
HAL Id: hal-00158631
https://hal.science/hal-00158631

Submitted on 29 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Expressive power of pebbles Automata
Mikolaj Bojanczyk, Mathias Samuelides, Thomas Schwentick, Luc Segoufin

To cite this version:
Mikolaj Bojanczyk, Mathias Samuelides, Thomas Schwentick, Luc Segoufin. Expressive power of
pebbles Automata. Automata, Languages and Programming, 33rd International Colloquium, ICALP
2006, 2006, Venice, Italy. pp.157-168. �hal-00158631�

https://hal.science/hal-00158631
https://hal.archives-ouvertes.fr

Expressive power of pebble automata ?

MikoÃlaj Bojańczyk1,2, Mathias Samuelides2, Thomas Schwentick3, Luc Segoufin4

1 Warsaw University
2 LIAFA, Paris 7

3 Universität Dortmund
4 INRIA, Paris 11

Abstract. Two variants of pebble tree-walking automata on trees are considered that
were introduced in the literature. It is shown that for each number of pebbles, the
two models have the same expressive power both in the deterministic case and in
the nondeterministic case. Furthermore, nondeterministic (resp. deterministic) tree-
walking automata with n+ 1 pebbles can recognize more languages than those with n

pebbles. Moreover, there is a regular tree language that is not recognized by any tree-
walking automaton with pebbles. As a consequence, FO+posTC is strictly included in
MSO over trees.

1 Introduction

In this paper we study pebble automata on binary trees. A pebble automaton is a sort of
sequential automaton which moves from node to node in a tree, along its edges. Besides a
finite set of states it has a finite set {1, . . . , n} of pebbles which it can drop at and lift from
nodes. There is a restriction though: pebble i can only be dropped at the current node if
pebbles i + 1, . . . , n are already on the tree. Likewise, if pebbles i, . . . , n are on the tree only
pebble i can be lifted. Pebble automata were introduced in [4] as a model with intermediate
expressive power between tree-walking automata [1, 7] and parallel bottom-up or top-down
automata. They are closely related to some aspects of XML languages. Furthermore, they are
a building block of pebble transducers which were used to capture XML transformations (cf.
[8, 6]).

Besides the number of pebbles, there are other parameters of pebble automata that can
be varied. For example, they may be deterministic or nondeterministic, and they may have
different policies of lifting a pebble: in the original model [4], a pebble can be lifted only
if it is at the current node (head position), in the strong model, which was used to obtain
a logical characterization in [5], it can be lifted everywhere. Not much is known about the
relationships between the classes induced by the different models. Until recently it was even
conceivable that deterministic tree-walking automata (sequential automata without pebbles)
could recognize all regular languages. In [2, 3] this has been refuted and it has been shown
that nondeterministic tree-walking automata do not recognize all regular tree languages but
are strictly more expressive than deterministic tree-walking automata.

The current paper sheds some more light on the relationship between the pebble automata
classes. In a nutshell, (a) whether pebbles are strong or not does not change the expressive
power but (b) increasing the number of pebbles or moving from the deterministic to the
nondeterministic model increases the expressive power.

We next give an overview of the results of this paper. We write PA for the class of
tree languages recognized by nondeterministic pebble automata. We add a subscript n for
the restriction to n-pebble automata, ‘D’ to indicate deterministic automata and ‘s’ for the
strong model, e.g., sDPAn is the class of tree languages recognized by deterministic strong
n-pebble automata. REG denotes the class of regular tree languages.

? Work supported by the French-German cooperation programme PROCOPE, KBN
Grant 4 T11C 042 25, and the EU-TMR network GAMES.

Expressive power of pebble automata. The main result of this paper is that pebble automata
do not recognize all regular tree languages.

Theorem 1.1. PA (REG.

This result is refined by showing that the hierarchy for pebble automata based on the number
of pebbles is strict for both nondeterministic and deterministic pebble automata.

Theorem 1.2. For each n ≥ 0, PAn (PAn+1 and DPAn (DPAn+1.

This settles open questions raised in [4, 5]. Furthermore, for each n, there is a language
recognized by a nondeterministic tree-walking automaton but not by a deterministic n-pebble
automaton. This improves the result in [2] that tree-walking automata (pebble automata with
no pebbles) can not always be determinized.

Theorem 1.3. For each n ≥ 0, TWA 6⊆ DPAn.

It is still an open problem to know whether DPA is strictly included in PA or not.

Strong pebble automata. In [5], strong pebble automata were introduced as a model which
corresponds to natural logics on trees. It was stated as an open question whether this model
is stronger than the original one. We were surprised that this is actually not the case.

Theorem 1.4. For each n ≥ 0, sPAn = PAn and sDPAn = DPAn.

This proof is effective, but the state space increases n-fold exponentially. In a recent paper
[9], it was shown that DPAn is closed under complement but the closure under complement
of sDPAn was left open. Nevertheless, it was shown that the complement of a language in
sDPAn is in sDPA3n. From Theorem 1.4 we get the following stronger result:

Corollary 1.5. For each n ≥ 0, sDPAn is closed under complement.

Consequences for logics. In [5], the expressive power of strong pebble automata has been
characterized in terms of logics. It was shown that FO+DTC=sDPA and FO+posTC=sPA.
Here, FO+DTC is the extension of first-order logic with unary deterministic transitive closure
operators and FO+posTC is the extension with positive unary transitive closure operators.
By combining these results with ours and the fact that the regular tree languages are captured
by monadic second-order logic (MSO), we immediately obtain the following result.

Corollary 1.6. FO+posTC (MSO.

Whether FO+TC (MSO and FO+DTC (FO+posTC remains open.
In Section 2 we give precise definitions of pebble automata and develop some related

terminology. In Section 3 we prove some basic facts about the behavior of pebble automata
on trees, in particular we show a kind of universality of n-pebble automata: for each n-pebble
automaton A, there is an n-pebble automaton which on a tree t computes, in some sense, the
complete behavior of A on t, for all possible contexts in which t may occur. In Section 4 we use
these techniques to prove our separation results. Finally, in Section 5, we prove that strong
pebbles give no additional power, thereby completing the proof of Corollary 1.6. Because of
space limitation some proofs are missing and are available in the full version of this paper.

Acknowledgment. We are deeply indebted to Joost Engelfriet for carefully reading a previous
draft of this paper and, in particular, pointing out a significant shortcoming in one of the
proofs.

2 Definitions

We consider finite, binary trees labeled by a given finite alphabet Σ. We insist that each
non-leaf node has exactly two children. A set of trees over a given alphabet is called a tree
language. Given a tree t and a node v of t, we denote by t|v the Σ-tree corresponding to
the subtree of t rooted at v. Let ∗ be a new symbol not in Σ. A context is a tree over
Σ ∪ (Σ × {∗}), where the label with ∗ occurs only once and at a leaf. This unique leaf whose
label contains ∗ is called the port of the context. Given a context C and a tree t such that
the label of the root of t is the same as the Σ-part of the label of the port of C, we denote by
C[t] the tree which is constructed from C and t by replacing the ∗-leaf with t. The context
Ct,v is the context resulting from t by removing all proper descendants of v and adding ∗ to
the label of v.

Pebble automata. Informally, a pebble automaton – just like a tree walking automaton – walks
through its input tree from node to node along the edges. Additionally it has a fixed set of
pebbles, numbered from 1 to n that it can place in the tree. At each time, pebbles i, . . . , n

are placed on some nodes of the tree, for some i. In one step, the automaton can stay at the
current node, move to its parent, to its left or to its right child, or it can lift pebble i or place
pebble i − 1 on the current node. Which of these transitions can be applied depends on the
current state, the label and the type of the current node (root, left or right child — leaf or
inner node), the set of pebbles at the current node and the number i.

We consider two kinds of pebble automata which differ in the way they can lift a pebble.
In the standard model a pebble can be lifted only if it is on the current node. In the strong
model this restriction does not apply.

Remark 2.1. – In both models the placement of the pebbles follows a stack discipline: only
the pebble with the number i can be lifted and only the pebble with number i− 1 can be
placed. The restriction is essential as otherwise we would obtain n-head automata.

– The reader might wonder why the pebbles on the tree are numbered from n to i and not
from 1 to i. The reason is simple: If pebbles i, . . . , n are on the tree, we can view the
computation until pebble i is lifted as the computation of an (i − 1)-pebble automaton,
i.e., an automaton with pebbles 1, . . . , i−1. This will be convenient in proofs by induction
on the number of pebbles already dropped on the tree.

We turn to the formal definition of pebble automata. The set types = {r, 0, 1} × {l, i}
describes the possible types of a node. Here, r stands for the root, 0 for a left child, 1 for a
right child, l for a leaf and i for an internal node (not a leaf). We indicate the possible kinds of
moves of a pebble automaton by elements of the set {ε, ↑,↙,↘, lift,drop}, where informally
↑ stands for ‘move to parent’, ε stands for ‘stay’, ↙ for ‘move to left child’ and ↘ for ‘move
to right child’. Clearly, drop refers to dropping a pebble and lift to lifting a pebble. Finally,
2[n] denotes the powerset of {1, . . . , n}.

Definition 2.2. An n-pebble automaton is a tuple A = (Q,Σ, I, F, δ), where Q is a finite
set of states, I, F ⊆ Q are respectively the sets of initial and accepting states, and δ is the
transition relation of the form

δ ⊆ (Q× types× {0, . . . , n} × 2[n] ×Σ)× (Q× {ε, ↑,↙,↘, lift,drop}).

A tuple (q, β, i, S, σ, q′,m) ∈ δ intuitively means that if A is in state q with pebbles i, . . . , n

on the tree, the current node has the pebbles from S, has type β and is labeled by σ then A
can enter state q′ and do a transition according to m.

A pebble set of A is a set P ⊆ {1, . . . , n}. For a tree t, a P -pebble assignment is a
function f which maps each j ∈ P to a node in t. A P -pebbled tree is a tree t with an

associated P -pebble assignment. A pebbled tree is a P -pebbled tree, for some P . We
usually do not explicitly denote f . Analogous notions are defined for contexts.

For 0 ≤ i ≤ n, an i-configuration c is a tuple (v, q, f), where v is a node, q a state and
f a {i + 1, . . . , n}-pebble assignment. We call v the current node, q the current state and
f the current pebble assignment. We also write (v, q, vi+1, . . . , vn) if f(j) = vj , for each
j ≥ i + 1.

We write c `A,t c
′ to denote that the automaton can make a (single step) transition from

configuration c to c′. We denote the transitive closure of `A,t by `+
A,t.

The relation `A,t is basically defined in the obvious way following the intuition described
above. However, there is a restriction of the lift-operation. A lift-transition can only be applied
to an i-configuration (v, q, f) if f(i + 1) = v, i.e., if pebble i + 1 is at the current node. In
Section 5 we also consider strong pebble automata for which this restriction does not hold.

A run is a nonempty sequence c1, . . . , cl of configurations such that cj `A,t cj+1 holds
for each j. It is accepting if it starts and ends in the root of the tree with no pebble on the
tree, the first state in I and the last state in F . The automaton A accepts a tree if it has an
accepting run on it. A set of Σ-trees L is recognized by an automaton that accepts exactly
the trees in L. Finally, we say that a pebble automaton is deterministic if δ is a function
from Q× types× {1, . . . , n} × 2[n] ×Σ to Q× {ε, ↑,↙,↘, lift,drop}.

We use PAn (sPAn) to denote the class of tree languages recognized by some (strong)
pebble automaton using n pebbles and DPAn (sDPAn) for the corresponding deterministic
classes. We write PA for

⋃

n>0 PAn and so forth.

Note that a (strong or standard) pebble automaton without pebbles is just a tree walking
automaton. Thus, we also write TWA and DTWA for PA0 and DPA0, respectively.

An i-run is a run from an i-configuration to an i-configuration in which pebble i + 1 is
never lifted. An i-loop is an i-run from a configuration (v, p, f) to a configuration (v, q, f).
Therefore, an i-loop is determined by the source i-configuration (v, p, f) and the target state q.

An i-move is an i-run with only two i-configurations: the first and last one. It can be
(a) a single transition, or (b) a drop i transition, followed by an (i − 1)-loop followed by a
lift i transition. If the automaton is strong it can also be (c) drop i, followed by a (non-loop)
(i− 1)-run, followed by lift i.

3 Behaviors and how to compute them

Let an n-pebble automaton A be fixed for the rest of the section. It is important in this
section that we work with a standard pebble automaton and not with a strong one.

Let v be a node in a tree t and c = (v, p, vi+1, . . . , vn) an i-configuration. Intuitively,
whether or not there is an i-loop that starts in c clearly only depends on t|v and Ct,v together
with the pebble placement. Nevertheless, the exact relationship is not obvious: e.g., the au-
tomaton might enter t|v, drop pebble i, move to Ct,v, drop pebble i − 1 and then enter t|v
again. Thus, the behavior of A depends on t|v and Ct,v in an interleaving manner.

In this section, we will formalize the intuitive notion of behavior of A through the notion
of simulation. Intuitively, a tree s is simulated by a tree t if all loops in s also exist in t. The
behavior of a tree is its simulation equivalence class (the set of trees that both simulate it,
and are simulated by it). We show that, for each A, (1) there are only finitely many different
behaviors, (2) behaviors are compositional, and (3) the behavior of a tree can be computed
by another pebble automaton with the same number of pebbles.

Two pebble assignments f and g are i-compatible if their domains partition {i+1, . . . , n}.
A pebbled tree t with assignment f is i-compatible with a pebbled context C with assign-
ment g if f and g are i-compatible and the pebbles assigned to the root of t by f are exactly
the pebbles assigned to the port of C by g.

Given a pebbled context C and an i-compatible pebbled tree t, let loopsi(C, t) denote
the set of pairs (p, q) for which there is an i-loop ρ in C[t] from (v, p, f ∪ g) to (v, q, f ∪ g),
where v is the junction node between C and t. An i-loop is a tree i-loop if it involves no
i-configurations outside t, it is a context i-loop if it involves no i-configurations outside C.
By tree-loopsi(C, t) (context-loopsi(C, t)) we denote the corresponding set where ρ is a
tree (context) i-loop. Clearly, tree-loopsi(C, t) ∪ context-loopsi(C, t) ⊆ loopsi(C, t).

We next formalize the intuition that a tree s has all behaviors that a tree t has.

Definition 3.1. Let t, s be P -pebbled trees, for some P . We say s is i-simulated by t if, for
every i-compatible pebbled context C, tree-loopsi(C, s) ⊆ tree-loopsi(C, t).

We define i-simulation of pebbled contexts analogously. If s is j-simulated by t, for every
j ∈ {0, . . . , i} we say that s is i∗-simulated by t.

3.1 Finitely many behaviors

Two P -pebbled trees (resp. contexts) are said to be i-equivalent if they i-simulate each
other; they are i∗-equivalent if they i∗-simulate each other. We will denote context equiv-
alence classes by γ and tree equivalence classes by τ . We write τi(t) (resp. γi(C)) for the
i∗-equivalence class of a pebbled tree t (resp. pebbled context C). We show in this sub-
section that there are only finitely many i-equivalence classes (and therefore finitely many
i∗-equivalence classes.) The following technical lemma shows that the notion of i∗-simulation
actually also covers context i-loops, not only tree i-loops.

Lemma 3.2. Let i ≤ n. Let s, t be pebbled trees and C a pebbled context, such that s and t

are i-compatible with C.

1. context-loops0(C, s) = context-loops0(C, t)
2. For i > 0, if s is (i−1)∗-simulated by t, then context-loopsi(C, s) ⊆ context-loopsi(C, t).
3. If s is i∗-simulated by t, then loopsi(C, s) ⊆ loopsi(C, t).

Proof. We first show that (1) and (2) implies (3). An arbitrary i-loop in C[s] can be decom-
posed into a number of tree i-loops in C[s] and a number of context i-loops in C[s]. The tree
i-loops in C[s] exist in C[t] because s is i-simulated by t. The context i-loops in C[s] exist
in C[t] because of (1) and (2). It remains to show (1) and (2). Item (1) is obvious, since a
context 0-loop in C[s] (or C[t]) only visits C. For item (2), let ρ be a context i-loop in C[s]
from p to q. We decompose the run ρ into a sequence ρ0, π1, ρ1, . . . , πm, ρm, where in the ρk
neither the head nor a pebble ≤ i is outside C and each πk is a tree j-loop in C ′[s], for some
j < i, where C ′ is the context extending C with pebbles {j + 1, . . . , i}. Since s is j-simulated
by t, tree-loopsj(C

′, s) ⊆ tree-loopsj(C
′, t), thus there is a corresponding tree j-loop π′

k in
C ′[t]. Clearly, the runs ρk also exist in C[t] (modulo the assignment of pebbles > i in s and
t). Thus, there is a context i-loop ρ′ in C[t] with the same initial and final states. ¤

We associate with every tree i∗-equivalence class τ a (pebbled) tree tτ of this class and
likewise we choose a (pebbled) context Cγ , for each γ. If γ is a (i−1)∗-equivalence class, then
from the dual of Lemma 3.2(2) we can conclude that tree-loopsi(C, t) = tree-loopsi(Cγ , t),
for every context C of class γ.

Given a pebbled tree t, its tree i-behavior Bi
t, for i > 0, is a function that maps (i−1)∗-

equivalence class γ to the set of pairs tree-loopsi(Cγ , t). It is defined only for γ such that
Cγ is i-compatible with t. For i = 0, Bi

t is simply the set of tree 0-loops of t. The context
i-behavior Bi

C is defined analogously.
There is a natural order on i-behaviors: Bi

s ≤ Bi
t if Bi

s(γ) ⊆ Bi
t(γ) holds for all γ. The

following technical lemma shows that the i-behaviors completely determine the i-equivalence
classes and their simulations:

Lemma 3.3. Let s, t be P -pebbled trees, for some P . Then Bi
s ≤ Bi

t iff s is i-simulated by t.

Proof. By definition of Bi
t and the remark following Lemma 3.2 we have Bi

t(γi−1(C)) =
tree-loopsi(C, t) for every pebbled context C that is i-compatible with t. Hence, s is i-
simulated by t iff Bi

s(γi−1(C)) ⊆ Bi
t(γi−1(C)) for every such C iff Bi

s ≤ Bi
t. ¤

Thus, Bi
s = Bi

t iff s and t are i-equivalent and from now on we also refer to the i-equivalence
class of a tree as its tree i-behavior. A simple inductive argument shows:

Lemma 3.4. For each i ≤ n, there are finitely many tree (resp. context) i-equivalence classes.

Proof. The proof is by induction on i. For i = 0 it is clear. Let i > 0 and assume the lemma
is proved for all j < i. By induction the number of (i − 1)∗-equivalence classes is finite and
therefore the number of i-behaviors is finite. By Lemma 3.3 this implies that the number of
i-equivalence classes is finite. ¤

The above construction is nonelementary, and this cannot be improved. One can easily
show that the number of behaviors is at least as big as the smallest depth of an accepted tree.
Using a standard construction for first-order logic, one can construct an n-pebble automaton
with O(n) states that only accepts trees whose depth is a tower of n exponentials.

3.2 Behaviors are compositional

We show next that i-behaviors behave compositionally. For instance, the i-behavior of a tree
depends only on the i-behaviors of its two subtrees and the label of the root.

Let R,P0, P1 be a partition of {i + 1, . . . , n} and let a be a label. For trees t0, t1 pebbled
with P0, P1, respectively, we write Compose(a,R, t0, t1) for the pebbled tree consisting of
an a-labeled and R-pebbled root which has t0 and t1 as left and right subtrees, respectively.
Similarly, for a P0-pebbled tree t and a P1-pebbled context C, Compose(C, a,R, t, ∗) is the
context composed from C and t as illustrated in Fig. 1. Likewise, Compose(C, a,R, ∗, t) is
the context where the port is the left sibling of t.

Given ordered sets A,B,C,

t

C

b
a a,

t

C

b

*

pebb
� ����� ���
	

R

Fig. 1. The left-composed context Compose(C, a,R, t, ∗).

an operation f : A × B → C

is monotone if a ≤ a′, b ≤ b′

implies f(a, b) ≤ f(a′, b′).

Lemma 3.5. Once the label a and pebble set R are fixed, the composition operations are
monotone with respect to i∗-simulation.

In particular, i∗-equivalence is a congruence for the composition operations. Thus, it makes
sense to write Compose(a,R, τ0, τ1) for the i∗-equivalence class of any tree with an a-labeled,
R-pebbled root and subtrees of i∗-equivalence class τ0 and τ1. The proof of Lemma 3.5 is by
induction on i and is straightforward by composing the subruns of the automaton in each of
the subcomponents.

3.3 Behaviors can be calculated

In the following lemma we assume that pebbles i + 1, . . . , n in a tree are suitably encoded by
an (enlarged) alphabet. The proof is omitted in this abstract.

Lemma 3.6. For every i ≤ n and tree i-behavior Bi, there is an i-pebble automaton A′ that
recognizes the pebbled trees t with Bi

t ≥ Bi. Likewise for contexts. If A is deterministic, A′

can be chosen deterministic, as well.

3.4 Behavior foldings

In this section, we show one more closure property of pebble automata. For i ≥ 0, the i∗-

behavior of a tree t is defined as the sequence B0
t , . . . , B

i
t (or, equivalently, the i∗-equivalence

class of t; see the paragraph after Lemma 3.3). An i∗-behavior folding of a tree t is a tree
that is obtained from t by replacing, for some nodes v of t, the subtree t|v with a single node
labeled by the i∗-behavior of t|v.

The techniques from Lemmas 3.6 can be generalized to i∗-behavior foldings:

Lemma 3.7. For every i ≤ n and tree i-behavior Bi, there is an i-pebble automaton B that
recognizes the i∗-behavior foldings of pebbled trees t with Bi

t ≥ Bi. Likewise for contexts. If A
is deterministic, B can be chosen deterministic, as well.

Proof. Induction on i. We take the automaton A′ from Lemma 3.6, which tests if a tree has
behavior Bi, and simulate it over the i∗-behavior folding. Whenever the simulated automaton
is in a leaf v of a behavior folding that has some i∗-behavior τ written in it, the simulating
automaton B non-deterministically determines the possible tree j-loops (for j ≤ i) that could
be made in this node in the original tree. These loops depend on τ , and on the (j − 1)∗-
behavior γ of the rest of the tree (the (j − 1)∗-behavior of the context Ct,v along with the
pebble assignment for pebbles {j + 1, . . . , i}). We note for reference in Lemma 4.6 the type of
information used here: in the leaf v, only the part of the folded label τ with the j∗-behavior
is used, while in the rest of the tree Ct,v, only the (j− 1)∗-behaviors are read from the folded
labels. We now mark node v using pebble j and compute the behavior γ using the remaining
j − 1 pebbles thanks to the induction assumption.

The deterministic case can be adapted as in Lemma 3.6. ¤

4 The pebble automata hierarchy

In this section we will prove Theorems 1.1, 1.2 and 1.3. In Subsection 4.1, we define the
separating tree languages that we will use. In Subsection 4.2 we introduce oracle automata, a
slight extension of tree-walking automata and show that the results (cf. Theorem 4.1 below)
of [2] and [3] can be generalized to these models. Finally, in Subsection 4.3 we show the
mentioned results.

4.1 The separating languages

In this section, we will mostly deal with trees over the alphabet {a,b}. Moreover we require
that only leaves can be labeled by a. We call these trees quasi-blank trees. An inner node
of a quasi-blank tree is labeled by b and a leaf of a quasi-blank tree is labeled either by a or
b.

For a quasi-blank tree t we define its branching structure b(t). The branching struc-
tured results from t by first removing all nodes from t besides the a-labelled leaves and their
ancestors. Then, all inner nodes with only one child are removed. Thus, b(t) consists only of
the a-leaves, and of deepest common ancestors of a-leaves. Note that the descendant-relation
of the nodes of b(t) is inherited from t.

By Lbranch we denote the set of quasi-blank trees t such that all the paths from root to
leaf of b(t) have even length.

Let L3l be the set of quasi-blank trees t such that b(t) is . Thus a quasi-blank tree

in L3l has exactly three a-leaves whose branching structure corresponds to the tree depicted

above. Likewise, L3r is the language of trees with branching structure . Note that

each quasi-blank tree with 3 a-leaves is either in L3l or in L3r. We use the following result.

Theorem 4.1. L3l and L3r are in TWA but not in DTWA [2]. Lbranch is in REG but not
in TWA [3].

Actually, in [3] a slightly stronger result was shown: for each TWA A, there are trees
s′ ∈ Lbranch and t′ 6∈ Lbranch such that each root-to-root loop of A in s′ also exists in t′.

For the construction in this section we would need yet a stronger statement, namely that
s′ and t′ have the same root-to-root loops. To this end, we define another tree language Leven

on top of Lbranch, as follows. We recall that in a finite binary tree each node can be naturally
addressed by a {0, 1}-string describing the path from the root to the node where 0 corresponds
to taking the left child of a node. In that spirit, a 0∗1-node is a right child of a node of the
leftmost path. Let Leven be the set of trees t for which b(t) has an even number of 0∗1-nodes v

whose subtree has all branches of even length.
We claim that Leven has the desired property.

Proposition 4.2. For every TWA A, there are trees s ∈ Leven and t 6∈ Leven which have the
same root-to-root loops of A.

Proof. Let A be given. Let s′ and t′ be as guaranteed by Theorem 4.1. We can assume that
t′ simulates s′. (That is, replacing t′ by s′ in any context gives at least as many root-to-root
loops.) This can be enforced in a straightforward manner.

Let m be |Q × Q|, the number of pairs of states of A, and thus the number of different
tree-loops of A. For i ≥ 0, let ti denote the tree which has a leftmost branch of length m + 1
which has s′ and t′ subtrees as right offspring. More precisely, a node of the form 0j1 has
s′ as subtree if j ≤ i and otherwise t′. Clearly, ti is in Leven iff i is even. Note that ti+1 is
obtained from ti by replacing one subtree s′ with t′. It is easy to see that therefore ti+1 has
all root-to-root loops of A that ti has. Thus, the ti, for 0 ≤ i ≤ m + 1, induce a monotone
sequence of m + 2 sets of root-to-root loops and, consequently, there must be an i such that
the sets induced by ti and ti+1 are identical. We can choose one of them as s and the other
as t. ¤

We now define the languages that will be used in our separation proofs. They all consist
of trees of a certain shape. A tree is n-leveled, for n ≥ 0, if each of its paths from the root to
a leaf is labeled by a sequence of the form (cb∗)n(a+ b). Thus, in an n-leveled tree the root
is labeled with c, there are n antichains labeled by c, some leaves have label a and all the
other nodes are labeled by b. Note that a 0-leveled tree consists of a single node labeled with
a or b. A node is said to be on level i if its subtree is an i-leveled tree; it must therefore be
labeled by c. We sometimes identify a level in a tree with the nodes of that level, each level
thus forms a maximal antichain. The level parent of a node v is the closest ancestor of v

that is on some level. A tree is leveled if it is n-leveled for some n.

c c c c c c c c c c

c c c c c c

c

� �������
 3

� �������
 2

� �������
 1

� �������
 0

a
a

a

(a)

c c c

K K K

a b a

(b)

Fig. 2. Illustration of (a) a leveled tree, (b) a leveled tree and its folding.

For a language K of (n − 1)-leveled trees, the K-folding of an n-leveled tree t is defined
as follows. The label of the root is set to b. All nodes below level n − 1 are removed. Each
node v at level n− 1 is labeled by a if t|v ∈ K and by b otherwise. The folding of a 0-leveled
tree is just the tree itself with the root label set to b.

In the remainder of the section, we only consider leveled trees and their subtrees. Let
languages L0,L1, . . . and M0,M1, . . . be defined as follows.

– L0 = M0 contains only the single node tree with label a.
– Ln is the set of all n-leveled trees whose Ln−1-folding is in Leven.
– Mn is the set of n-leveled trees whose Mn−1-folding is in L3l.

Note that L1 = Leven and M1 = L3l.

Proposition 4.3. For each n ≥ 1, (a) Ln ∈ DPAn−PAn−1, and (b)Mn ∈ TWA−DPAn−1.

Proposition 4.3 (a) immediately implies Theorem 1.2. Likewise, Theorem 1.3 immediately
follows from Proposition 4.3 (b). The lower bounds are shown in the following subsections.
The upper bounds are shown by induction, the difficulty being the initial case which will be
detailed in the full version.

4.2 Oracle automata

The general idea of the lower bound proofs of Propositions 4.3 is that once an (n− 1)-pebble
automaton drops a pebble in the top level of an n-leveled tree t, with the remaining n − 2
pebbles it cannot check whether the subtree of a node at level n−1 is in Ln−1 (resp., Mn−1).
Thus, whenever the automaton uses a pebble at a node v in the top level it is blind with
respect to the properties of the nodes at level n− 1. But it still can check properties of v that
depend on the position of v in the unlabeled version of t. In this subsection, we formalize this
intuition by the notion of oracle automata which are an extension of tree-walking automata
by structure oracles. Then we show that Theorem 4.1 also holds for oracle automata.

A structure oracle O is a (parallel) deterministic bottom-up tree automaton [10] that
is label invariant. That is, any two trees that have the same nodes get assigned the same
state by O. Therefore, a structure oracle is defined by its state space Q, an initial state
s0 ∈ Q and a transition function Q × Q → Q. We write tO for the state of O assigned to a
tree t. This notation is extended to contexts: given a context C, CO : Q → Q is defined by
CO(q) = (C[t])O, where t is some tree with q = tO. (All states are assumed reachable.)

For a tree t over some alphabet Σ, a node v of t, and a structure oracle O, the structural
O-information about (t, v) is the pair

((Ct,v)O, (t|v)O) ∈ QQ ×Q .

It should be noted that the result of any unary query expressible in monadic second-order
logic which does not refer to the label predicates can be calculated based on the structural
O-information for some O (and vice-versa). Since the only type of oracles we use in this paper
are structure oracles, we just write oracle from now on.

An oracle tree-walking automaton is a tree-walking automaton A (with state set Q)
extended by a structure oracleO (with state set P). The only difference to a usual tree-walking
automaton is in the definition of the transition relation. It is of the form:

δ ⊆ (Q× (PP × P)×Σ)× (Q× {ε, ↑,↙,↘, lift,drop}).

Whether a transition of A is allowed depends on the current state of A, the label of the
current node v and the structural O-information about (t, v). Note that this generalizes tree-
walking automata, since the structural information can include the type. The size of an oracle
tree-walking automaton is defined as |P |+ |Q|.

The following proposition generalizes Theorem 4.1 and Proposition 4.2 to oracle automata:

Proposition 4.4. (a) For each deterministic oracle automaton, there are trees s ∈ L3l, t 6∈
L3l that have the same root-to-root loops.

(b) For each oracle automaton, there are trees s ∈ Leven, t 6∈ Leven that have the same
root-to-root loops.

4.3 The proof of the lower bounds

This subsection is devoted to the lower bound part of Proposition 4.3. To this end, let n ≥ 1
and A be an (n− 1)-pebble automaton with m states.

We will inductively construct trees si and ti, i = 1, . . . , n, such that, for each i, (1) si
and ti are i-leveled, (2) si ∈ Li, ti 6∈ Li, and (3) si and ti are (i − 1)∗-equivalent. The base
trees s1 and t1 are taken from the following lemma, which is an immediate consequence of
Proposition 4.4.

Lemma 4.5. For every k, there are 1-leveled trees s1 ∈ L1, t1 6∈ L1 that have the same
root-to-root loops for every nondeterministic oracle tree-walking automaton of size ≤ k.

Let s1 and t1 be the trees obtained by this lemma for k large enough, depending on A
and n. (The exact constraints on k are stated in the proof of Lemma 4.6). For i > 1, si is
obtained from s1 by replacing every a leaf with si−1 and every b leaf with ti−1. The tree ti
is analogously obtained from t1. It is immediate that si and ti are i-leveled trees and that
si ∈ Li and ti 6∈ Li.

The lower bound of Proposition 4.3 (a) follows directly from Lemma 3.2 and:

Lemma 4.6. For each i = 0, . . . , n− 1, the trees si+1 and ti+1 are i∗-equivalent.

Proof. The proof is by induction on i. For the base case i = 0, we need to show that the
trees s1 and t1 admit the same 0-loops, i.e. loops that do not use any pebbles. But this follows
from Lemma 4.5, since it corresponds to loops of a tree-walking automaton without pebbles
(we do not even need the oracle). Since Lemma 4.5 talks about root-to-root loops, and we
want s1 and t1 to be equivalent in any context, we need k to be greater than the state space
of any automaton recognizing a 0-behavior from Lemma 3.6.

Let thus i ≥ 1. We assume that si and ti are (i−1)∗-equivalent, we need to show that si+1

and ti+1 are i∗-equivalent. An (i + 1)-leveled tree where all i-leveled subtrees are either si or
ti is called difficult. Clearly both si+1 and ti+1 are difficult. Let τs and τt be the i∗-behaviors
of si and ti, respectively. Note that τs and τt may be different, our induction assumption only
says that the (i− 1)∗-behaviors of si, ti are the same. The behavior folding t of a difficult
tree t is the i∗-behavior folding of t where every occurrence of ti is replaced by a single node
labeled with τt, similarly for si. Note that the behavior foldings of si+1, ti+1 are essentially
the trees s1, t1, except that a is replaced by τs and b is replaced by τt.

Let B be a j-behavior, with j ≤ i. In order to complete the proof of the lemma, we need
to show that B is the j-behavior of si+1 if and only if it is the j-behavior of ti+1. Let C be
the automaton from Lemma 3.7 that accepts i∗-foldings of trees with j-behavior B. We only
consider the most difficult case, when j = i and C has i pebbles. We will show that

Claim. C accepts the behavior folding of si+1 iff it accepts the behavior folding of ti+1.

The general idea is that over behavior foldings of difficult trees, the i-pebble automaton
C can be simulated by an oracle tree-walking automaton. That is, we will construct an oracle
tree-walking automaton D that accepts exactly the same behavior foldings of difficult trees
as C. The size of D will depend only on the size of C (and hence in turn, on the size of A).
The result follows, as long as the k used in defining s1 and t1 was chosen large enough so that
D cannot distinguish the behavior foldings of si+1 and ti+1 (which are the same as s1, t1).

We now proceed to show how the simulating oracle tree-walking automaton D is defined.
Recall that an i-run of the automaton C in the behavior folding of a difficult tree t (actually
in any tree) can be decomposed into a sequence of i-moves each of one of the following types:

– a single transition in which pebble i is not dropped on the tree;
– a drop pebble i transition, followed by an i− 1-loop, followed by lift pebble i.

Clearly, a single transition of the former type can be simulated by a tree-walking automaton
(even without any oracle). The remainder of this proof is to show how to simulate an i-move
of the latter type. The following is the key claim:

Claim. Let v be a node in the behavior folding t of a difficult pebbled tree. Whether or not
there is an (i− 1)-loop from a state p to a state q in v does not depend on the labels of t.

We now proceed to justify this claim. By the remark in the proof of Lemma 3.7, whether or
not C admits an (i− 1)-loop does not depend on all the information about the i∗-equivalence
classes of si, ti written in the leaves, but only on the information about (i− 1)∗-equivalence.
However, by our induction assumption all the (i− 1)∗-equivalences written in the leaves are
the same. The claim follows (recall that non-leaf nodes of t have the blank label).

The claim implies that (i− 1)-loops of C on the behavior folding of a difficult tree can be
simulated by an (i − 1)-pebble automaton whose behavior does not depend on node labels.
By translating this automaton into a parallel automaton, we can create an oracle O that
provides at each node v the set of pairs (p, q) for which there is an (i− 1)-loop at v. ¤

The proof of the lower bound of Proposition 4.3 (b) is completely analogous.

Proof (of Theorem 1.1). We will define a regular tree language L that is not recognized
by any pebble automaton. Note that we can not use the union of all Li, since this language
requires checking that all paths have the same number of c labels.

The general idea though, is the same: the intersection of L with the set of i-leveled trees
will be exactly Li. In particular, all the trees si from the previous lemma belong to L, but
none of the trees ti does. Therefore, no pebble automaton can recognize L.

Now we define the language L. Every path in every tree from L is of the form (cb∗)∗(a+b).
The tree with the single node a is in L. Furthermore, a tree is in L if its L-folding is in Leven.
Here, the L-folding of a tree with paths of the form (cb∗)∗(a + b) is obtained by replacing
each node whose only c ancestor is the root by a leaf with a if its subtree is in L, and by a
leaf with b otherwise. This language clearly satisfies the desired properties.

¤

We do not know if the language M, analogously constructed from the Mi, is in TWA. If
it was we would get TWA 6⊆ DPA, and thus, by the result of [5], FO+DTC (FO+posTC.

5 Strong pebbles are weak

The goal of this section is to prove Theorem 1.4. Given a strong n-pebble automaton we
construct an equivalent standard n-pebble automaton. As a means to prove this equivalence
we introduce an intermediate model. An n-pebble automaton is k-weak if pebbles 1, . . . , k
are weak (and can be lifted only when the head is on them) and pebbles k+1, . . . , n are strong
(and can be lifted from anywhere). We intend to prove the following lemma from which the
nondeterministic part of Theorem 1.4 follows by induction.

Lemma 5.1. For every 0 ≤ k < n, each k-weak n-pebble automaton A has an equivalent
(k + 1)-weak n-pebble automaton A′.

Proof. Let k, n be fixed and let A be a k-weak n-pebble automaton. Let π be a (k + 1)-
run of A between two placements of the pebble k + 1. This run begins by dropping pebble
k + 1 at a node v resulting in a configuration (v, p, v, vk+2, . . . , vn). Then it continues with
a k-run ρ ending in a configuration (w, q, v, vk+2, . . . , vn). Finally, pebble k + 1 is lifted. By

u1 = v, . . . , um = w we denote the nodes on the path in the tree from v to w. Since v, w need
not be equal, π may violate the conditions imposed on (k + 1)-weak automata.

In the following, we describe how a (k + 1)-weak automaton A′ can simulate π. We do
only the case when v is an ancestor of w. The cases when w is an ancestor of v, or when v, w

are incomparable, are similar.
We note first that, as in ρ pebble k + 1 is never lifted, it is actually a k-run of a standard

n-pebble automaton. Thus, we can use all the machinery developed in Section 3 to reason
about ρ and its subruns.

We decompose ρ as ρ1, . . . , ρm, such that, for each m ≥ i ≥ 2, ρi−1 is a context k-loop of
Ct,ui

[t|ui
]. Thus, for i > 1, the first time that node ui is entered in a k-configuration is the

first configuration of ρi. Let, for each i, pi be the first state in ρi.
A′ can simulate π as follows. First it guesses a context k∗-behavior B1 and verifies that

B1 ≤ Bk
Ct,v

as in Lemma 3.6.

Assume a context k∗-behavior Bi has been computed such that Bi ≤ Bk
Ct,ui

(here Ct,ui

refers to the context where pebble k + 1 is still on the node ui). Assume that A′ and pebble
k + 1 are currently at ui and that the current state is pi. Then A′ inductively proceeds as
follows, for every i ≥ 1. It first guesses whether w is in the left or the right subtree. Assume it
guessed that it is in the left subtree. Thus, ui+1 is a left child of ui. Let ai be the label of ui,
Ri its pebble set, ti be t|ui

without pebble k + 1 and t′i be the right subtree of ui. A
′ guesses

the (k − 1)∗-equivalence class τi of ti and the t∗-equivalence class τ ′i of t′i and, using Lemma
3.6, checks whether ti and t′i are in a class bigger than τi and τ ′i . If this is the case it guesses
a state qi and verifies that (pi, qi) ∈ Bi(τi). By Lemma 3.2 this guarantees that (pi, qi) is
a k-loop in Ct,ui

. Let Bi+1 be the k∗-behavior corresponding to Compose(Bi, ai, Ri, ∗, τ
′
i)

(which is a correct notation by Lemma 3.5). By Lemma 3.5 we have Bi+1 ≤ Bk+1
Ct,ui+1

. A′ can

now safely move pebble k + 1 from ui to ui+1, and simulates A in order to move from ui in
state qi to ui+1 in state pi+1.

At w we also need to simulate A on the tree k-loop of ρm and then we lift pebble k + 1. ¤

The deterministic case requires a slightly more care but essentially follows the same idea.

Lemma 5.2. For every k < n, each k-weak pebble deterministic automaton A with n pebbles
has an equivalent (k + 1)-weak pebble deterministic automaton A′ with n pebbles.

References

1. A. V. Aho, J. D. Ullman Translations on a Context-Free Grammar. In Information and Control,
19(5): 439-475, 1971.

2. M. Bojańczyk and T. Colcombet. Tree-Walking Automata Cannot Be Determinized. TCS, to
appear.

3. M. Bojańczyk and T. Colcombet. Tree-walking automata do not recognize all regular languages.
In STOC, 2005.

4. J. Engelfriet and H.J. Hoogeboom. Tree-walking pebble automata. In Jewels are forever,
(J. Karhumäki et al., eds.), Springer-Verlag, 72-83, 1999.

5. J. Engelfriet and H.J. Hoogeboom. Nested Pebbles and Transitive Closure. In STACS, 2006.
6. J. Engelfriet, S. Maneth. A comparison of pebble tree transducers with macro tree transducers.

In Acta Inf. 39(9): 613-698, 2003.
7. J. Engelfriet, H.-J. Hoogeboom, J.-P.Van Best. Trips on Trees. In Acta Cybern. 14(1): 51-64,

1999.
8. T. Milo, D. Suciu and V. Vianu. Typechecking for XML transformers. In J. Comput. Syst. Sci.,

66(1): 66-97, 2003.
9. A. Muscholl, M. Samuelides and L. Segoufin. Complementing deterministic tree-walking automata.

In IPL, to appear.
10. H. Comon et al. Tree Automata Techniques and Applications. Available at

http://www.grappa.univ-lille3.fr/tata

