloulou, Kovalyov and Portmann [1] adapt theditional three-field notation
o] to this class of problems.

They denote this family of considered maximization proldersy(sa)|5|(f — max).
The first fielda provides the shop environment. Heres {1, F, J} for respectively single
machine (), flow-shop ¢) and job shop () problems. sa indicates that we search for
the worst schedule among all semi-active schedules, wiuglespond to the considered
online scheduling policy. The second field gives additi@uastraints on operations. The
third field contains information about the criterion to nraxe.

To the best of our knowledge, the first related results we asg@aare due to Pos-
ner [21]. Posner studied reducibility among single machuegghted completion time
scheduling problems including minimization as well as ma@xation problems. In these
problems, the jobs may have release dates and deadlindgebeitire no precedence con-
straints between the jobs. Besides, inserting idle timesdst the jobs is allowed.

Aloulou et al [1] studied several maximization versions in a single maehen-
vironment. They examined problemssa)|3|(y— max), where3 C {r;, prec} and
v € { fmaxs Cmaxs Linax, Tinaxs 2 (wi)Ciy > (wi) Ui, S (w;)T;}. They showed that these

38

Annales du LAMSADE n°7

problems are at least as easy as their minimization couartsrpexcept for problems
1(sa)||(>] w;T; —max) and 1(sa)|r;|(>_ w;T; — max), which are still open. In par-
ticular, problemsl (sa)|r;, prec|(Lma.x — max) and 1(sa)|r;, prec|(Tma.x — max) can be
solved inO(n?) times while the minimization counterparts are strongly INfel, even if
prec = () [18].

This work is closely related to the work of the present papkrdeed, problem
(SP) can be denoted, in the Aloulai al notation, asa(sa)|r;, prec|(fmax — max).
Besides, we propose in section 5 an algorithm solving the #bap problem
F(sa)|r;, preck|(fmax — max), generalizing the algorithm of Alouloat al for problem
1(sa)|r;, prec|(fmax — max) [1]. Here prec, denotes precedence constraints appearing
only between operations scheduled on the same machindebéke classical flow-shop
precedence constraints.

Another class of related work in the context of flexibility nggation for online
scheduling is linked to the concept of groups of permutapkrations [6, 11], also called
ordered (group) assignment [3, 27]. A group of permutabkraions is a restriction of
the sequential flexibility considered here in such a way ¢laah operation is assigned to
a group and there is a complete order between the groups ditapes performed on the
same machine. There are no precedence constraints betweepdrations of the same
group. A pioneering work for the definition of the groups ofrpatable operations con-
cept and the generation of flexible solutions has been agthiey Erschler and Roubellat
[11] in the context of a job-shop problem with due dates. Hmweno computational
experiments were given to validate the practical interésh® approach. This has been
achieved later but independantly by Wtial [27] who define the identical ordered as-
signement representation and propose an approach thatitesrgn ordered assignement
in a job-shop (i.e. ordered groups of permutable operatonsach machine), focusing
first on resolving a critical subset of scheduling decisigkssin the work of Erschler and
Roubellat [11], the principle is to allow the remaining schigty decisions to be made
dynamically in the presence of disturbances. They showutiirmumerical experiments
on the weighted tardiness job-shop that this approach ergugo the one that generated
a complete solution, in the presence of small to medium diances.

Other heuristics have been designed to generate groupsrotifable operations for
general disjunctive problems [6] and multiobjective methbave been designed to find a
compromise between flexibility and performance in the twaehine flowshop [12]. Ar-
tigueset al[3] establish the correspondence between the groups dfilersand Roubellat
[11] and the ordered assignment of \&al [27] and make a synthesis by calling this rep-
resentation the ordered group assignment. They also peappslynomial algorithm to
perform the exact worst-case evaluation of an ordered gassgnment. This method
is based on longest path computations in a so-called wasst-graph, derived from the
considered ordered group assignment. This method solwédepn SP for general dis-
junctive problems (e.g. job-shop) where the disjunctiqusear only between operations

39

Flexible solutions in disjunctive scheduling [...]

of the same group (inside each group the graph of disjurgtigns a clique) and when
the precedence constraints are defined between operatidiiferent groups.

As an illustration, the selection proposed for the flow-shop example yielding the 6
feasible schedules of Figure 2 with a worst-case makesp2d cdnnot be represented by
groups of permutable operations. Recently Briahdl [7] have proposed to charaterize
a set of optimal schedules for the two-machine permutatawsthopZ'2|prmu|Ciyax by
means of interval structures. The interval structure ghesia partial order which does not
involve the restrictions of the concept of groups of perrblgaperations. Aloulou and
Portmann [2] consider the single-machine scheduling prablith dynamic job arrival
and total weighted tardiness and makespan as objectivéidae@nd propose a genetic
algorithm to compute a flexible solution based on a partidéoof the jobs.

In this paper we provide a general framework for these pteviworks by defining
formally the problem of computing the worst-case completimes of the operations in
the set of semi-active schedules compatible with a givetigbarder of the operations on
the machines. We show that this problem is polynomially alole for the nonpermutation
flow-shop and we provide a dynamic programming algorithnotaesit.

4 A longest path formulation of the maximisation prob-
lem

Let C; denote the worst case completion time of operatjore. C, = max, ey C; (7).
Computing(;, for eachi € N solves problem SP since the objective function is a minmax
function of non decreasing functions of the completion 8mRecall tha®D is the set of
all disjunctive arcs. Let us now consider the following Coasted Longest Path problem
associated to operatiar{(C LP(1)).

Definition 1 Given a disjunctive graply = (V,C, D) and an operation;, problem
CLP(i) consists in computing the longest elementary pAti0,:) from 0 to i in
G(D) = (V,C UD) such thatG(L*) = (V,C U L*(0,4)) is acyclic.

We have the following result.

Theorem 1 The worst case completion tint& is equal to the length of path*(0, 1)
solution of problenC LP(3).

Proof. We first show that (aJ; is the length of an elementary pdtirom 0 toi in G(D)
and thatG(/) is acyclic. Letr € II such that we have; = C;(x). « is the complete

40

Annales du LAMSADE n°7

selection such that; is the length of a longest pattirom 0 to i in G(r). SinceG(x) is
acyclic, is elementary and sindeC = U C, G(l) is also acyclic. Since C D, [is also
an elementary path iG(D) = (V,C U D).

Let us show that (b) any elementary pathfrom 0 to i in G(D) verifying G(L)
is acyclic is such that there exists a feasible completecseter € II verifying C' U
L C C Ur. Suppose thal includes only conjunctive arcs. Then C C' and (b)
is verified. Suppose now thdt includes also disjunctive arcs. Sinéeis elementary,
we have|L N e;;| < 1 for each disjunctiore;;. HenceL \ L N C is a partial selection.
Furthermore, sinc&'(L) = G(V,CUL) is acyclicC'UL defines a new acyclic precedence
constraints graph and the disjunctive problem defined\by” U L, D(L)) is feasible.
HenceL \ L N C'isincluded in a feasible complete selection.

From (b) it follows that the length of any elementary pdtlirom 0 to ¢, verifying
G(L) is acyclic, is less or equal thaty. We proved in (a) that there exists an elementary
pathl, such thati(l) is acyclic, with a length equal t6;. Hence,(; is the length of
CLP(i)-solution.]

Note that in the general case, problé€rii.P(i) may be not easy to solve since it
admits as a particular case the search for the longest etarggmath in a graph with
positive length cycles. This problem is known to be NP-hamddgeneral graphs [13].
In Figure 3 we illustrate the problem and the necessity ofribxeycling condition in
definition 1 for a job-shop with 2 machines, 3 jobs and no sdedates. Operations
1,4 and 5 are assigned to the first machine and operations@,8 are assigned to the
second machine. Structural precedence constraintd 22§ (3,4) and(5,6). (3,2) and
(1,4) are additional precedence constraints. The longest elanyepath from 0 to 7
is displayed in bold. Such a path is infeasible since it irdua cycle with precedence
constraintg3, 4). Hence, it is not a solution af'L P(7).

Figure 3: A job-shop example and an infeasible elementargdet path

The following proposition shows on the opposite that thebfam is simplified in a
nonpermutation flow-shop context, since the no cycling @¢@rdis not necessary.

41

Flexible solutions in disjunctive scheduling [...]

Proposition 1 Given a disjunctive grapy = (V, C, D) of a nonpermutation flow-shop
with additional precedence constraints and an operatiahL(0, i) is an elementary path
from0toiin G(D) = (V,C UD)thenG(L) = (V,C U L) is acyclic.

Proof. Due to the flow-shop structure, the strongly connected compis of G(D)
include only operations assigned to the same machine. Hamcelementary cycle of

G (D) involves only operations assigned to the same machinel, Hehote an elementary
path inG(D). By definition L is acyclic and no cycle can be created by adding structural
precedence constraints fo [

We show in next Section that the problem is polynomially able in the flow-shop
context.

5 A polynomial algorithm for the nonpermutation flow-
shop case

In this section, we consider the nonpermutation flow-shagblem with operation
release dates and additional precedence constraintsrapgpealy between operations
scheduled on the same machine, as in the example preseseadio 2. In this case, any
sequence of operations compatible with the precedenceraoris of machines yields a
feasible complete selection. For each operajiolet j~ denote its job predecessor. We
assume that if is the first operation of its job, thejT is a dummy operation denotet.
Letl"; (resp.Fj*) denote the set of operations that must be scheduled beése @fter)

j on machinen,. Let I; denote the set of operations of machingthat are not linked to
j with any precedence constraint. We have

['; = {i # jlm; = m; and there is a path frofto j in G = (V, C)} (1)
I'7 = {i # jlm; = m; and there is a path fromto : in G = (V,C)} (2)
I = {i # jlmi = mj,i ¢ T; andj ¢ T7} (3)

Let us defineC}o = ;. We have the following result.

Lemma 1 The worst case completion time of any operatjos given by

7;]'7 (CL)

. C ()
C; = p; + max S A
7= P max {max(r;,C;-)+ > p} (¢
iel; Ul a€l;Ur;\T

42

Annales du LAMSADE n°7

Proof.

Consider machine 1 and an operatipmo be executed on this machine. We have
Oj- = C‘jo = r;, hence terms (a) and (b) are redundant. Denoté ltlye semi-active
schedule in whiclt;(S) = C; and the blockB of operations consecutive on machine 1,
ending withy, is such that there is no idle time between any two consexotperations
in B andB is of maximal size B always exists since we have atleast B. If B = {j},
then the starting time of, S;, is such thatS; = r; and (a) is verified.

If |[B| > 1, then we haves; > r;. Leti be the first operation of block. i is not a
machine successor gfand: € I; U ;. Similarly, by definition all operations insidg,
except; itself, belong tol; UT"; \ T';” (they cannot be machine predecessorg.afet us
now consider the operations scheduled befare machinel. Letx denote the operation
scheduled at the largest position befersuch thatr ¢ I';. This operation could be
inserted right aftef. The obtained schedule is semi-active and the the complgtie of
j increases, which contradicts the maximality(@f S). Hence all operations scheduled
before: are inI";. This implies that all operations df UT'; \ I'; are scheduled after
i. Conversely, suppose thatis the operation scheduled at the smallest position gfter
such thatz is not a successor gf i.e. z ¢ I';. This operation could be inserted right
before j providing a new semi-active schedule in which the start tohg increases,
which contradicts the maximality af’;(.S). Hence all operations scheduled afjeare
successors of. It follows that if S; > r; then

éj S max {Tl‘ + Z pw} +pj. (4)

1el; Ul e
’ ael;Ur;\I;

Canwe have € [; UT; suchthaC; <r,+ > p,+p;?

ael;Ur;\I';
Suppose thatis such an operation. It is possible to build a feasible s&etive schedule
in which all the operations befoteare machine predecessors a@ind the operations after
j are only machine successorsjof This can be made by scheduling the operations of
I'; in an order compatible with the precedence constraintsmiliis set, then, then the
operations of/; U Fj in an order compatible with the precedence constraintsinvitiis
set, then operation, then the operations dfj in an order compatible with the prece-
dence constraints within this set. The operations on machiocan be scheduled in any
order compatible with the precedence constraints of machiand so on. The obtained
scheduleS is semi-active and we havg, > r; + > pz +p;. Hence (4) is verified

ael;Ur;\I'y

to equality.

We can use the similar arguments to prove the result for archimek > 1.

Consider a maching and an operation to be executed on this machine.SLeé a
semi-active schedule in whiali;(S) = C; and the blockB of operations consecutive on

43

Flexible solutions in disjunctive scheduling [...]

machinek, ending withj, is such that there is no idle time between any two consexutiv
operations inB and B is of maximal size. If B| = 1 then we have eithe?’;(S) = r; +p,
or C;(S) is set byC;-. To maximize this value we havg;(S) = C;- + p,.

If |B| > 1 we can also state that an operation [; UT'; starts the block witlh; = r;
or S; = C;-. With similar arguments as for machine 1, we prove that aéirapons
of the set/; U T, \ I'; are in the block. Furthermore 8; > r; then we haveS; =

C;- = C;- to haveC; maximal. Last we can show that for any operatior I; U
I';, we can build a feasible semi-active schedule in which &ldperations beforeare
machine predecessors ofnd the operations aftgrare machine successors ptand

N

S; = max(r;, C;-). This achieves the proof. n

Let v = n/m be the number of jobs. Due to lemma 1, we have the followingltes

Theorem 2 Problem F(sa)|r;, preck|(fmax — max) can be solved i (mv?) times if
each functionyf; is computable irO(1) time.

Proof. Once setd’; and/; are built for each operatio, all worst-case completion
times can be computed trivially via the proposed recursipdymamic programming in
O(mv?). n

In the illustrative example of section 2, the worst case detign times are given (in
the order of their computation) b, = r, + p; = 1 (a), (s = 75 + ps + p3 = 8 (C),
Cs =r1+p1+p3s+ps =7(C),Cr =15+ ps +ps+pr =14(c), Co = C1 +p2 = 7 (b),
Cy=Cr+ps+ps=20(C),Cs = C3+ps+ps =19(c), Cg = C3 + py + ps + pg = 20
(c).

6 Flexible solutions for the flow-shop problem with a
common due-date

In this Section, we show how flexible solutions can be congbtdgea flow-shop prob-
lem with a common due date. Contrarily to most referencesierieced in the litterature
we do not restrict the set of schedules to permutation sébgdwhere the order of the
jobs has to be identical on all machines [17, 24, 26]. Foryntike problem solved in this
section can be denotdd|d; = d|—, i.e. a flow-shop in which all jobs have a common
due-date and the objective is to obtain a feasible sche&ual@ing this problem can also
solve the makespan minimization probleém|C,..

In this Section we solve problem'\c?i = d|— through branch and bound. Inside the
branch and bound we incorporate worst case completion tongpatations to issue a
flexible solution rather than a single schedule.

44

Annales du LAMSADE n°7

In the remaining Section, we briefly give the elements of trembh and bound, all
borrowed from previous studies: the branching scheme i8e6tl1), the constraint prop-
agation algorithms used at each node to sharpen the opetatie windows (Section
6.2), the heuristic used at each node to try to find a feastilgisn (Section 6.3). In
Section 6.4 we explain how the worst-case computation ndsthave been integrated in
the branch and bound scheme. Last, Section 6.5 providesutatigmal experiments on
standard flow-shop instances.

6.1 Branching Scheme

The proposed branching scheme is based on the disjunctypd gAt each node the
disjunctive graph is updated through the last branchingsaets. The branching rules are
based on the relative ordering of the operations assign#teteame machines. At each
node a machine is selected and a child node is generatedciooparation candidate for
being scheduled next on the machine. The machine is selastdte one on which the
operation with the smallest release détis assigned. The candidates for being scheduled
first on this machine are the operations with a release datgreater than the earliest
completion time ofi*. All disjunctive arcs issued from the selected operatianthen
orientated as outgoing arcs for this operation. Hence dt aade, a disjunctive graph
G = (V,C, D) is defined where” includes the structural and the additional resource
precedence constraints. The tree is explored by deptiséesth.

6.2 Constraint propagation

The common due datéallows to compute a time windoy;, d;| for each operation
i € N. Constraint propagation algorithms are used at each nodaitdam the time win-
dow as tight as possible, to detect implied precedence reonist and to prune the node if
inconsistency is proven. The release timegand the due dateg are first computed with
forward and backward longest path computationgWinC'). Time window tightening,
precedence constraint detection and consistency cheakéngerformed by the disjunc-
tive constraint propagation and edge-finding techniquesalprecise description of these
techniques, we refer to [8, 5].

Furthermore at the root node initial time windows are coraguiy the shaving tech-
nique [19, 9] which consists in running the above-referredstraint propagation algo-
rithms after setting the start time of an operation to iteask date (or to its due date). If
inconsistency is proven, the tentative value can be remfyeed the time window. Such
a technique has been proven very useful for flow-shop prab[ef].

45

Flexible solutions in disjunctive scheduling [...]

6.3 Heuristic

In the case where the current node has not been pruned byaiaohgropagation, a
heuristic is used to find a feasible solution. The heuristisimply based on the applica-
tion of the well-known priority-rule based active and naglay constructive algorithms
[4]. At each node, we apply 4 times the non-delay scheduliggrehms and 4 times the
active scheduling algorithm. The 4 used priority rules & minimal earliest possible
start ¢;), the minimal lastest stard(—p;) and the randomized version of these rules where
another operation then the one determined by the rule isteelevith a low probability.

When no feasible solution has been found, the solution withdivest makespan is
kept. Each time one of the 8 constructive methods improvesh#st known solution
in terms of makespan, an intensification phase is appliedibging H1 times the ran-
domized version of the priority rule that yielded the impeowent with both active and
non-delay algorithms. This amounts to a basic neighboriseadch of a further improv-
ing solution

6.4 Integration of worst-case completion times

The branch and bound additionnaly uses worst-case complgthe computations.
Letg = (V,C, D) denote a disjunctive graph which is worst-case feasitdefar which
the worst case completion tint& of each operation verifies; < d;. Sinceg is feasible
in the worst-case, we may prune the node and Kgap a flexible solution. Although at
this time, problem'|d;|— is solved, the search process continues however to findefurth
flexible solutions. Note that we aim at finding a flexible smotwith a maximal number
of disjunctions| D| which represent the greatest amount of decisions let to ¢besion
maker.

Each time a feasible solution is found (or the node is woasedeasible), we run a
heuristic (WCH) returning a flexible solution from a given wetase feasible disjunctive
graphg described as follows. The disjunctive-graph is modifiedhstimat it becomes
minimally worst-case feasible, i.e. it does not include arigntated disjunctive ar@, j)
such thatV, C\ (i, j), DUe;;) is worst case feasible. The heuristic traverses all @rg$
of C' and check whether the latter property is verified forj). If an arc(i,) such that
(V,C\ (i,7), D Ue;;) is worst case feasible is found, j) is removed fronC' ande;; is
added toD. The process is iterated ungilbecomes minimally worst-case feasible. Note
that this process increases the size of the solution spacesented by;. Only those
arcs(i, j) such that there is no other path frano j are considered for being removed.
Otherwise, removingi,) does not remove any precedence constraint.

The order in which arcs are selected for being removed frodetermines the result-
ing disjunctive graph. Hence several orders may resultffergint minimally worst-case

46

Annales du LAMSADE n°7

feasible graphs. We call the above procedure with 100 rahdgemerated arc orders for
each encountered feasible or worst-case feasible nodéar&iheh and bounds stops when
this process has been applied in turn 100 times, which quoresto a total of 10000 calls
to the WCH procedure, or there is no more node to develop.

Recall that the branch and bound is an exact method w.r.tgmoBld; = d|—. The
number of disjunctions of the flexible solution is heuriatig maximized only.

6.5 Experimental comparison

In this Section we give the performance of the branch andourilowshop instances
issued from the litterature.

Because of the difficulty of the non permutation flow-shop pFobproblem, we have
modified the smallest instances designed by Taillard [2B]jciwvoriginally comprise 10
problems with 20 jobs and 5 machines, to keep only the 10 dibstin each. All programs
have been coded in C++ and run on an AMDG64 archicture underxLi@plex 9.0 was
used to solve the LP relaxations and the MILP problems. PetermiH1 was set to 50000
iterations.

We have made 2 series of experiments, one with the commonaede®beach instance
set to the optimal makespan and the other one with the comom®date set to the optimal
makespan augmented by 5%. The results are given in Tablethdonstances with the
tight common due date and in Table 2 for the instances withotb&e common due date.
In both tables, we give for each instance the number of jdies number of machines,
the minimal makespan, the common due date, the largesheltaumber of disjunctions
of the flexible solution (also expressed in percentage ofdted number of disjunctions,
equal to 225). We also provide the numbers of nodes and the i@ in seconds needed
to obtain the first feasible solution and the numbers of n@hesCPU times needed to
obtain the flexible solution. The results show that in botkesa flexible solutions are
exhibited with a reasonable amount of additional CPU time.eRsected the flexibility
is higher for the instances with a loose common due-dateigmifisant flexibility is also
generally obtained for the instances with the tight due.date

7 Conclusion

In this paper, we proposed a longest path formulation of tleblpm of evaluating
the worst case performance of flexible solutions in disjuectcheduling with minmax
regular objective function. A flexible solution is defined &g operation partial order
on each machine. We proved that this problem is polynomi#thénspecial case of the

a7

Flexible solutions in disjunctive scheduling [...]

Table 1: Results on instances with a tight common due date

P #jobs m Cp.. d |D| #nodes 1st CPU 1st #nodes CPU

1 10 5 767 767 3(1.3%) 5286 18 6614 21

2 10 5 763 763 6(2.6%) 7 0 1660 40

3 10 5 691 691 7(3.1%) 12 0 837 52

4 10 5 813 813 3(1.3%w) 1 0 33 11

5 10 5 731 731 8(3.5%) 4666 12 7295 118

6 10 5 749 749 9 (4%) 267 0 6373 20

7 10 5 741 741 11(4.8%) 1676 10 3254 16

8 10 5 717 717 4(1.7%) 58 6 1026 12

9 10 5 687 687 7((3.1%) 1 0 62 27

10 10 5 762 762 17(7.5%) 14 0 499 150

Table 2: Results on instances with a loose common due date

P #obs m C}.. d |D| #nodes 1st CPU 1st #nodes CPU
1 10 5 767 805 14 (6.2%) 180 0 3500 146
2 10 5 763 801 9 (4%) 1 0 758 70
3 10 5 691 725 11 (4.8%) 1 0 2778 105
4 10 5 813 853 10(4.4%) 1 0 4805 109
5 10 5 731 767 11 (4.8%) 2 0 34104 177
6 10 5 749 786 16 (7.1%) 1 0 3708 162
7 10 5 741 778 22 (9.7%) 21 0 13748 220
8 10 5 717 752 9 (4%) 16 0 704 90
9 10 5 687 721 21(9.3%) 4 0 7807 186
10 10 5 762 800 19(8.44%) 1 0 515 193

48

Annales du LAMSADE n°7

flow-shop problem with release dates and additional prew=eonstraints between op-
erations scheduled on the same machine. We used the woestaagutation method to
generate flexible solutions for a flow-shop problem with a s@wn due date. We show
that flexible solution with a significant flexibility are olmad with a reasonable compu-
tational overhead with partial solutions leaving unseddaip to 10% of the disjunctions
when the due date is loose and up to 7% of the disjunction wiedue date is tight.

Besides their interest for on-line decision support, flexgmlutions could also be used
in bricriteria scheduling as a support éeconstraint method [10, 16, 25]. Indeed, once
a set of schedules achieving a required worst-case valubeofirst (regular minmax)
criterion, the optimal solution for the second criteriom ¢e searched on this set without
considering any constraint on the first criterion, as unded by Gupta and Stafford in
[14], about the work of [7].

Another work of interest would be to focus on extensions efworst-case perfor-
mance evaluation procedure to more general problems. tumately, extending this
approach to the job shop is not trivial. A way to solve it is tody the complexity of
the problem of finding the constrained longest elementatly pathe disjunctive graph
of the job-shop problem. It is also of great interest to itigede maximization prob-
lems with total (weighted) flow time as objective functiondéed, the flow-shop problem
F(sa)|r;|(>_ C; — max) is open whereas the single machiriea)|r;|(> w;C; — max)
is polynomially solvable [1].

Acknowledgments

The authors are very grateful to Eric Sanlaville for the jmsgx suggestions to im-
prove the presentation and the content of the paper.

References

[1] M. Aloulou, M. Kovalyov, and M.C. Portmann. Maximizatian single machine
scheduling. Annals of Operations Researct?9:21-32, 2004.

[2] M.A. Aloulou and M.-C. Portmann. An efficient proactiveactive scheduling ap-
proach to hedge against shop floor disturbance. In G. Keriel&ll Burke, S. Petro-
vic, and M. Gendreau, editorMultidisciplinary Scheduling: Theory and Applica-
tions 1st International Conference, MISTA 03 Nottingham, W&:15 August 2003.
Selected Paperpages 223-246. Elsevier, 2005.

49

Flexible solutions in disjunctive scheduling [...]

[3] C. Artigues, J.C. Billaut, and C. Esswein. Maximization ofusimn flexibility for
robust shop schedulingeuropean Journal of Operational Reseayd65(2):314—
328, 2005.

[4] K. R. Baker.Introduction to sequencing and scheduliniley, 1974.

[5] Ph. Baptiste, C. Le Pape, and W. Nuijte@onstraint-Based Schedulingluwer
Academic Publishers, 2001.

[6] J.C. Billaut and F. Roubellat. A new method for workshop riale scheduling.
International Journal of Production Resear34(6):1555-1579, 1996.

[7] C. Briand, H.T. La, and J. Erschler. A new sufficient coratitiof optimality for
the two-machine flowshop problenturopean Journal of Operational Research
169(3):712-722, 2006.

[8] J. Carlier and E. Pinson. An algorithm for solving the jsiep problemManage-
ment Scienge85(2), 1989.

[9] J. Carlier and E. Pinson. Adjustment of heads and tailgHerjob-shop problem.
European Journal of Operational Reseay@18:146161, 1994.

[10] V. Chankong and Y. Haimedultiobjective decision making theory and methodol-
ogy. Elsevier, 1983.

[11] J. Erschler and F. Roubellat. An approach for real tinteedaling for activities with
time and resource constraints. In R. Slowinski and J. Wegéatitors,Advances in
project schedulingElsevier, 1989.

[12] C. Esswein, J.C. Billaut, and V. Strusevich. Two-machihepsscheduling: Com-
promise between flexibility and makespan val&geiropean Journal of Operational
Research167(3):796-809, 2005.

[13] M.R. Garey and D.S. Johnso@omputers and Intractability: A Guide to the Theory
of NP-Completenes$®V.H. Freeman, 1979.

[14] J.N.D. Gupta and E. F. Stafford. Flowshop schedulirspaech after five decades.
European Journal of Operational Researd69(3):699-711, 2006.

[15] W. Herroelen and R. Leus. Project scheduling under daicgy: Survey and re-
search potentials.European Journal of Operational Research65(2):289-306,
2005.

[16] H. Hoogeveen. Multicriteria schedulingEuropean Journal of Operational Re-
search 167(3):592—-623, 2005.

50

Annales du LAMSADE n°7

[17] J. Lemesre, C. Dhaenens, and E.G. Talbi. An exact panmakghod for a bi-
objective permutation flowshop problemEuropean Journal of Operational Re-
search 177(3):1641-1655, 2007.

[18] J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker. Compgiexaf machine
scheduling problemsAnnals of Discrete Mathematics, 1977.

[19] P. Martin and D.B. Shmoys. A new approach to computingnagit schedules for
the job-shop scheduling problem. &th International IPCO Conferen¢gages
389-403, 1996.

[20] L. Peridy, E. Pinson, and D. Rivreau. Enhanced disjweatiimination rules for the
flow-shop and permutation flow-shop problems.6th International Workshop on
Project Management and Scheduljngtanbul, 1998.

[21] M. E. Posner. Reducibility among wighted completiondistheduling problems.
Annals of Operations Researghages 91-101, 1990.

[22] B. Roy and B. Sussmann. Les problemes d’ordonnancemeatcaveraintes dis-
jonctives, 1964. D.S. vol. 9, SEMA, Paris, France.

[23] E.D. Taillard. Benchmarks for basic scheduling proldem Euro-
pean Journal of Operational Research64:278-285, 1993. available at
http://ina2.eivd.ch/collaborateurs/etd/problemes.dir/ordonnancement.divi@igice ment.html
(visited on April, 3 2006).

[24] M. F. Tasgetiren, Y.-C. Liang, M. Sevkli, and G. Gencydlm A particle swarm
optimization algorithm for makespan and total flowtime miigation in the permu-
tation flowshop sequencing probleBuropean Journal of Operational Reseayahn
press.

[25] V. T'’Kindt and J.-C. Billaut.Multicriteria Scheduling Springer, 2002.

[26] V. T’Kindt, J.N.D. Gupta, and J.-C. Billaut. Two-machifiewshop scheduling with
a secondary criterionrComputers and Operations Resegr8l:505-526, 2003.

[27] S.D. Wu, E.S. Byeon, and R.H. Storer. A graph-theoretoodegposition of the job-
shop scheduling problem to achieve scheduling robustn@gerations Research
47(1):113-124, 1999.

51

