N
N

N

HAL

open science

Complementing deterministic tree-walking automata

Anca Muscholl, Mathias Samuelides, Luc Segoufin

» To cite this version:

Anca Muscholl, Mathias Samuelides, Luc Segoufin. Complementing deterministic tree-walking au-
tomata. Information Processing Letters, 2006, 99 (1), pp.33 - 39. hal-00158657

HAL Id: hal-00158657
https://hal.science/hal-00158657
Submitted on 29 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00158657
https://hal.archives-ouvertes.fr

Complementing deterministic tree-walking automata

Anca Muscholl Mathias Samuelides
LIAFA & CNRS, Université Paris 7, France LIAFA and INRIA

Luc Segoufin
INRIA & Université Paris 11, France

September 12, 2005

Abstract

We consider various kinds afeterministictree-walking automata, with and without pebbles,
over ranked and unranked trees. For each such kind of audoreashow that there is an equiva-
lent one which never loops. The main consequence of thidtieghe closure under complemen-
tation of the various types of automata we consider with agam the number of pebbles used in
order to complement the automata.

1 Introduction

On trees, there are two types of automata that extend autoonmastrings in a natural way. The best
known automaton type has a parallel (branching), one-wdaker: a run of the automaton is a
labeling of the tree by states, either in top-down or botigprfashion, and according to local update
rules. Branching automata appear in several variantsgégdiottom-up and top-down they can be
deterministic or non-deterministic. Except for the detiistic top-down variant, the other three have
all the nice properties of the string case, namely closudeuBoolean operations, determinization
(of the bottom-up variant), minimization, equivalencewimonadic-second order logic, etc. These
automata are commonly callégbe automateand the family of tree languages they define is called
the class ofegular tree languagesSee for instance the textbook [CD@9] for more details.

In this paper we are interested in a second variant, natredywalking automatér WA for short),
which generalize two-way string automata. Given the stae@tutomaton has reached at a given node
and the label of that node, it switches to a new state and mavi® tree to a neighboring node
according to the transition function. It accepts when ichess an accepting state. Thus, this variant
is sequential, in the sense that the automaton head is@uition a single node. TWA have a non-
deterministic (NTWA) and a deterministic variant (DTWA)h&y have been introduced in [AU71]
and it is not hard to see that languages recognized by TWAegelar. It has been shown only
very recently that the inclusion is strict [BCO5]. It hasatseen shown that NTWA are strictly more
powerful than DTWA [BCO04].

A pebble tree-walking automatd®TWA for short) is an extended TWA which can drop and lift
a fixed number of pebbles in the tree. In order to stay withgular tree languages the pebbles are
constrained by a stack discipline [GH96, EH99]. That is,ljbeb are ordered, pebbiecan be lifted
from the tree only if there is no pebble> i present on the tree and we can drop only the smallest
available pebble. We consider two variants of PTWA. Inwesaksetting (wWPTWA for short), which
is the most studied one (see for instance [EH99] and [MSV@B§ last pebble can be lifted only if

the automaton head is currently on the corresponding nadthelstrongsetting (sPTWA for short)
the automaton can lift the last pebble from any node. Thisdasant has been introduced in [EHO5]
and corresponds to a robust class of automata, as it captoegy transitive closure logic on trees
[EHO5]. In both cases of WPTWA and sPTWA the recognized taegliages are regular since unary
transitive logic can be simulated by monadic second-omigicl

The interest for PTWA has recently increased because obitsections with query languages
for XML. For instance they can be used to evaluate XPATH ageriA pebble is then used for each
qualifier occurring in the query. It has also been advocatefMiSV03] that PTWA have all the
navigational power of many of the existing query languages<{ML. This was used in [MSV03] in
order to decide typechecking properties for XML query |anges.

It is still open whether NTWA and (w/s)NPTWA are closed undemplementation or whether
the inclusion of (w/s)PTWA in the class of regular tree laages is strict or not.

In this paper we show that alketerministicvariants (DTWA, wDPTWA and sDPTWA) are closed
under complementation.

Recall that the acceptance condition of these automataatsatih accepting state is eventually
reached. Therefore there are two reasons for rejectingea Hither a rejecting state is reached or the
automaton loops forever. This second case is problematenwine wants to compute an automaton
for the complement language. We show that for any DTW/iere is an equivalent DTWA which
never loops. We then extend this result to wDPTWA by showhmag for anyk-pebble wDPTWA
there is an equivalenit-pebble wDPTWA which never loops. Finally we consider sSDPY It in
that caseBk pebbles are used in order to remove all loops éfpebble SDPTWA. It remains open
whether this blow-up is unavoidable or not.

The idea of the proof is based on Sipser’s crucial obsemdap78] that thebackward config-
uration graphof a deterministic Turing Machin@/ on any of its inputw is a forest. The vertices
of this graph are the configurations &f onw, and an edge — ¢’ connects two configurations
andc if ¢ can be reached fromi in one step of\/. In order to remove loops, it is therefore enough
to be able to simulat@/ on w backwards, starting from an accepting configuration anakihg all
possible paths reaching this accepting configuration antilnitial configuration is reached. This is
done by investigating the configuration tree e.g. in a déipghsearch fashion.

The difficulty is to be able to do the simulation with the ligdtpower of finite automata. Indeed,
the backward configuration tree cannot be stored in the fauterol of the automaton. But it turns
out that the tree can be computed locally and on-the-fly, hisddea has been used by Sipser to solve
the 2-way string case [Sip78].

We show that this idea easily extends to tree-walking autamé# also extends to wWDPTWA,
where the moves of the pebbles are local. For the sSDPTWAMarmckwards simulation is a bit
more complex. Indeed, in that case an automataran lift the last pebble from anywhere. Therefore,
when simulating4 backwards, the previous position of the pebble before anlifst be checked over
the whole tree. We show that this can be done still detertigaity, but with the help of extra pebbles.

Note that the closure under complement of a DTWA was mentidnesection4 of [EH99].
Note also that the closure under complement of an sDPTWA idieedy follows from the fact
that sSDPTWA captures precisely unary deterministic tiaresiclosure logic [EHO5], the latter being
closed under complement by definition. But this approacls du yield a very efficient procedure
in term of pebbles. From [EHO05] it follows that the complertaion of a SDPTWA using pebbles
andn states is expressible using a SDPTWA wittr, pebbles, while our construction uses ofily
pebbles.

2 Notations and TWA

We denote the size of a finite sBtby |F|. The trees we deal with in this section are finite binary
trees, with nodes labeled over the alphabet A Y-treet is a mapping fromN; C {0,1}* to &
where V, is a finite, non empty, prefix-closed set such that for any N;, v0 € Ny iff vl € N,.
We use the set Types {e, ¢, o, 1, Chy, ch; } to encode the possible types of a node: the @t
left-child leafly, a right-child leafl;, a leaf and root at the same tinag a left-child inner nodehy

or a right-child inner nodeh;,. Forv € Ny, lettype (v) denote the type of the nodein the treet.
Letd: Ny x Ny — {1,stay, |o, |1} be the partial function assigning to pairs of the form(v, vi) for

i € {0, 1}, stayto pairs of form(v, v) and to pairs of the formguvi, v), fori € {0, 1}. We denote the
depth-first traversal of a tree (that is, the traversal wigitit each node, the left subtree first and then
the right subtree) bypFS and by right-left DFS the traversal that visits first the tighibtree before
the left one.

Definition 1 A tree-walking automaton(TWA) overX-trees is a tupled = (Q, %, qo, F, §) where
Q is a finite set of statesyy, € @ is the initial state,F C @ is the set of accepting states and
0 C Q x Typesx ¥ x @ x {1,stay, |o, |1} is the transition function. A TWA is calletbterministic
(DTWA) ifd is a function from) x Typesx X to @ x {7, stay, |o, |1}

A configurationof .4 over aX-treet is a pair(q,v) € @Q x N, indicating the current state and the

position of the head in the tree. We write v) At, (¢, ") for (¢, type,(v), t(v), ¢, d(v,v")) € 4.

A run of A over aX-treet is a sequence of configuratiofig, vo), . . ., (¢gn, v,) Satisfying for all
0<i<mn, (g, v) A (Git1,Vig1)-

A run can be finite or infinite. A rurigo,vo) . .. (qn, v,) is acceptingif it is finite and it starts at
the root ingy andends at the rooin a final state. A TWAA accepts a tree if it has an accepting run
over it. A set of>-treesL is recognized byA if A accepts exactly the trees in

We consider now a DTWA4 and would like to construct a DTWA for the complement4f A
DTWA is called non-loopingif every run starting from the initial configuration is finitécor non-
looping DTWA, complementation is immediate as it is enouglhrr&anform a accepting state into a
rejecting one and vice-versa. The difficulty for obtainimamplementation comes from those loops.

In order to complementl, we construct a DTWAA'’ that recognizes the same languagedzend
such that all runs id” are finite.

Proposition 1 For any DTWA withn states we can construct an equivalent, non-looping DTWA wit
O(n?) states.

From Proposition 1 we obtain immediately:
Theorem 1 The class of tree languages recognized by DTWA is closed sodglementation.

Proof. Let A = (Q, X, qo, F,0) be a DTWA that accepts the sbt We construct a DTWAA’
that accepts the complementbfas follows. According to Proposition 1 we can assume thatiats
of A starting in the initial configuration are finite and end atibet. We introduce a new sta@? that
is the final state ofd’. Then for each non final statee @ \ F of A and for each lettes such that
d(q, €, a) is not defined, we add the transitiéf{q, €,a) = (q}, stay). O

We now show Proposition 1. We start with a normal form for DT\t##at will simplify the case
analysis.

Lemma 1 For every DTWA an equivalent DTWA with a unique final stgtean be constructed, such
that the unique final configuratiofy, ¢) has no successor configuration.

Proof. Let A = (Q, X, qo, F,) be a DTWA. We introduce a new staﬂ; that is the unique final
state ofA’. Then we suppress all transitions that can be applied froonéguration fromF x {e}.
For each state, in " and for each lettes € ¥, transition{(qy, €, a, q}, stay) } is added.0

From now on, we will consider only DTWA that satisfy the comah of the previous lemma
and we will denote a DTWA a§Q, ¥, qo, ¢, 9) instead of(Q, X, qo, {qs},6). We now define the
backward configuration graph of a DTWA. Let = (Q, %, qo,qs,6) be a DTWA and lett be a
d-tree.

Definition 2 Thebackward configuration graphGG(.A, t) is the finite graph whose vertices are the
configurationsc of A overt such that there exists a run froato the final configuratior(¢y, ¢) and

. . At
there is an edge — ¢ iff ¢ — c.

Note that a tree is accepted byA iff the initial configuration of A is a vertex ofG(A,t). The
following lemma is a crucial remark:

Lemma 2 ([Sip78]) Let A = (Q, >, g0, qr,0) be a DTWA. For all trees, the backward configuration
graphG(A,t) is a tree with root(gy, €).

Proof. From the definition of the backward configuration graph, @itices ofG(.A,t) are
reachable fronfqy, €) and for any vertexq, v) there is a unique path froig ¢, €) to (¢, v), sinceA is
deterministic andgy, €) is not a successor of any vertex@fA, ¢). O

In order to eliminate the infinite (non-accepting) runsfoive construct a DTWAA' that simulates
A backwards On a given tree, A’ performs a DFS of the backward configuration té&A, t) from
the final configuration of4, that is from the root of7(.A, t), and accepts iff it eventually visits the
initial configuration. Note that the backward configuratioee is implicit, i.e. the DFS is simulated
on-the-fly during the traversal af This can be done because the backward configuration tree is
locally constructible we can compute from a given configuration all its succesaadsits unique
predecessor in the backward configuration tree.

Construction. Let A = (Q,X,qo,qf,6) be a DTWA andt a tree. LetD : N, x Ny — {To
,T1,stay, lo, |1} be the partial function assigning to pairs of the formgvi, v), fori € {0,1} and
the result ofd otherwise. Given a nodgy, v) of G(A,t) with parent noddq’, w), we define itsank
by the pair(q, D(v,w)). The basic observation is that the rank of a configurationenodniquely
determines: among its siblings in the backward configuration tree. We éiwman arbitrary order on
@ and on the sef1q, 11, stay, o, |1}. This implies a total order on the rank (lexicographicaliy)d
therefore a total order on the children of any node in the bhac#l configuration tree. The DTWA'
will perform a DFS ofGG(A, t) according to this order. Whenevgl is visiting a configuratioriq, v)
of G(A,t) in the DFS, the head of’ is visiting the node of ¢, and the state is part of the current
state of A’. The current state ofl’ also always contains the rank of the node previously visited
order for A’ to know which node it should go to next.

This information is maintained as follows. Assume thétis currently investigating the node
n = (q,v) of G(A,t). Its head is therefore omandq is part of the state.

There are two cases. Assume first that the noeds visited for the first time. This is the case
exactly whenn is reached from its parent node #(A,¢). Then. A’ determines the rank of the

first child of n as follows: A’ tries each rankq’, A’) in increasing order. For each one it moves to
the nodew in direction opposite ta\’ and (virtually) checks using and the labeh of w whether
d(¢',a) = ¢, A’. If this is not the case, it goes backuddwith stateq) and tries the next rank.

The second case is when the DFS returns to moge(q, v) from a childn’ of n of rank (¢/, A).
This rank is thus part of the current state4f If (¢/, A’) is the maximal element in the rank order
then A’ returns to the parent of in G(A,t). To do this, A’ simulates virtually.A on ¢ for one step
and obtains a new stateand a directionA. It moves according t@\ and maintains in its state
the necessary information: for the state of the current configuration a@gd A) for the rank of the
previously visited node.

If (¢’, A’) is not maximal,A’ proceeds to the next child efby investigating all the next possibil-
ities for rank as described above.

Note that the size afankis bounded by |Q| therefore the extra information stored in the states of
A’ is bounded by|Q|?. We also need an extra bit in order to know whether the DFS doeswards
or upwards. Overall the number of states4sfis O(|Q|?).

3 Extensions

In this section we consider two extensions of Theorem 1, tisé dne over unranked trees and the
second one for pebble tree-walking automata.

3.1 Unranked trees

A deterministic tree-walking automaton over unrankedsr@TWA; for short) is a DTWA that runs
on unranked trees.

In this context we slightly modify the meaning of the type ai@e. Recall that the set of types
is Types= {e, ¢, lo, l1, Chy, chy }. Their meaning on unranked trees is: the raat leftmost child leaf
lp, a rightmost child leatf, a leaf and root at the same timg a leftmost child inner nodeh, or a
rightmost child inner nodeh;. The set of moves{T, stay, | o, |1 <, —}, should now be understood
as: move to the parent of the current node, stay in the cun@ai¢, move to the leftmost or rightmost
child, move to the next or previous sibling.

We distinguish two models of automata, depending whetlasdt knows the label of the parent of
the current node or not. In the first casmaps@ x Typesx ¥ x X to Q x {1, stay, |o, |1,<,—, },in
the second caskis a function fromQ x Typesx X to @ x {1, stay, |o, |1, <, —}. These two models
seem to differ, for instance a DTWAOof the first kind can accept all boolean circuits that evauat
1 in the usual way, by checking that all children of and-noggdeats one child of or-nodes, resp.)
evaluate to 1. This obvious algorithm does not work if thevendton is forced to visit the parent node
in order to know whether it is an and-node or an or-node, sihcannot record which child it came
from. Anyway, our complementation algorithm does not depen the model.

Note first that we cannot extend directly the previous carsion to DTWA; because it is not
clear how to define aank which uniquely determines a node 6f(A, t) from its siblings with a
constant memory information. Indeed, whdmmoves up in the input tree it can do so from any child.
Therefore in the backward configuration gra@4, t) a node may have arbitrarily many children of
rank (g, 1).

However we can transform a DTWAInto an equivalent one, for which the backward configura-
tion tree has finite rank. The new DTWAcan move upwards in a tree only when it is in a leftmost

child node. We can enforce this property as follows: instefigoing directly upward from an arbi-
trary sonv of « to its fatheru, A" goes to the leftmost sibling af and then goes ta.

In this case theank of a configuration is defined as in the DTWA case with the obwidefinition
of D and it uniquely determines the siblings of a nodé&:i(4, ¢) with a constant memory information.
We can therefore apply the previous construction and obtain

Theorem 2 The class of tree languages recognized by DFW#closed under complementation.

3.2 Pebble automata

We now formally define TWA with pebbles (PTWA). For simpligiive define PTWA that use a stack
discipline on the pebbles, since we are mainly interestethisitype of automaton (without such a
constraint on pebbles we can define non regular tree language e.g. [GH96]).

Definition 3 Letk > 0. A k-pebble PTWA is a tuplel = (Q, X, qo, F,0) whereq is a finite set of
statesygg € @ is the initial state,F' C () is the set of accepting states afcs the transition function:

6 CQ xTypesx ¥ x {0,...,k} x {0,1}* x Q x {1, stay, o, |1, lift, drop}

A PTWA is deterministic (DPTWA),dfis a function from) x Typesx ¥ x {0,...,k} x {0,1}*
to Q X {T7 Stay7 lOa lla Ilft7 drop}'

In this setting each pebble is assigned a number and onlyighedt one can be lifted or droped.
The additional components in the transition function of alBA are the number of pebbles currently
present in the tree (integer frofd, . . ., k}) and the presence of pebhlat the current node (boolean
vector from{0, 1}*); the additional moves cdift the last pebble present in the treedoop the next
available one, according to a given strategy. A configuratiba PTWA is a tuple: = (¢, v,i,%) €
Q x Ny x {0,...,k} x N describing the current state the current node, the current number of
pebblesi and their positions:y, ..., x; in the tree.

We describe now théft and thedrop move, the others being identical to the moves of a TWA.
Thelift move from a configuration = (g, v, i,) yields the new configuratiod = (¢/,v",i — 1,%’)
wherex;- = z; forall j < i. Moreover, we require that = v, i.e., the head does not move. Tdrep
move from a configuratiom = (g, v, i,) yields the new configuratiod = (¢/,v’,i + 1,z’), where
), = x; forall j <iandz;i; = v. Again, we require that = v’

Without any further restriction, this definesrong PTWA(SPTWA). The most studied type of
pebble automata has one further restriction [GH96, EH99YDE}: Thelift move is further restricted
as follows. We allow dift move only from configurations = (g, v,,z) with v = x;, that is, the
head is currently on the highest pebble present in the treis Kind of PTWA is calledveak PTWA
(WPTWA).

Let A be ak-pebble wDPTWA. We construct as in the DTWA case a non looginuebble
wWDPTWA A" which recognizes the same language.a$y simulating.4 backwards. Whenever
A’ will be visiting a node(q, v, i, &) of G(A, t) it will have ¢ in its state and its head will be on node
v of ¢ with thei pebbles placed according o The rank of a configuration is defined as in the DTWA
case withD mapping pairs of consecutive configurations to the{$gt1,, stay, |o, |1, lift, drop} de-
pending on the corresponding transition.4f Because the head does not move when we lift or drop
a pebble, the rank of a configuration uniquely determinesde anong its siblings if/(.A,¢) and it
can be stored with constant memory. Therefore we can applgahstruction of Proposition 1 and
have:

Theorem 3 Letk > 0. The class of tree languages recognized:ipebble wDPTWA is closed under
complementation.

This idea no longer works for SDPTWA. Indeed, in that caseldise pebble can be lifted from
anywhere, therefore there can be arbitrarily many configama of rank(q, lift) that can reach a given
configuration, depending on where the pebble was placectitréle before théft.

Let.A be an SDPTWA anda tree. In order to uniquely determine a configuration of kimsl we
need to know where the pebble wastaat the moment when it is lifted: given a node= (q, v, 1,)
of the backward configuration treg(.A, ¢), with parent nodey’ = (¢/, w, j, 7), we define itextended
rank by the triple(q, D(n,n’), z;) whereD is defined as before for wDPTWA and is the position of
the last pebblé in ¢ (note thatr; is only needed whe® (n, n') is alift). The extended rank uniquely
defines a node among its siblingsGf{.4, ¢) but it can no longer be stored with constant memory.

As before we fix an order among the childrenGiiA, ¢) of a noden = (¢’, w, j, i) according to
their extended rank. This order is relativeo It is based on an arbitrary order @p, an arbitrary
order on{7y, 11, stay, |o, |1, lift,drop} wherelift is maximal, and an order on the nodestofFor
technical reasons that will become clear later we fix theofalhg order among the nodes fwhich
is relative tow: letv < o’ if during the DFS ort starting inw, nodev is visited before’.

We will use in the (backward) simulation some stages whéris simulated forwards between
two distinguished nodes. In order to make this formal, wetusespecial colors: andb (that will
correspond to the presence of certain pebbles) arifidebe the set of trees containing exactly one
noden, of color a and one nodey, of color b (both distinguished nodes may be equal)q,l§’ are
states ofd andn, n’ are nodes in a treithen we denote by, n) the configuration of4 on¢ where no

pebble are present inand by(q, n) At (¢’,n’) the fact thatd can move int from the configuration
(g, n) to the configuratior{¢’, n’). We prove by induction o# that:

Lemma 3 Let.A be ak-pebble sDPTWA and r’ be two states afl. There exists a non-loopirigf-
pebble sSDPTWAL" with two distinguished stateg, ¢ such that for allt € T%, (r,ng) Ak, (r',np)

. At
Iff (q67na) — (Q}anb) .

Proof. The base caske = 0 is shown exactly as in the construction of Proposition 1 Ipfaeing
G(A,t) with G, (A, t), which is the backward configuration tree.dfon ¢ with root (', n) instead
of (¢, €) and accepting nodé-, n,) instead of(qo,). Asn is distinguished, the automaton starts
from n, by positioning its head on,, with stater’, then it performs the DFS 0@, (A, t) from here
as in the proof of Proposition 1. As, is also distinguished4’ accepts and proceedsg as soon as
it reaches,, with stater.

Letk > 0. We constructd’ from A by constructing a sDPTWA that performs a DFS@‘,i’jf,(A, t)
according to the order defined above. The difficulty is to bke @b go, forlift moves, from one
configuration(q, v, 4, Z) to its sibling configuratior(¢’, v, 7,) wherey; is the successor af; in the
order defined above. Indeed the automaton needs to be aldasber the pebbléfrom z; to y; while
staying inv (for lift moves).

AssumeA’ is currently visiting the node = (g, v,i,z) of G%,(A,t). Then its head is on, its
state containg and the rank (not the extended rank, which is not finite) ofribee it has previously
visited, and for eachi € {1,...,:} the pebbleg3; — 2), (35 — 1) and3; are on the node;. This
information is maintained as follows.

The DFS is continued as in the DTWA case by checking whetthehéatiren of an in G2, (A, t)
have been visited. If not, thed’ computes the next possible value for the extended ranklasvil If

neither the current rank nor its successor litathen.4’ computes directly the next possible extended
rank and virtually checks whether the new configuration getsk ton. when simulating4 as in the
DTWA case. If the current rank is notli& but its successor isldt, then.A” drops the pebble3i — 2,

3i — 1 and3: onv and virtually checks that the new configuration with= v gets back to as will

be described in the next case. If yes it proceeds the DFSt it ohecks the next possible extended
rank.

Assume now that the last investigated extended rank camelpg to a configuratiom; =
(¢1,v,1,y) and the next possible extended rank corresponding to a coafignny = (g2,v,1, 2)
both correspond to Et. Note that forj < ¢ we haver; = y; = z;. In this case the pebbles — 2,
3¢ — 1 and3i are already placed on noggof ¢t and.A’ proceeds as followsA’ lifts both pebbles3:
and3i — 1 and drops3i — 1 onw in order to know where to come back. Note that at this poinbjeb
3i — 2 can no longer be lifted. It then searchem DFS (fromwv onwards) until it reaches pebble
3i — 2 ony;. It then moves to the successgof y; in the order ont relative tov that has been defined
earlier. It drops pebbl&i on z;. The problem is now to come back to(determined by the position
of pebble3i — 1) after placing all three pebbles, 3i — 1, 3i — 2 on z;.

To do this. A’ simulates.A (forwards) starting from all configurations of the for(g”, z;, 1, 2)
for someq”, and checks that the first time that pebblis lifted the head is om with stateq (that
is on pebble3i — 1). If this is not the case for any such configuration, th&nsafely ignores the
extended rank correspondingte and proceeds to the next available one by going back to pé&bble
and moving this one to the next node according to the ordérrefative towv. If the check succeeds,
then.A’ goes back to nodg, (that is on pebbl&i), lifts pebbles3:, 3i — 1 and3i — 2, and drops them
all on z; and then simulatesgl again (forwards) until it does &t of pebblei. At this stage,A is back
on nodev and can proceed its investigation@f?, (A, t).

The remaining difficulty is thatd may loop and therefore it is unsafe to simuladeforwards.
However notice thatd needs only to be simulated from the distinguished node guntapebble3:
to the distinguished node containing pebBle— 1 and that along this computation| never drops
or lifts pebblei, nor the ones below (stack discipline). We firew colorsc; - - - ¢; and construct4;
from A as follows. We remove all transitions dropping and liftingbples; with j < ¢, we rename
pebble; > i by pebblej — i, and we transform any transition assuming the presence ebhlg
J < i by a transition assuming the coley at the current node. A node of the input tree4f has
the new colorc;, j < 4, if the current pebble; is present on that node. By constructigh is a
k — i-pebble sDPTWA and we apply Lemma 3 by induction with theimiggtished initial nodez;
(pebble3i) and terminal node (pebble3:; — 1) and stateg” andq. We thus obtain an equivalent
non-looping SDPTWAA using3(k — i) pebbles that is used instead.4fto simulate it forwards in
the above.

The last case is where all childrenohave been visited and we move upwards&f, (A, t) with
alift move. Here, A’ goes to the parent node as in the wDPTWA case, and it can déifelly three
pebbles3i, 3i — 1, and3i — 2 as they are no longer needed.

Applying Lemma 3 with the root node for both distinguishedlas immediately yields:
Theorem 4 Let k > 0. The class of tree languages recognized by sDPTWA is clasger wom-

plementation. More precisely, for evetypebble SDPTWAA there exists 8k-pebble sDPTWA that
recognizes the complementiofA).

4 Conclusion

We have succeeded in complementingebble sDPTWA usingk pebbles. It would be interesting
to know whether this can be done using ohlgebbles or whethedk is really needed. Note however
that it is not even known whether the “strong” model is adtustironger than the “weak” one. Indeed
there is no evidence that SDPTWA accept more tree langubigeswDPTWA. One can show that
for £ = 1 the strong model collapses to the weak one. But this doesesoh $0 easily extend to
k > 1. Note that this implies that complementingl-goebble sSDPTWA can be achieved using only
onepebble.

Thanks to Thomas Schwentick, Joost Engelfriet and HenawikHoogeboom for useful discus-
sions on the topic, and to the referees for their suggestmmmprovement.

References

[AU71] Alfred V. Aho and Jeffrey D. Ullman. Translations orcantext-free grammainforma-
tion and Contro] 19(5):439-475, 1971.

[BCO4] Mikolaj Bojanczyk and Thomas Colcombet. Tree wagkimutomata cannot be deter-
minized. InProc. of Intl. Coll. on Automata, Languages and ProgrammR@04.

[BCO5] Mikolaj Bojanczyk and Thomas Colcombet. Tree-watkeutomata do not recognize all
regular languages. IRroc. ACM SIGACT Symp. on Theory of Comput2@Q5.

[CDG'99] Hubert Comon, Max Dauchet, Rémi Gilleron, Florent desqard, Denis Lugiez, Sophie
Tison, and Marc Tommasi. Tree Automata Techniques and Aaptins. Available at
http://www.grappa.univ-lille3.fr/tata, 1999.

[EHO5] Joost Engelfriet and Hendrik Jan Hoogeboom. Autenveth Nested Pebbles Capture
First-Order Logic with Transitive Closure. Technical Rep05-02, Leiden Institute of
Advanced Computer Science, Leiden University, April 2005.

[EH99] Joost Engelfriet and Hendrik Jan Hoogeboom. Trelkiwg pebble automata. In
J. Karhumaki, H. Maurer, G. Paun, and G. Rozenberg, edifemsels are forever, con-
tributions to Theoretical Computer Science in honor of ABalomaa pages 72-83.
Springer-Verlag, 1999.

[GH96] Noa Globerman and David Harel. Complexity resultstiwo-way and multi-pebble au-
tomata and their logicsTheoretical Computer Sciencg69(2):161-184, 1996.

[MSV03] Tova Milo, Dan Suciu, and Victor Vianu. Typechecgifor XML transformers.Journal
of Computer and System Sciend&®(1):66—-97, 2003.

[Sip78] Michael Sipser. Halting space-bounded computatidn|EEE Conf. on Foundations of

Computer Scienggpages 73—74, 1978.

